Large scale conformal geometry

Pierre Pansu, Université Paris-Sud

July 24th, 2018

Pierre Pansu, Université Paris-Sud Large scale conformal geometry

∃ ⊳

Goal: perform conformal geometry on discrete groups.

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q @

Goal: perform conformal geometry on discrete groups.

Definition

X, X' metric spaces. Map $f : X \to X'$ is a coarse embedding if

$$\alpha(d(x,x')) \leq d(f(x),f(x')) \leq \omega(d(x,x')),$$

where $\alpha \to +\infty$, $\omega < +\infty$.

Example. X, X' finitely generated or Lie groups, viewed as metric spaces. Every injective homomorphism is a coarse embedding.

∃ ≥ >

Goal: perform conformal geometry on discrete groups.

Definition

X, X' metric spaces. Map $f : X \to X'$ is a coarse embedding if

$$\alpha(d(x,x')) \leq d(f(x),f(x')) \leq \omega(d(x,x')),$$

where $\alpha \to +\infty$, $\omega < +\infty$.

Example. X, X' finitely generated or Lie groups, viewed as metric spaces. Every injective homomorphism is a coarse embedding.

New input: sharp invariants which take continuously many values.

Sample new result: there can be no coarse conformal map between Jorge Lauret's quasi-abelian groups S_A and S_B if

$$\frac{\Re e(\operatorname{trace}(A))}{\min \Re e(\operatorname{sp}(A))} > \frac{\Re(\operatorname{trace}(B))}{\min \Re e(\operatorname{sp}(B))} > 0.$$

- A 🖻 🕨

1569 : Gerard de Kremer (aka *Mercator*) creates a new world map.

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

1569 : Gerard de Kremer (aka *Mercator*) creates a new world map.

Mercator's map is *conformal* : angles between curves are preserved.

Distance distorsion blows up at poles.

イロト イポト イヨト イヨト

Theorem (Schwarz Lemma)

Let $D \subset \mathbb{C}$ denote the unit disk. Let $f : D \to D$ be a holomorphic function such that f(0) = 0. Then $|f'(0)| \leq 1$.

< ∃⇒

Theorem (Schwarz Lemma)

Let $D \subset \mathbb{C}$ denote the unit disk. Let $f : D \to D$ be a holomorphic function such that f(0) = 0. Then $|f'(0)| \leq 1$.

Corollary (Schwarz-Pick Lemma)

Let $f: D \rightarrow D$ be a holomorphic function. Then f is 1-Lipschitz with respect to hyperbolic distance.

프 + + 프 +

Theorem (Schwarz Lemma)

Let $D \subset \mathbb{C}$ denote the unit disk. Let $f : D \to D$ be a holomorphic function such that f(0) = 0. Then $|f'(0)| \leq 1$.

Corollary (Schwarz-Pick Lemma)

Let $f : D \rightarrow D$ be a holomorphic function. Then f is 1-Lipschitz with respect to hyperbolic distance.

Corollary (Liouville)

Let $f : \mathbb{C} \to D$ be a holomorphic function. Then f is constant.

글 🕨 🖌 글 🕨

In higher dimensions,

Definition

A diffeomorphism between Riemannian manifolds is conformal if its differential maps infinitesimal spheres to infinitesimal spheres.

< ∃ →

In higher dimensions,

Definition

A diffeomorphism between Riemannian manifolds is conformal if its differential maps infinitesimal spheres to infinitesimal spheres.

Examples

- **1** Euclidean space is conformal to the sphere with one point deleted.
- I Hyperbolic space is conformal to a Euclidean ball.
- **③** Euclidean balls are not conformal to Euclidean space.

In higher dimensions,

Definition

A diffeomorphism between Riemannian manifolds is conformal if its differential maps infinitesimal spheres to infinitesimal spheres.

Examples

- **1** Euclidean space is conformal to the sphere with one point deleted.
- **2** Hyperbolic space is conformal to a Euclidean ball.
- **③** Euclidean balls are not conformal to Euclidean space.

Disappointing : conformal diffeomorphisms are rare.

In dimension $n \ge 3$, every conformal diffeomorphism between Euclidean domains is the restriction of a global conformal diffeomorphism of the sphere S^n , i.e. an element of the Möbius group O(n + 1, 1).

Definition

A diffeomorphism between Riemannian manifolds is quasiconformal if its differential maps infinitesimal spheres to infinitesimal ellipsoids of bounded excentricity.

Example

 $z \mapsto z|z|^{K-1}$ is quasiconformal $\mathbb{C} \to \mathbb{C}$.

< 🗇 🕨

4 B K 4 B K

Definition

A diffeomorphism between Riemannian manifolds is quasiconformal if its differential maps infinitesimal spheres to infinitesimal ellipsoids of bounded excentricity.

Example

$$z\mapsto z|z|^{K-1}$$
 is quasiconformal $\mathbb{C} o\mathbb{C}$.

Theorem (H. Grötsch 1928)

Euclidean balls are not quasiconformal to Euclidean space.

3 N

∃ >

Definition

A diffeomorphism between Riemannian manifolds is quasiconformal if its differential maps infinitesimal spheres to infinitesimal ellipsoids of bounded excentricity.

Example

$$\mathsf{z}\mapsto \mathsf{z}|\mathsf{z}|^{\mathsf{K}-1}$$
 is quasiconformal $\mathbb{C} o\mathbb{C}$.

Theorem (H. Grötsch 1928)

Euclidean balls are not quasiconformal to Euclidean space.

 $\mathbf{Proof}:$ quasi-Schwartz Lemma. A quasiconformal diffeomorphism f of the ball satisfies

$$\frac{1}{L}d(x,x') - C \leq d(f(x),f(x')) \leq Ld(x,x') + C$$

with respect to hyperbolic distance. It is a *quasiisometry*, i.e. a large scale biLipschitz map.

< (10 b)

→ E ► < E ►</p>

Quasisymmetric : homeomorphism between metric spaces such that

$$\forall x, \forall x', \forall x'', \quad \frac{d(f(x), f(x'))}{d(f(x), f(x''))} \leq \eta(\frac{d(x, x')}{d(x, x'')}),$$

where $\eta \in Homeo(\mathbb{R}_+)$.

★ 문 ► ★ 문 ► ...

< 🗇 🕨

3

Quasisymmetric : homeomorphism between metric spaces such that

$$\forall x, \forall x', \forall x'', \quad \frac{d(f(x), f(x'))}{d(f(x), f(x''))} \leq \eta(\frac{d(x, x')}{d(x, x'')}),$$

where $\eta \in Homeo(\mathbb{R}_+)$.

Remark. Quasisymmetric \implies quasiconformal.

Theorem (H. Grötsch 1928)

Quasiconformal homeomorphisms of Euclidean spaces are quasisymmetric.

→ Ξ → → Ξ →

A hyperbolic group has an ideal boundary ∂G , a compact space equipped with a family of visual distances.

Paulin: quasiisometries of $G \iff$ quasisymmetric homeomorphisms of ∂G .

글 🖌 🖌 글 🕨

A hyperbolic group has an ideal boundary ∂G , a compact space equipped with a family of visual distances.

Paulin: quasiisometries of $G \iff$ quasisymmetric homeomorphisms of ∂G . Furthermore, visual distances are Ahlfors-regular.

p-Ahlfors-regular metric space: there exists a probability measure μ such that $\mu(B(x, R)) \simeq R^p$ pour $R < R_0$.

4 E b

A hyperbolic group has an ideal boundary ∂G , a compact space equipped with a family of visual distances.

Paulin: quasiisometries of $G \iff$ quasisymmetric homeomorphisms of ∂G . Furthermore, visual distances are Ahlfors-regular.

p-Ahlfors-regular metric space: there exists a probability measure μ such that $\mu(B(x, R)) \simeq R^p$ pour $R < R_0$.

Whence the notion of *quasisymmetric gauge*: the equivalence class of Ahlfors-regular distances on ∂G which are quasisymmetric to a visual distance.

This "microscopic conformal structure" determines the large scale geometry of G.

Sphere packing : collection of balls with disjoint interiors.

Incidence graph : one vertex per ball, an edge when two balls touch.

Definition

A graph is packable in \mathbb{R}^d if it is the incidence graph of a sphere packing of \mathbb{R}^d .

∃ ⊳

Sphere packing : collection of balls with disjoint interiors.

Incidence graph : one vertex per ball, an edge when two balls touch.

Definition

A graph is packable in \mathbb{R}^d if it is the incidence graph of a sphere packing of \mathbb{R}^d .

Theorem (Koebe 1931)

A graph is packable in \mathbb{R}^2 if and only if it is simple and planar (i.e. embeddable into \mathbb{R}^2).

Interpretation : mesoscopic version of Riemann's conformal mapping theorem.

▲ 글 ▶ | ▲ 글 ▶

Notes.

- There are fast algorithms to compute Koebe's packing.
- Apply Koebe's theorem to the equal disk packing of a plane domain. The obtained discrete map converges to Riemann's conformal mapping as radius tends to 0.
- This is an efficient algorithmic way to compute an approximation of Riemann's conformal mapping.
- A variant of Koebe's theorem, Andreev's theorem, is the basic building block of Thurston's 1982 hyperbolization theorem.

4 E b

Notes.

- There are fast algorithms to compute Koebe's packing.
- Apply Koebe's theorem to the equal disk packing of a plane domain. The obtained discrete map converges to Riemann's conformal mapping as radius tends to 0.
- This is an efficient algorithmic way to compute an approximation of Riemann's conformal mapping.
- A variant of Koebe's theorem, Andreev's theorem, is the basic building block of Thurston's 1982 hyperbolization theorem.

In higher dimensions, little is known.

Theorem (Benjamini-Schramm 2013)

The grid in \mathbb{R}^n is packable in \mathbb{R}^d iff $n \leq d$. There exist lattices of hyperbolic n-space whose Cayley graphs are packable in \mathbb{R}^d only if $n \leq d$.

 (N, ℓ, R, S) -packings: This means a countable collection of balls B_j of radii $\in [R, S]$ such that the collection of concentric balls ℓB_j has multiplicity $\leq N$.

Example: A usual disk or ball packing is a $(1, 1, 0, \infty)$ -packing.

 (N, ℓ, R, S) -packings: This means a countable collection of balls B_j of radii $\in [R, S]$ such that the collection of concentric balls ℓB_j has multiplicity $\leq N$.

Example: A usual disk or ball packing is a $(1, 1, 0, \infty)$ -packing.

Definition

A coarse conformal map is a map $f: X \to X'$ between metric spaces, enriched with a correpondance between balls $B \mapsto B'$ such that $f(B) \subset B'$, and there exist R > 0 such that $\forall S \ge R$ and $\ell' \ge 1$, there exist $N' \ge 1$ and $\ell \ge 1$ such that f maps $(1, \ell, R, S)$ -packings to $(N', \ell', 0, \infty)$ -packings.

 (N, ℓ, R, S) -packings: This means a countable collection of balls B_j of radii $\in [R, S]$ such that the collection of concentric balls ℓB_j has multiplicity $\leq N$.

Example: A usual disk or ball packing is a $(1, 1, 0, \infty)$ -packing.

Definition

A coarse conformal map is a map $f: X \to X'$ between metric spaces, enriched with a correpondance between balls $B \mapsto B'$ such that $f(B) \subset B'$, and there exist R > 0 such that $\forall S \ge R$ and $\ell' \ge 1$, there exist $N' \ge 1$ and $\ell \ge 1$ such that f maps $(1, \ell, R, S)$ -packings to $(N', \ell', 0, \infty)$ -packings.

Coarse conformal maps can be precomposed with coarse embeddings and postcomposed with quasisymmetric homeomorphisms.

Examples.

- Every nilpotent group c.c. maps to some \mathbb{R}^N (Assouad).
- Every hyperbolic group c.c. maps to some O(N, 1) (Bonk-Schramm).
- $z \mapsto z|z|^{K-1}$ is coarsely conformal on \mathbb{R}^N .
- For every hyperbolic group G, the Poincaré model $G \to O(1,1) \times \partial G$ is coarsely conformal.

Questions. What is the optimal N such that

- Heisenberg group c.c. maps to \mathbb{R}^N ?
- Lauret's quasi-abelian group S_A c.c. maps to O(N, 1)?

프 + + 프 +

Questions. What is the optimal N such that

- Heisenberg group c.c. maps to \mathbb{R}^N ?
- Lauret's quasi-abelian group S_A c.c. maps to O(N, 1)?

Partial answer. A necessary condition is that some dimension increases. "Non-squeezing theorem".

For nilpotent groups G, relevant dimension $d_1(G) = d_2(G)$ is exponent of volume growth.

For hyperbolic groups G, two candidates, conformal dimension of ideal boundary $d_2(G)$, or cohomological dimension (least p such that ℓ^p -cohomology does not vanish) $d_1(G)$.

B K 4 B K

Questions. What is the optimal N such that

- Heisenberg group c.c. maps to \mathbb{R}^N ?
- Lauret's quasi-abelian group S_A c.c. maps to O(N, 1)?

Partial answer. A necessary condition is that some dimension increases. "Non-squeezing theorem".

For nilpotent groups G, relevant dimension $d_1(G) = d_2(G)$ is exponent of volume growth.

For hyperbolic groups G, two candidates, conformal dimension of ideal boundary $d_2(G)$, or cohomological dimension (least p such that ℓ^p -cohomology does not vanish) $d_1(G)$.

Open problem. Find more numerical invariants that must increase under coarse conformal maps.

< 三ト < 三ト

Let G, G' be Lie or finitely generated groups, nilpotent or hyperbolic. Assume that G c.c. maps to G'. Then

 $d_1(G) \leq d_2(G').$

< ≣ ▶

3 N

Let G, G' be Lie or finitely generated groups, nilpotent or hyperbolic. Assume that G c.c. maps to G'. Then

 $d_1(G) \leq d_2(G').$

For instance, no c.c. map

- of Heisenberg group \mathbb{H}^{2m-1} into \mathbb{R}^n if n < 2m.
- of U(m, 1) into O(n, 1) for $n \leq 2m$.

4 E b

Let G, G' be Lie or finitely generated groups, nilpotent or hyperbolic. Assume that G c.c. maps to G'. Then

 $d_1(G) \leq d_2(G').$

For instance, no c.c. map

- of Heisenberg group \mathbb{H}^{2m-1} into \mathbb{R}^n if n < 2m.
- of U(m, 1) into O(n, 1) for $n \leq 2m$.

Lauret's quasi-abelian groups S_A with min $\Re e(\operatorname{sp}(A)) > 0$ satisfy

$$d = d_1(S_A) = d_2(S_A) = \frac{\Re e(\operatorname{trace}(A))}{\min \Re e(\operatorname{sp}(A))}$$

which takes all values in $[1, +\infty)$. Theorem states that d must increase under c.c. maps.

4 E b

Let G, G' be Lie or finitely generated groups, nilpotent or hyperbolic. Assume that G c.c. maps to G'. Then

 $d_1(G) \leq d_2(G').$

For instance, no c.c. map

- of Heisenberg group \mathbb{H}^{2m-1} into \mathbb{R}^n if n < 2m.
- of U(m, 1) into O(n, 1) for $n \leq 2m$.

Lauret's quasi-abelian groups S_A with min $\Re e(\operatorname{sp}(A)) > 0$ satisfy

$$d = d_1(S_A) = d_2(S_A) = \frac{\Re e(\operatorname{trace}(A))}{\min \Re e(\operatorname{sp}(A))}$$

which takes all values in $[1, +\infty)$. Theorem states that d must increase under c.c. maps.

Isometry groups of Bourdon buildings satisfy $d = d_1(G) = d_2(G)$ that cover a dense subset of $[1, +\infty)$. Weird coarse (in fact, quasiisometric) embeddings exist among them. Theorem states that d must increase. Alternate proof of this due to Hume-Mackay-Tessera 2017, based on p-separation.

▲ 글 ▶ | ▲ 글 ▶

$$E_{p,\ell,R,S}(u) = \sup_{(1,\ell,R,S)-packings \{B_j\}} \sum_j osc(u_{|B_j})^p.$$

Example: On a *d*-Ahlfors-regular metric space, Lipschitz maps have finite *d*-energy.

医下 不正下

3

$$E_{p,\ell,R,S}(u) = \sup_{(1,\ell,R,S)-packings \{B_j\}} \sum_j osc(u_{|B_j})^p.$$

Example: On a *d*-Ahlfors-regular metric space, Lipschitz maps have finite *d*-energy. *p*-modulus of a curve family \mathcal{F} : it is the inf of *p*-energies of maps *u* to metric spaces such that length $(u \circ \sigma) \ge 1$ for each curve $\sigma \in \mathcal{F}$.

- A 🗐 🕨

$$E_{p,\ell,R,S}(u) = \sup_{(1,\ell,R,S)-packings \{B_j\}} \sum_j osc(u_{|B_j})^p.$$

Example: On a *d*-Ahlfors-regular metric space, Lipschitz maps have finite *d*-energy. *p*-modulus of a curve family \mathcal{F} : it is the inf of *p*-energies of maps *u* to metric spaces such that length($u \circ \sigma$) ≥ 1 for each curve $\sigma \in \mathcal{F}$.

p-almost every curve: means for all unbounded curves starting from some compact set but a family of vanishing *p*-modulus.

→ Ξ →

$$E_{p,\ell,R,S}(u) = \sup_{(1,\ell,R,S)-packings} \sum_{\{B_j\}} osc(u_{|B_j})^p.$$

Example: On a *d*-Ahlfors-regular metric space, Lipschitz maps have finite *d*-energy.

p-modulus of a curve family \mathcal{F} : it is the inf of *p*-energies of maps *u* to metric spaces such that length($u \circ \sigma$) ≥ 1 for each curve $\sigma \in \mathcal{F}$.

p-almost every curve: means for all unbounded curves starting from some compact set but a family of vanishing *p*-modulus.

p-parabolicity: means that the p-modulus of the family of unbounded curves starting in a compact set is equal to 0.

$$E_{p,\ell,R,S}(u) = \sup_{(1,\ell,R,S)-packings \{B_j\}} \sum_j osc(u_{|B_j})^p.$$

Example: On a *d*-Ahlfors-regular metric space, Lipschitz maps have finite *d*-energy.

p-modulus of a curve family \mathcal{F} : it is the inf of *p*-energies of maps *u* to metric spaces such that length($u \circ \sigma$) ≥ 1 for each curve $\sigma \in \mathcal{F}$.

p-almost every curve: means for all unbounded curves starting from some compact set but a family of vanishing *p*-modulus.

p-parabolicity: means that the p-modulus of the family of unbounded curves starting in a compact set is equal to 0.

Theorem (Troyanov, based on Coulhon/Saloff-Coste and Gromov)

A finitely generated group G is p-parabolic iff the volume growth is polynomial of degree $d(G) \leq p$.

- A 🖻 🕨

$$E_{p,\ell,R,S}(u) = \sup_{(1,\ell,R,S)-packings \{B_j\}} \sum_j osc(u_{|B_j})^p.$$

Example: On a *d*-Ahlfors-regular metric space, Lipschitz maps have finite *d*-energy.

p-modulus of a curve family \mathcal{F} : it is the inf of *p*-energies of maps *u* to metric spaces such that length($u \circ \sigma$) ≥ 1 for each curve $\sigma \in \mathcal{F}$.

p-almost every curve: means for all unbounded curves starting from some compact set but a family of vanishing *p*-modulus.

p-parabolicity: means that the p-modulus of the family of unbounded curves starting in a compact set is equal to 0.

Theorem (Troyanov, based on Coulhon/Saloff-Coste and Gromov)

A finitely generated group G is p-parabolic iff the volume growth is polynomial of degree $d(G) \leq p$.

Corollary. No c.c. map or coarse embedding $G \to G'$ if G' is nilpotent and G hyperbolic, or G nilpotent with d(G) > d(G').

★ E ► ★ E ►

If G' is hyperbolic, compose the c.c. map $G \to G'$ with the generalized Poincaré model $G' \to \mathbb{R} \times \partial G'$. The resulting map is roughly conformal. Furthermore, $\mathbb{R} \times \partial G'$ is p-Ahlfors regular for every $p > \dim_{AR}(G')$.

Theorem (Benjamini-Schramm 2013 revisited)

Let Y be a compact, Q-Ahlfors-regular metric space. If there exists a roughly conformal map $f: X \to Y$, then

- either X is Q-parabolic,
- \bigcirc or $\ell^Q \overline{H}^1(X) \neq 0$.

If G is hyperbolic, it is p-parabolic for no p, so the obstruction comes from reduced ℓ^p cohomology, whence $d_1(G)$.

If G is nilpotent, it has vanishing reduced ℓ^p cohomology for all p, so the obstruction comes from p-parabolicity.

B K 4 B K

Cochains are functions $\kappa : X^{k+1} \to \mathbb{R}$. The ℓ^p norm of κ is the sup of sums $(\sum_i \sup |\kappa_{|B_i|}|^p)^{1/p}$ over all $(1, \ell, R, S)$ -packings (parameters ℓ, R, S are fixed).

Definition

The ℓ^p cohomology of metric space X is $\ell^p H^k = \{k\text{-}cocycles \ \ell^p\}/d\{\ell^p (k-1)\text{-}cochains\}.$ Reduced ℓ^p cohomology is $\ell^p \bar{H}^k = \{k\text{-}cocycles \ \ell^p\}/d\{\ell^p (k-1)\text{-}cochains\}.$

Proposition

For bounded geometry uniformly contractible Riemannian manifolds or simplicial complexes, for every $0 < R \le S < \infty$, this coincides with previous definitions.

Cochains are functions $\kappa : X^{k+1} \to \mathbb{R}$. The ℓ^p norm of κ is the sup of sums $(\sum_j \sup |\kappa_{|B_i|}|^p)^{1/p}$ over all $(1, \ell, R, S)$ -packings (parameters ℓ, R, S are fixed).

Definition

The ℓ^p cohomology of metric space X is $\ell^p H^k = \{k\text{-}cocycles \ \ell^p\}/d\{\ell^p (k-1)\text{-}cochains\}.$ Reduced ℓ^p cohomology is $\ell^p \bar{H}^k = \{k\text{-}cocycles \ \ell^p\}/d\{\ell^p (k-1)\text{-}cochains\}.$

Proposition

For bounded geometry uniformly contractible Riemannian manifolds or simplicial complexes, for every $0 < R \le S < \infty$, this coincides with previous definitions.

If G is a hyperbolic group, $\ell^p H^1 = \ell^p \overline{H}^1$ vanishes for $p < d_1(G)$ and does not vanish for $p > d_2(G)$.

過き くほき くほう

Let Y be a compact, Q-Ahlfors-regular metric space. If there exists a roughly conformal map $f:X\to Y,$ then

- either X is Q-parabolic,
- \bigcirc or $\ell^Q \overline{H}^1(X) \neq 0$.

< ∃ >

Let Y be a compact, Q-Ahlfors-regular metric space. If there exists a roughly conformal map $f:X\to Y,$ then

- either X is Q-parabolic,
- $or \ \ell^Q \overline{H}^1(X) \neq 0.$

Proof.

• Naturality : f transports finite energy maps. In particular, if Y is Q-Ahlfors-regular, $E_Q(f) < \infty$.

-∢ ⊒ ▶

Let Y be a compact, Q-Ahlfors-regular metric space. If there exists a roughly conformal map $f:X\to Y,$ then

- either X is Q-parabolic,
- 2 or $\ell^Q \overline{H}^1(X) \neq 0$.

Proof.

- Naturality : f transports finite energy maps. In particular, if Y is Q-Ahlfors-regular, $E_Q(f) < \infty$.
- ② If $\ell^Q H^1(X) = 0$, every finite *Q*-energy map has a limit at infinity. Thus *f* has a limit *y* ∈ *Y*.

글 🖌 🖌 글 🕨

Let Y be a compact, Q-Ahlfors-regular metric space. If there exists a roughly conformal map $f:X\to Y,$ then

- either X is Q-parabolic,
- $or \ \ell^Q \overline{H}^1(X) \neq 0.$

Proof.

- Naturality : f transports finite energy maps. In particular, if Y is Q-Ahlfors-regular, $E_Q(f) < \infty$.
- ② If $\ell^Q H^1(X) = 0$, every finite *Q*-energy map has a limit at infinity. Thus *f* has a limit *y* ∈ *Y*.
- **(a)** On $Y \setminus \{y\}$, there exists a finite energy function v_y that tends to $+\infty$ at y. Thus $v_y \circ f$ has finite energy and tends to $+\infty$, contradiction.

医下 不正下

Let Y be a compact, Q-Ahlfors-regular metric space. If there exists a roughly conformal map $f: X \to Y$, then

- either X is Q-parabolic,
- 2 or $\ell^Q \overline{H}^1(X) \neq 0$.

Proof.

- Naturality : f transports finite energy maps. In particular, if Y is Q-Ahlfors-regular, $E_Q(f) < \infty$.
- ② If $\ell^Q H^1(X) = 0$, every finite *Q*-energy map has a limit at infinity. Thus *f* has a limit *y* ∈ *Y*.
- **(a)** On $Y \setminus \{y\}$, there exists a finite energy function v_y that tends to $+\infty$ at y. Thus $v_y \circ f$ has finite energy and tends to $+\infty$, contradiction.
- Finite energy maps have limits along almost every curve. So f has limits along Q-almost every curve.

< 三ト < 三ト

Let Y be a compact, Q-Ahlfors-regular metric space. If there exists a roughly conformal map $f: X \to Y$, then

- either X is Q-parabolic,
- 2 or $\ell^Q \overline{H}^1(X) \neq 0$.

Proof.

- Naturality : f transports finite energy maps. In particular, if Y is Q-Ahlfors-regular, $E_Q(f) < \infty$.
- ② If $\ell^Q H^1(X) = 0$, every finite *Q*-energy map has a limit at infinity. Thus *f* has a limit *y* ∈ *Y*.
- **(a)** On $Y \setminus \{y\}$, there exists a finite energy function v_y that tends to $+\infty$ at y. Thus $v_y \circ f$ has finite energy and tends to $+\infty$, contradiction.
- Finite energy maps have limits along almost every curve. So f has limits along Q-almost every curve.
- **(a)** If $\ell^Q \overline{H}^1(X) = 0$, these limits are *Q*-almost always the same, *y*.

▲ 国 ▶ | ▲ 国 ▶ | |

Let Y be a compact, Q-Ahlfors-regular metric space. If there exists a roughly conformal map $f: X \to Y$, then

- either X is Q-parabolic,
- $or \ \ell^Q \overline{H}^1(X) \neq 0.$

Proof.

- Naturality : f transports finite energy maps. In particular, if Y is Q-Ahlfors-regular, $E_Q(f) < \infty$.
- ② If $\ell^Q H^1(X) = 0$, every finite *Q*-energy map has a limit at infinity. Thus *f* has a limit *y* ∈ *Y*.
- **(a)** On $Y \setminus \{y\}$, there exists a finite energy function v_y that tends to $+\infty$ at y. Thus $v_y \circ f$ has finite energy and tends to $+\infty$, contradiction.
- Finite energy maps have limits along almost every curve. So f has limits along Q-almost every curve.
- **(a)** If $\ell^Q \overline{H}^1(X) = 0$, these limits are *Q*-almost always the same, *y*.
- **()** Then $v_y \circ f$ has finite energy and tends to $+\infty$ along *d*-almost every curve. Thus *Q*-almost every curve = no curve, i.e. *X* is *Q*-parabolic.