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Goal. The large scale behaviour of nilpotent Lie groups is governed by self-similarity:

There is a subclass of nilpotent Lie groups, called Carnot groups, which admit
(subFinsler) metrics, which are exactly self-similar.

Every nilpotent Lie group is asymptotic to such a Carnot group.

This behaviour is specific to nilpotent groups: self-similarity and isometric
homogeneity characterize subFinsler Carnot groups.

Plan of lecture

1 Large scale geometry of the Heisenberg group
2 Generalization to nilpotent groups
3 GH-asymptotic cones
4 Characterization of self-similar isometrically homogeneous spaces

Lectures based on Enrico Le Donne’s book project.
Ask him for updates.
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We are interested in large scale invariants like

Volume growth: v(R) = number of unit balls needed to cover a ball of radius R.

Isoperimetry: I (v) = boundary volume needed to enclose volume at least v .

More general filling inequalities: Fill(L) = area needed to fill all loops of length at
most L.

For abelian Lie groups, i.e. Euclidean spaces (Rn, g), scale invariance implies that
each function is a power function, and reduces to settling the cases where R, v or L is
equal to 1. Indeed, abelian Lie groups possess rescaling automorphisms δε : x 7→ εx
such that δ∗ε g = ε2g , whence

dist(δε(x), δε(x
′)) = ε dist(x , x ′),

vol(δε(A)) = εn vol(A),

vol(δε(∂A)) = εn−1 vol(∂A),

length(δε(`)) = ε length(`),

area(δε(S)) = ε2 area(S)

for surfaces.

Question. Are there other groups for which such scale invariance applies?
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The 3-dimensional Heisenberg group is

H = {

1 x z
0 1 y
0 0 1

 ; x , y , z ∈ R}.

Setting x → εx and y → εy can be completed into a 1-parameter group of
automorphisms δε by setting z → ε2z.

If M =

1 x z
0 1 y
0 0 1

, then M−1 =

1 −x −z + xy
0 1 −y
0 0 1

 and

M−1dM =

1 dx dz − xdy
0 1 dy
0 0 1


gives us a basis of left invariant 1-forms. So a typical left-invariant metric is

g1 = dx2 + dy2 + (dz − xdy)2.

Then
δ∗ε g1 = ε2(dx2 + dy2 + ε2(dz − xdy)2).
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Question. How does gε = dx2 + dy2 + ε2(dz − xdy)2 behave as ε→∞ ?

The horizontal plane field Ker(dz−xdy)
is generated by left-invariant vector fields
ξ = ∂

∂x
and η = ∂

∂y
+ x ∂

∂z
.
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The horizontal plane field Ker(dz−xdy)
is generated by left-invariant vector fields
ξ = ∂

∂x
and η = ∂

∂y
+ x ∂

∂z
. The sub-

Riemannian or Carnot-Carathéodory dis-
tance d∞(p, p′) is the inf of lengths of
horizontal curves joining p to p′. Its
finiteness follows from

ζ = [ξ, η] =
∂

∂z
,

see the picture.

x

y

z

ξ(p)

η(p1)
−ξ(p2)

−η(p3)

p

p1

p′

p2

p3

The family of distances dε defined by gε is increasing and bounded above by d∞.
Therefore it converges.

Proposition

lim
ε→∞

dε = d∞.

Proof given soon.
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Lemma (π is a submetry)

The projection π : H→ R2, (x , y , z) 7→ (x , y) is a submetry, i.e. it maps dε balls to
Euclidean balls of equal radii.

Indeed, gε ≥ dx2 + dy2, so π is 1-Lipschitz. Conversely, along horizontal curves,
gε = dx2 + dy2, so π preserves the length of horizontal curves. Since all plane curves
have horizontal lifts (setting z(t) =

∫ t
0 x(x)y ′(s)ds), the image of a ball is exactly a

ball.

Lemma (Upper bound on d∞)

The Carnot-Carathéodory distance satisfies

d∞((x , y , z), (0, 0, 0)) ≤
√

x2 + y2 + 4
√
|z|.

We already featured a horizontal path of length 4
√
|z| joining (0, 0, 0) to (0, 0, z).

Then the horizontal lift t 7→ (tx , ty , z + t3

3 xy) of the line segment from (0, 0) to (x , y)

joins (0, 0, z) to (x , y , z) and has length
√

x2 + y2.

Remark. By compactness, there exists a constant c > 0 such that

c(
√

x2 + y2 + 4
√
|z|) ≤ d∞((x , y , z), (0, 0, 0)).
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Corollary (d∞ and d1 are locally 1
2 -Hölder equivalent)

There exists a constant C such that, on the d∞ unit ball,

d∞ ≤ C d
1/2
1 .

Indeed, on a bounded set, d1 ∼ 2
√

x2 + y2 + 32|z| ≥ d2
∞.

Lemma (d∞ and d1 are quasiisometric)

For the same constant C ,

d1 ≤ d∞ ≤ C(d1 +
√

d1).

Indeed, if two points sit at d1 distance L, cutting a d1 geodesic in pieces of length 1,
one sees that their d∞-distance is at most bLcC + C

√
{L}.

≤ C
≤ C ≤ C

≤ C
≤ C

√
{L}

p

q
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Theorem (Large scale geometry of d∞)

Volume growth: v(R) = O(R4).

Isoperimetry: I (v) = O(v3/4).

Horizontal loop filling: Fill(L) = O(L3).

Volume growth is easy: δR maps the unit ball to the R-ball, and multiplies
volumes by exactly R4.

Surfaces have Hausdorff dimension at least 3, this explains the exponents. Area
needs be taken as 3-dimensional Hausdorff measure. Dilates of a horizontal loop
of length L based at some point of the loop sweep a surface whose area is O(L3).

Isoperimetry is most easily proven using harmonic analysis. Ask me.

Corollary (Large scale geometry of d1)

Volume growth: v(R) = O(R4).

Isoperimetry: I (v) = O(v3/4).

Loop filling: Fill(L) = O(L3).

Indeed, d1 is quasiisometric to d∞.
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Theorem (Sharper - still unsharp - comparison between d1 and d∞)

d∞ = d1 + O(d
1/2
1 ).

In particular, dε → d∞ as ε→∞.

It is indeed sharper, since

dε(e, p)

d∞(e, p)
=

d1(e, δε(p))

d∞(e, δε(p))

tends to 1 as ε→∞.

Proof of Theorem
Let p ∈ H at distance L = d1(e, p). Let γ be a minimizing geodesic from e to p, with
constant speed L. Let γ∞ be the horizontal lift from e of π ◦ γ, let φ = δ1/L ◦ γ and
φ∞ = δ1/L ◦ γ∞. Both have length 1. Then

1
L
d∞(e, p) = d∞(e, φ(1))

≤ d∞(e, φ∞(1)) + d∞(φ∞(1), φ(1))

≤ 1 + C d1(φ∞(1), φ(1))1/2.
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One views φ and φ∞ as trajectories of left invariant time dependent vector fields X
and Y : X (q, t) is the left invariant vector field which equals φ′(t) at φ(t), idem for Y .

Lemma (Grönwall-type Lemma)

Let X and Y be time dependent vector fields on the unit ball of Euclidean space.
Assume that for all points q, q′ and all positive times t,

‖X (q, t)− Y (q′, t)‖ ≤ C ′ (ε+ ‖q − q′‖).

Then their trajectories φ and ψ from the origin satisfy

‖φ(t)− ψ(t)‖ ≤ (eC
′t − 1)ε,

whenever both are defined.

Here, for all t ∈ [0, 1], γ(t) and γ∞(t) both lie in the d1-ball of radius L, hence φ(t)
and φ∞(t) both lie in a compact part of H = R3 where g1 upper bounded by a
multiple of the Euclidean norm and where left invariant vector fields are Lipschitz.
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1
L
d∞(e, p) ≤ 1 + C d1(φ∞(1), φ(1))1/2.

Lemma (Grönwall-type Lemma)

‖X (q, t)− Y (q′, t)‖ ≤ C ′ (ε+ ‖q − q′‖) =⇒ ‖φ(t)− ψ(t)‖ ≤ (eC
′t − 1)ε,

Here, for all q, Y (q, t) is the horizontal component of X (q, t) = φ′(t) = δ1/L(γ′(t))
left-translated to q. Since Z = δL(Y (q, t)− X (q, t)) is vertical,

‖Y (q, t)− X (q, t)‖1 = ‖δ1/L(Z)‖1 =
1
L2 ‖Z‖1 ≤

1
L
,

so a similar inequality holds for the Euclidean norm. Changing one of the q to q′ adds
a Lipschitz term O(‖q − q′‖). The Lemma yields

d1(φ∞(1), φ(1)) ≤ (eC
′
− 1)

const.
L

,

and 1
L
d∞(e, p) ≤ 1 + O(L−1/2), where L = d1(e, p).
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The sharper comparison yields

Corollary

Let ω denote the volume of the unit d∞ ball. Then the volumes of d1 balls satisfy

vol(B1(R)) = ω R4 + O(R3.5).

Indeed, the volume of the d∞ shell B∞(R) \ B∞(R − C
√
R) is

ω(R4 − (R − C
√
R)4) ∼ R3.5.

Remark. By the same method, similar asymptotic expansions hold for periodic metrics
on H, for word metrics on lattices of H.

Question

Can one refine this asymptotic expansion?

Certainly yes. There is an exact analytic expression for dε...

Remark. The sharper comparison does not directly yield asymptotics for the
isoperimetric profile nor the filling function. Nevertheless, the strategy of
approximating Riemannian by subRiemannian quantities should apply there as well.

Pierre Pansu Large scale geometry of nilpotent Lie groups



Large scale geometry of the Heisenberg group
Generalization to nilpotent groups

GH-asymptotic cones
Characterization of self-similar isometrically homogeneous spaces

Riemannian Heisenberg group
SubRiemannian Heisenberg group
Quasiisometry
Sublinear equivalence

The sharper comparison yields

Corollary

Let ω denote the volume of the unit d∞ ball. Then the volumes of d1 balls satisfy

vol(B1(R)) = ω R4 + O(R3.5).

Indeed, the volume of the d∞ shell B∞(R) \ B∞(R − C
√
R) is

ω(R4 − (R − C
√
R)4) ∼ R3.5.

Remark. By the same method, similar asymptotic expansions hold for periodic metrics
on H, for word metrics on lattices of H.

Question

Can one refine this asymptotic expansion?

Certainly yes. There is an exact analytic expression for dε...

Remark. The sharper comparison does not directly yield asymptotics for the
isoperimetric profile nor the filling function. Nevertheless, the strategy of
approximating Riemannian by subRiemannian quantities should apply there as well.

Pierre Pansu Large scale geometry of nilpotent Lie groups



Large scale geometry of the Heisenberg group
Generalization to nilpotent groups

GH-asymptotic cones
Characterization of self-similar isometrically homogeneous spaces

Riemannian Heisenberg group
SubRiemannian Heisenberg group
Quasiisometry
Sublinear equivalence

The sharper comparison yields

Corollary

Let ω denote the volume of the unit d∞ ball. Then the volumes of d1 balls satisfy

vol(B1(R)) = ω R4 + O(R3.5).

Indeed, the volume of the d∞ shell B∞(R) \ B∞(R − C
√
R) is

ω(R4 − (R − C
√
R)4) ∼ R3.5.

Remark. By the same method, similar asymptotic expansions hold for periodic metrics
on H, for word metrics on lattices of H.

Question

Can one refine this asymptotic expansion?

Certainly yes. There is an exact analytic expression for dε...

Remark. The sharper comparison does not directly yield asymptotics for the
isoperimetric profile nor the filling function. Nevertheless, the strategy of
approximating Riemannian by subRiemannian quantities should apply there as well.

Pierre Pansu Large scale geometry of nilpotent Lie groups



Large scale geometry of the Heisenberg group
Generalization to nilpotent groups

GH-asymptotic cones
Characterization of self-similar isometrically homogeneous spaces

Riemannian Heisenberg group
SubRiemannian Heisenberg group
Quasiisometry
Sublinear equivalence

The sharper comparison yields

Corollary

Let ω denote the volume of the unit d∞ ball. Then the volumes of d1 balls satisfy

vol(B1(R)) = ω R4 + O(R3.5).

Indeed, the volume of the d∞ shell B∞(R) \ B∞(R − C
√
R) is

ω(R4 − (R − C
√
R)4) ∼ R3.5.

Remark. By the same method, similar asymptotic expansions hold for periodic metrics
on H, for word metrics on lattices of H.

Question

Can one refine this asymptotic expansion?

Certainly yes. There is an exact analytic expression for dε...

Remark. The sharper comparison does not directly yield asymptotics for the
isoperimetric profile nor the filling function. Nevertheless, the strategy of
approximating Riemannian by subRiemannian quantities should apply there as well.

Pierre Pansu Large scale geometry of nilpotent Lie groups



Large scale geometry of the Heisenberg group
Generalization to nilpotent groups

GH-asymptotic cones
Characterization of self-similar isometrically homogeneous spaces

Riemannian Heisenberg group
SubRiemannian Heisenberg group
Quasiisometry
Sublinear equivalence

The sharper comparison yields

Corollary

Let ω denote the volume of the unit d∞ ball. Then the volumes of d1 balls satisfy

vol(B1(R)) = ω R4 + O(R3.5).

Indeed, the volume of the d∞ shell B∞(R) \ B∞(R − C
√
R) is

ω(R4 − (R − C
√
R)4) ∼ R3.5.

Remark. By the same method, similar asymptotic expansions hold for periodic metrics
on H, for word metrics on lattices of H.

Question

Can one refine this asymptotic expansion?

Certainly yes. There is an exact analytic expression for dε...

Remark. The sharper comparison does not directly yield asymptotics for the
isoperimetric profile nor the filling function. Nevertheless, the strategy of
approximating Riemannian by subRiemannian quantities should apply there as well.

Pierre Pansu Large scale geometry of nilpotent Lie groups



Large scale geometry of the Heisenberg group
Generalization to nilpotent groups

GH-asymptotic cones
Characterization of self-similar isometrically homogeneous spaces

Riemannian Heisenberg group
SubRiemannian Heisenberg group
Quasiisometry
Sublinear equivalence

The sharper comparison yields

Corollary

Let ω denote the volume of the unit d∞ ball. Then the volumes of d1 balls satisfy

vol(B1(R)) = ω R4 + O(R3.5).

Indeed, the volume of the d∞ shell B∞(R) \ B∞(R − C
√
R) is

ω(R4 − (R − C
√
R)4) ∼ R3.5.

Remark. By the same method, similar asymptotic expansions hold for periodic metrics
on H, for word metrics on lattices of H.

Question

Can one refine this asymptotic expansion?

Certainly yes. There is an exact analytic expression for dε...

Remark. The sharper comparison does not directly yield asymptotics for the
isoperimetric profile nor the filling function. Nevertheless, the strategy of
approximating Riemannian by subRiemannian quantities should apply there as well.

Pierre Pansu Large scale geometry of nilpotent Lie groups



Large scale geometry of the Heisenberg group
Generalization to nilpotent groups

GH-asymptotic cones
Characterization of self-similar isometrically homogeneous spaces

SubFinsler metrics
Selfsimilar subFinsler metrics on Carnot groups
NonCarnot nilpotent Lie groups

SubFinsler metrics generalize the subRiemannian metric encountered on Heisenberg
group.

On a smooth connected manifold M, a distribution is a smooth subbundle ∆ of the
tangent bundle.

We always assume that it satisfies Hörmander’s condition: iterated brackets of
sections of ∆ eventually span the whole tangent space at each point. This garantees
(Chow’s 193? theorem, with ancestors going back to C. Carathéodory’s 1911
interpretation of S. Carnot’s second principle of thermodynamics) that curves tangent
to ∆ join every pair of points in M.

A subFinsler metric on (M,∆) is the data of a continuous family on norms on ∆.
Minimizing the lengths of horizontal curves yields a distance, the subFinsler distance.
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Heisenberg group is a prototype in a broader family.

Definition (Carnot group)

A Carnot grading on a Lie algebra g is a gradation

g =
s⊕

i=1

gi ,

such that [gi , gj ] ⊂ gi+j , and g1 generates g. s is called the step of g.
A Carnot group is the data of a simply connected Lie group with a Carnot grading on
its Lie algebra.

The maps such that δε = εi on gi are Lie algebra (and thus group via exp)
automorphisms. A norm on g1 defines a left invariant subFinsler metric on the group,
which is selfsimilar: δε multiplies it exactly by ε.
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Theorem (Sublinear equivalence, Breuillard-Le Donne 2013, Giannella 2017)

Let G be a Carnot group of step s, let d1 be a left invariant subFinsler metric on G .
There exists a left invariant selfsimilar subFinsler metric d∞ on G such that

d∞ = d1 + O(d
1−(1/s)
1 ).

Take the norm on g1 ' G/[G ,G ] that makes the projection G → G/[G ,G ] a
submetry. Then same proof as for Heisenberg group.
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Definition

Let g be a Lie algebra. Define recursively g1 = g and gi+1 = [gi , g]. A Lie algebra is
nilpotent if there exists s such that gs+1 = {0}. The smallest such s is the step of g.

Notation

Let G be a simply connected nilpotent Lie group with Lie algebra g. The number

Q =
s∑

i=1

i dim(gi/gi+1) =
s∑

i=1

dim(gi )

is called the homogeneous dimension of G .

We shall see below that Q is the degree of polynomial volume growth of G .

Every Carnot Lie algebra is nilpotent. Not every nilpotent Lie algebra admits a Carnot
grading.

Example

The Lie algebra n with basis X1, . . . ,X5 and nonzero brackets [X1,X2] = X3,
[X1,X3] = X4, [X1,X4] = X5 = [X2,X3] does not admit a Carnot grading.
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To see this, we first define

Definition (The associated Carnot graded Lie algebra Car(g))

Let g be a nilpotent Lie algebra. Let

Car(g) =
s⊕

i=1

gi/gi+1,

with the induced brackets gi/gi+1 × gj/gj+1 → gi+j/gi+j+1. It is a Lie algebra, which
comes with a tautological Carnot grading.

If a Lie algebra g admits a Carnot grading, then g and Car(g) are isomorphic as
Carnot Lie algebras. Here, Car(n) has one less nonzero bracket, [X2,X3] = 0, so it is
not isomorphic to n.

Definition (Associated Carnot group)

Let G be a simply connected nilpotent Lie group. The associated Carnot group
Car(G) is the simply connected Lie group with Lie algebra Car(g).
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Theorem (Breuillard-Le Donne 2013, Gianella 2017)

Let G be a simply connected nilpotent Lie group of step s, let d1 be a left invariant
subFinsler metric on G . There exists a left invariant selfsimilar subFinsler metric d∞
on Car(G) and a diffeomorphism f : G → Car(G) such that

f ∗d∞ = d1 + O(d
1−(1/s)
1 ).

The same method applies, with a change: the vector fields X and Y are now left
invariant with respect to distinct group structures on the vector space g, the G and
Car(G) multiplications, transported to g and Car(g) by exponentials, and a linear
isomorphism g→ Car(g) that preserves filtrations by commutators (but not gradings).

We now show that this change is insignificant.
Everything is carried to the normed vector space g. Recall that p ∈ g lies at
G -distance L = d1(e, p). Let γ be a d1-minimizing geodesic from 0 to p, with
constant speed L. Let γ∞ be the Car(G)-horizontal lift from 0 of π ◦ γ, let
φ = δ1/L ◦ γ and φ∞ = δ1/L ◦ γ∞.
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X (q, t) is the G -left invariant vector field which equals φ′(t) at φ(t), and Y (q, t) is
the Car(G)-left invariant vector field which equals φ′∞(t) at φ∞(t).

X and Y still have the same projection on g/g2, so X − Y takes values in g2.

Z = δL(Y (q, t)− X (q, t)) = γ′∞(t)− γ′(t) = O(L).

Also, φ(t) and φ∞(t) stay bounded, so the restriction of the norm to g2,
left-translated to these points, is still multiplied by 1

L2 by δ1/L, up to a bounded
multiplicative error. Therefore

‖Y (q, t)− X (q, t)‖ = ‖δ1/L(Z)‖ ≤ const.
1
L2 ‖Z‖ ≤

const.
L

,

so Grönwall’s Lemma applies and shows that

d1(φ∞(1), φ(1)) ≤ (eC
′
− 1)

const.
L

, and hence
1
L
d∞(0, p) ≤ 1 + C d1(0, p)−1/s .

Since the inequality d1 ≤ d∞ need not hold, one must exchange G and Car(G) and
repeat the argument to get the opposite inequality, for L′ = d∞(0, p),

1
L′

d1(0, p) ≤ 1 + C d∞(0, p)−1/s .
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Definition (Gromov-Hausdorff convergence)

Given two metric spaces X and Y , an ε-approximation is a map φ : X → Y whose
image is ε-dense and which preserves distances up to an additive error of ε:

|d(φ(x), φ(x ′))− d(x , x ′)| < ε.

The Gromov-Hausdorff distance distGH(X ,Y ) is the infimal ε such that there exists
ε-approximations X → Y .
The Gromov-Hausdorff topology on based metric spaces (X , x0) requires
Gromov-Hausdorff convergence of all balls centered at the basepoint.

Example

Let G be a Carnot group with selfsimilar left invariant subFinsler metric d . Assume G
admits a discrete cocompact subgroup Γ. Then the family of subgroups
(δε(Γ), d|δε(Γ)), with the induced distances, converges to (G , d) as ε→ 0.

Example

The map which to a triple ([·, ·],∆, ‖ · ‖) of a Lie algebra structure [·, ·] on Rn, a
generating linear subspace ∆ ⊂ Rn and a norm ‖ · ‖ on ∆ associates the induced
subFinsler metric on the corresponding simply connected Lie group is continuous.
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Start from a metric space X and look at it from farther and farther away. Does the
picture stabilize?

Definition (GH asymptotic cone)

Let (X , d , x0) and (K , dK , k0) be based metric spaces. Say that K is a
Gromov-Hausdorff asymptotic cone if there exists a sequence εj → 0 such that the
sequence of based metric spaces (X , εjd , x0) converges to K .

Say that X admits a unique Gromov-Hausdorff asymptotic cone if the whole family of
based metric spaces (X , εd , x0) converges in Gromov-Hausdorff topology.

It is easy to draw pictures of spaces X with nonunique GH-asymptotic cones. Also, if
X admit a unique GH-asymptotic cone K , then K is selfsimilar.

Corollary

Let (G , d1) be a simply connected nilpotent Lie group with a left invariant subFinsler
metric. Then G admits a unique Gromov-Hausdorff asymptotic cone, which is
isometric to Car(G) equipped with a selfsimilar left invariant subFinsler metric.

GH-asymptotic cones are a special case of the general notion of asymptotic cone of a
based metric space. Asymptotic cones always exist, but they are GH-asymptotic cones
and locally compact only for space of polynomial volume growth.
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sequence of based metric spaces (X , εjd , x0) converges to K .
Say that X admits a unique Gromov-Hausdorff asymptotic cone if the whole family of
based metric spaces (X , εd , x0) converges in Gromov-Hausdorff topology.

It is easy to draw pictures of spaces X with nonunique GH-asymptotic cones. Also, if
X admit a unique GH-asymptotic cone K , then K is selfsimilar.

Corollary
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isometric to Car(G) equipped with a selfsimilar left invariant subFinsler metric.
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based metric space. Asymptotic cones always exist, but they are GH-asymptotic cones
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Corollary (Volume growth)

Let G be a simply connected nilpotent Lie group of homogeneous dimension Q and
step s, let d1 be a left invariant subFinsler metric on G . There exists a positive
number ω such that the volume of balls satisfies

v(R) = ωRQ + O(RQ− 1
s ).

However filling functions of nilpotent groups are not fully determined by their
asymptotic cones. The following general inequality holds (Gromov, Papasoglu): define
the filling degree of a Lie group G as the infimal ν such that FillG (L) = O(Lν) as
L→ +∞. Then

FillDeg(G) ≤ FillDeg(asymptotic cone(G)).

However, it is not always an inequality.

Example (Llosa-Isenrich, Pallier, Tessera 2023)

There exist simply connected nilpotent Lie groups whose filling degree differs from
that of their asymptotic cone.
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Given a based metric space (X , d), the speed of convergence to the asymptotic cone
K is measured by the function

R 7→ σ(R) = distGH((BX (R),
1
R
d), (BK (1), dK )).

The following is a consequence of the asymptotic expansion of distances on nilpotent
Lie groups.

Corollary

Let G be a simply connected nilpotent Lie group of step s, equipped with a left
invariant subFinsler metric on G . Then

σ(R) = O(R−
1
s ).

Question. How sharp is this estimate?

Example (Breuillard-Le Donne 2013)

Let G = R× H. This is a step 2 nilpotent group, which satisfies σ(R) ∼ R−
1
2 .

The authors relate this slow convergence phenomenon to the presence of abnormal
curves (R factors) for the limiting subFinsler metric.
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Abnormality of curves is defined in general for smooth distributions ∆. In the Carnot
case, horizontal lifting defines a map from curves starting from 0 in G/[G ,G ] to
curves starting from e in G , and in particular an endpoint map
H1([0, 1],G/[G ,G ])→ G . A curve is abnormal if this map is not a submersion.

Definition

Say a 2-step nilpotent Lie group is nonsingular if in its Lie algebra g, for every
X /∈ g2, adX : g→ g2 is onto.

Lemma (Nicolussi Golo)

A 2-step Carnot group is nonsingular if and only if its selfsimilar left-invariant
subFinsler metrics admit no abnormal geodesics.

The geodesics in question are merely horizontal 1-parameter groups, whence the
algebraic characterization.

Theorem (Breuillard-Le Donne 2013, Tashiro 2021)

If G is a nonsingular 2-step Carnot group, for any left invariant subFinsler metric d1
on G there exists a selfsimilar left invariant Finsler metric d∞ on G such that d1 − d∞
is bounded.
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Goal. The large scale behaviour of nilpotent Lie groups is governed by self-similarity:

There is a subclass of nilpotent Lie groups, called Carnot groups, which admit
(subFinsler) metrics, which are exactly self-similar.

Every nilpotent Lie group is asymptotic to such a Carnot group.

This behaviour is specific to nilpotent groups: self-similarity and isometric
homogeneity characterize subFinsler Carnot groups.

Plan of lecture

1 Large scale geometry of the Heisenberg group
2 Generalization to nilpotent groups
3 GH-asymptotic cones
4 Characterization of self-similar isometrically homogeneous spaces
5 Quasiisometries of nilpotent groups

Lectures based on Enrico Le Donne’s book project.
Ask him for updates.
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Solution of Hilbert’s 5th problem
Geodesic and isometry homogeneous metrics
Metric tangents in subFinsler geometry
Quasiisometries of nilpotent groups

Theorem (Berestovskii 2004, Le Donne 2015)

If a metric space is
1 locally compact,
2 geodesic,
3 isometrically homogeneous,
4 self-similar, i.e. it admits a homeomorphism that multiplies distance by a number
> 1,

then it is isometric to a subFinsler Carnot group.

The proof relies on
1 Gleason-Montgomery-Zippin’s theorem providing sufficient topological and metric

conditions for the isometry group of a general metric space to be a Lie group.
2 Berestovskii’s complement in the geodesic case.
3 Mitchell’s description of metric tangents to equiregular subFinsler manifolds: they

are Carnot groups equipped with selfsimilar subFinsler metrics.
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Theorem (Gleason, Montgomery-Zippin 1952)

Let X be a metric space. Assume that

X is connected and locally connected,

X is locally compact,

X has finite topological dimension,

the isometry group Isom(X ) acts transitively.

Then Isom(X ) has the structure of a Lie group with finitely many connected
components, and X has the structure of an analytic manifold.

In our setting, finite dimensionality follows from self-similarity, via doubling.

Definition

A metric space X is doubling if there exists a N such that every r -ball can be covered
with N r/2-balls.

self-similar + locally compact =⇒ doubling =⇒ finite Hausdorff dimension =⇒
finite topological dimension.
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Geodesic and isometry homogeneous metrics have been shown to be subFinsler.

Theorem (Berestovskii 1988)

Let d be a geodesic invariant distance on some homogeneous space of a Lie group.
Then d is subFinsler.

Indeed, use local coordinates near some point x0 to define self-homeomorphisms δε of
space X . Consider rescaled small balls βr = δ1/r (B(x0, r)) and take the intersection
β =

⋂
r→0 βr .

One shows that β is a compact convex and centrally symmetric set. Thus it is a
convex body in a linear subspace L ⊂ Tx0X . It is invariant under the stabilizer Gx0 .
Therefore, by translation, it defines a subFinsler metric which coincides with d .
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The last step exploits self-similarity, using the fact that smooth subFinsler manifolds
admit metric tangents.

Indeed, a selfsimilar space is isometric to its metric tangents.

Definition (Metric tangents)

Let (X , d) be a metric space. A metric tangent at x0 is a Gromov-Hausdorff limit of
rescaled based spaces (X , εd , x0) as ε→∞.

Definition (Equiregular distribution)

A smooth distribution ∆ is equiregular if the subspaces of the tangent bundle
spanned by 1st, 2nd... order brackets have constant rank.

Theorem (Mitchell 1985)

Let X be a smooth equiregular subFinsler manifold. Then X admits at every point a
unique metric tangent: it is a Carnot group equipped with a selfsimilar subFinsler
metric.

We see that tangents happen to be groups. Why?
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admit metric tangents.Indeed, a selfsimilar space is isometric to its metric tangents.

Definition (Metric tangents)

Let (X , d) be a metric space. A metric tangent at x0 is a Gromov-Hausdorff limit of
rescaled based spaces (X , εd , x0) as ε→∞.

Definition (Equiregular distribution)

A smooth distribution ∆ is equiregular if the subspaces of the tangent bundle
spanned by 1st, 2nd... order brackets have constant rank.

Theorem (Mitchell 1985)

Let X be a smooth equiregular subFinsler manifold. Then X admits at every point a
unique metric tangent: it is a Carnot group equipped with a selfsimilar subFinsler
metric.

We see that tangents happen to be groups. Why?
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Here is a heuristic suggested by Bellaïche and implemented by O. Mohsen.

Let X be a topological space. Then X × X is a pseudogroup, i.e. there exists a
partially defined multiplication rule, here

(x1, x2), (x2, x3) 7→ (x1, x3).

Assuming that X admits a metric tangent Tx at each point, then there exist
approximate isometries φxε : (X , εd)→ Tx . One can introduce a topology on the
disjoint union

X × X × (0, 1] ∪ TX , where TX :=
⋃
x∈X

Tx .

where (x , x ′, ε) converges to (z, v) when ε→ 0, x → z and φxε(x ′)→ v .

Then the pseudogroup structure on X × X converges to a pseudogroup structure on
TX , where elements (x , v) and (x ′, v ′) can be multiplied if and only if x = x ′.
Therefore each metric tangent Tx carries a multiplication. Inverses exist in X × X , so
they exist in Tx , therefore Tx is a group.
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Theorem

If two nilpotent Lie groups G and G ′ are quasiisometric, then their associated Carnot
groups Car(G) and Car(G ′) are isomorphic (as groups with gradings).

Step 1. Every quasiisometry f : G → G ′ induces a (nonunique) biLipschitz map
Car(G)→ Car(G ′) with respect to subFinsler metrics.

Indeed, setting dε = εd1, d ′ε = εd ′1,

−C +
1
L
d1(x , x ′) ≤ d ′1(f (x), f (x ′)) ≤ Ld1(x , x ′) + C

=⇒ −εC +
1
L
dε(x , x

′) ≤ d ′ε(f (x), f (x ′)) ≤ Ldε(x , x
′) + εC .

Composing with ε-approximations yields maps Car(G)→ Car(G ′) which are
biLipschitz up to small additive error. Arzela-Ascoli =⇒ a (nonunique) limiting
biLipschitz map.
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Step 2. From now on, G ,G ′ are Carnot, f : G → G ′ is biLipschitz with respect to
selfsimilar subFinsler metrics. We would like that δε ◦ f ◦ δ1/ε converges as ε→ 0. If
so, the limit should be a selfsimilar, i.e. graded, group homomorphism. This suggests
the

Definition (Differentiabilty)

Say a map f between neighborhoods of e in Carnot groups is differentiable at e if
δ1/ε ◦ f ◦ δε converges uniformly on compact sets as ε→ 0 to a graded group
homomorphism. Using left translations, one defines differentiability at other points.

Theorem (Rademacher-Stepanov)

Lipschitz and quasiconformal maps between open sets of Carnot groups are
differentiable almost everywhere. In the quasiconformal case, differentials are graded
group isomorphisms.

This proves the above quasiisometric rigidity theorem.
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Case where f : H→ R is Lipschitz.
A Lipschitz map admits horizontal partial derivatives almost everywhere. These
derivatives are approximately continuous almost everywhere.
Write e = p0, p = p6, ∂i = successively
ξ, η,−ξ,−η, ξ, η,

f (p)− f (e) =
6∑

i=1

f (pi )− f (pi−1)

=
√
|z|

3∑
i=0

(∂i f )(pi ) + x(ξf )(p4) + y(ηf )(p5) + ε

=
√
|z|

3∑
i=0

(∂i f )(e) + x(ξf )(e) + y(ηf )(e) + ε

= x(ξf )(e) + y(ηf )(e) + ε

x

y

z

ξ(p)

η(p1)
−ξ(p2)

−η(p3)

e

p1

p4

p2

p3

p5

p

where ε = o(|x |+ |y |+
√
|z|), provided e is a point of existence and approximate

continuity of all partial derivatives, the Lipschitz bound allowing the needed flexibility
in the choice of break points.
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Case where f : R→ H is Lipschitz.
Assume that f (0) = e, f (t) = (x(t), y(t), z(t)). One shows that f is horizontal, hence

z(t)−
1
2
x(t)y(t) =

∫ t

0

1
2

(x(s)y ′(s)− x ′(s)y(s)) ds,

is the area enclosed by the projection s 7→ (x(s), y(s)) and the line segment from
(x(t), y(t)) to (0, 0).

(0, 0) (x(t), y(t))

So, if x and y have derivatives at 0, z(t)− 1
2 x(t)y(t) = o(t2).

δ1/ε(x(ε), y(ε), z(ε)) = (
1
ε
x(ε),

1
ε
y(ε),

1
ε2

z(ε))

tends to (x ′(0), y ′(0), 1
2 x
′(0)y ′(0)).
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General case is a mixture.

Absolute continuity. In order to show that differentials are bijective, one needs show
that for a.e. p ∈ G , f −1 is differentiable at f (p). I.e. that f −1 of the differentiability
locus of f −1 has full measure. This is obvious for biLipschitz maps, but not for
quasiconformal maps.

Lemma (Mostow 1970)

Quasiconformal homeomorphisms between open sets in Carnot groups are absolutely
continuous on horizontal lines, and hence map null sets to null sets.

The Rademacher-Stepanov type theorem and the absolute continuity theorem have
been extended to smooth equiregular distributions by Margulis and Mostow:
differentials become graded homomorphisms between metric cones. The theorems
hold under weaker differentiability assumptions on distributions, see work by
Vodopjanov and his school.
Recently, differentiability loci of Lipschitz mapping on Carnot groups have been
investigated by De Philippis, Marchese, Merlo, Pinamonti and Rindler: the
Rademacher-Stepanov theorem fails for all measure classes but Haar’s.
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