L^1 analysis and related geometry

Pierre Pansu, joint with A. Baldi, B. Franchi and F. Tripaldi

September 17th, 2021

A few milestones in Bruno Franchi's achievements

- 1983: Franchi and Lanconelli extend de Giorgi's Hölder regularity of solutions of linear PDEs. Ellipticity needs be measured with respect to a metric naturally associated with the operator. Birth of *Analysis on Metric Spaces*.
- 1999: Franchi, Hajlasz and Koskela define Sobolev spaces on metric spaces. Consolidation of Analysis on Metric Spaces.
- 2001: Franchi, Serapioni and Serra Cassano inaugurate *Geometric Measure Theory* on Carnot groups. Their first rectifiability result is crucial in Cheeger, Kleiner and Naor's work on the Goemans-Linial conjecture.
- 2011: Franchi, Serapioni and Serra Cassano introduce intrinsic Lipschitz graphs, as candidates for models of rectifiable sets. These play a key role in Naor and Young's final answer to Goemans-Linial's conjecture.
- 2009-2021: Franchi and coauthors extend the theory from functions to differential forms, guided by the idea of currents.

∃ ≥ ≥

Sobolev and $\ell^{q,p}$ ohomology

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

The Euclidean Sobolev inequality Let $1 \le p < n$, $\frac{1}{p} - \frac{1}{q} = \frac{1}{n}$. If u is a smooth, compactly supported function on \mathbb{R}^n , then

$$\|u\|_q \leq C(n,p,q) \|du\|_p.$$
 (Sobol_{p,q})

< 注入 < 注入 -

3

The Euclidean Sobolev inequality

Let $1 \le p < n$, $\frac{1}{p} - \frac{1}{q} = \frac{1}{n}$. If u is a smooth, compactly supported function on \mathbb{R}^n , then $\|u\|_q \le C(n, p, q) \|du\|_p$. (Sobol_{p.q})

The most important $(Sobol_{p,q})$, is the one with p = 1,

- It implies all the others.
- It is equivalent to the classical isoperimetric inequality.

The Euclidean Sobolev inequality

Let $1 \le p < n$, $\frac{1}{p} - \frac{1}{q} = \frac{1}{n}$. If u is a smooth, compactly supported function on \mathbb{R}^n , then $\|u\|_q < C(n, p, q) \|du\|_p$. (Sobol_{p.q})

The most important (Sobol_{p,q}), is the one with p = 1,

- It implies all the others.
- It is equivalent to the classical isoperimetric inequality.

 $(Sobol_{p,q})$ has a discrete version on \mathbb{Z}^n , $n \ge 2$: every finitely supported 1cocycle *c* admits a primitive *u* such that

 $\|u\|_q \leq C'(n,p,q)\|c\|_p.$

The Euclidean Sobolev inequality

Let $1 \le p < n$, $\frac{1}{p} - \frac{1}{q} = \frac{1}{n}$. If u is a smooth, compactly supported function on \mathbb{R}^n , then $\|u\|_q < C(n, p, q) \|du\|_p$. (Sobol_{p.q})

The most important $(Sobol_{p,q})$, is the one with p = 1,

- It implies all the others.
- It is equivalent to the classical isoperimetric inequality.

 $(Sobol_{p,q})$ has a discrete version on \mathbb{Z}^n , $n \ge 2$: every finitely supported 1cocycle *c* admits a primitive *u* such that

 $\|u\|_q \leq C'(n,p,q)\|c\|_p.$

We study a higher dimensional generalization, which has a topological flavour.

< 🗇 🕨

< 注) < 注)

3

Definition

X simplicial complex. Is every ℓ^p cocycle the coboundary of a ℓ^q cochain?

$$\ell^{q,p}H^k(X) = \{\ell^p \ k\text{-cocycles} \ \}/d\{\ell^q \ k-1\text{-cochains} \ \}.$$

If X is finite, it is a topological invariant. If X is infinite, it is a quasiisometry invariant. This gives rise to numerical invariants of discrete groups.

4 B K 4 B K

Definition

X simplicial complex. Is every ℓ^p cocycle the coboundary of a ℓ^q cochain?

$$\ell^{q,p}H^k(X) = \{\ell^p \text{ }k\text{-cocycles }\}/d\{\ell^q \text{ }k-1\text{-cochains }\}.$$

If X is finite, it is a topological invariant. If X is infinite, it is a quasiisometry invariant. This gives rise to numerical invariants of discrete groups.

Example. X = the line tiled with equal intervals. Then $\ell^{q,p}H^0(X) = 0$ except $\ell^{q,\infty}H^0(X) = \mathbb{R}$. In degre 1, $\ell^{\infty,1}H^1(X) = 0$, all other $\ell^{q,p}H^1(X) \neq 0$.

Definition

X simplicial complex. Is every ℓ^p cocycle the coboundary of a ℓ^q cochain?

$$\ell^{q,p}H^k(X) = \{\ell^p \text{ }k\text{-cocycles }\}/d\{\ell^q \text{ }k-1\text{-cochains }\}.$$

If X is finite, it is a topological invariant. If X is infinite, it is a quasiisometry invariant. This gives rise to numerical invariants of discrete groups.

Example. X = the line tiled with equal intervals. Then $\ell^{q,p}H^0(X) = 0$ except $\ell^{q,\infty}H^0(X) = \mathbb{R}$. In degre 1, $\ell^{\infty,1}H^1(X) = 0$, all other $\ell^{q,p}H^1(X) \neq 0$.

Example. X = plane tiled with equal triangles. Then $\ell^{q,p}H^1(X) = 0$ if $\frac{1}{p} - \frac{1}{q} \ge \frac{1}{2}$. For finitely supported 1-cocycles, this is the discrete Sobolev inequality.

Two steps,

• one passes from the discrete to the continuous setting (requires analysis: interior estimates on balls),

イロト 不得 とくほと 不良 とうほ

• in the continuous setting, global estimates.

イロト 不得 とくほと 不足 とう

э.

Definition

X Riemannian manifold.

 $L^{q,p}H^k(X) = \{L^p \text{ }k\text{-closed forms }\}/d\{L^q \text{ }k-1\text{-forms }\omega \text{ such that }d\omega \in L^p\}.$

Property. If X has a bounded geometry triangulation, $L^{q,p}H^k(X) = \ell^{q,p}H^k(X)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

X Riemannian manifold.

 $L^{q,p}H^k(X) = \{L^p \text{ k-closed forms }\}/d\{L^q \text{ } k-1\text{-forms } \omega \text{ such that } d\omega \in L^p\}.$

Property. If X has a bounded geometry triangulation, $L^{q,p}H^k(X) = \ell^{q,p}H^k(X)$.

Example.
$$X = \mathbb{R}^n$$
. Then $L^{q,p}H^k(X) = 0$ if $1 and $\frac{1}{p} - \frac{1}{q} = \frac{1}{n}$.$

Proof. Let $\Delta = d^*d + dd^*$. Then Δ has a pseudodifferential inverse which commutes with d. $T = d^*\Delta^{-1}$ has a kernel which is homogeneous of degree 1 - n, hence is bounded $L^p \rightarrow L^q$ as soon as $\frac{1}{p} - \frac{1}{q} = \frac{1}{n}$ (Calderon-Zygmund 1952). Finally, 1 = dT + Td.

イロト 不得 とくほと 不良 とうほ

Definition

X Riemannian manifold.

 $L^{q,p}H^k(X) = \{L^p \text{ k-closed forms }\}/d\{L^q \text{ } k-1\text{-forms } \omega \text{ such that } d\omega \in L^p\}.$

Property. If X has a bounded geometry triangulation, $L^{q,p}H^k(X) = \ell^{q,p}H^k(X)$.

Example.
$$X = \mathbb{R}^n$$
. Then $L^{q,p}H^k(X) = 0$ if $1 and $\frac{1}{p} - \frac{1}{q} = \frac{1}{n}$.$

Proof. Let $\Delta = d^*d + dd^*$. Then Δ has a pseudodifferential inverse which commutes with d. $T = d^*\Delta^{-1}$ has a kernel which is homogeneous of degree 1 - n, hence is bounded $L^p \rightarrow L^q$ as soon as $\frac{1}{p} - \frac{1}{q} = \frac{1}{n}$ (Calderon-Zygmund 1952). Finally, 1 = dT + Td.

Case where p = 1. On *n*-forms, $d^*\Delta^{-1}$ is not bounded from L^1 to $L^{n/(n-1)}$. Otherwise, by duality, Sobolev inequality $(Sobol_{\infty,n})$ would hold. But is does not: if $n \ge 2$, \mathbb{R}^n is *n*-parabolic.

Degree n - 1Proof of BBM's inequality

< ロ > < 同 > < 回 > < 回 > < 回 > <

э.

Theorem (Bourgain-Brezis-Mironescu 2004)

Let ω be a **closed** compactly supported n - 1-form on \mathbb{R}^n . Then for all 1-forms α on \mathbb{R}^n such that $\nabla \alpha \in L^n$,

$$\left|\int_{\mathbb{R}^n} \alpha \wedge \omega\right| \leq C \, \|\omega\|_1 \|\nabla \alpha\|_n.$$

Degree n - 1Proof of BBM's inequality

イロト 不得 とくほと 不足 とう

э.

Theorem (Bourgain-Brezis-Mironescu 2004)

Let ω be a **closed** compactly supported n - 1-form on \mathbb{R}^n . Then for all 1-forms α on \mathbb{R}^n such that $\nabla \alpha \in L^n$,

$$\int_{\mathbb{R}^n} \alpha \wedge \omega | \leq C \, \|\omega\|_1 \|\nabla \alpha\|_n.$$

Corollary

If ϕ is compactly supported and satisfies $d^*\phi = 0$ and $d\phi = \omega$, then $\|\phi\|_{n/(n-1)} \leq C \|\omega\|_1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ○ ○○

Theorem (Bourgain-Brezis-Mironescu 2004)

Let ω be a **closed** compactly supported n - 1-form on \mathbb{R}^n . Then for all 1-forms α on \mathbb{R}^n such that $\nabla \alpha \in L^n$,

$$\int_{\mathbb{R}^n} \alpha \wedge \omega | \leq C \, \|\omega\|_1 \|\nabla \alpha\|_n.$$

Corollary

If ϕ is compactly supported and satisfies $d^*\phi = 0$ and $d\phi = \omega$, then $\|\phi\|_{n/(n-1)} \leq C \|\omega\|_1$.

The *averages* of a L^1 *k*-form ω are the integrals $\int_{\mathbb{R}^n} \beta \wedge \omega$, where β has constant coefficients.

Corollary

 $d^*\Delta^{-1}: L^1 \to L^{n/(n-1)}$ is bounded on n-1-forms which are closed and of vanishing averages.

イロト イポト イヨト イヨト

э

Proof of BBM's inequality [after van Schaftingen]

< A

< 注) < 注)

э

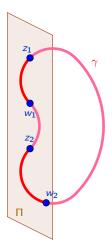
Proof of BBM's inequality [after van Schaftingen]

Let us approximate ω with forms which are Poincaré-dual to loops γ and let us prove that

$$|\int_{\gamma} \alpha| \leq C \,\ell(\gamma) \|\nabla \alpha\|_n,$$

for $\alpha = u dx_1$.

Degree n - 1Proof of BBM's inequality

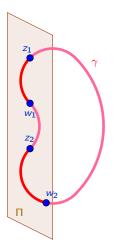


Use the projection along parallel hyperplanes $\Pi = \{x_1 = t\}.$

・ロト ・四ト ・ヨト ・ヨト

э

Degree n - 1Proof of BBM's inequality



Use the projection along parallel hyperplanes $\Pi = \{x_1 = t\}.$

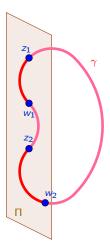
Since $u \in C^{(n-1)/n}(\Pi)$ and $\gamma \cap \Pi = \sum_{i=1}^{m} z_i - w_i$, by Morrey-Sobolev,

$$|u(z_i) - u(w_i)| \le C \|\nabla \alpha\|_{L^n(\Pi)} |z_i - w_i|^{1/n}$$

< ヨト < ヨト

э

Degree n - 1Proof of BBM's inequality



Use the projection along parallel hyperplanes $\Pi = \{x_1 = t\}.$

Since $u \in C^{(n-1)/n}(\Pi)$ and $\gamma \cap \Pi = \sum_{i=1}^{m} z_i - w_i$, by Morrey-Sobolev,

$$|u(z_i) - u(w_i)| \le C \|\nabla \alpha\|_{L^n(\Pi)} |z_i - w_i|^{1/n}$$

By Hölder,

$$\sum_{i=1}^{m} |u(z_i) - u(w_i)| \le C \|\nabla \alpha\|_{L^n(\Pi)} \ell(\gamma)^{1/n} m^{(n-1)/n}.$$

We integrate with respect to x_1 , then apply Hölder, we get an estimate of $\int_{\gamma} \alpha$ by $\|\nabla \alpha\|_n$ and $\int_{\mathbb{R}} m(x_1) dx_1 \leq \ell(\gamma)$.

< ヨト < ヨト

Motivation A Heisenberg avatar of BBM's inequality /¹analysis Results Case of Heisenberg group

< ∃ >

э

The Heisenberg group \mathbb{H}^n has Lie algebra $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$, where $\mathfrak{g}_1 = \mathbb{R}^{2n}$ et

 $[\cdot, \cdot] : \mathfrak{g}_1 \to \mathfrak{g}_2 = \mathbb{R}$ is symplectic. By left-translation, \mathfrak{g}_1 defines a distribution, hence a subRiemannian metric. Vectors or curves tangent to it are called horizontal. Curves of finite length must be horizontal. For a function u, $\nabla_{\mathbb{H}} u$ denotes the *horizontal* gradient.

The Heisenberg group \mathbb{H}^n has Lie algebra $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$, where $\mathfrak{g}_1 = \mathbb{R}^{2n}$ et $[\cdot, \cdot] : \mathfrak{g}_1 \to \mathfrak{g}_2 = \mathbb{R}$ is symplectic. By left-translation, \mathfrak{g}_1 defines a distribution, hence a subRiemannian metric. Vectors or curves tangent to it are called *horizontal*. Curves of finite length must be horizontal. For a function u, $\nabla_{\mathbb{H}} u$ denotes the *horizontal gradient*.

Following Chanillo-van Schaftingen 2009, let us prove that for every horizontal loop γ in Heisenberg group \mathbb{H}^n and every horizontal 1-form α ,

$$|\int_{\gamma} lpha| \leq C \, \ell(\gamma) \|
abla_{\mathbb{H}} lpha\|_{Q},$$

< ∃ >

for Q = 2n + 2. It suffices to treat $\alpha = u dx_1$.

The Heisenberg group \mathbb{H}^n has Lie algebra $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$, where $\mathfrak{g}_1 = \mathbb{R}^{2n}$ et $[\cdot, \cdot] : \mathfrak{g}_1 \to \mathfrak{g}_2 = \mathbb{R}$ is symplectic. By left-translation, \mathfrak{g}_1 defines a distribution, hence a subRiemannian metric. Vectors or curves tangent to it are called *horizontal*. Curves of finite length must be horizontal. For a function u, $\nabla_{\mathbb{H}} u$ denotes the *horizontal gradient*.

Following Chanillo-van Schaftingen 2009, let us prove that for every horizontal loop γ in Heisenberg group \mathbb{H}^n and every horizontal 1-form α ,

$$|\int_{\gamma} lpha| \leq C \, \ell(\gamma) \|
abla_{\mathbb{H}} lpha\|_{Q},$$

for Q = 2n + 2. It suffices to treat $\alpha = u dx_1$.

Caveat: in a hyperplane $\Pi_t = \{x_1 = t\}$, if n = 1, the horizontal direction defines a foliation by parallel lines, so no Morrey-Sobolev embedding.

Image: A image: A

The Heisenberg group \mathbb{H}^n has Lie algebra $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$, where $\mathfrak{g}_1 = \mathbb{R}^{2n}$ et $[\cdot, \cdot] : \mathfrak{g}_1 \to \mathfrak{g}_2 = \mathbb{R}$ is symplectic. By left-translation, \mathfrak{g}_1 defines a distribution, hence a subRiemannian metric. Vectors or curves tangent to it are called *horizontal*. Curves of finite length must be horizontal. For a function u, $\nabla_{\mathbb{H}} u$ denotes the *horizontal gradient*.

Following Chanillo-van Schaftingen 2009, let us prove that for every horizontal loop γ in Heisenberg group \mathbb{H}^n and every horizontal 1-form α ,

$$|\int_{\gamma} lpha| \leq C \, \ell(\gamma) \|
abla_{\mathbb{H}} lpha\|_Q,$$

for Q = 2n + 2. It suffices to treat $\alpha = u dx_1$.

Caveat: in a hyperplane $\Pi_t = \{x_1 = t\}$, if n = 1, the horizontal direction defines a foliation by parallel lines, so no Morrey-Sobolev embedding.

Trick: for every $\lambda > 0$, there exists a smooth function u_{λ} on \mathbb{H}^n such that

$$\begin{aligned} \|u - u_{\lambda}\|_{L^{\infty}(\Pi_{t})} &\leq C \,\lambda^{1/Q} M(t), \\ \|\nabla_{\mathbb{H}} u_{\lambda}\|_{L^{\infty}(\mathbb{H}^{1})} &\leq C \,\lambda^{(1/Q)-1} M(t), \end{aligned}$$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト ・

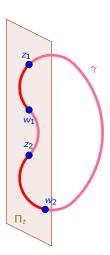
where *M* is the maximal function of $t \mapsto \|(\nabla_{\mathbb{H}} u)_{|\Pi_t}\|_Q$ (based on Jerison 1986).

A Heisenberg avatar of BBM's inequality Results

프 🖌 🔺 프 🕨

э

We use the projection along parallel hyperplanes $\Pi_t = \{x_1 = t\}$. We write $\gamma \cap \Pi_t = \sum_{i=1}^{m(t)} z_i(t) - w_i(t)$. We set $\lambda(t) = \frac{\ell(\gamma)}{m(t)}$.



A Heisenberg avatar of BBM's inequality Results

э

 Z_1 w Π_t

We use the projection along parallel hyperplanes $\Pi_t = \{x_1 = t\}$. We write $\gamma \cap \Pi_t = \sum_{i=1}^{m(t)} z_i(t) - w_i(t)$. We set $\lambda(t) = \frac{\ell(\gamma)}{m(t)}$.

We estimate

$$\sum_{i=1}^{m} ((u-u_{\lambda})(z_i)-(u-u_{\lambda})(w_i))| \leq 2mC \lambda^{1/Q} M$$
$$\leq 2C\ell(\gamma)^{1/Q} m^{1-1/Q} M,$$

A Heisenberg avatar of BBM's inequality Results

 Z_1 γ w w Π_t

We use the projection along parallel hyperplanes $\Pi_t = \{x_1 = t\}$. We write $\gamma \cap \Pi_t = \sum_{i=1}^{m(t)} z_i(t) - w_i(t)$. We set $\lambda(t) = \frac{\ell(\gamma)}{m(t)}$.

We estimate

$$|\sum_{i=1}^{m} ((u-u_{\lambda})(z_{i})-(u-u_{\lambda})(w_{i}))| \leq 2mC \lambda^{1/Q} M$$
$$\leq 2C\ell(\gamma)^{1/Q} m^{1-1/Q} M,$$

and

$$\begin{split} \sum_{i=1}^m (u_\lambda(z_i) - u_\lambda(w_i)) &| \le C \sum_{i=1}^m d(z_i, w_i) \lambda^{(1/Q) - 1} M \\ &\le C \, \ell(\gamma) \ell(\gamma)^{(1/Q) - 1} m^{1 - 1/Q} M \\ &= C \, \ell(\gamma)^{1/Q} m^{1 - 1/Q} M. \end{split}$$

< ヨト < ヨト

э

A Heisenberg avatar of BBM's inequality Results

 Z_1 w Πt

We use the projection along parallel hyperplanes $\Pi_t = \{x_1 = t\}$. We write $\gamma \cap \Pi_t = \sum_{i=1}^{m(t)} z_i(t) - w_i(t)$. We set $\lambda(t) = \frac{\ell(\gamma)}{m(t)}$.

We estimate

$$\begin{split} |\sum_{i=1}^m ((u-u_\lambda)(z_i)-(u-u_\lambda)(w_i))| &\leq 2mC\,\lambda^{1/Q}M\\ &\leq 2C\ell(\gamma)^{1/Q}m^{1-1/Q}M, \end{split}$$

and

$$\sum_{i=1}^{m} (u_{\lambda}(z_i) - u_{\lambda}(w_i))| \le C \sum_{i=1}^{m} d(z_i, w_i) \lambda^{(1/Q)-1} M$$

 $\le C \, \ell(\gamma) \ell(\gamma)^{(1/Q)-1} m^{1-1/Q} M$
 $= C \, \ell(\gamma)^{1/Q} m^{1-1/Q} M.$

We integrate with respect to x_1 , then we apply Hölder, we get an estimate of $\int_{\gamma} \alpha$ by $\ell(\gamma)$ times $\|M\|_Q \leq C \|\nabla_{\mathbb{H}} \alpha\|_Q$.

프 🖌 🔺 프 🕨

Motivation L^1 analysis Case of Heisenberg group

A Heisenberg avatar of BBM's inequality Results

Theorem (Baldi-Franchi-Pansu-Tripaldi)

Let Q = 2n + 2. Then $\ell^{q,p}H^k(\mathbb{H}^n) = 0$ in the following cases: • If $k \neq n, 1 \leq p \leq Q, \frac{1}{p} - \frac{1}{q} \geq \frac{1}{Q}$. • If $k = n + 1, 1 \leq p \leq \frac{Q}{2}, \frac{1}{p} - \frac{1}{q} \geq \frac{2}{Q}$. except in two cases: (i) k = 2n + 1 and p = 1, and (ii) k = 1 and p = Q and $q = \infty$.

Remark (Pansu-Rumin). The converse is true: $\ell^{q,p}H^k(\mathbb{H}^n) \neq 0$ in all other cases.

Motivation L^1 analysis Case of Heisenberg group

A Heisenberg avatar of BBM's inequality Results

< ∃→

Theorem (Baldi-Franchi-Pansu-Tripaldi)

Let Q = 2n + 2. Then $\ell^{q,p} H^k(\mathbb{H}^n) = 0$ in the following cases:

• If
$$k \neq n$$
, $1 \leq p \leq Q$, $\frac{1}{p} - \frac{1}{q} \geq \frac{1}{Q}$.

• If
$$k = n + 1$$
, $1 \le p \le \frac{Q}{2}$, $\frac{1}{p} - \frac{1}{q} \ge \frac{2}{Q}$.

except in two cases: (i) k = 2n + 1 and p = 1, and (ii) k = 1 and p = Q and $q = \infty$.

Remark (Pansu-Rumin). The converse is true: $\ell^{q,p}H^k(\mathbb{H}^n) \neq 0$ in all other cases.

Corollary

Quasiconformal classification of 3-dimensional subRiemannian Lie groups: \mathbb{H}^1 and $\widetilde{Mot}(\mathbb{R}^2)$ are distinguished by $L^{4,2}H^2$ (but not by $L^{\infty,4}H^1$ or $L^{2,1}H^3$).

This completes the classification in the simply connected case.

Question

Let G be the (subRiemannian) quotient of \mathbb{H}^1 by a cyclic subgroup of its center. Is G quasiconformal to the group $Mot(\mathbb{R}^2)$ of planar Euclidean motions?