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A few milestones in Bruno Franchi’s achievements

1983: Franchi and Lanconelli extend de Giorgi’s Hölder regularity of solutions of
linear PDEs. Ellipticity needs be measured with respect to a metric naturally
associated with the operator. Birth of Analysis on Metric Spaces.

1999: Franchi, Hajlasz and Koskela define Sobolev spaces on metric spaces.
Consolidation of Analysis on Metric Spaces.

2001: Franchi, Serapioni and Serra Cassano inaugurate Geometric Measure
Theory on Carnot groups. Their first rectifiability result is crucial in Cheeger,
Kleiner and Naor’s work on the Goemans-Linial conjecture.

2011: Franchi, Serapioni and Serra Cassano introduce intrinsic Lipschitz graphs,
as candidates for models of rectifiable sets. These play a key role in Naor and
Young’s final answer to Goemans-Linial’s conjecture.

2009-2021: Franchi and coauthors extend the theory from functions to differential
forms, guided by the idea of currents.
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Sobolev and `q,pohomology
Continuous version

The Euclidean Sobolev inequality

Let 1 ≤ p < n,
1
p
−

1
q

=
1
n
. If u is a smooth, compactly supported function on Rn,

then
‖u‖q ≤ C(n, p, q)‖du‖p . (Sobolp,q)

The most important (Sobolp,q), is the one with p = 1,

It implies all the others.

It is equivalent to the classical isoperimetric inequality.

(Sobolp,q) has a discrete version on Zn,
n ≥ 2 : every finitely supported 1-
cocycle c admits a primitive u such that

‖u‖q ≤ C ′(n, p, q)‖c‖p .

We study a higher dimensional generalization, which has a topological flavour.
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Sobolev and `q,pohomology
Continuous version

Definition

X simplicial complex. Is every `p cocycle the coboundary of a `q cochain?

`q,pHk (X ) = {`p k-cocycles }/d{`q k − 1-cochains }.

If X is finite, it is a topological invariant. If X is infinite, it is a quasiisometry
invariant. This gives rise to numerical invariants of discrete groups.

Example. X = the line tiled with equal intervals. Then `q,pH0(X ) = 0 except
`q,∞H0(X ) = R. In degre 1, `∞,1H1(X ) = 0, all other `q,pH1(X ) 6= 0.

Example. X = plane tiled with equal triangles. Then `q,pH1(X ) = 0 if
1
p
−

1
q
≥

1
2
.

For finitely supported 1-cocycles, this is the discrete Sobolev inequality.

Two steps,

one passes from the discrete to the continuous setting (requires analysis: interior
estimates on balls),

in the continuous setting, global estimates.
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Sobolev and `q,pohomology
Continuous version

Definition

X Riemannian manifold.

Lq,pHk (X ) = {Lp k-closed forms }/d{Lq k − 1-forms ω such that dω ∈ Lp}.

Property. If X has a bounded geometry triangulation, Lq,pHk (X ) = `q,pHk (X ).

Example. X = Rn. Then Lq,pHk (X ) = 0 if 1 < p ≤ q <∞ and
1
p
−

1
q

=
1
n
.

Proof. Let ∆ = d∗d + dd∗. Then ∆ has a pseudodifferential inverse which commutes
with d . T = d∗∆−1 has a kernel which is homogeneous of degree 1− n, hence is
bounded Lp → Lq as soon as 1

p
− 1

q
= 1

n
(Calderon-Zygmund 1952). Finally,

1 = dT + Td .

Case where p = 1. On n-forms, d∗∆−1 is not bounded from L1 to Ln/(n−1).
Otherwise, by duality, Sobolev inequality (Sobol∞,n) would hold. But is does not: if
n ≥ 2, Rn is n-parabolic.
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Degree n − 1
Proof of BBM’s inequality

Theorem (Bourgain-Brezis-Mironescu 2004)

Let ω be a closed compactly supported n − 1-form on Rn. Then for all 1-forms α on
Rn such that ∇α ∈ Ln,

|
∫
Rn
α ∧ ω| ≤ C ‖ω‖1‖∇α‖n.

Corollary

If φ is compactly supported and satisfies d∗φ = 0 and dφ = ω, then
‖φ‖n/(n−1) ≤ C ‖ω‖1.

The averages of a L1 k-form ω are the integrals
∫
Rn β ∧ ω, where β has constant

coefficients.

Corollary

d∗∆−1 : L1 → Ln/(n−1) is bounded on n− 1-forms which are closed and of vanishing
averages.
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Degree n − 1
Proof of BBM’s inequality

Proof of BBM’s inequality [after van Schaftingen]

Let us approximate ω with forms which are Poincaré-dual to loops γ and let us prove
that

|
∫
γ
α| ≤ C `(γ)‖∇α‖n,

for α = u dx1.
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Degree n − 1
Proof of BBM’s inequality

γ
z1

w1

z2

w2

Π

Use the projection along parallel hyperplanes
Π = {x1 = t}.

Since u ∈ C (n−1)/n(Π) and γ∩Π =
∑m

i=1 zi−wi ,
by Morrey-Sobolev,

|u(zi )− u(wi )| ≤ C ‖∇α‖Ln(Π)|zi − wi |1/n.

By Hölder,

m∑
i=1

|u(zi )−u(wi )| ≤ C ‖∇α‖Ln(Π)`(γ)1/nm(n−1)/n.

We integrate with respect to x1, then apply
Hölder, we get an estimate of

∫
γ α by ‖∇α‖n

and
∫
R m(x1) dx1 ≤ `(γ).
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A Heisenberg avatar of BBM’s inequality
Results

The Heisenberg group Hn has Lie algebra g = g1 ⊕ g2, where g1 = R2n et
[·, ·] : g1 → g2 = R is symplectic. By left-translation, g1 defines a distribution, hence a
subRiemannian metric. Vectors or curves tangent to it are called horizontal. Curves of
finite length must be horizontal. For a function u, ∇Hu denotes the horizontal
gradient.

Following Chanillo-van Schaftingen 2009, let us prove that for every horizontal loop γ
in Heisenberg group Hn and every horizontal 1-form α,

|
∫
γ
α| ≤ C `(γ)‖∇Hα‖Q ,

for Q = 2n + 2. It suffices to treat α = u dx1.

Caveat: in a hyperplane Πt = {x1 = t}, if n = 1, the horizontal direction defines a
foliation by parallel lines, so no Morrey-Sobolev embedding.

Trick: for every λ > 0, there exists a smooth function uλ on Hn such that

‖u − uλ‖L∞(Πt ) ≤ C λ1/QM(t),

‖∇Huλ‖L∞(H1) ≤ C λ(1/Q)−1M(t),

where M is the maximal function of t 7→ ‖(∇Hu)|Πt
‖Q (based on Jerison 1986).
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A Heisenberg avatar of BBM’s inequality
Results

γ
z1

w1

z2

w2

Πt

We use the projection along parallel hyperplanes
Πt = {x1 = t}. We write γ ∩ Πt =

∑m(t)
i=1 zi (t) −

wi (t). We set λ(t) = `(γ)
m(t)

.

We estimate

|
m∑
i=1

((u − uλ)(zi )−(u − uλ)(wi ))| ≤ 2mC λ1/QM

≤ 2C`(γ)1/Qm1−1/QM,

and

|
m∑
i=1

(uλ(zi )−uλ(wi ))| ≤ C
m∑
i=1

d(zi ,wi )λ
(1/Q)−1M

≤ C `(γ)`(γ)(1/Q)−1m1−1/QM

= C `(γ)1/Qm1−1/QM.

We integrate with respect to x1, then we apply
Hölder, we get an estimate of

∫
γ α by `(γ) times

‖M‖Q ≤ C‖∇Hα‖Q .
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(uλ(zi )−uλ(wi ))| ≤ C
m∑
i=1

d(zi ,wi )λ
(1/Q)−1M

≤ C `(γ)`(γ)(1/Q)−1m1−1/QM

= C `(γ)1/Qm1−1/QM.

We integrate with respect to x1, then we apply
Hölder, we get an estimate of

∫
γ α by `(γ) times

‖M‖Q ≤ C‖∇Hα‖Q .
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Theorem (Baldi-Franchi-Pansu-Tripaldi)

Let Q = 2n + 2. Then `q,pHk (Hn) = 0 in the following cases:

If k 6= n, 1 ≤ p ≤ Q, 1
p
− 1

q
≥ 1

Q
.

If k = n + 1, 1 ≤ p ≤ Q
2 ,

1
p
− 1

q
≥ 2

Q
.

except in two cases: (i) k = 2n + 1 and p = 1, and (ii) k = 1 and p = Q and q =∞.

Remark (Pansu-Rumin). The converse is true: `q,pHk (Hn) 6= 0 in all other cases.

Corollary

Quasiconformal classification of 3-dimensional subRiemannian Lie groups: H1 and
˜Mot(R2) are distinguished by L4,2H2 (but not by L∞,4H1 or L2,1H3).

This completes the classification in the simply connected case.

Question

Let G be the (subRiemannian) quotient of H1 by a cyclic subgroup of its center. Is G
quasiconformal to the group Mot(R2) of planar Euclidean motions?
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