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Examining images of porous rock to decide whether it is permeable or not is a
question of topology.
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In an electrocardiogram, what counts are the peaks (number, approximate height), not
their exact temporal location. It’s the landscape after reparameterization, i.e. above
all topological information.
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Multidimensional version: density-guided classification (F. Chazal, L. Guibas, S.
Oudot, P. Skrabas)

Datum: a finite metric space.

First step. A local density is calculated. The algorithm first divides the space into
clusters, which are the basins of attraction of the gradient of the density. There are
too many of them: as many as there are local maxima.

Second step. The algorithm merges the clusters corresponding to maxima that are not
sufficiently accentuated.

The method gave excellent results on cytology data (cell classification based on
photos).
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More generally, as soon as the data are more than simple images (i.e. functions on a
space), or matrices of the same size, a topological descriptor has the advantage of
being independent of arbitrary choices.

Often, data is presented as a finite cloud of points in RN . How can we talk about the
topology of a point cloud?

It is associated with a growing family of simplicial polyhedra: Nr is the nerve of the
covering by balls of radius r .
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There is no a priori natural choice for r .

We calculate the homology with coefficients in F2, Hk (Nr ,F2), for each r .

Disadvantage. Hk (Nr ,F2) is very unstable.

How do you extract stable information?
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There is no a priori natural choice for r .

We calculate the homology with coefficients in F2, Hk (Nr ,F2), for each r .

We can detect when a homology class is born (it does not belong to
im(Hk (Nr−ε,F2)→ Hk (Nr ,F2)) ∀ε) and when it dies, hence a collection of intervals
[r , s], the barcode.
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Idea: large bars are robust (stable by perturbation of the cloud in Hausdorff distance),
small bars are noise.

The bottleneck distance between two barcodes is obtained by matching the bars as
closely as possible, even if this means discarding bars that are too short.

Theorem (Stability: Cohen-Steiner, Edelsbrunner, Harer 2005)

bottleneck dist.(barcodes) ≤ Hausdorff dist.(point clouds).
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The stability theorem invites us to neglect the small bars. What does what remains
mean?

Theorem (Meaning of large bars: Chazal, Lieutier 2005)

If a subset X ⊂ RN has Weak feature size 4ε, and if

Hausdorff dist.(point cloud,X) < ε,

then the homology of large bars coincides with the homology of X .

Moral: given a somewhat regular object, we can calculate its topology (at least, its
homology) from a fairly dense sample, with theoretical guarantees.
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The homology of simplicial complexes is
linear algebra. Consider the vector space
(on F2 or R) whose base is the set of
simplices (vertices, edges, faces, etc.).
Here, of dimension 48 (13 vertices, 23
edges, 11 faces, 1 tetrahedron).

The boundary of a simplex is a linear combination of other simplices, hence a linear
map ∂, and its adjoint d . The boundary of the boundary is zero: ∂ ◦ ∂ = 0, hence
d ◦ d = 0. In particular, Im(∂) ⊂ Ker(∂), Im(d) ⊂ Ker(d). We define

homology = Ker(∂)/Im(∂), cohomology = Ker(d)/Im(d).

Both count holes, i.e. cycles that are not boundaries.

More generally, a chain complex is a vector space B provided with a linear map d such
that d ◦ d = 0.

Question. What are the robustness guarantees for calculating the homology of a chain
complex?
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We’ve seen how persistent homology provides robustness. In numerical analysis,
robustness is achieved by another means.

If F : B → B′ is an invertible operator between normed spaces, its conditioning
number is

κ(F ) = |F ||F−1|.

Conditioning ensures stability when solving the equation F (x) = b.

If we change b to b′ = b + ∆b, the solution changes to x ′ = x + ∆x , such that

|∆x |
|x |
≤ κ(F )

|∆b|
|b|

.

If we change F to F ′ = F + ∆F , the solution changes to x ′ = x + ∆x , such that

|∆x |
|x ′|

≤ κ(F )
|∆F |
|F |

.

When d : B → B is a chain complex (i.e. d ◦ d = 0), we’re interested in the
conditioning number of d̄ : B/Ker(d)→ Im(d). In infinite dimension, it can be
infinite.
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We equip the cochains of a simplicial complex with `p norms.

Example. The n-stick satisfies H1 = 0. The 1-cochain g equal to 1̄ on the central
edge and 0 elsewhere can be written df where

‖g‖p = 1, ‖f ‖p ∼ n1/p .

0 0 0 1 0 0 0

g f

When n is large, solving df = g is unstable. The homology calculation is
ill-conditioned.

Definition

The conditioning number of a graph X is κ(X , p, k) = |d̄ ||d̄−1| where
d̄ : C(X , k)/Ker(d)→ dC(X , k). (It depends on p and the field k).
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Isoperimetry = the art of cutting space
apart.

|A| = 5, |∂A| = 15.

Definition

Cheeger’s constant h(X ) of a graph X is the largest h such that for every set A of
vertices such that |A| ≤ 1

2
|X |,

|∂A| ≥ h |A|.

Here, ∂A is the set of edges connecting A to its complement.

Proposition

h(X ) =
2

κ(X , 1,F2)
= 2(‖d̄‖1→1‖d̄−1‖1→1)−1 over F2.
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Pierre Pansu, Université Paris-Saclay Computing homology robustly: from persistence to the geometry of normed chain complexes



Isoperimetry = the art of cutting space
apart.

|A| = 5, |∂A| = 15.

Definition

Cheeger’s constant h(X ) of a graph X is the largest h such that for every set A of
vertices such that |A| ≤ 1

2
|X |,

|∂A| ≥ h |A|.

Here, ∂A is the set of edges connecting A to its complement.

Proposition

h(X ) =
2

κ(X , 1,F2)
= 2(‖d̄‖1→1‖d̄−1‖1→1)−1 over F2.
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Proposition

Let ∆ be the self-adjoint operator corresponding to the quadratic form
f 7→ ‖df ‖2

2 = 〈f ,∆f 〉. Let λ1 ≤ λ2 ≤ · · · denote its eigenvalues. If the graph X is
connected, then λ1 = 0 and

λ2 = (‖d̄−1‖2→2)−2.

In particular,
2λ−1

2 ≤ κ0(X , 2,R)2 ≤ 4λ−1
2 .

λ2 is known as the spectral gap of the graph.
It governs the speed at which a random walk on the graph is mixing. In particular, the
possibility of picking a vertex at random.

Moral: normed chain complexes contain interesting information, beyond their mere
homology.
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Given a metric space X , a finite subset Y ⊂ X and r > 0, the Čech simplicial complex
Yr has a simplex (y0, . . . , yk ) each time

⋂
i B(yi , r) 6= ∅. Let C r

· denote the simplicial
chains of Yr .

Theorem (Bobrowski-Weinberger 2017)

Fix r < 1
2

and 1 ≤ k ≤ d. Let Y be an n-sample picked at random on the standard
d-torus. Then, with high probability, the k-homology of Yr coincides with the
homology of the torus as soon as

ωd r
d n� log n + k log log n,

and this fails if ωd r
d n� log n + (k − 2) log log n. If k = 0, the threshold is 2−d log n.

Question. Can one say that the chain complexes C r
· converge to some chain complex

attached to the torus?
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In order to define a distance between normed chain complexes, the first idea is to
measure conditioning numbers of isomorphisms.

Definition

Let B1
d1→ B1 and B2

d2→ B2 be normed chain complexes. The Banach-Mazur distance
BMDist(B1,B2) is the infimum of log(|F ||F−1|) over all isomorphisms F : B1 → B2

duch that Fd1 = d2F.

This is too restrictive: this implies dim(B1) = dim(B2).

Pierre Pansu, Université Paris-Saclay Computing homology robustly: from persistence to the geometry of normed chain complexes



In order to define a distance between normed chain complexes, the first idea is to
measure conditioning numbers of isomorphisms.

Definition

Let B1
d1→ B1 and B2

d2→ B2 be normed chain complexes. The Banach-Mazur distance
BMDist(B1,B2) is the infimum of log(|F ||F−1|) over all isomorphisms F : B1 → B2

duch that Fd1 = d2F.

This is too restrictive: this implies dim(B1) = dim(B2).
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The second idea is too measure the size of homotopies.

Definition

Let B1
d1→ B1 and B2

d2→ B2 be normed chain complexes. Consider all bounded
homotopies, i.e.

bounded morphisms F1 : B1 → B2 and F2 : B2 → B1 such that

d2F1 = F1d1, d1F2 = F2d2,

bounded operators Q1 : B1 → B1 and Q2 : B2 → B2 such that

1− F2F1 = d1Q1 + Q1d1, 1− F1F2 = d2Q2 + Q2d2.

Let q = max{|Q1|, |Q2|}, f = max{1, |F1||F2|}. The homotopy distance

HomDist(B1,B2) is the infimum over all homotopies of min{
q

f
+ log f ,

f

q
+ log q}.

The weird expression guarantees a triangle inequality.
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Definition

Let Null denote the set of null normed chain complexes (i.e. with d = 0). Denote by

ND(B) = HomDist(B,Null), NH(B) = |d̄−1|.

Fact. ND is continuous. NH is continuous on the complement of Null .

Remark. ND is a function of NH for prehilbertian complexes, but not in general.

Definition

Let B be a normed chain complex. Let B̄ = B/Ker(d) and d̄ : B̄ → Im(d).
The singular values of B are the numbers

σj = inf{s ≥ 0 ; ∃L ⊂ B̄ subvectorspace such that

dim(L) ≥ j and ∀x̄ ∈ L, |d̄ x̄ | ≤ s|x̄ |}.

Fact. Each σj is continuous in homotopy distance.
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Definition

Say a normed chain complex B is precompact if it is not null and belongs to the
closure of finite dimensional normed chain complexes.

Example. The (de Rham) complex of smooth differential forms on a smooth compact
Riemannian manifold, in its L2 norm, is precompact.

Fact. A prehilbertian chain complex is precompact ⇐⇒ its singular values form a
sequence that tends to +∞.

Proposition

Let Bi be precompact prehilbertian chain complexes. Then Bi converges to B ⇐⇒
for every j, σj (Bi ) tends to σj (B).

Pierre Pansu, Université Paris-Saclay Computing homology robustly: from persistence to the geometry of normed chain complexes



Definition

Say a normed chain complex B is precompact if it is not null and belongs to the
closure of finite dimensional normed chain complexes.

Example. The (de Rham) complex of smooth differential forms on a smooth compact
Riemannian manifold, in its L2 norm, is precompact.

Fact. A prehilbertian chain complex is precompact ⇐⇒ its singular values form a
sequence that tends to +∞.

Proposition

Let Bi be precompact prehilbertian chain complexes. Then Bi converges to B ⇐⇒
for every j, σj (Bi ) tends to σj (B).
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Analogy between normed chain complexes and metric spaces.

Metric space Normed chain complex

Gromov-Hausdorff distance Homotopy distance
Point ?

Bounded ?
Precompact ?

Compactness criterion (Gromov) ?

Let X ,Y be metric spaces.

GHDist(X ,Y ) = inf{HDistZ (i(X ), j(Y )) ; Z metric space,

i : X → Z , j : Y → Z isometric embeddings}.

Z

j

i
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Analogy between normed chain complexes and metric spaces.

Metric space Normed chain complex

Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d = 0)

Bounded ?
Precompact ?

Compactness criterion (Gromov) ?
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Analogy between normed chain complexes and metric spaces.

Metric space Normed chain complex

Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d = 0)

Bounded Homotopic to a null complex
Precompact ?

Compactness criterion (Gromov) ?

B is homotopic to a null complex ⇐⇒ ND(B) <∞.

One can think of ND(B) = HomDist(B,Null) as an analogue of diameter.
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Analogy between normed chain complexes and metric spaces.

Metric space Normed chain complex

Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d = 0)

Bounded Homotopic to a null complex
Precompact In the closure of finite dim. complexes

Compactness criterion (Gromov) ?

B is precompact =⇒ the singular values of B form a sequence that tends to +∞
(⇐⇒ if B is prehilbertian).
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Analogy between normed chain complexes and metric spaces.

Metric space Normed chain complex

Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d = 0)

Bounded Homotopic to a null complex
Precompact In the closure of finite dim. complexes

Compactness criterion (Gromov) ????

Definition

X precompact metric space, ε > 0. The covering number N(X , ε) is the minimal
number of ε-balls that can cover X .

Theorem (Gromov’s compactness criterion)

A collection T of precompact metric spaces is precompact in Gromov-Hausdorff
distance if and only if there is a function ν which serves as a covering number for all
spaces in T , i.e.

∀ε > 0, ∀X ∈ T , N(X , ε) ≤ ν(ε).
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Analogy between normed chain complexes and metric spaces.

Metric space Normed chain complex

Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d = 0)

Bounded Homotopic to a null complex
Precompact In the closure of finite dim. complexes

Compactness criterion (Gromov) Common profile

Definition

Let (B, d) be a normed chain complex that belongs to the closure of finite dimensional
normed complexes. Its profile is the “smallest” function
π = (πd , πc ) : (0,+∞)→ (0,+∞)2 with the following property. For every ε > 0,
there exists a finite-dimensional normed complex (B′, d ′) such that

HomDist(B,B′) < ε, dim(B′) ≤ πd (ε), κ(B′, d ′) ≤ πc (ε).

Theorem

A collection of nonnull normed chain complexes is precompact if and only if a same
profile serves for all and the distances to null complexes are bounded below.
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Lemma

Let B be a prehilbertian chain complex. Then the profile of B is determined by the
asymptotics of eigenvalues,

πd (ε) ≤ Card{λ ∈ spectrum(d∗d) ; λ <
1

ε2
}, πc (ε) ≤

1

ε
√
λ2
.

Example

Let M be a smooth compact Riemannian manifold. Consider the (de Rham) complex
of smooth differential forms on M in its L2 norm. Its profile satisfies πd (ε) ≤ C ε−N ,
where N = dim(M).

Let Y be a finite metric space. The complete simplicial
complex ∆Y on Y takes as simplices all tuples of points
of Y . Pick a function of the diameter as a weight,

w(σ) = φ(diam(σ)).

Use weighted `p norms on cochains. This gives a normed
chain complex C ·(Y ). The complete simplicial

complex on 4 points.
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Let (X , µ) be a metric measure space. Same construction with the same weight w
and Lp(µ⊗·) norms yields a normed chain complex C ·(X , µ).

Example. 1-cochains are functions c on X × X . The squared weighted L2 norm is∫
X×X

φ(|x − x ′|)|c(x , x ′)|2 dµ(x) dµ(x ′).

Theorem (Burago-Ivanov-Kurylev 2015)

Take φ = 1[0,ρ]. Stick to spaces where the measures of balls vary continuously in a

quantitative manner. Laplace eigenvalues below 2ρ−2 are continuous functions of
(X , µ) in L∞ Gromov-Wasserstein distance (a topology that combines
Gromov-Hausdorff and weak measure convergence).

Corollary (Burago-Ivanov-Kurylev 2013)

When finite nets Xn ⊂ X Hausdorff converge to a smooth Riemannian manifold X ,
suitably defined Laplace spectra converge.

Question. Study steeper weights, like φ(δ) = 1[0,ρ]
1
δk

in degree k. Do Laplace

eigenvalues on C k (X , µ) depend continuously on (X , µ)?
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Example

If G is an infinite graph, the chain complex `pC ·(G) is not precompact.

Indeed, d is bounded, hence its singular values cannot tend to +∞.

Example

The chain complex `2C ·(Z) has infinite nulldistance.

Indeed, im(d) is not closed.

Example

The chain complex `pC ·(Z ? Z) has finite nulldistance for all p ≥ 1.

So it is the analogue of a bounded noncompact metric space.

Question. What is the analogue of pointed Hausdorff convergence?
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