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A simplicial complex is made of simplices
of various dimensions. Simplicial chains
are linear combinations of simplices. The
boundary of a simplex is a chain, whence
a linear map ∂ and its adjoint d , which
satisfy ∂ ◦ ∂ = 0 and d ◦ d = 0.

The homology (resp. cohomology) of the simplicial complex is Ker(∂)/Im(∂) (resp.
Ker(d)/Im(d).

Simplicial chains and cochains can be equipped with `p norms.

In general, a normed chain complex is a normed vector space B equipped with a linear
map d : B → B such that d ◦ d = 0.
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When F : B1 → B2 is a linear bijection, the robustness of the resolution of the
equation

Fx = y

is governed by the conditioning number

κ(F ) = |F ||F−1|.

For normed chain complexes, we first turn d into a bijection d̄ : B/Ker(d)→ Im(d),
and set

κ(B) := |d̄ ||d̄−1|.
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Example. The n-stick satisfies H1 = 0. The 1-cochain g equal to 1̄ on the central
edge and 0 elsewhere can be written df where

‖g‖p = 1, ‖f ‖p ∼ n1/p .

0 0 0 1 0 0 0

g f

When n is large, solving df = g is unstable. The computation of cohomology is
ill-conditioned.

Definition

The conditionning number of a graph X is κ(X , p, k) = |d̄ ||d̄−1| where
d̄ : C0(X , k)/Ker(d)→ dC0(X , k). (It depends on p and on the field k).
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Isoperimetry = the art of cutting space
apart.

|A| = 5, |∂A| = 15.

Definition

Cheeger’s constant h(X ) of a graph X is the largest h such that for every set A of
vertices such that |A| ≤ 1

2
|X |,

|∂A| ≥ h |A|.

Here, ∂A is the set of edges connecting A to its complement.

Proposition

h(X ) =
2

κ(X , 1,F2)
= 2(‖d̄‖1→1‖d̄−1‖1→1)−1 over F2.
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Proposition

Let ∆ be the self-adjoint operator corresponding to the quadratic form
f 7→ ‖df ‖2

2 = 〈f ,∆f 〉. Let λ1 ≤ λ2 ≤ · · · denote its eigenvalues. If the graph X is
connected, then λ1 = 0 and

λ2 = (‖d̄−1‖2→2)−2.

In particular,
2λ−1

2 ≤ κ0(X , 2,R)2 ≤ 4λ−1
2 .

λ2 is known as the spectral gap of the graph.
It governs the speed at which a random walk on the graph is mixing. In particular, the
possibility of picking a vertex at random.

Morality. Normed chain complexes contain interesting information, beyond their mere
homology.
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Given a metric space X , a finite subset Y ⊂ X and r > 0, the Čech simplicial complex
Yr has a simplex (y0, . . . , yk ) each time

⋂
i B(yi , r) 6= ∅. Let C r

· denote the simplicial
chains of Yr .

Theorem (Bobrowski-Weinberger 2017)

Fix r < 1
2

and 1 ≤ k ≤ d . Let Y be an n-sample picked at random on the standard
d-torus. Then, with high probability, the k-homology of Yr coincides with the
homology of the torus as soon as

ωd r
d n� log n + k log log n,

and this fails if ωd r
d n� log n + (k − 2) log log n. If k = 0, the threshold is 2−d log n.

Question. Can one say that the chain complexes C r
· converge to some chain complex

attached to the torus?
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In order to define a distance between normed chain complexes, the first idea is to
measure conditioning numbers of isomorphisms.

Definition

Let B1
d1→ B1 and B2

d2→ B2 be normed chain complexes. The Banach-Mazur distance
BMDist(B1,B2) is the infimum of log(|F ||F−1|) over all isomorphisms F : B1 → B2

duch that Fd1 = d2F .

This is too restrictive: this implies dim(B1) = dim(B2).

Pierre Pansu, Université Paris-Saclay Computing homology robustly: The geometry of normed chain complexes



In order to define a distance between normed chain complexes, the first idea is to
measure conditioning numbers of isomorphisms.

Definition

Let B1
d1→ B1 and B2

d2→ B2 be normed chain complexes. The Banach-Mazur distance
BMDist(B1,B2) is the infimum of log(|F ||F−1|) over all isomorphisms F : B1 → B2

duch that Fd1 = d2F .

This is too restrictive: this implies dim(B1) = dim(B2).
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The second idea is too measure the size of homotopies.

Definition

Let B1
d1→ B1 and B2

d2→ B2 be normed chain complexes. Consider all bounded
homotopies, i.e.

bounded morphisms F1 : B1 → B2 and F2 : B2 → B1 such that

d2F1 = F1d1, d1F2 = F2d2,

bounded operators Q1 : B1 → B1 and Q2 : B2 → B2 such that

1− F2F1 = d1Q1 + Q1d1, 1− F1F2 = d2Q2 + Q2d2.

Let q = max{|Q1|, |Q2|}, f = max{1, |F1||F2|}. The homotopy distance

HomDist(B1,B2) is the infimum over all homotopies of min{
q

f
+ log f ,

f

q
+ log q}.

The weird expression guarantees a triangle inequality.
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Definition

Let Null denote the set of null normed chain complexes (i.e. with d = 0). Denote by

ND(B) = HomDist(B,Null), NH(B) = |d̄−1|.

Fact. ND is continuous. NH is continuous on the complement of Null .

Remark. ND is a function of NH for prehilbertian complexes, but not in general.

Definition

Let B be a normed chain complex. Let B̄ = B/Ker(d) and d̄ : B̄ → Im(d).
The singular values of B are the numbers

σj = inf{s ≥ 0 ; ∃L ⊂ B̄ subvectorspace such that

dim(L) ≥ j and ∀x̄ ∈ L, |d̄ x̄ | ≤ s|x̄ |}.

Fact. Each σj is continuous in homotopy distance.
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Definition

Say a normed chain complex B is precompact if it is not null and belongs to the
closure of finite dimensional normed chain complexes.

Example. The (de Rham) complex of smooth differential forms on a smooth compact
Riemannian manifold, in its L2 norm, is precompact.

Fact. A prehilbertian chain complex is precompact ⇐⇒ its singular values form a
finite sequence that tends to +∞.

Proposition

Let Bi be precompact prehilbertian chain complexes. Then Bi converges to B ⇐⇒
for every j , σj (Bi ) tends to σj (B).
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Pierre Pansu, Université Paris-Saclay Computing homology robustly: The geometry of normed chain complexes



Analogy between normed chain complexes and metric spaces.

Metric space Normed chain complex

Gromov-Hausdorff distance Homotopy distance
Point ?

Bounded ?
Precompact ?

Compactness criterion (Gromov) ?

Let X ,Y be metric spaces.

GHDist(X ,Y ) = inf{HDistZ (i(X ), j(Y )) ; Z metric space,

i : X → Z , j : Y → Z isometric embeddings}.

Z

j

i
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Analogy between normed chain complexes and metric spaces.

Metric space Normed chain complex

Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d = 0)

Bounded Homotopic to a null complex
Precompact ?

Compactness criterion (Gromov) ?

B is homotopic to a null complex ⇐⇒ ND(B) <∞.

One can think of ND(B) = HomDist(B,Null) as an analogue of diameter.
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Analogy between normed chain complexes and metric spaces.

Metric space Normed chain complex

Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d = 0)

Bounded Homotopic to a null complex
Precompact In the closure of finite dim. complexes

Compactness criterion (Gromov) ?

B is precompact =⇒ B has a finite sequence of singular values that tends to +∞
(⇐⇒ if B is prehilbertian).
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Analogy between normed chain complexes and metric spaces.

Metric space Normed chain complex

Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d = 0)

Bounded Homotopic to a null complex
Precompact In the closure of finite dim. complexes

Compactness criterion (Gromov) ????

Definition

X precompact metric space, ε > 0. The covering number N(X , ε) is the minimal
number of ε-balls that can cover X .

Theorem (Gromov’s compactness criterion)

A collection T of precompact metric spaces is precompact in Gromov-Hausdorff
distance if and only if there is a function ν which serves as a covering number for all
spaces in T , i.e.

∀ε > 0, ∀X ∈ T , N(X , ε) ≤ ν(ε).
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Analogy between normed chain complexes and metric spaces.

Metric space Normed chain complex

Gromov-Hausdorff distance Homotopy distance
Point Null complex (i.e. d = 0)

Bounded Homotopic to a null complex
Precompact In the closure of finite dim. complexes

Compactness criterion (Gromov) ????

Definition

Let (B, d) be a normed chain complex that belongs to the closure of finite dimensional
normed complexes. Its profile is the smallest function
π = (πd , πc ) : (0,+∞)→ (0,+∞)2 with the following property. For every ε > 0,
there exists a finite-dimensional normed complex (B′, d ′) such that

HomDist(B,B′) < ε, dim(B′) ≤ πd (ε), κ(B′, d ′) ≤ πc (ε).

Theorem

A collection of nonnull normed chain complexes is precompact if and only if a same
profile serves for all and the distances to null complexes are bounded below.
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Lemma

Let B be a prehilbertian chain complex. Then the profile of B is determined by the
asymptotics of eigenvalues,

πd (ε) ≤ Card{λ ∈ spectrum(d∗d) ; λ <
1

ε2
}, πc (ε) ≤

1

ε
√
λ2
.

Example

Let M be a smooth compact Riemannian manifold. Consider the (de Rham) complex
of smooth differential forms on M in its L2 norm. Its profile satisfies πd (ε) ≤ C ε−N ,
where N = dim(M).

Conjecture

Consider finer and finer triangulations of a fixed compact manifold. The corresponding
complexes of simplicial cochains in their weighted `p norms form a precompact family.

Here, the weight of a simplex is a function of its volume.

Pierre Pansu, Université Paris-Saclay Computing homology robustly: The geometry of normed chain complexes



Lemma

Let B be a prehilbertian chain complex. Then the profile of B is determined by the
asymptotics of eigenvalues,

πd (ε) ≤ Card{λ ∈ spectrum(d∗d) ; λ <
1

ε2
}, πc (ε) ≤

1

ε
√
λ2
.

Example

Let M be a smooth compact Riemannian manifold. Consider the (de Rham) complex
of smooth differential forms on M in its L2 norm. Its profile satisfies πd (ε) ≤ C ε−N ,
where N = dim(M).

Conjecture

Consider finer and finer triangulations of a fixed compact manifold. The corresponding
complexes of simplicial cochains in their weighted `p norms form a precompact family.

Here, the weight of a simplex is a function of its volume.
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Let Y be a finite metric space. The complete simplicial complex ∆Y on Y takes as
simplices all tuples of points of Y . Pick a function of the diameter as a weight. Use
weighted `p norms on cochains. This gives a normed chain complex C ·(Y ).

The complete simplicial complex on 4 points.

Let (X , µ) be a metric measure space. Same construction with the same weight w
and Lp(µ⊗·) norms yields a normed chain complex C ·(X ).
Example. 1-cochains are functions c on X × X . The squared weighted L2 norm is∫

X×X
w(|x − x ′|)|c(x , x ′)|2 dµ(x) dµ(x ′).

Question. Given a metric measure space (X , µ) and a finite sample Y ⊂ X . Does
C ·(Y ) converge to C ·(X )?
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