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Pierre Pansu, Université Paris-Saclay Near-homology



Near-cohomology
Expanders

High dimensional expanders
Distances between chain complexes

What is cohomology?
What is near-cohomology?
Isoperimetry
Laplacian

X simplicial complex, k a field. A k-cochain is a (skew-symmetric) k-valued function f
on the set of k-simplices. Its coboundary df is df (σ) = f (∂σ), e.g.,

k = 0, e = vv ′ edge, df (e) = f (v)− f (v ′).

k = 1, σ = vv ′v ′′ triangle,
df (σ) = f (vv ′) + f (v ′v ′′) + f (v ′′v) = f (vv ′)− f (vv ′′) + f (v ′v ′′).

Cohomology is H·(X , k) = Ker(d)/Im(d) in each degree.
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Example

X = n-stick. H0 = constant
functions ' k.
H1 = 0.

Example

X = n-cycle. H0 =constant functions ' k.
H1 ' k by f 7→

∑
edges e f (e).
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Pick an absolute value on k. Get norms on cochains: picking simplices uniformly at
random, set ‖f ‖p = E(|f |p)1/p .

Let n = 2m + 1 be odd. In the n-stick with vertices v0, . . . , vn, the 1-chain g equal to
1̄ on the middle edge vmvm+1 and 0 elsewhere is df where f (vi ) = 0̄ for i ≤ m and
f (vi ) = 1̄ for i ≥ m + 1. Then

‖g‖p =
1

n1/p
, ‖f ‖p ∼

1

21/p
.

0 0 0 1 0 0 0

g f

When k = F2, the only other choice for f is 1̄ + f which has the same norm. When
k = R, the optimal choice is f (vi ) = ± 1

2
which has norm 1

2
.

When n is large, it is costly to solve df = g . We say that g is nontrivial in
near-cohomology.

Definition

The near-cohomology threshold in degree k is the norm of the inverse d̄−1 of
d̄ : C k (X , k)/Ker(d)→ dC k (X , k). (It depends on p, i.e. on a choice of norm).
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Pierre Pansu, Université Paris-Saclay Near-homology



Near-cohomology
Expanders

High dimensional expanders
Distances between chain complexes

What is cohomology?
What is near-cohomology?
Isoperimetry
Laplacian

Pick an absolute value on k. Get norms on cochains: picking simplices uniformly at
random, set ‖f ‖p = E(|f |p)1/p .

Let n = 2m + 1 be odd. In the n-stick with vertices v0, . . . , vn, the 1-chain g equal to
1̄ on the middle edge vmvm+1 and 0 elsewhere is df where f (vi ) = 0̄ for i ≤ m and
f (vi ) = 1̄ for i ≥ m + 1. Then

‖g‖p =
1

n1/p
, ‖f ‖p ∼

1

21/p
.

0 0 0 1 0 0 0

g f

When k = F2, the only other choice for f is 1̄ + f which has the same norm. When
k = R, the optimal choice is f (vi ) = ± 1

2
which has norm 1

2
.

When n is large, it is costly to solve df = g . We say that g is nontrivial in
near-cohomology.

Definition

The near-cohomology threshold in degree k is the norm of the inverse d̄−1 of
d̄ : C k (X , k)/Ker(d)→ dC k (X , k). (It depends on p, i.e. on a choice of norm).
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Fact

Like cohomology, near-cohomology is a topological (even homotopy) invariant of
simplicial complexes. Respectively, a quasiisometry invariant (for infinite complexes of
locally bounded geometry).

Remember: cohomology is not the only interesting information one can extract from
cochain complexes. Apparently, near-cohomology is significant too.

Plan of lecture

1 Relate the various `p near-cohomology thresholds for graphs to expansion.

2 Survey the theory of higher dimensional expanders.

3 Briefly mention one other instance where near-cohomology is relevant.

4 Start a more general discussion of normed chain complexes and the role played by
near-homology.
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Definition

The near-cohomology threshold in degree k is the norm of the inverse d̄−1 of
d̄ : C k (X , k)/Ker(d)→ dC k (X , k).

For the n-stick or the n-cycle, ‖d−1‖p→p ∼ n1/p .

Question

Are there large graphs without near-cohomology (i.e. bounded near-cohomology
threshold)?

This is a geometric question. In a graph
X with n vertices and e edge, A a sub-
set of vertices, the edge-boundary ∂A of
A is the set of edges that join A to its
complement.

Definition

The Cheeger constant h(X ) of X is the largest h such that for every set A of vertices
such that P(A) < 1

2
,

#∂A

e
= P(∂A) ≥ h P(A) =

#A

n
.
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Definition

The Cheeger constant h(X ) of X is the largest h such that for every set A of vertices

such that P(A) < 1
2

,
#∂A

e
= P(∂A) ≥ h P(A) =

#A

n
.

Lemma

h(X ) = (‖d−1‖1→1)−1 over F2.

So near-cohomology is present iff the Cheeger constant is small, i.e. the isoperimetry

is poor. Proof

Here is an example of graph without near-cohomology.

Example

For the complete graph Kn on n vertices, h(Kn) = n
n−1

(n even) or n+1
n−1

(n odd).

Proof
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The `2 near-cohomology threshold (‖d−1‖2→2)−1 over R has an interpretation too.

Proposition

Let ∆ be the self-adjoint operator corresponding to the quadratic form
f 7→ ‖df ‖2

2 = 〈f ,∆f 〉. Let λ1 ≤ λ2 ≤ · · · denote its eigenvalues. If the graph X is
connected, then λ1 = 0 and

λ2 = (‖d−1‖2→2)−2.

Proof

This suggests a slight generalization: replacing graphs (resp. simplicial complexes)
with weighted graphs (resp. weighted simplicial complexes).

Definition

Say a simplicial complex X has pure dimension N if every vertex is contained in at
least one N-simplex.
A probability distribution on the simplices of a simplicial complex X of pure dimension
N is Garland if for every k = 0, . . . ,N − 1, it is the same to pick a k-simplex at
random, or to first pick a k + 1-simplex σ at random and then a k-simplex of σ
uniformly at random.

For a graph, the uniform distribution on edges gives rise to the distribution on vertices
which is proportional to degree.

Pierre Pansu, Université Paris-Saclay Near-homology
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`p norms on cochains are defined accordingly. Whence hP = (‖d−1‖1→1)−1 over F2

and λ2,P = (‖d−1‖2→2)−2 over R.

Theorem (Cheeger, Buser, Dodziuk, Alon-Milman)

For a finite connected graph equipped with a Garland distribution P,

1

2
λ2,P ≤ hP ≤ 2

√
λ2,P.

The left-hand inequality amounts to associating a real cochain f = |x | to an

F2-cochain x and comparing d−1df and d−1dx . Details

The right-hand inequality follows from two principles:

Isoperimetry =⇒ `1-Poincaré-Sobolev inequality.
For this, write any real function f with vanishing median as an integral of
{0, 1}-valued functions, the characteristic functions of its superlevel sets.

`1-Poincaré-Sobolev inequality =⇒ `2-Poincaré-Sobolev inequality.
For this, apply the `1 inequality to g = f |f |, and then Cauchy-Schwartz.

Details

Pierre Pansu, Université Paris-Saclay Near-homology
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`1-Poincaré-Sobolev inequality =⇒ `2-Poincaré-Sobolev inequality.
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What are expanders good for
Infinite graphs
Computing the Cheeger constant
Computing Laplacian eigenvalues

An expander is an infinite family of finite graphs with uniformly bounded degree and
Cheeger constant uniformly bounded below. Equivalently, with spectral gaps λ2

uniformly bounded below.

Theorem (Pinsker 1973)

Random d-regular graphs are expanders.

The uniform spectral gap says that spectrally, an expander behave as a complete
graph. Therefore, in a problem where one should check all pairs of points (e.g. find
the minimal distance between two points of a cloud), one can pick an expander and
check only its edges. Hence expanders are used to derandomize algorithms.
Fortunately, there are (several) deterministic constructions of expanders.

The spectral gap measures the exponential speed at which the simple random walk on
the graph is mixing (i.e. pushes forward any distribution close to the uniform
distribution). For instance, the art of cards shuffling is closely related to expansion in
the symmetric group.

The spectral gap also controls coarse embeddings to Hilbert spaces. For instance,
planar graphs cannot be expanders. Examples of finitely generated groups that cannot
be coarsely embedded in Hilbert spaces (Gromov monsters) have been constructed by
arranging that an expander embeds in their Cayley graphs.
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For infinite graphs, Ker(d) = {0} on `pC 0, which simplifies matters.

Proposition

Let p ≥ 1. Let Γ be a discrete finitely generated group. Fix a finite generating system.
There is an associated graph, the Cayley graph G . Then the following are equivalent:

1 h(G) > 0.

2 d has a bounded inverse d`pC 0(G)→ `pC 1(G)/Ker(d).

3 The `p cohomology `pH1(G) := (`pC 1(G) ∩Ker(d))/d`pC 0(G) is Hausdorff.

4 Γ is non-amenable.

Amenability is a property of groups that has emerged from ergodic theory and
operator algebras (von Neumann). It has hundreds of equivalent characterizations.

The free abelian group
Zd is amenable. It
behaves like Euclidean
space, which has
vanishing Cheeger
constant. Its `p coho-
mology is nonzero and
non-Hausdorff for all
p > 1.

The free group on at
least 2 generators is
non-amenable. It be-
haves like hyperbolic
plane, which has pos-
itive Cheeger constant.
Its `p cohomology is
nonzero and Hausdorff
for all p > 1.
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Computing the Cheeger constant of a graph is known as the SPARSEST CUT
problem in computer science. It is NP-hard (F. Shahrokhi and D. W. Matula 1990).

Approximating the Cheeger constant up to a multiplicative factor of
√

log n, where n
is the number of vertices, can be done in quadratic time (S. Arora, E. Hazan and S.
Kale 2010).

Conjecturally, this approximation factor cannot be improved. Some evidence is
provided by a decade of work by A. Naor with various coauthors, showing that the
integrality gap of the Goemans-Linial relaxation for SPARSEST CUT is at least

√
log n

(2006-2018).
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On the other hand, computing eigenvalues of graph Laplacians can be done very
efficiently: in linear time.

Indeed, say two graphs G and H on the same vertex set are ε-close if the Laplacian
quadratic forms QG : f 7→ E(|df |2) satisfy

1

1 + ε
QG ≤ QH ≤ (1 + ε)QG .

Then every graph G is ε-close to a graph with less than n(2 + ε)2/ε2 edges (J. Batson,
D. Spielman and N. Srivastava 2014).
Such a sparsification can be computed in nearly linear time. It follows that spectra are
ε-close as well.

For a graph with few edges, eigenvalues can be fast computed using powers: solving
∆f1 = f0 on functions with vanishing E(f ) and iterating gives a sequence fj such that

‖fj‖ ∼ λ−j
2 ‖f0‖, from which one can extract λ2.

The sparsification procedure relies on the concept of expansion. An expander is a
graph which behaves spectrally like a complete graph, but with far less edges.
Random d-regular graphs are expanders, so one expects that decimating edges locally
randomly does not disturb QG too much.
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Definition

Let X be a finite simplicial complex of pure dimension N. Fix a Garland distribution
on simplices of X , and the corresponding `p norms on cochains. For k = 0, . . . , n − 1,
the k-th cocycle expansion constant of X is

hk = (‖d̄−1‖1→1)−1,

where d̄ : C k (X ,F2)/Ker(d)→ dC k (X ,F2) is induced by the coboundary operator
d : C k (X ,F2)→ C k+1(X ,F2).

Example For the complete N-dimensional complex on n vertices, let us use uniform

distributions. Then for all k = 0, . . . ,N − 1, hk ≥
n

n − k − 1
.

In this example, the degree, i.e. the number of simplices containing a given vertex,
increases with n.

Theorem (Kaufman-Kazhdan-Lubotzky 2016)

There exists an infinite family of 2-dimensional simplicial complexes with uniformly
bounded degree such that h0 and h1 are bounded away from 0.

The construction is explicit. A simpler result is the fact that random 2-dimensional
simplicial complexes have h0 and h1 are bounded away from 0 and edge-degree
(number of simplices containing an edge) bounded.
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A tester is a randomized algorithm that recognizes strings satisfying a property among
a larger set of strings, by examining only a few bits, with a significant probability of
being right.
The probability of rejecting a string should increase with the distance of the string to
the subset of strings having the required property. It should vanish when this distance
is 0. We use the normalized Hamming distance between strings, d(f , g) = P(fi 6= gi ).

Definition

Let A,B be finite sets, W ⊂ AB a set of strings, and P ⊂W a subset. A (q, ε)-tester
for P is a randomized algorithm that queries only q bits of a string f and rejects it
with probability at least ε d(f ,P).

Example. Linearity testing. Let V be a finite dimensional F2-vectorspace. Strings are
F2-valued functions on V , with P the subset of linear functions. The tester pick
uniformly at random two elements x , y ∈ V , it rejects f if f (x + y) 6= f (x) + f (y).
This is a (3, 1)-tester for linearity.

Theorem (Kaufman-Lubotzky 2014)

Let X be a finite simplicial complex. Let strings be F2-valued k-cochains on X . The
k-cocycle tester picks a k + 1-simplex σ at random and rejects a cochain f if and only
if df (σ) 6= 0. This is a (k + 2, ε)-tester if and only if ε ≥ hk (X ).

Application to Seidel equivalence
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Remark. Let X be a connected graph and F : X → R a continuous map. Let m ∈ R
denote the median of F . Then m belongs to the images of at least a fraction h(X ) of
the edges of X .

m

F

M. Gromov has given a multidimensional extension of this remark: if a sufficiently rich
simplicial N-complex is continuously mapped to RN , then some point needs be hit by
a lot of N-simplices.

Sufficiently rich is expressed by cocycle expansion constants, plus sparsity, and also
cosystoles in case the cohomology does not vanish.
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Let X be a simplicial complex. Fix a Garland probability distribution on simplices σ of
X . The local sparsity of X controls the fraction of simplices of all dimensions that can
meet at a vertex,

spar(X ) = max
v∈X 0

P(v ∈ σ).

When Hk (X ,F2) 6= 0, the k-cosystole of X is the length of its shortest nonzero vector,

θk (X ) := min{‖κ‖1 ; κ ∈ C k (X ,F2) \ dC k−1(X ,F2)}.

Theorem (Gromov 2010)

For every h > 0, θ > 0 and N, for all sufficiently small ε > 0, there exists
c(ε, h, θ,N) > 0 such that for every simplicial complex X of pure dimension N, and
every continuous map F : X → RN , there exists a point in RN which belongs to the
images by F of at least a fraction

c(spar(X ), min
k=0,...,N−1

hk (X ), min
k=0,...,N−1

θk (X ),N)

of the N-simplices of X .
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Pierre Pansu, Université Paris-Saclay Near-homology



Near-cohomology
Expanders

High dimensional expanders
Distances between chain complexes

Cocycle expansion
Expansion and property testing
Expansion and topological overlap
Expansion and curvature pinching

Let X be a simplicial complex. Fix a Garland probability distribution on simplices σ of
X . The local sparsity of X controls the fraction of simplices of all dimensions that can
meet at a vertex,

spar(X ) = max
v∈X 0

P(v ∈ σ).

When Hk (X ,F2) 6= 0, the k-cosystole of X is the length of its shortest nonzero vector,

θk (X ) := min{‖κ‖1 ; κ ∈ C k (X ,F2) \ dC k−1(X ,F2)}.

Theorem (Gromov 2010)

For every h > 0, θ > 0 and N, for all sufficiently small ε > 0, there exists
c(ε, h, θ,N) > 0 such that for every simplicial complex X of pure dimension N, and
every continuous map F : X → RN , there exists a point in RN which belongs to the
images by F of at least a fraction

c(spar(X ), min
k=0,...,N−1

hk (X ), min
k=0,...,N−1

θk (X ),N)

of the N-simplices of X .
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Now comes a multidimensional extension of the above discussion of expansion in
infinite groups.

Curvature pinching. Let −1 ≤ δ < 0. Say a Riemannian manifold is δ-pinched if its
sectional curvature satisfies −1 ≤ SecCurv ≤ δ.

Theorem (Pansu 2008)

For every n, k = 1, . . . , n − 1 and δ ∈ [−1, 0), there exists a p(n, δ, k) such that if a
simply connected complete Riemannian n-manifold is δ-pinched and
1 < p < p(n, δ, k), then hk > 0 in `p cohomology.

This is sharp: for every n, k = 1, . . . , n − 1 and δ ∈ [−1, 0), there exists a Riemannian
homogeneous space Mn,δ,k which is δ-pinched and has hk = 0 in `p cohomology for p
in an interval starting at p(n, δ, k).

It follows that Mn,δ,k is not quasiisometric to any δ′-pinched Riemannian manifold, for
δ′ < δ.

There is a comparison theorem for the vanishing of `p cohomology, but it is not sharp.
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Question. Can one interpret the near-cohomology threshold ‖d−1‖ as a distance
between certain chain complexes?

A normed complex is the data of a normed vectorspace and a bounded linear map

d : B → B such that d ◦ d = 0. An isomorphism of normed complexes B1
d1→ B1 and

B2
d2→ B2 is a bijection f : B1 → B2 such that d2f1 = f1d1 and f , f −1 are bounded. An

isometry of normed complexes is an isometric isomorphism.

Definition

Let B1
d1→ B1 and B2

d2→ B2 be two normed complexes. Consider all bounded
homotopies, i.e.

bounded morphisms F1 : B1 → B2 and F2 : B2 → B1 such that

d2F1 = F1d1, d1F2 = F2d2,

bounded linear maps Q1 : B1 → B1 and Q2 : B2 → B2 such that

1− F2F1 = d1Q1 + Q1d1, 1− F1F2 = d2Q2 + Q2d2.

Denote by q = max{|Q1|, |Q2|}, f = max{1, |F1||F2|}. The homotopy distance

HomDist(B1,B2) is the infimum over all homotopies of max{
q

f
+ log f ,

f

q
+ log q}.
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Definition

HomDist(B1,B2) = inf max{
q

f
+ log f ,

f

q
+ log q}.

The purpose of the weird formula is to have a triangle inequality. Details

When B1 and B2 are finite dimensional,

HomDist(B1,B2) <∞ ⇐⇒ dim(H(B1)) = dim(H(B2)),

HomDist(B1,B2) = 0 ⇐⇒ (B1, d1) and (B2, d2) are isometric.

Therefore one gets a distance on the set of isometry classes of finite dimensional
normed complexes with the same homology.

Definition

The near-homology threshold NH(B) is the norm of the inverse d̄−1 of
d̄ : B/Ker(d)→ Im(d).

Remark. NH is a homotopy covariant: if two chain complexes B1 and B2 are

homotopic, then NH(B1) ≤ exp(HomDist(B1,B2))(1 + NH(B2)). Details
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Lemma

HomDist(B, 0) ≥ NH(B). Details

Proposition

If B is a Hilbert space, HomDist(B, 0) = NH(B) ⇐⇒ H(B) = 0. Details

This applies to the `2 norm on cochains on graphs. In order to remove the homology
obstruction, we attach to a graph X the following complexes

BX ,k,p = H0(X , k)⊕ C 0(X , k)⊕ dC 0(X , k) equipped with `p norms.

where d : H0(X , k)→ C 0(X , k) embeds locally constant functions as 0-cochains.
Then for all finite connected graphs,

HomDist(BX ,R,2, 0) = NH(BX ,R,2) = λ2(X )−1/2.

Over F2, things are not as nice. Details

Example

Let K3 be the complete graph on 3 vertices. Then

HomDist(BK3,F2,1, 0) = 1, NH(BK3,F2,1) =
1

2
.
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Definition

Let r > 0. Let B
d→ B be a normed complex such that |d | ≤ r , let B′ and B′′ be

subcomplexes of B. Consider all bounded morphisms f : B → B such that
f (B′) ⊂ B′′ and bounded maps Q : B → B such that, on B′, 1− f = dQ + Qd . Take
the infimum of log(1 + 2r |Q|). This defines the asymmetric embedded Hausdorff
distance HausDistB,r (B′ → B′′). Make it symmetric by setting

HausDistB,r (B′,B′′) = HausDistB,r (B′ → B′′) + HausDistB,r (B′′ → B′).

Let B1
d1→ B1 and B2

d2→ B2 be two normed complexes. Consider all normed complexes

B
d→ B such that |d | ≤ r , containing subcomplexes B′ and B′′ isometric to B2 and B2

respectively, and take the infimum of all embedded Hausdorff distances
HausDistB,r (B′,B′′). This defines the abstract Hausdorff distance
HausDistr (B1,B2).

Again, the role of the log is to achieve the triangle inequality. Details
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Here is an other suggestion in order to bypass the homology obstruction. A null

complex is a normed complex whose boundary operator is zero. If B
H,K

 N is a

bounded homotopy to a null complex, then

B = Im(K)⊕Ker(H),

where Im(K) is a null subcomplex of B which has the same homology as B and N,
and Ker(h) is a subcomplex of B whose homology vanishes. Therefore one can think
of Ker(H) as B with its homology removed.

Definition

Let B1
H1,K1

 N1 and B2

H2,K2

 N2 be normed complexes coming with homotopies to

null-complexes. Define the near-homology distance between pairs as

NHDist((B1,N1), (B2,N2)) := HomDist(Ker(H1),Ker(H2)).

Then, in finite dimensions, NHDist is finite, and
NHDist((B1,N1), (B2,N2)) = 0 ⇐⇒ B1 and B2 are isometric, up to direct sums
with null complexes isomorphic to N1 and N2.
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Lemma

h(X ) = (‖d−1‖1→1)−1 over F2.

The support x 7→ A = {v ; x(v) 6= 0̄} is a 1− 1 correspondence between 0-cochains
(resp. 1-cochains) over F2 and subsets of vertices (resp. of edges). If A is a subset of
vertices and x the corresponding 0-cochain, then the subset of edges corresponding to
dx is ∂A.
Furthermore, ‖x‖1 = #A/n and ‖dx‖1 = #∂A/e.

Since G is connected, the kernel of d consists of the two 0-cochains x which are
constant functions on the set of vertices.

If y ∈ C 1 belongs to dC 0, there exist exactly two 0-cochains x1, x2 ∈ C 0 such that
dx1 = dx2 = y . One of them (let us denote it by x) has least `1 norm. The support A
of x satisfies #A ≤ n

2
and ∂A corresponds to y . Therefore the estimates

‖x‖1 ≤ h−1 ‖y‖1 and #∂A/e ≥ h #A/n

are equivalent.

Back
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Example

For the complete graph Kn on n vertices, h(Kn) = n
n−1

(n even) or n+1
n−1

(n odd).

Indeed, for every subset A, every vertex of A is connected to n−#A vertices of Ac , so

P(∂A) =
#∂A

e
=

#A(n −#A)

n(n − 1)/2
= 2

n

n − 1
P(A)(1− P(A)).

Since P(A) ≤ 1
2

(resp. n−1
2n

),

P(∂A)

P(A)
≥

n

n − 1
(resp,

n + 1

n − 1
),

with equality if n is even and #A = n
2

or n is odd and #A = n−1
2

.

Back
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Proposition

X connected, ∆ defined by ‖df ‖2
2 = 〈f ,∆f 〉 with eigenvalues λ1 ≤ λ2 ≤ · · · . Then

λ1 = 0 and λ2 = (‖d−1‖2→2)−2.

Given f ∈ C 0(G ,R), let f =
∑

fλ be the decomposition of f according to eigenspaces
of ∆. Then

‖f ‖2
2 =

∑
‖fλ‖2, ‖df ‖2

2 = 〈df , df 〉 = 〈f ,∆f 〉 =
∑

λ‖fλ‖2.

Since G is connected, df = 0 implies that f is a constant function on vertices, so the
kernel of d , which coincides with the 0-eigenspace of ∆, is 1-dimensional.

If f ∈ C 0(G ,R) and f0 = 0, then

‖df ‖2
2 ≥ λ2‖f ‖2

2.

This shows that every g ∈ dC 0 has a primitive f such that ‖f ‖2 ≤ λ−1/2
2 ‖g‖2.

Equality holds if g = df where f belongs to the λ2-eigenspace of ∆, so

‖d−1‖2→2 = λ
−1/2
2 .

Back
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Theorem

h ≥ 1
2
λ2.

If x is an F2-cochain, f = |x | is a real cochain, and ‖x‖1 = ‖f ‖2
2, ‖dx‖1 = ‖df ‖2

2.

The real number m which minimizes E((f −m)2), is m = E(f ). Thus
d−1df = f − E(f ), and

‖f − E(f )‖2
2 ≤ (|d−1|2→2)2‖f ‖2

2.

On the other hand,

‖f −E(f )‖2
2 = P(x 6= 0)(1−E(f ))2 +P(x = 0)E(f )2 = ‖x‖1(1−‖x‖1) ≥

1

2
‖d−1dx‖1.

so
‖d−1dx‖1 ≤ 2(|d−1|2→2)2‖x‖1,

and
‖d−1‖1→1 ≤ 2(|d−1|2→2)2.

Back
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Theorem

h ≤ 2
√
λ2.

First step.

‖d−1
R ‖1→1 ≤ ‖d−1

F2
‖1→1,

i.e. the isoperimetric inequality (expressed in terms of F2 cochains) implies the
Poincaré-Sobolev inequality (expressed in terms of R cochains).
Let f ∈ C 0(G ,R) be a function whose median vanishes. For t 6= 0, define
xt ∈ C 0(G ,F2) by

xt (v) =

{
1̄ if f (v)

t
> 1,

0̄ otherwise,

and set ft = |xt |. Then |f | =

∫
R

ft dt. Since the `1 norm is a norm,

‖f ‖1 = ‖|f |‖1 ≤
∫
R
‖ft‖1 dt =

∫
R
‖xt‖1 dt ≤ h−1

∫
R
‖dxt‖1 dt = h−1

∫
R
‖dft‖1 dt

≤ h−1‖df ‖1.
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Second step. The `1 Poincaré-Sobolev inequality implies its `2 version.

Let g = f |f |. Then the median of g is equal to 0 as well. One can apply the `1

Poincaré-Sobolev inequality to g and get

‖g‖1 ≤ h−1‖dg‖1.

One checks that ‖dg‖1 ≤ 2‖f ‖2‖df ‖2, hence

‖f ‖2
2 = ‖g‖1 ≤ h−12‖f ‖2‖df ‖2,

so

‖f ‖2 ≤ 2h−1‖df ‖2

and
λ
−1/2
2 = ‖d−1‖2→2 ≤ 2h−1.
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A Seidel switch on a graph consists in picking a vertex, removing all edges that
contain it and insert edges to all vertices that were not previously its neighbours.

Two graphs on the same vertex set are Seidel equivalent if they can be obtained one
from the other after a finite number of Seidel switches.

Example

Seidel equivalence is (3, 1)-testable.

Indeed, a graph with vertex set {1, . . . , n} can be viewed as a 1-cochain on the
complete graph Kn. A Seidel switch at vertex v amounts to adding dχv , where
χv (v) = 1̄ and χv = 0̄ elsewhere. Therefore two graphs with vertex set {1, . . . , n} are
Seidel equivalent if and only if the corresponding 1-cochains are cohomologous, and
we have a (3, 1)-tester for that, since H1(Kn,F2) = 0 and h1(Kn) ≥ 1.
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Lemma

HomDist(B1,B3) ≤ HomDist(B1,B2) + HomDist(B2,B3).

Let (B1, d1,Q1)
F1,F2

 (B2, d2,Q2) and (B2, d2,Q

′
2)

G2,G3

 (B3, d3,Q3) be homotopies.

Let q = max{|Q1|, |Q2|}, f = max{1, |F1||F2|}, q′ = max{|Q′2|, |Q3|},

f ′ = max{1, |G2||G3|}. Then (B1, d1,Q
′
1)

G2F1,F2G3

 (B3, d3,Q

′
3) is a homotopy, where

Q′1 = Q1 + F2Q′2F1, Q′3 = Q3 + G2Q2G3.

Thus q′′ = max{|Q′1|, |Q′3|} and f ′′ = max{1, |G2F1||F2G3|} satisfy

q′′ ≤ f ′q + fq′, f ′′ ≤ ff ′,

so
q′′

f ′′
+ log(f ′′) ≤

q

f
+ log(f ) +

q′

f ′
+ log(f ′).

The expression max{
q

f
+ log f ,

f

q
+ log q} is necessary in order for this function to be

nondecreasing in q and in f .
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Lemma

HomDist(B, 0) ≥ ‖d̄−1‖.

Let

(B, d ,Q)
0,0

 (0, 0, 0)

be a homotopy to the trivial complex. This simply means that 1 = dQ + Qd . If
y ∈ Im(d), y = dx , then

y = dx = d(dQx + Qdx) = dQdx = dQy ,

thus |Qy | ≥ |d̄−1y |, and |Q| ≥ |d̄−1|, so

HomDist(B, 0) ≥ max{|Q|,
1

|Q|
+ log(|Q|)} ≥ |d̄−1| = NH(B).
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Lemma

NH(B1) ≤ exp(HomDist(B1,B2))(1 + NH(B2)).

Let (B1, d1,Q1)
F1,F2

 (B2, d2,Q2) be a homotopy of complexes. Let c2 = NH(B2).

If y1 ∈ d1B1, y2 = f1(y1) ∈ d2B2, so there exists x2 ∈ B2 such that dx2 = y2 and
|x2| ≤ c2|y2|. Let x1 = Q1y1 + F2(x2). Then dx1 = y1 and

|x2| ≤ |Q1||y1|+ |F2|c2|F1||y1| ≤ (q + fc2)|y2|.

Therefore NH(B1) ≤ q + fc2.

Remember that D = HomDist(B1,B2) = max{ q
f

+ log f , f
q

+ log q}.
If q ≤ f , D = q

f
+ log f and q + fc2 ≤ f + fc2 ≤ eD (1 + c2).

If q ≥ f , D = f
q

+ log q and q + fc2 ≤ q + qc2 ≤ eD (1 + c2) again.
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Proposition

If B is a Hilbert space, HomDist(B, 0) = NH(B) ⇐⇒ H(B) = 0.

Indeed, homotopic complexes has the same homology, so
HomDist(B, 0) <∞ =⇒ H(B) = 0.

Conversely, assume that H(B) = 0. The orthogonal projection π : B → Im(d) has
norm ≤ 1. The section σ of the projection p : B → B/Ker(d) whose image is the
orthogonal complement of Ker(d) has norm ≤ 1. Therefore Q = σd̄−1π satisfies
|Q| ≤ |d̄−1|. Since H(B) = 0, Im(σ) = Ker(π), and B is the orthogonal direct sum
B = Im(σ)⊕ Im(d). In this decomposition,

Qd =

(
1 0
0 0

)
and dQ =

(
0 0
0 1

)
,

so dQ + Qd = 1, HomDist(B, 0) ≤ NH(B).
Back
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Example

HomDist(BK3,F2,1, 0) = 1, NH(BK3,F2,1) = 1
2

.

The assertion NH(BK3,F2,1) = 1
2

is a special case of h(Kn) = n+1
n−1

for n odd.

Let Q : B → B satisfy 1 = dQ + Qd . Let e1, e2, e3 be the natural basis of C 0(K3,F2).
Then |de1| = |de2| = |de3| = 2

3
, and d(e1 + e2 + e3) = 0̄.

If Qde1 has norm < 2
3

, then Qde1 = e1. If furthermore Qde2 has norm < 2
3

, then

Qde2 = e2. Then Qd(e3) = Qde1 + Qde2 = e1 + e2 has norm 2
3

. Thus one of the

Qdei must have norm 2
3

, thus |Q| ≥ 1.

Conversely, let us denote by e0 the nonzero element of H0(K3,F2), so that
de0 = e1 + e2 + e3 and e0, e1, e2, e3, de1, de2 is a basis of BK3,F2,1. If
x = x0e0 + x1e1 + x2e2 + x3e3 + x4de1 + x5de2,

|x | =
1

3
(|x0|+ |x1|+ |x2|+ |x3) +

2

3
max{|x4|, |x5|, |x4 + x5|}.

Let us set Q(x) = x3e3 + x4e1 + x5e2. Then dQ + Qd = 1, and

|Q(x)| =
1

3
(|x3|+ |x4|+ |x5|) ≤

1

3
|x3|+

2

3
max{|x4|, |x5|} ≤ |x |.
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Lemma

Let (B, d) be a normed complex. Let r ≥ |d |. The embedded Hausdorff distance
HausDistB,r between subcomplexes of B satisfies the triangle inequality.

Let B1,B2,B3 be subcomplexes of B. Let operators F1,F2,Q1,Q2 : B → B satisfy

F1(B1) ⊂ B2, F2(B2) ⊂ B3,

1− F1 = d1Q1 + Q1d1, 1− F2 = d2Q2 + Q2d2.

Then F3 = F2F1 maps B1 to B3 and satisfies 1− F3 = dQ3 + Q3d for

Q3 = Q1 + Q2 + Q2dQ1 + Q2Q1d .

Since
|Q3| ≤ |Q1|+ |Q2|+ 2|d ||Q1||Q2| ≤ |Q1|+ |Q2|+ 2r |Q1||Q2|,

1 + 2r |Q3| ≤ 1 + 2r |Q1|+ 2r |Q2|+ 4r2|Q1||Q2|
= (1 + 2r |Q1|)(1 + 2r |Q2|),
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Corollary

Let r > 0. The Hausdorff distance HausDistr between complete normed complexes

B
d→ B such that |d | ≤ r satisfies the triangle inequality.

Given isometries of B1,B2 to subcomplexes of B and isometries of B2,B3 to

subcomplexes of B̄, one constructs a complex ¯̄B that contains isometric copies of B
and B̄ which intersect along a common subcomplex B′′ isometric to B2. One starts
with B ⊕ B̄ with the norm |(x , x̄)| = |x |+ |x̄ |. By completeness, the subspace

D = {(−x ′′, i(x ′′)) ; x ′′ ∈ B′′}

of B ⊕ B̄ is closed. Let ¯̄B = (B ⊕ B̄)/D, equipped with the quotient norm and the

quotient operator ¯̄d .

The embedded Hausdorff distances in ¯̄B are less that those in B and B̄, so one can
apply the previous Lemma.
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