Near-homology

Pierre Pansu, Université Paris-Saclay

May 12th, 2022
X simplicial complex, \mathbf{k} a field. A k-cochain is a (skew-symmetric) \mathbf{k}-valued function f on the set of k-simplices. Its coboundary $d f$ is $d f(\sigma)=f(\partial \sigma)$, e.g.,

- $k=0, e=v v^{\prime}$ edge, $d f(e)=f(v)-f\left(v^{\prime}\right)$.
- $k=1, \sigma=v v^{\prime} v^{\prime \prime}$ triangle,

$$
d f(\sigma)=f\left(v v^{\prime}\right)+f\left(v^{\prime} v^{\prime \prime}\right)+f\left(v^{\prime \prime} v\right)=f\left(v v^{\prime}\right)-f\left(v v^{\prime \prime}\right)+f\left(v^{\prime} v^{\prime \prime}\right) .
$$

Cohomology is $H^{\cdot}(X, \mathbf{k})=\operatorname{Ker}(d) / \operatorname{Im}(d)$ in each degree.
X simplicial complex, \mathbf{k} a field. A k-cochain is a (skew-symmetric) \mathbf{k}-valued function f on the set of k-simplices. Its coboundary $d f$ is $d f(\sigma)=f(\partial \sigma)$, e.g.,

- $k=0, e=v v^{\prime}$ edge, $d f(e)=f(v)-f\left(v^{\prime}\right)$.
- $k=1, \sigma=v v^{\prime} v^{\prime \prime}$ triangle,

$$
d f(\sigma)=f\left(v v^{\prime}\right)+f\left(v^{\prime} v^{\prime \prime}\right)+f\left(v^{\prime \prime} v\right)=f\left(v v^{\prime}\right)-f\left(v v^{\prime \prime}\right)+f\left(v^{\prime} v^{\prime \prime}\right)
$$

Cohomology is $H^{\cdot}(X, \mathbf{k})=\operatorname{Ker}(d) / \operatorname{Im}(d)$ in each degree.

Example

$X=n$-stick. $H^{0}=$ constant functions $\simeq \mathbf{k}$.

$$
H^{1}=0 .
$$

X simplicial complex, \mathbf{k} a field. A k-cochain is a (skew-symmetric) \mathbf{k}-valued function f on the set of k-simplices. Its coboundary $d f$ is $d f(\sigma)=f(\partial \sigma)$, e.g.,

- $k=0, e=v v^{\prime}$ edge, $d f(e)=f(v)-f\left(v^{\prime}\right)$.
- $k=1, \sigma=v v^{\prime} v^{\prime \prime}$ triangle,

$$
d f(\sigma)=f\left(v v^{\prime}\right)+f\left(v^{\prime} v^{\prime \prime}\right)+f\left(v^{\prime \prime} v\right)=f\left(v v^{\prime}\right)-f\left(v v^{\prime \prime}\right)+f\left(v^{\prime} v^{\prime \prime}\right)
$$

Cohomology is $H^{\cdot}(X, \mathbf{k})=\operatorname{Ker}(d) / \operatorname{Im}(d)$ in each degree.

Example

$$
\begin{aligned}
& X=n \text {-stick. } H^{0}=\text { constant } \\
& \text { functions } \simeq \mathbf{k} . \\
& H^{1}=0 .
\end{aligned}
$$

Example

$X=$ n-cycle. $H^{0}=$ constant functions $\simeq \mathbf{k}$.
$H^{1} \simeq \mathbf{k}$ by $f \mapsto \sum_{\text {edgese }} f(e)$.

Pick an absolute value on \mathbf{k}. Get norms on cochains: picking simplices uniformly at random, set $\|f\|_{p}=\mathbb{E}\left(|f|^{p}\right)^{1 / p}$.

Pick an absolute value on \mathbf{k}. Get norms on cochains: picking simplices uniformly at random, set $\|f\|_{p}=\mathbb{E}\left(|f|^{p}\right)^{1 / p}$.

Let $n=2 m+1$ be odd. In the n-stick with vertices v_{0}, \ldots, v_{n}, the 1 -chain g equal to $\overline{1}$ on the middle edge $v_{m} v_{m+1}$ and 0 elsewhere is $d f$ where $f\left(v_{i}\right)=\overline{0}$ for $i \leq m$ and $f\left(v_{i}\right)=\overline{1}$ for $i \geq m+1$. Then

$$
\|g\|_{p}=\frac{1}{n^{1 / p}}, \quad\|f\|_{p} \sim \frac{1}{2^{1 / p}}
$$

Pick an absolute value on \mathbf{k}. Get norms on cochains: picking simplices uniformly at random, set $\|f\|_{p}=\mathbb{E}\left(|f|^{p}\right)^{1 / p}$.

Let $n=2 m+1$ be odd. In the n-stick with vertices v_{0}, \ldots, v_{n}, the 1 -chain g equal to $\overline{1}$ on the middle edge $v_{m} v_{m+1}$ and 0 elsewhere is $d f$ where $f\left(v_{i}\right)=\overline{0}$ for $i \leq m$ and $f\left(v_{i}\right)=\overline{1}$ for $i \geq m+1$. Then

$$
\|g\|_{p}=\frac{1}{n^{1 / p}}, \quad\|f\|_{p} \sim \frac{1}{2^{1 / p}}
$$

When $\mathbf{k}=\mathbb{F}_{2}$, the only other choice for f is $\overline{1}+f$ which has the same norm. When $\mathbf{k}=\mathbb{R}$, the optimal choice is $f\left(v_{i}\right)= \pm \frac{1}{2}$ which has norm $\frac{1}{2}$.

Pick an absolute value on \mathbf{k}. Get norms on cochains: picking simplices uniformly at random, set $\|f\|_{p}=\mathbb{E}\left(|f|^{p}\right)^{1 / p}$.

Let $n=2 m+1$ be odd. In the n-stick with vertices v_{0}, \ldots, v_{n}, the 1 -chain g equal to $\overline{1}$ on the middle edge $v_{m} v_{m+1}$ and 0 elsewhere is $d f$ where $f\left(v_{i}\right)=\overline{0}$ for $i \leq m$ and $f\left(v_{i}\right)=\overline{1}$ for $i \geq m+1$. Then

$$
\|g\|_{p}=\frac{1}{n^{1 / p}}, \quad\|f\|_{p} \sim \frac{1}{2^{1 / p}} .
$$

When $\mathbf{k}=\mathbb{F}_{2}$, the only other choice for f is $\overline{1}+f$ which has the same norm. When $\mathbf{k}=\mathbb{R}$, the optimal choice is $f\left(v_{i}\right)= \pm \frac{1}{2}$ which has norm $\frac{1}{2}$.
When n is large, it is costly to solve $d f=g$. We say that g is nontrivial in near-cohomology.

Definition

The near-cohomology threshold in degree k is the norm of the inverse \bar{d}^{-1} of $\bar{d}: C^{k}(X, \mathbf{k}) / \operatorname{Ker}(d) \rightarrow d C^{k}(X, \mathbf{k})$. (It depends on p, i.e. on a choice of norm).

Fact

Like cohomology, near-cohomology is a topological (even homotopy) invariant of simplicial complexes. Respectively, a quasiisometry invariant (for infinite complexes of locally bounded geometry).

Fact

Like cohomology, near-cohomology is a topological (even homotopy) invariant of simplicial complexes. Respectively, a quasiisometry invariant (for infinite complexes of locally bounded geometry).

Remember: cohomology is not the only interesting information one can extract from cochain complexes. Apparently, near-cohomology is significant too.

Fact

Like cohomology, near-cohomology is a topological (even homotopy) invariant of simplicial complexes. Respectively, a quasiisometry invariant (for infinite complexes of locally bounded geometry).

Remember: cohomology is not the only interesting information one can extract from cochain complexes. Apparently, near-cohomology is significant too.

Plan of lecture

(1) Relate the various ℓ^{p} near-cohomology thresholds for graphs to expansion.
(2) Survey the theory of higher dimensional expanders.
(3) Briefly mention one other instance where near-cohomology is relevant.
(1) Start a more general discussion of normed chain complexes and the role played by near-homology.

Definition

The near-cohomology threshold in degree k is the norm of the inverse \bar{d}^{-1} of $\bar{d}: C^{k}(X, \mathbf{k}) / \operatorname{Ker}(d) \rightarrow d C^{k}(X, \mathbf{k})$.

For the n-stick or the n-cycle, $\left\|d^{-1}\right\|_{p \rightarrow p} \sim n^{1 / p}$.

Definition

The near-cohomology threshold in degree k is the norm of the inverse \bar{d}^{-1} of $\bar{d}: C^{k}(X, \mathbf{k}) / \operatorname{Ker}(d) \rightarrow d C^{k}(X, \mathbf{k})$.

For the n-stick or the n-cycle, $\left\|d^{-1}\right\|_{p \rightarrow p} \sim n^{1 / p}$.

Question

Are there large graphs without near-cohomology (i.e. bounded near-cohomology threshold)?

Definition

The near-cohomology threshold in degree k is the norm of the inverse \bar{d}^{-1} of $\bar{d}: C^{k}(X, \mathbf{k}) / \operatorname{Ker}(d) \rightarrow d C^{k}(X, \mathbf{k})$.

For the n-stick or the n-cycle, $\left\|d^{-1}\right\|_{p \rightarrow p} \sim n^{1 / p}$.

Question

Are there large graphs without near-cohomology (i.e. bounded near-cohomology threshold)?

This is a geometric question. In a graph X with n vertices and e edge, A a subset of vertices, the edge-boundary ∂A of A is the set of edges that join A to its complement.

Definition

The near-cohomology threshold in degree k is the norm of the inverse \bar{d}^{-1} of $\bar{d}: C^{k}(X, \mathbf{k}) / \operatorname{Ker}(d) \rightarrow d C^{k}(X, \mathbf{k})$.

For the n-stick or the n-cycle, $\left\|d^{-1}\right\|_{p \rightarrow p} \sim n^{1 / p}$.

Question

Are there large graphs without near-cohomology (i.e. bounded near-cohomology threshold)?

This is a geometric question. In a graph X with n vertices and e edge, A a subset of vertices, the edge-boundary ∂A of A is the set of edges that join A to its complement.

Definition

The Cheeger constant $h(X)$ of X is the largest h such that for every set A of vertices such that $\mathbb{P}(A)<\frac{1}{2}$,

$$
\frac{\# \partial A}{e}=\mathbb{P}(\partial A) \geq h \mathbb{P}(A)=\frac{\# A}{n}
$$

Definition

The Cheeger constant $h(X)$ of X is the largest h such that for every set A of vertices such that $\mathbb{P}(A)<\frac{1}{2}, \frac{\# \partial A}{e}=\mathbb{P}(\partial A) \geq h \mathbb{P}(A)=\frac{\# A}{n}$.

Lemma

$$
h(X)=\left(\left\|d^{-1}\right\|_{1 \rightarrow 1}\right)^{-1} \text { over } \mathbb{F}_{2} .
$$

So near-cohomology is present iff the Cheeger constant is small, i.e. the isoperimetry is poor. - Proof

Definition

The Cheeger constant $h(X)$ of X is the largest h such that for every set A of vertices such that $\mathbb{P}(A)<\frac{1}{2}, \frac{\# \partial A}{e}=\mathbb{P}(\partial A) \geq h \mathbb{P}(A)=\frac{\# A}{n}$.

Lemma

$$
h(X)=\left(\left\|d^{-1}\right\|_{1 \rightarrow 1}\right)^{-1} \text { over } \mathbb{F}_{2} .
$$

So near-cohomology is present iff the Cheeger constant is small, i.e. the isoperimetry is poor.

Here is an example of graph without near-cohomology.

Example

For the complete graph K_{n} on n vertices, $h\left(K_{n}\right)=\frac{n}{n-1}$ (n even) or $\frac{n+1}{n-1}$ (n odd).

The ℓ^{2} near-cohomology threshold $\left(\left\|d^{-1}\right\|_{2 \rightarrow 2}\right)^{-1}$ over \mathbb{R} has an interpretation too.

Proposition

Let Δ be the self-adjoint operator corresponding to the quadratic form $f \mapsto\|d f\|_{2}^{2}=\langle f, \Delta f\rangle$. Let $\lambda_{1} \leq \lambda_{2} \leq \cdots$ denote its eigenvalues. If the graph X is connected, then $\lambda_{1}=0$ and

$$
\lambda_{2}=\left(\left\|d^{-1}\right\|_{2 \rightarrow 2}\right)^{-2}
$$

The ℓ^{2} near-cohomology threshold $\left(\left\|d^{-1}\right\|_{2 \rightarrow 2}\right)^{-1}$ over \mathbb{R} has an interpretation too.

Proposition

Let Δ be the self-adjoint operator corresponding to the quadratic form $f \mapsto\|d f\|_{2}^{2}=\langle f, \Delta f\rangle$. Let $\lambda_{1} \leq \lambda_{2} \leq \cdots$ denote its eigenvalues. If the graph X is connected, then $\lambda_{1}=0$ and

$$
\lambda_{2}=\left(\left\|d^{-1}\right\|_{2 \rightarrow 2}\right)^{-2}
$$

Proof
This suggests a slight generalization: replacing graphs (resp. simplicial complexes) with weighted graphs (resp. weighted simplicial complexes).

Definition

Say a simplicial complex X has pure dimension N if every vertex is contained in at least one N-simplex.
A probability distribution on the simplices of a simplicial complex X of pure dimension N is Garland if for every $k=0, \ldots, N-1$, it is the same to pick a k-simplex at random, or to first pick a $k+1$-simplex σ at random and then a k-simplex of σ uniformly at random.

For a graph, the uniform distribution on edges gives rise to the distribution on vertices which is proportional to degree.
ℓ^{p} norms on cochains are defined accordingly. Whence $h_{\mathbb{P}}=\left(\left\|d^{-1}\right\|_{1 \rightarrow 1}\right)^{-1}$ over \mathbb{F}_{2} and $\lambda_{2, \mathbb{P}}=\left(\left\|d^{-1}\right\|_{2 \rightarrow 2}\right)^{-2}$ over \mathbb{R}.

Theorem (Cheeger, Buser, Dodziuk, Alon-Milman)

For a finite connected graph equipped with a Garland distribution \mathbb{P},

$$
\frac{1}{2} \lambda_{2, \mathbb{P}} \leq h_{\mathbb{P}} \leq 2 \sqrt{\lambda_{2, \mathbb{P}}}
$$

ℓ^{p} norms on cochains are defined accordingly. Whence $h_{\mathbb{P}}=\left(\left\|d^{-1}\right\|_{1 \rightarrow 1}\right)^{-1}$ over \mathbb{F}_{2} and $\lambda_{2, \mathbb{P}}=\left(\left\|d^{-1}\right\|_{2 \rightarrow 2}\right)^{-2}$ over \mathbb{R}.

Theorem (Cheeger, Buser, Dodziuk, Alon-Milman)

For a finite connected graph equipped with a Garland distribution \mathbb{P},

$$
\frac{1}{2} \lambda_{2, \mathbb{P}} \leq h_{\mathbb{P}} \leq 2 \sqrt{\lambda_{2, \mathbb{P}}}
$$

The left-hand inequality amounts to associating a real cochain $f=|x|$ to an \mathbb{F}_{2}-cochain x and comparing $d^{-1} d f$ and $d^{-1} d x$.
ℓ^{p} norms on cochains are defined accordingly. Whence $h_{\mathbb{P}}=\left(\left\|d^{-1}\right\|_{1 \rightarrow 1}\right)^{-1}$ over \mathbb{F}_{2} and $\lambda_{2, \mathbb{P}}=\left(\left\|d^{-1}\right\|_{2 \rightarrow 2}\right)^{-2}$ over \mathbb{R}.

Theorem (Cheeger, Buser, Dodziuk, Alon-Milman)

For a finite connected graph equipped with a Garland distribution \mathbb{P},

$$
\frac{1}{2} \lambda_{2, \mathbb{P}} \leq h_{\mathbb{P}} \leq 2 \sqrt{\lambda_{2, \mathbb{P}}}
$$

The left-hand inequality amounts to associating a real cochain $f=|x|$ to an \mathbb{F}_{2}-cochain x and comparing $d^{-1} d f$ and $d^{-1} d x$.

The right-hand inequality follows from two principles:

- Isoperimetry $\Longrightarrow \ell^{1}$-Poincaré-Sobolev inequality. For this, write any real function f with vanishing median as an integral of $\{0,1\}$-valued functions, the characteristic functions of its superlevel sets.
- ℓ^{1}-Poincaré-Sobolev inequality $\Longrightarrow \ell^{2}$-Poincaré-Sobolev inequality. For this, apply the ℓ^{1} inequality to $g=f|f|$, and then Cauchy-Schwartz.

An expander is an infinite family of finite graphs with uniformly bounded degree and Cheeger constant uniformly bounded below. Equivalently, with spectral gaps λ_{2} uniformly bounded below.

Theorem (Pinsker 1973)
Random d-regular graphs are expanders.

An expander is an infinite family of finite graphs with uniformly bounded degree and Cheeger constant uniformly bounded below. Equivalently, with spectral gaps λ_{2} uniformly bounded below.

Theorem (Pinsker 1973)

Random d-regular graphs are expanders.

The uniform spectral gap says that spectrally, an expander behave as a complete graph. Therefore, in a problem where one should check all pairs of points (e.g. find the minimal distance between two points of a cloud), one can pick an expander and check only its edges. Hence expanders are used to derandomize algorithms. Fortunately, there are (several) deterministic constructions of expanders.

An expander is an infinite family of finite graphs with uniformly bounded degree and Cheeger constant uniformly bounded below. Equivalently, with spectral gaps λ_{2} uniformly bounded below.

Theorem (Pinsker 1973)

Random d-regular graphs are expanders.

The uniform spectral gap says that spectrally, an expander behave as a complete graph. Therefore, in a problem where one should check all pairs of points (e.g. find the minimal distance between two points of a cloud), one can pick an expander and check only its edges. Hence expanders are used to derandomize algorithms. Fortunately, there are (several) deterministic constructions of expanders.

The spectral gap measures the exponential speed at which the simple random walk on the graph is mixing (i.e. pushes forward any distribution close to the uniform distribution). For instance, the art of cards shuffling is closely related to expansion in the symmetric group.

An expander is an infinite family of finite graphs with uniformly bounded degree and Cheeger constant uniformly bounded below. Equivalently, with spectral gaps λ_{2} uniformly bounded below.

Theorem (Pinsker 1973)

Random d-regular graphs are expanders.

The uniform spectral gap says that spectrally, an expander behave as a complete graph. Therefore, in a problem where one should check all pairs of points (e.g. find the minimal distance between two points of a cloud), one can pick an expander and check only its edges. Hence expanders are used to derandomize algorithms. Fortunately, there are (several) deterministic constructions of expanders.

The spectral gap measures the exponential speed at which the simple random walk on the graph is mixing (i.e. pushes forward any distribution close to the uniform distribution). For instance, the art of cards shuffling is closely related to expansion in the symmetric group.

The spectral gap also controls coarse embeddings to Hilbert spaces. For instance, planar graphs cannot be expanders. Examples of finitely generated groups that cannot be coarsely embedded in Hilbert spaces (Gromov monsters) have been constructed by arranging that an expander embeds in their Cayley graphs.

For infinite graphs, $\operatorname{Ker}(d)=\{0\}$ on $\ell^{p} C^{0}$, which simplifies matters.

For infinite graphs, $\operatorname{Ker}(d)=\{0\}$ on $\ell^{p} C^{0}$, which simplifies matters.

Proposition

Let $p \geq 1$. Let Γ be a discrete finitely generated group. Fix a finite generating system. There is an associated graph, the Cayley graph G. Then the following are equivalent:
(1) $h(G)>0$.
(2) d has a bounded inverse $d \ell^{p} C^{0}(G) \rightarrow \ell^{p} C^{1}(G) / \operatorname{Ker}(d)$.
(3) The ℓ^{p} cohomology $\ell^{p} H^{1}(G):=\left(\ell^{p} C^{1}(G) \cap \operatorname{Ker}(d)\right) / d \ell^{p} C^{0}(G)$ is Hausdorff.
(1) Γ is non-amenable.

For infinite graphs, $\operatorname{Ker}(d)=\{0\}$ on $\ell^{p} C^{0}$, which simplifies matters.

Proposition

Let $p \geq 1$. Let Γ be a discrete finitely generated group. Fix a finite generating system. There is an associated graph, the Cayley graph G. Then the following are equivalent:
(1) $h(G)>0$.
(2) d has a bounded inverse $d \ell^{p} C^{0}(G) \rightarrow \ell^{p} C^{1}(G) / \operatorname{Ker}(d)$.
(3) The ℓ^{p} cohomology $\ell^{p} H^{1}(G):=\left(\ell^{p} C^{1}(G) \cap \operatorname{Ker}(d)\right) / d \ell^{p} C^{0}(G)$ is Hausdorff.
(1) 「 is non-amenable.

Amenability is a property of groups that has emerged from ergodic theory and operator algebras (von Neumann). It has hundreds of equivalent characterizations.

For infinite graphs, $\operatorname{Ker}(d)=\{0\}$ on $\ell^{p} C^{0}$, which simplifies matters.

Proposition

Let $p \geq 1$. Let Γ be a discrete finitely generated group. Fix a finite generating system. There is an associated graph, the Cayley graph G. Then the following are equivalent:
(1) $h(G)>0$.
(2) d has a bounded inverse $d \ell^{p} C^{0}(G) \rightarrow \ell^{p} C^{1}(G) / \operatorname{Ker}(d)$.
(3) The ℓ^{p} cohomology $\ell^{p} H^{1}(G):=\left(\ell^{p} C^{1}(G) \cap \operatorname{Ker}(d)\right) / d \ell^{p} C^{0}(G)$ is Hausdorff.
(1) 「 is non-amenable.

Amenability is a property of groups that has emerged from ergodic theory and operator algebras (von Neumann). It has hundreds of equivalent characterizations.

The free abelian group \mathbb{Z}^{d} is amenable. It behaves like Euclidean space, which has vanishing Cheeger constant. Its ℓ^{P} cohomology is nonzero and non-Hausdorff for all $p>1$.

The free group on at least 2 generators is non-amenable. It behaves like hyperbolic plane, which has positive Cheeger constant. Its ℓ^{p} cohomology is nonzero and Hausdorff for all $p>1$.

Computing the Cheeger constant of a graph is known as the SPARSEST CUT problem in computer science. It is NP-hard (F. Shahrokhi and D. W. Matula 1990).

Computing the Cheeger constant of a graph is known as the SPARSEST CUT problem in computer science. It is NP-hard (F. Shahrokhi and D. W. Matula 1990).

Approximating the Cheeger constant up to a multiplicative factor of $\sqrt{\log n}$, where n is the number of vertices, can be done in quadratic time (S. Arora, E. Hazan and S. Kale 2010).

Computing the Cheeger constant of a graph is known as the SPARSEST CUT problem in computer science. It is NP-hard (F. Shahrokhi and D. W. Matula 1990).

Approximating the Cheeger constant up to a multiplicative factor of $\sqrt{\log n}$, where n is the number of vertices, can be done in quadratic time (S. Arora, E. Hazan and S. Kale 2010).

Conjecturally, this approximation factor cannot be improved. Some evidence is provided by a decade of work by A. Naor with various coauthors, showing that the integrality gap of the Goemans-Linial relaxation for SPARSEST CUT is at least $\sqrt{\log n}$ (2006-2018).

On the other hand, computing eigenvalues of graph Laplacians can be done very efficiently: in linear time.

On the other hand, computing eigenvalues of graph Laplacians can be done very efficiently: in linear time.

Indeed, say two graphs G and H on the same vertex set are ϵ-close if the Laplacian quadratic forms $Q_{G}: f \mapsto \mathbb{E}\left(|d f|^{2}\right)$ satisfy

$$
\frac{1}{1+\epsilon} Q_{G} \leq Q_{H} \leq(1+\epsilon) Q_{G}
$$

Then every graph G is ϵ-close to a graph with less than $n(2+\epsilon)^{2} / \epsilon^{2}$ edges (J. Batson, D. Spielman and N. Srivastava 2014).

On the other hand, computing eigenvalues of graph Laplacians can be done very efficiently: in linear time.

Indeed, say two graphs G and H on the same vertex set are ϵ-close if the Laplacian quadratic forms $Q_{G}: f \mapsto \mathbb{E}\left(|d f|^{2}\right)$ satisfy

$$
\frac{1}{1+\epsilon} Q_{G} \leq Q_{H} \leq(1+\epsilon) Q_{G}
$$

Then every graph G is ϵ-close to a graph with less than $n(2+\epsilon)^{2} / \epsilon^{2}$ edges (J. Batson, D. Spielman and N. Srivastava 2014).

Such a sparsification can be computed in nearly linear time. It follows that spectra are ϵ-close as well.

For a graph with few edges, eigenvalues can be fast computed using powers: solving $\Delta f_{1}=f_{0}$ on functions with vanishing $\mathbb{E}(f)$ and iterating gives a sequence f_{j} such that $\left\|f_{j}\right\| \sim \lambda_{2}^{-j}\left\|f_{0}\right\|$, from which one can extract λ_{2}.

On the other hand, computing eigenvalues of graph Laplacians can be done very efficiently: in linear time.

Indeed, say two graphs G and H on the same vertex set are ϵ-close if the Laplacian quadratic forms $Q_{G}: f \mapsto \mathbb{E}\left(|d f|^{2}\right)$ satisfy

$$
\frac{1}{1+\epsilon} Q_{G} \leq Q_{H} \leq(1+\epsilon) Q_{G}
$$

Then every graph G is ϵ-close to a graph with less than $n(2+\epsilon)^{2} / \epsilon^{2}$ edges (J. Batson, D. Spielman and N. Srivastava 2014).

Such a sparsification can be computed in nearly linear time. It follows that spectra are ϵ-close as well.

For a graph with few edges, eigenvalues can be fast computed using powers: solving $\Delta f_{1}=f_{0}$ on functions with vanishing $\mathbb{E}(f)$ and iterating gives a sequence f_{j} such that $\left\|f_{j}\right\| \sim \lambda_{2}^{-j}\left\|f_{0}\right\|$, from which one can extract λ_{2}.

The sparsification procedure relies on the concept of expansion. An expander is a graph which behaves spectrally like a complete graph, but with far less edges. Random d-regular graphs are expanders, so one expects that decimating edges locally randomly does not disturb Q_{G} too much.

Definition

Let X be a finite simplicial complex of pure dimension N. Fix a Garland distribution on simplices of X, and the corresponding ℓ^{p} norms on cochains. For $k=0, \ldots, n-1$, the k-th cocycle expansion constant of X is

$$
h_{k}=\left(\left\|\bar{d}^{-1}\right\|_{1 \rightarrow 1}\right)^{-1}
$$

where $\bar{d}: C^{k}\left(X, \mathbb{F}_{2}\right) / \operatorname{Ker}(d) \rightarrow d C^{k}\left(X, \mathbb{F}_{2}\right)$ is induced by the coboundary operator $d: C^{k}\left(X, \mathbb{F}_{2}\right) \rightarrow C^{k+1}\left(X, \mathbb{F}_{2}\right)$.

Definition

Let X be a finite simplicial complex of pure dimension N. Fix a Garland distribution on simplices of X, and the corresponding ℓ^{p} norms on cochains. For $k=0, \ldots, n-1$, the k-th cocycle expansion constant of X is

$$
h_{k}=\left(\left\|\bar{d}^{-1}\right\|_{1 \rightarrow 1}\right)^{-1}
$$

where $\bar{d}: C^{k}\left(X, \mathbb{F}_{2}\right) / \operatorname{Ker}(d) \rightarrow d C^{k}\left(X, \mathbb{F}_{2}\right)$ is induced by the coboundary operator $d: C^{k}\left(X, \mathbb{F}_{2}\right) \rightarrow C^{k+1}\left(X, \mathbb{F}_{2}\right)$.

Example For the complete N-dimensional complex on n vertices, let us use uniform distributions. Then for all $k=0, \ldots, N-1, h_{k} \geq \frac{n}{n-k-1}$.

In this example, the degree, i.e. the number of simplices containing a given vertex, increases with n.

Definition

Let X be a finite simplicial complex of pure dimension N. Fix a Garland distribution on simplices of X, and the corresponding ℓ^{p} norms on cochains. For $k=0, \ldots, n-1$, the k-th cocycle expansion constant of X is

$$
h_{k}=\left(\left\|\bar{d}^{-1}\right\|_{1 \rightarrow 1}\right)^{-1}
$$

where $\bar{d}: C^{k}\left(X, \mathbb{F}_{2}\right) / \operatorname{Ker}(d) \rightarrow d C^{k}\left(X, \mathbb{F}_{2}\right)$ is induced by the coboundary operator $d: C^{k}\left(X, \mathbb{F}_{2}\right) \rightarrow C^{k+1}\left(X, \mathbb{F}_{2}\right)$.

Example For the complete N-dimensional complex on n vertices, let us use uniform distributions. Then for all $k=0, \ldots, N-1, h_{k} \geq \frac{n}{n-k-1}$.

In this example, the degree, i.e. the number of simplices containing a given vertex, increases with n.

Theorem (Kaufman-Kazhdan-Lubotzky 2016)

There exists an infinite family of 2-dimensional simplicial complexes with uniformly bounded degree such that h_{0} and h_{1} are bounded away from 0 .

The construction is explicit. A simpler result is the fact that random 2-dimensional simplicial complexes have h_{0} and h_{1} are bounded away from 0 and edge-degree (number of simplices containing an edge) bounded.

A tester is a randomized algorithm that recognizes strings satisfying a property among a larger set of strings, by examining only a few bits, with a significant probability of being right.
The probability of rejecting a string should increase with the distance of the string to the subset of strings having the required property. It should vanish when this distance is 0 . We use the normalized Hamming distance between strings, $d(f, g)=\mathbb{P}\left(f_{i} \neq g_{i}\right)$.

Definition

Let A, B be finite sets, $W \subset A^{B}$ a set of strings, and $P \subset W$ a subset. $A(q, \epsilon)$-tester for P is a randomized algorithm that queries only q bits of a string f and rejects it with probability at least $\epsilon d(f, P)$.

A tester is a randomized algorithm that recognizes strings satisfying a property among a larger set of strings, by examining only a few bits, with a significant probability of being right.
The probability of rejecting a string should increase with the distance of the string to the subset of strings having the required property. It should vanish when this distance is 0 . We use the normalized Hamming distance between strings, $d(f, g)=\mathbb{P}\left(f_{i} \neq g_{i}\right)$.

Definition

Let A, B be finite sets, $W \subset A^{B}$ a set of strings, and $P \subset W$ a subset. $A(q, \epsilon)$-tester for P is a randomized algorithm that queries only q bits of a string f and rejects it with probability at least $\epsilon d(f, P)$.

Example. Linearity testing. Let V be a finite dimensional \mathbb{F}_{2}-vectorspace. Strings are \mathbb{F}_{2}-valued functions on V, with P the subset of linear functions. The tester pick uniformly at random two elements $x, y \in V$, it rejects f if $f(x+y) \neq f(x)+f(y)$. This is a $(3,1)$-tester for linearity.

A tester is a randomized algorithm that recognizes strings satisfying a property among a larger set of strings, by examining only a few bits, with a significant probability of being right.
The probability of rejecting a string should increase with the distance of the string to the subset of strings having the required property. It should vanish when this distance is 0 . We use the normalized Hamming distance between strings, $d(f, g)=\mathbb{P}\left(f_{i} \neq g_{i}\right)$.

Definition

Let A, B be finite sets, $W \subset A^{B}$ a set of strings, and $P \subset W$ a subset. $A(q, \epsilon)$-tester for P is a randomized algorithm that queries only q bits of a string f and rejects it with probability at least $\epsilon d(f, P)$.

Example. Linearity testing. Let V be a finite dimensional \mathbb{F}_{2}-vectorspace. Strings are \mathbb{F}_{2}-valued functions on V, with P the subset of linear functions. The tester pick uniformly at random two elements $x, y \in V$, it rejects f if $f(x+y) \neq f(x)+f(y)$. This is a (3,1)-tester for linearity.

Theorem (Kaufman-Lubotzky 2014)

Let X be a finite simplicial complex. Let strings be \mathbb{F}_{2}-valued k-cochains on X. The k-cocycle tester picks a $k+1$-simplex σ at random and rejects a cochain f if and only if $d f(\sigma) \neq 0$. This is a $(k+2, \epsilon)$-tester if and only if $\epsilon \geq h_{k}(X)$.

Remark. Let X be a connected graph and $F: X \rightarrow \mathbb{R}$ a continuous map. Let $m \in \mathbb{R}$ denote the median of F. Then m belongs to the images of at least a fraction $h(X)$ of the edges of X.

Remark. Let X be a connected graph and $F: X \rightarrow \mathbb{R}$ a continuous map. Let $m \in \mathbb{R}$ denote the median of F. Then m belongs to the images of at least a fraction $h(X)$ of the edges of X.

M. Gromov has given a multidimensional extension of this remark: if a sufficiently rich simplicial N-complex is continuously mapped to \mathbb{R}^{N}, then some point needs be hit by a lot of N-simplices.

Sufficiently rich is expressed by cocycle expansion constants, plus sparsity, and also cosystoles in case the cohomology does not vanish.

Let X be a simplicial complex. Fix a Garland probability distribution on simplices σ of X. The local sparsity of X controls the fraction of simplices of all dimensions that can meet at a vertex,

$$
\operatorname{spar}(X)=\max _{v \in X^{0}} \mathbb{P}(v \in \sigma)
$$

Let X be a simplicial complex. Fix a Garland probability distribution on simplices σ of X. The local sparsity of X controls the fraction of simplices of all dimensions that can meet at a vertex,

$$
\operatorname{spar}(X)=\max _{v \in X^{0}} \mathbb{P}(v \in \sigma)
$$

When $H^{k}\left(X, \mathbb{F}_{2}\right) \neq 0$, the k-cosystole of X is the length of its shortest nonzero vector,

$$
\theta_{k}(X):=\min \left\{\|\kappa\|_{1} ; \kappa \in C^{k}\left(X, \mathbb{F}_{2}\right) \backslash d C^{k-1}\left(X, \mathbb{F}_{2}\right)\right\} .
$$

Let X be a simplicial complex. Fix a Garland probability distribution on simplices σ of X. The local sparsity of X controls the fraction of simplices of all dimensions that can meet at a vertex,

$$
\operatorname{spar}(X)=\max _{v \in X^{0}} \mathbb{P}(v \in \sigma)
$$

When $H^{k}\left(X, \mathbb{F}_{2}\right) \neq 0$, the k-cosystole of X is the length of its shortest nonzero vector,

$$
\theta_{k}(X):=\min \left\{\|\kappa\|_{1} ; \kappa \in C^{k}\left(X, \mathbb{F}_{2}\right) \backslash d C^{k-1}\left(X, \mathbb{F}_{2}\right)\right\} .
$$

Theorem (Gromov 2010)

For every $h>0, \theta>0$ and N, for all sufficiently small $\epsilon>0$, there exists $c(\epsilon, h, \theta, N)>0$ such that for every simplicial complex X of pure dimension N, and every continuous map $F: X \rightarrow \mathbb{R}^{N}$, there exists a point in \mathbb{R}^{N} which belongs to the images by F of at least a fraction

$$
c\left(\operatorname{spar}(X), \min _{k=0, \ldots, N-1} h_{k}(X), \min _{k=0, \ldots, N-1} \theta_{k}(X), N\right)
$$

of the N-simplices of X.

Now comes a multidimensional extension of the above discussion of expansion in infinite groups.

Now comes a multidimensional extension of the above discussion of expansion in infinite groups.

Curvature pinching. Let $-1 \leq \delta<0$. Say a Riemannian manifold is δ-pinched if its sectional curvature satisfies $-1 \leq \operatorname{SecCurv} \leq \delta$.

Now comes a multidimensional extension of the above discussion of expansion in infinite groups.

Curvature pinching. Let $-1 \leq \delta<0$. Say a Riemannian manifold is δ-pinched if its sectional curvature satisfies $-1 \leq \operatorname{SecCurv} \leq \delta$.

Theorem (Pansu 2008)

For every $n, k=1, \ldots, n-1$ and $\delta \in[-1,0)$, there exists a $\mathbf{p}(n, \delta, k)$ such that if a simply connected complete Riemannian n-manifold is δ-pinched and $1<p<\mathbf{p}(n, \delta, k)$, then $h_{k}>0$ in ℓ^{p} cohomology.
This is sharp: for every $n, k=1, \ldots, n-1$ and $\delta \in[-1,0)$, there exists a Riemannian homogeneous space $M_{n, \delta, k}$ which is δ-pinched and has $h_{k}=0$ in ℓ^{p} cohomology for p in an interval starting at $\mathbf{p}(n, \delta, k)$.

Now comes a multidimensional extension of the above discussion of expansion in infinite groups.

Curvature pinching. Let $-1 \leq \delta<0$. Say a Riemannian manifold is δ-pinched if its sectional curvature satisfies $-1 \leq \operatorname{SecCurv} \leq \delta$.

Theorem (Pansu 2008)

For every $n, k=1, \ldots, n-1$ and $\delta \in[-1,0)$, there exists a $\mathbf{p}(n, \delta, k)$ such that if a simply connected complete Riemannian n-manifold is δ-pinched and $1<p<\mathbf{p}(n, \delta, k)$, then $h_{k}>0$ in ℓ^{p} cohomology.
This is sharp: for every $n, k=1, \ldots, n-1$ and $\delta \in[-1,0)$, there exists a Riemannian homogeneous space $M_{n, \delta, k}$ which is δ-pinched and has $h_{k}=0$ in ℓ^{p} cohomology for p in an interval starting at $\mathbf{p}(n, \delta, k)$.

It follows that $M_{n, \delta, k}$ is not quasiisometric to any δ^{\prime}-pinched Riemannian manifold, for $\delta^{\prime}<\delta$.

Now comes a multidimensional extension of the above discussion of expansion in infinite groups.

Curvature pinching. Let $-1 \leq \delta<0$. Say a Riemannian manifold is δ-pinched if its sectional curvature satisfies $-1 \leq \operatorname{SecCurv} \leq \delta$.

Theorem (Pansu 2008)

For every $n, k=1, \ldots, n-1$ and $\delta \in[-1,0)$, there exists a $\mathbf{p}(n, \delta, k)$ such that if a simply connected complete Riemannian n-manifold is δ-pinched and $1<p<\mathbf{p}(n, \delta, k)$, then $h_{k}>0$ in ℓ^{p} cohomology.
This is sharp: for every $n, k=1, \ldots, n-1$ and $\delta \in[-1,0)$, there exists a Riemannian homogeneous space $M_{n, \delta, k}$ which is δ-pinched and has $h_{k}=0$ in ℓ^{p} cohomology for p in an interval starting at $\mathbf{p}(n, \delta, k)$.

It follows that $M_{n, \delta, k}$ is not quasiisometric to any δ^{\prime}-pinched Riemannian manifold, for $\delta^{\prime}<\delta$.

There is a comparison theorem for the vanishing of ℓ^{p} cohomology, but it is not sharp.

The homotopy distance
The near-homology threshold
The Hausdorff distance
The near-homology distance

Question. Can one interpret the near-cohomology threshold $\left\|d^{-1}\right\|$ as a distance between certain chain complexes?

Question. Can one interpret the near-cohomology threshold $\left\|d^{-1}\right\|$ as a distance between certain chain complexes?

A normed complex is the data of a normed vectorspace and a bounded linear map $d: B \rightarrow B$ such that $d \circ d=0$. An isomorphism of normed complexes $B_{1} \xrightarrow{d_{1}} B_{1}$ and $B_{2} \xrightarrow{d_{2}} B_{2}$ is a bijection $f: B_{1} \rightarrow B_{2}$ such that $d_{2} f_{1}=f_{1} d_{1}$ and f, f^{-1} are bounded. An isometry of normed complexes is an isometric isomorphism.

Question. Can one interpret the near-cohomology threshold $\left\|d^{-1}\right\|$ as a distance between certain chain complexes?

A normed complex is the data of a normed vectorspace and a bounded linear map $d: B \rightarrow B$ such that $d \circ d=0$. An isomorphism of normed complexes $B_{1} \xrightarrow{d_{1}} B_{1}$ and $B_{2} \xrightarrow{d_{2}} B_{2}$ is a bijection $f: B_{1} \rightarrow B_{2}$ such that $d_{2} f_{1}=f_{1} d_{1}$ and f, f^{-1} are bounded. An isometry of normed complexes is an isometric isomorphism.

Definition

Let $B_{1} \xrightarrow{d_{1}} B_{1}$ and $B_{2} \xrightarrow{d_{2}} B_{2}$ be two normed complexes. Consider all bounded homotopies, i.e.

- bounded morphisms $F_{1}: B_{1} \rightarrow B_{2}$ and $F_{2}: B_{2} \rightarrow B_{1}$ such that

$$
d_{2} F_{1}=F_{1} d_{1}, \quad d_{1} F_{2}=F_{2} d_{2},
$$

- bounded linear maps $Q_{1}: B_{1} \rightarrow B_{1}$ and $Q_{2}: B_{2} \rightarrow B_{2}$ such that

$$
1-F_{2} F_{1}=d_{1} Q_{1}+Q_{1} d_{1}, \quad 1-F_{1} F_{2}=d_{2} Q_{2}+Q_{2} d_{2}
$$

Denote by $q=\max \left\{\left|Q_{1}\right|,\left|Q_{2}\right|\right\}, f=\max \left\{1,\left|F_{1}\right|\left|F_{2}\right|\right\}$. The homotopy distance $\operatorname{HomDist}\left(B_{1}, B_{2}\right)$ is the infimum over all homotopies of $\max \left\{\frac{q}{f}+\log f, \frac{f}{q}+\log q\right\}$.

Definition

$\operatorname{HomDist}\left(B_{1}, B_{2}\right)=\inf \max \left\{\frac{q}{f}+\log f, \frac{f}{q}+\log q\right\}$.
The purpose of the weird formula is to have a triangle inequality.

Definition

$\operatorname{HomDist}\left(B_{1}, B_{2}\right)=\inf \max \left\{\frac{q}{f}+\log f, \frac{f}{q}+\log q\right\}$.
The purpose of the weird formula is to have a triangle inequality.
When B_{1} and B_{2} are finite dimensional,
$\operatorname{HomDist}\left(B_{1}, B_{2}\right)<\infty \Longleftrightarrow \operatorname{dim}\left(H\left(B_{1}\right)\right)=\operatorname{dim}\left(H\left(B_{2}\right)\right)$,
$\operatorname{HomDist}\left(B_{1}, B_{2}\right)=0 \Longleftrightarrow\left(B_{1}, d_{1}\right)$ and $\left(B_{2}, d_{2}\right)$ are isometric.
Therefore one gets a distance on the set of isometry classes of finite dimensional normed complexes with the same homology.

Definition

$\operatorname{HomDist}\left(B_{1}, B_{2}\right)=\inf \max \left\{\frac{q}{f}+\log f, \frac{f}{q}+\log q\right\}$.
The purpose of the weird formula is to have a triangle inequality.
When B_{1} and B_{2} are finite dimensional,
$\operatorname{HomDist}\left(B_{1}, B_{2}\right)<\infty \Longleftrightarrow \operatorname{dim}\left(H\left(B_{1}\right)\right)=\operatorname{dim}\left(H\left(B_{2}\right)\right)$,
$\operatorname{HomDist}\left(B_{1}, B_{2}\right)=0 \Longleftrightarrow\left(B_{1}, d_{1}\right)$ and $\left(B_{2}, d_{2}\right)$ are isometric.
Therefore one gets a distance on the set of isometry classes of finite dimensional normed complexes with the same homology.

Definition

The near-homology threshold $N H(B)$ is the norm of the inverse \bar{d}^{-1} of $\bar{d}: B / \operatorname{Ker}(d) \rightarrow \operatorname{Im}(d)$.

Definition

$\operatorname{HomDist}\left(B_{1}, B_{2}\right)=\inf \max \left\{\frac{q}{f}+\log f, \frac{f}{q}+\log q\right\}$.
The purpose of the weird formula is to have a triangle inequality.
When B_{1} and B_{2} are finite dimensional,
$\operatorname{HomDist}\left(B_{1}, B_{2}\right)<\infty \Longleftrightarrow \operatorname{dim}\left(H\left(B_{1}\right)\right)=\operatorname{dim}\left(H\left(B_{2}\right)\right)$,
$\operatorname{HomDist}\left(B_{1}, B_{2}\right)=0 \Longleftrightarrow\left(B_{1}, d_{1}\right)$ and $\left(B_{2}, d_{2}\right)$ are isometric.
Therefore one gets a distance on the set of isometry classes of finite dimensional normed complexes with the same homology.

Definition

The near-homology threshold $\operatorname{NH}(B)$ is the norm of the inverse \bar{d}^{-1} of $\bar{d}: B / \operatorname{Ker}(d) \rightarrow \operatorname{Im}(d)$.

Remark. NH is a homotopy covariant: if two chain complexes B_{1} and B_{2} are homotopic, then $\mathrm{NH}\left(B_{1}\right) \leq \exp \left(\operatorname{HomDist}\left(B_{1}, B_{2}\right)\right)\left(1+\mathrm{NH}\left(B_{2}\right)\right)$.

Lemma

$\operatorname{HomDist}(B, 0) \geq N H(B) . \quad$ Details

Lemma

$\operatorname{HomDist}(B, 0) \geq N H(B)$.

```
Details
```


Proposition

If B is a Hilbert space, $\operatorname{HomDist}(B, 0)=N H(B) \Longleftrightarrow H(B)=0$.

Lemma

$\operatorname{HomDist}(B, 0) \geq N H(B)$.

Proposition

If B is a Hilbert space, $\operatorname{HomDist}(B, 0)=N H(B) \Longleftrightarrow H(B)=0$.

```
Details
```

This applies to the ℓ^{2} norm on cochains on graphs. In order to remove the homology obstruction, we attach to a graph X the following complexes

$$
B_{X, \mathbf{k}, p}=H^{0}(X, \mathbf{k}) \oplus C^{0}(X, \mathbf{k}) \oplus d C^{0}(X, \mathbf{k}) \text { equipped with } \ell^{p} \text { norms. }
$$

where $d: H^{0}(X, \mathbf{k}) \rightarrow C^{0}(X, \mathbf{k})$ embeds locally constant functions as 0 -cochains. Then for all finite connected graphs,

$$
\operatorname{HomDist}\left(B_{X, \mathbb{R}, 2}, 0\right)=N H\left(B_{X, \mathbb{R}, 2}\right)=\lambda_{2}(X)^{-1 / 2}
$$

Lemma

$\operatorname{HomDist}(B, 0) \geq N H(B)$.

Proposition

If B is a Hilbert space, $\operatorname{HomDist}(B, 0)=N H(B) \Longleftrightarrow H(B)=0$.

```
Details
```

This applies to the ℓ^{2} norm on cochains on graphs. In order to remove the homology obstruction, we attach to a graph X the following complexes

$$
B_{X, \mathbf{k}, p}=H^{0}(X, \mathbf{k}) \oplus C^{0}(X, \mathbf{k}) \oplus d C^{0}(X, \mathbf{k}) \text { equipped with } \ell^{p} \text { norms. }
$$

where $d: H^{0}(X, \mathbf{k}) \rightarrow C^{0}(X, \mathbf{k})$ embeds locally constant functions as 0 -cochains. Then for all finite connected graphs,

$$
\operatorname{HomDist}\left(B_{X, \mathbb{R}, 2}, 0\right)=N H\left(B_{X, \mathbb{R}, 2}\right)=\lambda_{2}(X)^{-1 / 2}
$$

Over \mathbb{F}_{2}, things are not as nice.

Example

Let K_{3} be the complete graph on 3 vertices. Then

$$
\operatorname{HomDist}\left(B_{K_{3}, \mathbb{F}_{2}, 1}, 0\right)=1, \quad N H\left(B_{K_{3}, \mathbb{F}_{2}, 1}\right)=\frac{1}{2}
$$

Definition

Let $r>0$. Let $B \xrightarrow{d} B$ be a normed complex such that $|d| \leq r$, let B^{\prime} and $B^{\prime \prime}$ be subcomplexes of B. Consider all bounded morphisms $f: B \rightarrow B$ such that $f\left(B^{\prime}\right) \subset B^{\prime \prime}$ and bounded maps $Q: B \rightarrow B$ such that, on $B^{\prime}, 1-f=d Q+Q d$. Take the infimum of $\log (1+2 r|Q|)$. This defines the asymmetric embedded Hausdorff distance HausDist ${ }_{B, r}\left(B^{\prime} \rightarrow B^{\prime \prime}\right)$. Make it symmetric by setting

$$
\operatorname{HausDist}_{B, r}\left(B^{\prime}, B^{\prime \prime}\right)=\operatorname{HausDist}_{B, r}\left(B^{\prime} \rightarrow B^{\prime \prime}\right)+\operatorname{HausDist}_{B, r}\left(B^{\prime \prime} \rightarrow B^{\prime}\right) .
$$

Let $B_{1} \xrightarrow{d_{1}} B_{1}$ and $B_{2} \xrightarrow{d_{2}} B_{2}$ be two normed complexes. Consider all normed complexes $B \xrightarrow{d} B$ such that $|d| \leq r$, containing subcomplexes B^{\prime} and $B^{\prime \prime}$ isometric to B_{2} and B_{2} respectively, and take the infimum of all embedded Hausdorff distances HausDist $_{B, r}\left(B^{\prime}, B^{\prime \prime}\right)$. This defines the abstract Hausdorff distance HausDist $_{r}\left(B_{1}, B_{2}\right)$.

Again, the role of the \log is to achieve the triangle inequality.

Here is an other suggestion in order to bypass the homology obstruction. A null complex is a normed complex whose boundary operator is zero. If $B \stackrel{H, K}{\rightleftharpoons} N$ is a bounded homotopy to a null complex, then

$$
B=\operatorname{Im}(K) \oplus \operatorname{Ker}(H)
$$

where $\operatorname{Im}(K)$ is a null subcomplex of B which has the same homology as B and N, and $\operatorname{Ker}(h)$ is a subcomplex of B whose homology vanishes. Therefore one can think of $\operatorname{Ker}(H)$ as B with its homology removed.

Definition

Let $B_{1} \stackrel{H_{1}, K_{1}}{\rightleftharpoons} N_{1}$ and $B_{2} \stackrel{H_{2}, K_{2}}{\rightleftharpoons} N_{2}$ be normed complexes coming with homotopies to null-complexes. Define the near-homology distance between pairs as

$$
\operatorname{NHDist}\left(\left(B_{1}, N_{1}\right),\left(B_{2}, N_{2}\right)\right):=\operatorname{HomDist}\left(\operatorname{Ker}\left(H_{1}\right), \operatorname{Ker}\left(H_{2}\right)\right) .
$$

Then, in finite dimensions, NHDist is finite, and $\operatorname{NHDist}\left(\left(B_{1}, N_{1}\right),\left(B_{2}, N_{2}\right)\right)=0 \Longleftrightarrow B_{1}$ and B_{2} are isometric, up to direct sums with null complexes isomorphic to N_{1} and N_{2}.

High dimensional expanders

The homotopy distance
The near-homology threshold
The Hausdorff distance
The near-homology distance

Lemma

$$
h(X)=\left(\left\|d^{-1}\right\|_{1 \rightarrow 1}\right)^{-1} \text { over } \mathbb{F}_{2} .
$$

The support $x \mapsto A=\{v ; x(v) \neq \overline{0}\}$ is a $1-1$ correspondence between 0 -cochains (resp. 1-cochains) over \mathbb{F}_{2} and subsets of vertices (resp. of edges). If A is a subset of vertices and x the corresponding 0 -cochain, then the subset of edges corresponding to $d x$ is ∂A.
Furthermore, $\|x\|_{1}=\# A / n$ and $\|d x\|_{1}=\# \partial A / e$.
Since G is connected, the kernel of d consists of the two 0 -cochains x which are constant functions on the set of vertices.

If $y \in C^{1}$ belongs to $d C^{0}$, there exist exactly two 0 -cochains $x_{1}, x_{2} \in C^{0}$ such that $d x_{1}=d x_{2}=y$. One of them (let us denote it by x) has least ℓ^{1} norm. The support A of x satisfies $\# A \leq \frac{n}{2}$ and ∂A corresponds to y. Therefore the estimates

$$
\|x\|_{1} \leq h^{-1}\|y\|_{1} \quad \text { and } \quad \# \partial A / e \geq h \# A / n
$$

are equivalent.

Example

For the complete graph K_{n} on n vertices, $h\left(K_{n}\right)=\frac{n}{n-1}$ (n even) or $\frac{n+1}{n-1}$ (n odd).
Indeed, for every subset A, every vertex of A is connected to $n-\# A$ vertices of A^{c}, so

$$
\mathbb{P}(\partial A)=\frac{\# \partial A}{e}=\frac{\# A(n-\# A)}{n(n-1) / 2}=2 \frac{n}{n-1} \mathbb{P}(A)(1-\mathbb{P}(A)) .
$$

Since $\mathbb{P}(A) \leq \frac{1}{2}\left(\right.$ resp. $\left.\frac{n-1}{2 n}\right)$,

$$
\frac{\mathbb{P}(\partial A)}{\mathbb{P}(A)} \geq \frac{n}{n-1} \quad\left(\text { resp, } \frac{n+1}{n-1}\right)
$$

with equality if n is even and $\# A=\frac{n}{2}$ or n is odd and $\# A=\frac{n-1}{2}$.

Proposition

X connected, Δ defined by $\|d f\|_{2}^{2}=\langle f, \Delta f\rangle$ with eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots$. Then

$$
\lambda_{1}=0 \quad \text { and } \quad \lambda_{2}=\left(\left\|d^{-1}\right\|_{2 \rightarrow 2}\right)^{-2} .
$$

Given $f \in C^{0}(G, \mathbb{R})$, let $f=\sum f_{\lambda}$ be the decomposition of f according to eigenspaces of Δ. Then

$$
\|f\|_{2}^{2}=\sum\left\|f_{\lambda}\right\|^{2}, \quad\|d f\|_{2}^{2}=\langle d f, d f\rangle=\langle f, \Delta f\rangle=\sum \lambda\left\|f_{\lambda}\right\|^{2} .
$$

Since G is connected, $d f=0$ implies that f is a constant function on vertices, so the kernel of d, which coincides with the 0 -eigenspace of Δ, is 1 -dimensional.

If $f \in C^{0}(G, \mathbb{R})$ and $f_{0}=0$, then

$$
\|d f\|_{2}^{2} \geq \lambda_{2}\|f\|_{2}^{2}
$$

This shows that every $g \in d C^{0}$ has a primitive f such that $\|f\|_{2} \leq \lambda_{2}^{-1 / 2}\|g\|_{2}$.
Equality holds if $g=d f$ where f belongs to the λ_{2}-eigenspace of Δ, so
$\left\|d^{-1}\right\|_{2 \rightarrow 2}=\lambda_{2}^{-1 / 2}$.
Back

Theorem

$$
h \geq \frac{1}{2} \lambda_{2} .
$$

If x is an \mathbb{F}_{2}-cochain, $f=|x|$ is a real cochain, and $\|x\|_{1}=\|f\|_{2}^{2},\|d x\|_{1}=\|d f\|_{2}^{2}$.
The real number m which minimizes $\mathbb{E}\left((f-m)^{2}\right)$, is $m=\mathbb{E}(f)$. Thus $d^{-1} d f=f-\mathbb{E}(f)$, and

$$
\|f-\mathbb{E}(f)\|_{2}^{2} \leq\left(\left|d^{-1}\right|_{2 \rightarrow 2}\right)^{2}\|f\|_{2}^{2}
$$

On the other hand,
$\|f-\mathbb{E}(f)\|_{2}^{2}=\mathbb{P}(x \neq 0)(1-\mathbb{E}(f))^{2}+\mathbb{P}(x=0) \mathbb{E}(f)^{2}=\|x\|_{1}\left(1-\|x\|_{1}\right) \geq \frac{1}{2}\left\|d^{-1} d x\right\|_{1}$.
so

$$
\left\|d^{-1} d x\right\|_{1} \leq 2\left(\left|d^{-1}\right|_{2 \rightarrow 2}\right)^{2}\|x\|_{1}
$$

and

$$
\left\|d^{-1}\right\|_{1 \rightarrow 1} \leq 2\left(\left|d^{-1}\right|_{2 \rightarrow 2}\right)^{2}
$$

Theorem

$h \leq 2 \sqrt{\lambda_{2}}$.
First step.

$$
\left\|d_{\mathbb{R}}^{-1}\right\|_{1 \rightarrow 1} \leq\left\|d_{\mathbb{F}_{2}}^{-1}\right\|_{1 \rightarrow 1},
$$

i.e. the isoperimetric inequality (expressed in terms of \mathbb{F}_{2} cochains) implies the Poincaré-Sobolev inequality (expressed in terms of \mathbb{R} cochains).
Let $f \in C^{0}(G, \mathbb{R})$ be a function whose median vanishes. For $t \neq 0$, define $x_{t} \in C^{0}\left(G, \mathbb{F}_{2}\right)$ by

$$
x_{t}(v)= \begin{cases}\overline{1} & \text { if } \frac{f(v)}{t}>1 \\ \overline{0} & \text { otherwise }\end{cases}
$$

and set $f_{t}=\left|x_{t}\right|$. Then $|f|=\int_{\mathbb{R}} f_{t} d t$. Since the ℓ^{1} norm is a norm,

Second step. The ℓ^{1} Poincaré-Sobolev inequality implies its ℓ^{2} version.
Let $g=f|f|$. Then the median of g is equal to 0 as well. One can apply the ℓ^{1} Poincaré-Sobolev inequality to g and get

$$
\|g\|_{1} \leq h^{-1}\|d g\|_{1} .
$$

One checks that $\|d g\|_{1} \leq 2\|f\|_{2}\|d f\|_{2}$, hence

$$
\|f\|_{2}^{2}=\|g\|_{1} \leq h^{-1} 2\|f\|_{2}\|d f\|_{2}
$$

so

$$
\|f\|_{2} \leq 2 h^{-1}\|d f\|_{2}
$$

and

$$
\lambda_{2}^{-1 / 2}=\left\|d^{-1}\right\|_{2 \rightarrow 2} \leq 2 h^{-1} .
$$

A Seidel switch on a graph consists in picking a vertex, removing all edges that contain it and insert edges to all vertices that were not previously its neighbours.

Two graphs on the same vertex set are Seidel equivalent if they can be obtained one from the other after a finite number of Seidel switches.

Example

Seidel equivalence is $(3,1)$-testable.
Indeed, a graph with vertex set $\{1, \ldots, n\}$ can be viewed as a 1 -cochain on the complete graph K_{n}. A Seidel switch at vertex v amounts to adding $d \chi_{v}$, where $\chi_{v}(v)=\overline{1}$ and $\chi_{v}=\overline{0}$ elsewhere. Therefore two graphs with vertex set $\{1, \ldots, n\}$ are Seidel equivalent if and only if the corresponding 1 -cochains are cohomologous, and we have a $(3,1)$-tester for that, since $H^{1}\left(K_{n}, \mathbb{F}_{2}\right)=0$ and $h_{1}\left(K_{n}\right) \geq 1$.

Lemma

$\operatorname{HomDist}\left(B_{1}, B_{3}\right) \leq \operatorname{HomDist}\left(B_{1}, B_{2}\right)+\operatorname{HomDist}\left(B_{2}, B_{3}\right)$.
Let $\left(B_{1}, d_{1}, Q_{1}\right) \stackrel{F_{1}, F_{2}}{\rightleftharpoons}\left(B_{2}, d_{2}, Q_{2}\right)$ and $\left(B_{2}, d_{2}, Q_{2}^{\prime}\right) \stackrel{G_{2}, G_{3}}{\rightleftharpoons}\left(B_{3}, d_{3}, Q_{3}\right)$ be homotopies.
Let $q=\max \left\{\left|Q_{1}\right|,\left|Q_{2}\right|\right\}, f=\max \left\{1,\left|F_{1}\right|\left|F_{2}\right|\right\}, q^{\prime}=\max \left\{\left|Q_{2}^{\prime}\right|,\left|Q_{3}\right|\right\}$,
$f^{\prime}=\max \left\{1,\left|G_{2}\right|\left|G_{3}\right|\right\}$. Then $\left(B_{1}, d_{1}, Q_{1}^{\prime}\right) \stackrel{G_{2} F_{1}, F_{2} G_{3}}{\rightleftharpoons}\left(B_{3}, d_{3}, Q_{3}^{\prime}\right)$ is a homotopy, where

$$
Q_{1}^{\prime}=Q_{1}+F_{2} Q_{2}^{\prime} F_{1}, \quad Q_{3}^{\prime}=Q_{3}+G_{2} Q_{2} G_{3} .
$$

Thus $q^{\prime \prime}=\max \left\{\left|Q_{1}^{\prime}\right|,\left|Q_{3}^{\prime}\right|\right\}$ and $f^{\prime \prime}=\max \left\{1,\left|G_{2} F_{1}\right|\left|F_{2} G_{3}\right|\right\}$ satisfy

$$
q^{\prime \prime} \leq f^{\prime} q+f q^{\prime}, \quad f^{\prime \prime} \leq f f^{\prime}
$$

so $\frac{q^{\prime \prime}}{f^{\prime \prime}}+\log \left(f^{\prime \prime}\right) \leq \frac{q}{f}+\log (f)+\frac{q^{\prime}}{f^{\prime}}+\log \left(f^{\prime}\right)$.
The expression $\max \left\{\frac{q}{f}+\log f, \frac{f}{q}+\log q\right\}$ is necessary in order for this function to be nondecreasing in q and in f.

Lemma

$\operatorname{HomDist}(B, 0) \geq\left\|\bar{d}^{-1}\right\|$.
Let

$$
(B, d, Q) \stackrel{0,0}{\rightleftharpoons}(0,0,0)
$$

be a homotopy to the trivial complex. This simply means that $1=d Q+Q d$. If $y \in \operatorname{Im}(d), y=d x$, then

$$
y=d x=d(d Q x+Q d x)=d Q d x=d Q y
$$

thus $|Q y| \geq\left|\bar{d}^{-1} y\right|$, and $|Q| \geq\left|\bar{d}^{-1}\right|$, so

$$
\operatorname{HomDist}(B, 0) \geq \max \left\{|Q|, \frac{1}{|Q|}+\log (|Q|)\right\} \geq\left|\bar{d}^{-1}\right|=N H(B)
$$

Lemma

$\mathrm{NH}\left(B_{1}\right) \leq \exp \left(\operatorname{HomDist}\left(B_{1}, B_{2}\right)\right)\left(1+\mathrm{NH}\left(B_{2}\right)\right)$.
Let $\left(B_{1}, d_{1}, Q_{1}\right) \stackrel{F_{1}, F_{2}}{\rightleftharpoons}\left(B_{2}, d_{2}, Q_{2}\right)$ be a homotopy of complexes. Let $c_{2}=\operatorname{NH}\left(B_{2}\right)$.
If $y_{1} \in d_{1} B_{1}, y_{2}=f_{1}\left(y_{1}\right) \in d_{2} B_{2}$, so there exists $x_{2} \in B_{2}$ such that $d x_{2}=y_{2}$ and $\left|x_{2}\right| \leq c_{2}\left|y_{2}\right|$. Let $x_{1}=Q_{1} y_{1}+F_{2}\left(x_{2}\right)$. Then $d x_{1}=y_{1}$ and

$$
\left|x_{2}\right| \leq\left|Q_{1}\right|\left|y_{1}\right|+\left|F_{2}\right| c_{2}\left|F_{1}\right|\left|y_{1}\right| \leq\left(q+f c_{2}\right)\left|y_{2}\right| .
$$

Therefore $\mathrm{NH}\left(B_{1}\right) \leq q+f c_{2}$.
Remember that $D=\operatorname{HomDist}\left(B_{1}, B_{2}\right)=\max \left\{\frac{q}{f}+\log f, \frac{f}{q}+\log q\right\}$.
If $q \leq f, D=\frac{q}{f}+\log f$ and $q+f c_{2} \leq f+f c_{2} \leq e^{D}\left(1+c_{2}\right)$.
If $q \geq f, D=\frac{f}{q}+\log q$ and $q+f c_{2} \leq q+q c_{2} \leq e^{D}\left(1+c_{2}\right)$ again.

Proposition

If B is a Hilbert space, $\operatorname{HomDist}(B, 0)=N H(B) \Longleftrightarrow H(B)=0$.
Indeed, homotopic complexes has the same homology, so
$\operatorname{HomDist}(B, 0)<\infty \Longrightarrow H(B)=0$.
Conversely, assume that $H(B)=0$. The orthogonal projection $\pi: B \rightarrow \operatorname{Im}(d)$ has norm ≤ 1. The section σ of the projection $p: B \rightarrow B / \operatorname{Ker}(d)$ whose image is the orthogonal complement of $\operatorname{Ker}(d)$ has norm ≤ 1. Therefore $Q=\sigma \bar{d}^{-1} \pi$ satisfies $|Q| \leq\left|\bar{d}^{-1}\right|$. Since $H(B)=0, \operatorname{Im}(\sigma)=\operatorname{Ker}(\pi)$, and B is the orthogonal direct sum $B=\operatorname{Im}(\sigma) \oplus \operatorname{Im}(d)$. In this decomposition,

$$
Q d=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad d Q=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

so $d Q+Q d=1, \operatorname{HomDist}(B, 0) \leq N H(B)$.

Example

$\operatorname{HomDist}\left(B_{K_{3}, \mathbb{F}_{2}, 1}, 0\right)=1, N H\left(B_{K_{3}, \mathbb{F}_{2}, 1}\right)=\frac{1}{2}$.
The assertion $N H\left(B_{K_{3}, \mathbb{F}_{2}, 1}\right)=\frac{1}{2}$ is a special case of $h\left(K_{n}\right)=\frac{n+1}{n-1}$ for n odd.
Let $Q: B \rightarrow B$ satisfy $1=d Q+Q d$. Let e_{1}, e_{2}, e_{3} be the natural basis of $C^{0}\left(K_{3}, \mathbb{F}_{2}\right)$. Then $\left|d e_{1}\right|=\left|d e_{2}\right|=\left|d e_{3}\right|=\frac{2}{3}$, and $d\left(e_{1}+e_{2}+e_{3}\right)=\overline{0}$.
If $Q d e_{1}$ has norm $<\frac{2}{3}$, then $Q d e_{1}=e_{1}$. If furthermore $Q d e_{2}$ has norm $<\frac{2}{3}$, then $Q d e_{2}=e_{2}$. Then $Q d\left(e_{3}\right)=Q d e_{1}+Q d e_{2}=e_{1}+e_{2}$ has norm $\frac{2}{3}$. Thus one of the $Q d e_{i}$ must have norm $\frac{2}{3}$, thus $|Q| \geq 1$.

Conversely, let us denote by e_{0} the nonzero element of $H^{0}\left(K_{3}, \mathbb{F}_{2}\right)$, so that $d e_{0}=e_{1}+e_{2}+e_{3}$ and $e_{0}, e_{1}, e_{2}, e_{3}, d e_{1}, d e_{2}$ is a basis of $B_{K_{3}, \mathbb{F}_{2}, 1}$. If $x=x_{0} e_{0}+x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+x_{4} d e_{1}+x_{5} d e_{2}$,

$$
|x|=\frac{1}{3}\left(\left|x_{0}\right|+\left|x_{1}\right|+\left|x_{2}\right|+\mid x_{3}\right)+\frac{2}{3} \max \left\{\left|x_{4}\right|,\left|x_{5}\right|,\left|x_{4}+x_{5}\right|\right\} .
$$

Let us set $Q(x)=x_{3} e_{3}+x_{4} e_{1}+x_{5} e_{2}$. Then $d Q+Q d=1$, and

$$
|Q(x)|=\frac{1}{3}\left(\left|x_{3}\right|+\left|x_{4}\right|+\left|x_{5}\right|\right) \leq \frac{1}{3}\left|x_{3}\right|+\frac{2}{3} \max \left\{\left|x_{4}\right|,\left|x_{5}\right|\right\} \leq|x| .
$$

Lemma

Let (B, d) be a normed complex. Let $r \geq|d|$. The embedded Hausdorff distance HausDist $_{B, r}$ between subcomplexes of B satisfies the triangle inequality.

Let B_{1}, B_{2}, B_{3} be subcomplexes of B. Let operators $F_{1}, F_{2}, Q_{1}, Q_{2}: B \rightarrow B$ satisfy

$$
\begin{aligned}
& F_{1}\left(B_{1}\right) \subset B_{2}, \quad F_{2}\left(B_{2}\right) \subset B_{3}, \\
& 1-F_{1}=d_{1} Q_{1}+Q_{1} d_{1}, \quad 1-F_{2}=d_{2} Q_{2}+Q_{2} d_{2} .
\end{aligned}
$$

Then $F_{3}=F_{2} F_{1}$ maps B_{1} to B_{3} and satisfies $1-F_{3}=d Q_{3}+Q_{3} d$ for

$$
Q_{3}=Q_{1}+Q_{2}+Q_{2} d Q_{1}+Q_{2} Q_{1} d
$$

Since

$$
\begin{aligned}
\left|Q_{3}\right| \leq\left|Q_{1}\right|+\left|Q_{2}\right| & +2|d|\left|Q_{1}\right|\left|Q_{2}\right| \leq\left|Q_{1}\right|+\left|Q_{2}\right|+2 r\left|Q_{1}\right|\left|Q_{2}\right|, \\
1+2 r\left|Q_{3}\right| & \leq 1+2 r\left|Q_{1}\right|+2 r\left|Q_{2}\right|+4 r^{2}\left|Q_{1}\right|\left|Q_{2}\right| \\
& =\left(1+2 r\left|Q_{1}\right|\right)\left(1+2 r\left|Q_{2}\right|\right),
\end{aligned}
$$

Corollary

Let $r>0$. The Hausdorff distance HausDist ${ }_{r}$ between complete normed complexes $B \xrightarrow{d} B$ such that $|d| \leq r$ satisfies the triangle inequality.

Given isometries of B_{1}, B_{2} to subcomplexes of B and isometries of B_{2}, B_{3} to subcomplexes of \bar{B}, one constructs a complex $\overline{\bar{B}}$ that contains isometric copies of B and \bar{B} which intersect along a common subcomplex $B^{\prime \prime}$ isometric to B_{2}. One starts with $B \oplus \bar{B}$ with the norm $|(x, \bar{x})|=|x|+|\bar{x}|$. By completeness, the subspace

$$
D=\left\{\left(-x^{\prime \prime}, i\left(x^{\prime \prime}\right)\right) ; x^{\prime \prime} \in B^{\prime \prime}\right\}
$$

of $B \oplus \bar{B}$ is closed. Let $\overline{\bar{B}}=(B \oplus \bar{B}) / D$, equipped with the quotient norm and the quotient operator $\overline{\bar{d}}$.

The embedded Hausdorff distances in $\overline{\bar{B}}$ are less that those in B and \bar{B}, so one can apply the previous Lemma.

