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ABSTRACT. We introduce a notion of discrete-conformal equivalence
of closed convex polyhedra in Euclidean 3-space. Using this notion, we
prove a uniformization theorem for closed convex polyhedra in Euclidean
3-space.
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INTRODUCTION

In this paper, we introduce an equivalence relation on the class of closed
convex polyhedra in the Euclidean 3-space E3. This equivalence relation
has the property that, if P and Q are two convex polyhedra inscribed in
the unit sphere, then P is equivalent to Q if and only if there exists a
Möbius transformation on the sphere that maps the vertex set of P to
the vertex set of Q. This property suggests this equivalence relation as a
concept of discrete conformality.

Inspired by Riemann’s mapping theorem and the more general uniformiza-
tion theorem of Poincaré and Koebe, we prove a uniformization theorem
for closed convex polyhedra in Euclidean 3-space in the following sense.

Theorem: (Uniformization of polyhedra) Every closed convex poly-
hedron in E3 is discrete-conformally equivalent to a closed convex polyhe-
dron inscribed in the unit sphere. This polyhedron is unique up to Möbius
transformations on the sphere.

Orsay, September 26, 2019.
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In a special case, we further characterize the equivalence relation by simple
transformations on the vertices of the polyhedra. More specifically, if two
polyhedra P and Q share a common Delaunay triangulation T (to be
defined below), then P and Q are conformally equivalent if and only if
there exists a real valued function uT on the vertices of P such that, for
every edge ij in the Delaunay triangulation between vertices i and j, its
length in Q is related to its length in P by

lQ(ij) = lP (ij) e
1
2

(uT (i)+uT (j)).

We conjecture more generally that P and Q are discrete-conformally
equivalent if and only if there exists a finite sequence of closed convex
polyhedra P = P1, P2, . . . , Pn−1, Pn = Q such that, for k = 1, . . . , n − 1
the polyhedra Pk and Pk+1 share a common Delaunay triangulation Tk
and there exists a real valued function uTk on the vertices of Pk with
the following property. For every edge ij in the Delaunay triangulation
between vertices i and j, its length in Pk+1 is related to its length in Pk
by

lPk+1(ij) = lPk (ij) e
1
2

(uTk (i)+uTk (j)).

This work arose out of a general interest in understanding the relation-
ship between different concepts of discrete conformality that have been
developed in the last decades.

The concept of discrete conformality by a vertex scaling as above, first
appeared in a paper by Luo in 2004 [1]. Luo introduces a discrete scalar
curvature on polyhedral surfaces and describes a discrete analog of Yam-
abe flow in this setting. A polyhedral surface is a pair (S, T ) of a surface
S and a triangulation T of S, together with a positive real valued func-
tion ρ on the set of edges of T such that the edge lengths of any triangle
in T define an isometric Euclidean triangle. The function ρ is called a
polyhedral metric on (S, T ).

Given a polyhedral metric ρ on (S, T ), let u be a real valued function
defined on the vertex set of (S, T ), Luo defines a discrete-conformal change
of ρ by the vertex scaling

u ∗ ρ(vv′) = ρ(vv′) e
1
2

(u(v)+u(v′))

on edges of T . If u ∗ ρ defines a polyhedral metric, we say that ρ and
u ∗ ρ are discrete-conformally equivalent.

The first hint that the concept of conformality could make sense also in a
discrete setting appeared in the theory of circle packings in the 1980’s. A
circle packing is a connected collection of circles in the plane whose inte-
riors are disjoint. A classical result in this area is Koebe’s circle packing
theorem [2].

Theorem: (Koebe) For every connected simple planar graph G there is
a circle packing in the plane whose intersection graph is G.

The intersection graph of a circle packing is the graph having a vertex
for each circle, and an edge for every pair of circles that are tangent. Let
S be an oriented surface, i.e. a connected topological 2-manifold, with
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a metric. Given a collection C = {cv} of circles in S and a simplicial
2-complex K triangulating an oriented surface, the pair (C,K) is said to
be a circle packing for a simplicial 2-complex K, denoted CK , if

1. for each vertex v in K there exists exactly one circle cv in C and
vice versa,

2. if 〈u, v〉 is an edge of K, then the two circles cu and cv form a tangent
pair and

3. if 〈u, v, w〉 forms a positively oriented face of K, then the three circles
cu, cv and cw form a positively oriented tangent triple in S.

We say that an abstract simplicial 2-complex K is a combinatorial closed
disc if it triangulates a topological closed disc; that is, K is finite, simply
connected, and has nonempty boundary.

For circle packings for a combinatorial closed disk K, Thurston observed
the following rigidity property.

Theorem: (Thurston) Let K be a combinatorial closed disc. Then
there exists a univalent circle packing CK , i.e. the interior of the circles
are disjoint, in the unit disk such that every boundary circle is a horocycle.
This circle packing is unique up to Möbius transformations of the disk.

An ε hexagonal circle packing of the plane is a circle packing with all circles
of radius ε associated to a tiling of the plane into equilateral triangles of
edge lenth 2ε and all vertices of degree 6. Let Cε be a portion of an
ε hexagonal circle packing of the plane cut out by a domain in C. The
above theorem gives a “map” fε that associates with Cε a “maximal” circle
packing in the unit disk that is unique up to Möbius transformations.

Thurston’s observation proved very fruitful. In a 1985 leture on the occa-
sion of the proof of the Bieberbach conjecture, William Thurston conjec-
tured that the above “map” converges to the Riemann map when ε goes to
zero [3]. In 1987 Rodin and Sullivan proved this conjecture, interpreting
the map fε as a map between the centers of circles [4].

Thurston’s observation led to an increased interest in circle packings in
the late 80’s. Significant contributions and generalizations of the concept
of circle packings were in particular made by his student, Oded Schramm.

Schramm is certainly best known for his invention of the Schramm-Loewner
Evolution (SLE), and his subsequent collaboration with Lawler and Werner.
Schramm’s early work however was around Koebe’s theorem and Thurston’s
discrete version of the Riemann mapping theorem. The transition from
circle packing to SLE was through a sequence of papers concerning prob-
ability on graphs, many of them written jointly together with Benjamini.
An interesting short survey on Schramm’s work was written by Rohde [5].

One of Schramm’s last works concerned analogs of Koebe’s theorem in
higher dimensions. Koebe’s Theorem says that a graph can be circle
packed in the plane R2 if and only if it is planar. Which graphs can
be sphere packed in Rd, d > 2? Using tools from non-linear potential
theory, Schramm and Benjamini prove that the lattice grid Zd+1 or the
3-regular tree ×Z cannot be quasi-sphere packed in Rd, for all d [6]. In
first approximation, a quasi-sphere packing is a packing of domains, the



4

ratio between the inner radius and the outer radius of each domain, is
uniformly bounded over the elements of the packing.

Inspired from Benjamini and Schramm, Pansu proposed a concept of large
scale conformal maps between metric spaces [7]. Roughly speacking, a
map between metric spaces is large scale conformal if it maps every pack-
ing by sufficiently large balls to a collection of large quasi-balls which can
be split into the union of boundedly many packings. This notion allows to
transfer some techniques and results from conformal geometry to discrete
spaces like finitely generated groups.

Another theory on conformal changes of metrics inspired from circle pack-
ings was developed by Lee for graphs [8]. Consider a locally finite, con-
nected graph G. A conformal metric on G is a map r : V (G) → R>0.
This metric endows G with a graph distance as follows: Given an edge uv
in E(G), let

lenr(uv) :=
1

2
(r(u) + r(v)).

This induces a length

lenr(γ) :=
∑
k>0

lenr(vkvk+1)

for every path γ = {v1, v2, . . . } in G. Given any pair of vertices u and v
in G, the distance distr(u, v) between u and v is defined as the infimum
of the length of all paths between u and v in G. This endows G with a
path metric distr.

One realizes that in the concept of discrete conformality coming from
circle packings, the metric is changed by modifying the radii of circles.
Hence, the metric is represented in form of an addition of two radii. In
the other concept of discrete conformality coming from Yamabe flow, the
metric is changed multiplicatively.

Closely related to circle packings is the concept of circle patterns. Let G
be an immersed connected planar graph in the plane, and let w : E(G)→
(0, π) be a weight on the edges E(G) such that for all edges incident to a
face f of G we have ∑

e incident to f

w(e) = 2π.

An immersed planar circle pattern in the plane with adjacency graph G
and intersection angles w is a collection of circles for each vertex, such
that the following conditions hold.

1. For each edge uv in E(G), the two circles associated to u, v in V (G)
intersect with exterior intersection angle w(uv).

2. The circles corresponding to the vertices adjacent to the same face
of G intersect in a single point.

3. Consider a counterclockwise cyclic order of the intersection points
from (2) on the circle corresponding to an interior vertex v of G.
This order agrees with the counterclockwise cyclic order of the cycle
of faces of G adjacent to v.
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Notice that for each circle packing for a simplicial 2-complex K there
is an associated orthogonal circle pattern. Simply add a circle for each
triangular face which passes through the three touching points.

Circle patterns on the sphere are closely related to ideal polyhedra.

Theorem: Let Σ be a cellular decomposition of the sphere. Let w : Σ(1) →
(0, π) be a weight on the edges of Σ such that for all edges incident to a
face f of Σ we have ∑

e incident to f

w(e) = 2π,

and for every simple circuit e1, . . . , ek of edges in Σ that does not bound
a single face of Σ we have ∑

i

w(ei) > 2π.

Then there exists an immersed planar circle pattern CΣ in the sphere with
adjacency graph Σ(1) and intersection angles w. This circle pattern is
unique up to Möbius transformations on the sphere.

We may interpret the sphere as the ideal boundary of the hyperbolic
space H3 in the Poincaré model. If we carve out all hyperbolic half-planes
defined by the circles in CΣ on the ideal boundary of H3, we obtain an
ideal convex polyhedron PCΣ in H3 with the dihedral angle at an edge e
of PCΣ given by w(e).

In that sense, the above theorem is nothing but a reformulation of Igor
Rivin’s celebrated theorem on the characterization of ideal polyhedra in
hyperbolic 3-space [9]. This theorem can be stated as follows.

Suppose that a convex ideal polyhedron P in H3 is given. Let P ∗ denote
the dual polyhedron of P , i.e. the abstract polyhedron that has a vertex
for every face of P and two vertices in P ∗ are connected by an edge e∗

if and only if the correspoding faces in P are share an edge e. Assign to
each edge e∗ of P ∗ a weight w(e∗) equal to the exterior dihedral angle at
the corresponding edge e in P . Then the following result holds:

Theorem: (Rivin) The dual polyhedron P ∗ of a convex ideal polyhedron
P in H3 satisfies the following conditions:

1. 0 < w(e∗) < π for all edges e∗ of P ∗.

2. If the edges e∗1, e
∗
2, . . . , e

∗
k form the boundary of a face of P ∗, then

w(e∗1) + w(e∗2) + · · ·+ w(e∗k) = 2π.

3. If e∗1, e
∗
2, . . . , e

∗
k form a simple circuit which does not bound a face of

P ∗, then w(e∗1), w(e∗2), . . . , w(e∗k) > 2π.

Conversely, any abstract polyhedron P ∗ with weighted edges satisfying the
conditions 1 - 3 is the dual polyhedron of a convex polyhedron P with the
exterior dihedral angles equal to the weights.

A convex polyhedron with prescribed dihedral angles is also determined
uniquely up to ambient isometry, this is shown by Rivin using a variational
priciple in [10].
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Rivin’s characterization of ideal convex polyhedra in hyperbolic 3-space
is a generalization of Andreev’s theorem [11]. In fact, Thurston was led
to study circle packings during his program on the geometrization con-
jecture. Andreev’s theorem is an essential ingredient in his proof of the
hyperbolization theorem [12] [13] [14].

The full geometrization conjecture of Thurston was proven by Perelman in
2003 using Ricci flow with surgery [15] [16] [17]. The analog of Ricci flow
for scalar curvature is the Yamabe flow, whose discretization is the setting
in which the other concept of discrete conformality by vertex scaling first
appeared.

A hint that the concept of discrete conformality by vertex scaling and the
concept of discrete conformality associated to circle packings are related,
appears in a paper by Bobenko, Pinkall and Springborn [18]. In their
paper they address the following question: Given a polyhedral surface
(S, T , ρ) with N vertices and a set of complete angles (θ1, . . . , θN ) (i.e. the
sum of angles around vertices), satisfying some necessary conditions, does
there exist a conformal factor u such that u ∗ ρ is a polyhedral metric and
has complete angle θi at each vertex? Bobenko, Pinkall and Springborn
give a partial answer using a variational principle. Their functional is
closely related to a family of functionals developed within the theory of
circle packings and circle patterns. To this family belongs for example
the functional of Rivin introduced in his paper on “Euclidean structures
on simplicial surfaces and hyperbolic volume” [10] and the functional of
Colin de Verdière that gives an existence and uniquness proof of circle
packings [19].

This observation raises the question if both concepts of discrete confor-
mality are just two sides of the same story. The uniformization theory of
convex polyhedra in Euclidean 3-space aims to shed some light on this.

Let Pideal be the space of ideal convex polyhedra in H3, this space is
equivalent to the space of convex Euclidean polyhedra inscribed in the
unit sphere if H3 is the Klein model of the hyperbolic 3-space. Hence, let
us interpret Pideal as the space of convex Euclidean polyhedra inscribed in
the unit sphere. Let C be the set of circle patterns covering the unit sphere.
To every circle pattern C in C corresponds a unique convex Euclidean
polyhedron PC in Pideal by cutting off all half-planes defined by the circles
in C. Conversely, every convex polyhedron inscribed in the unit sphere
corresponds to a unique circle pattern covering the unit sphere.

As a consequence of the results presented in this paper, we obtain the
following theorem.

Theorem: Let C1 and C2 be two circle patterns in C and let PC1 and
PC2 be the corresponding convex polyhedra inscribed in the unit sphere.
There exists a Möbius transformation f on the sphere mapping the circle
pattern C1 onto the circle pattern C2 if and only if PC1 and PC2 share a
common Delaunay triangulation T , and there exists a function uT defined
on the vertex set of PC1 with the following property. For every edge ij in
the Delaunay triangulation between vertices i and j, its length in PC2 is
related to its length in PC1 by

lPC2
(ij) = lPC1

(ij) e
1
2

(uT (i)+uT (j)).
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Moreover, f and uT are related by uT = log |df |V , where V is the vertex
set of PC1 .

This theorem not only relates the above mentioned concepts of discrete
conformality to each other, but also suggests the introduction of a third
variant of discrete conformality, namely discrete Möbius geometry, which
we discuss in the last chapter of this work.

The author owes thanks to his supervisors Prof. Pierre Pansu1 and Prof.
Wendelin Werner2. The author thanks Pierre Pansu for many motivating
discussions that put this work into context. It was a pleasure to walk with
him through the beautiful world of mathematics. The author also thanks
Wendelin Werner for introducing him to Thurston’s school of thought and
his generous guidance through the author’s last years of studies at ETH
Zurich.

ALEXANDROV’S THEORY ON CLOSED CONVEX POLYHEDRA

We will consider closed convex polyhedra in Euclidean 3-space E3 and
hyperbolic 3-space H3. A closed convex polyhedron in E3 or H3 is the
convex hull of a finite set of points in E3 or H3. This definition includes
doubly-covered closed convex polygons. By a closed polygon we mean
any domain in E2 or H2 that is bounded by finitely many geodesic line
segments.

The boundary of a closed convex polyhedron is composed of finitely many
closed convex polygons in the respective 2-dimensional space. In the fol-
lowing, we will not explicitely stipulate that the polyhedron under con-
sideration is closed and convex.

The polygons bounding a polyhedron are the faces of the polyhedron. The
sides and vertices of the faces of a polyhedron are the edges and vertices
of the polyhedron.

In the same manner one could define the vertices of a polyhedron P as
the minimal number of points, whose convex hull agrees with P .

A convex polyhedron with vertices at infinity in H3 is the convex hull of
a finite set of points, some of them lying on the ideal boundary of H3.
A convex polyhedron with all vertices on the ideal boundary is called an
ideal convex polyhedron.

Polyhedral surface. A polyhedral surface is a surface S together with a
flat cone metric ρ on S that has finitely many cone points. A cone point
is a point v in S that admits a circle centered at v with circumference less
than 2πr, where r is its radius. A marking µ of a surface S is a labelling
of a finite set of points in S. We denote a marked surface by Sµ.

Given two points x and y on the boundary of a Euclidean or hyperbolic
polyhedron P , there exists a polygonal path from x to y on the boundary

1Prof. Pierre Pansu, Départment de Mathématiques, l’Université Paris-Sud, France
2Prof. Wendelin Werner, Department Mathematics, ETH Zurich, Switzerland
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of P . The infimum of the lengths of polygonal paths from x to y defines
a distance ρP (x, y) between them. To distinguish whether we are dealing
with Euclidean or hyperbolic geometry, we denote the hyperbolic distance
by ρ̂P (x, y). This construction associates with every Euclidean polyhedron
P a marked Euclidean polyhedral surface (Sµ, ρP ) homeomorphic to the
sphere. The marking µ is inherited from the vertices of P . Analogously,
with every hyperbolic polyhedron P this construction associates a marked
hyperbolic polyhedral surface (Sµ, ρ̂P ) homeomorphic to the sphere.

An ideal polyhedral surface is a complete hyperbolic surface of finite area,
homeomorphic to the N times punctured sphere. We denote a surface
homeomorphic to the N times punctured sphere by SN . Analogously,
every ideal polyhedron P gives rise to a marked ideal polyhedral surface
(Sµ, ρ̂P ).

The complete angle at a point x in a polyhedral surface (S, ρ) or (S, ρ̂) is
the number

lim
ε→0

Cε(x)

ε
,

where Cε is the circumference of a circle of radius ε at x. The notion of a
complete angle is an intrinsic property of the polyhedral surface.

Let θ be the complete angle at a point x, the difference 2π − θ is the
curvature at x. A polyhedral surface that has a positive curvature at
every point is said to be a polyhedral surface of positive curvature.

A polyhedral surface arising as the boundary of a convex polyhedron has a
positive curvature everywhere. Conversely, does every polyhedral surface
of positive curvature arise from a convex polyhedron in E3 or H3?

An affirmative answer was given by Alexandrov in the 1940’s. In fact,
Alexandrov showed that every polyhedral surface of positive curvature
defines a unique polyhedron in E3 or H3 up to congruence [20].

Around 2000 Igor Rivin showed that every ideal polyhedral surface defines
a unique ideal polyhedron up to congruence [21].

We will give a complete exposition of Alexandrov’s and Rivin’s beautiful
theory below.

Development. A development is a finite collection of closed polygons
in E2 or H2 together with a set of rules for “gluing” them together along
their edges. The rule for gluing satisfies the following conditions:

1. The correspondence of “gluing” two segments is an isometry.

2. It is possible to pass from each polygon to any other polygon by
traversing polygons with glued sides.

3. Each side of every polygon is glued to exactly one side of another
polygon.

The sides and vertices of the polygons within a development are the edges
and vertices of the development, where identified sides and vertices are
considered the same. We denote a development by R.
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Every development defines an underlying marked polyhedral surface, which
we denote by (Sµ, ρR). The marking µ labels the points on the surface
S corresponding to the vertices of R. In other words, a development is a
polyhedral surface plus a subdivision into geodesic polygons.

Several developments can define the same polyhedral surface. One may
think of a development as a “coordinate representation” of a polyhedral
surface. Different cuttings of a polyhedral surface into polygons corre-
spond to different coordinate representations of the same polyhedral sur-
face.

Two developments R and R′ can be obtained from each other by cutting
and gluing if the polygons in R can be cut into polygons and glued along
edges such that we obtain the development R′. One observes:

Theorem: Two developments R and R′ are related by cutting and gluing
if and only if (Sµ, ρR) and (Sµ, ρR′) are isometric by an isometry homo-
topic to the identity.

We will use the above ideas to turn the space of closed polyhedral surfaces
into a manifold by “cutting” polyhedral surfaces into triangles. Those
representations will turn out to be convenient coordinate charts for our
space.

Every convex polyhedron is naturally associated with a development. The
face development of a polyhedron P is the development RP whose poly-
gons are the faces of the polyhedron P .

A rigidity property of convex polyhedra. It is a fundamental result
of rigidity theory that convex polyhedra in E3 or H3 with congruent corre-
sponding faces must be congruent to each other. This result is attributed
to Augustin Cauchy who published this result in 1813 [22]. His proof is
widely considered as one of the most elegant arguments of geometry.

Cauchy’s argument is based on the following combinatorial observation.

Lemma: (Cauchy) Suppose that some edges of a closed convex polyhe-
dron are labeled by either a plus or minus signs. Sign changes may occur
between labeled edges around a vertex. It is impossible to have at least four
sign changes at every vertex.

A slightly stronger statement is this purely topological observation.

Lemma: Suppose a “net of edges” is given on a surface homeomorphic to
the sphere, i.e, suppose that finitely many edges (each of which is homeo-
morphic to a straight line segment) are given, and these edges are pairwise
disjoint, except possibly at their endpoints, the “vertices of the net”. As-
sume further that none of the regions separated by the net of the sphere is
bounded by only two edges. Assign pluses and minuses to the edges of the
net. Let V be the total number of vertices and N the total number of sign
changes at all vertices. Then

N ≤ 4V − 8.
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By a net we mean an arbitrary finite collection of simple (i.e., not self-
intersecting) polygonal lines on a polyhedral surface with no common
points except possibly endpoints. Each polygonal line is called an edge
of the net and endpoints of edges are the vertices of the net. A net may
devide the polyhedral surface into several regions, i.e. points that can
be joined with one another by a polygonal line not intersecting the net.
A net may also consist of several disjoint parts. A part that cannot be
further decomposed is called a connected component of the net.

In the proof of the stronger Cauchy lemma we make use of the following
generalized Euler Theorem. A detailed proof can be found in Alexandrovs
book on page 61 [20].

Theorem: (The Generalized Euler Theorem) Given a net on the
boundary of a closed convex polyhedron, let v be the number of vertices,
e the number of edges, c the number of connected components, and f the
number of regions into which the net divides the polyhedron. Then

v − e+ f = c+ 1.

In particular, if the net is connected, then v − e+ f = 2.

Proof of the stronger Cauchy lemma: N is the total number of sign changes
as one moves around the vertices of the net. We observe that counting the
number of sign changes as one moves around each of the regions separated
on the surface by the edges of the net gives the same number N .

Indeed, orient the surface and start going around the regions of the surface
in the direction prescribed by this orientation. Suppose we are going along
the contour of a region with vertices A,B,C,D, and E. Assume we have
passed the edge AB in the order A to B. Now, we are standing at the
vertex B and are about to pass the edge BC in the order B to C. The
edge BC follows the edge AB as we go around the region in the same
order as in the order given by moving around B. Thus, the sign change
from AB to BC is counted in both cases. We proceed moving along the
contour of the region until we arrive at the edge from where we started.
If two edges AB and BC separate two distinct regions, then in one region
they are passed from AB to BC and in the other from BC to AB, which
is the same as moving around the vertex B. Nets may have edges that do
not separate two distinct regions. The region may have a free endpoint
in its interior or an edge that bounds the same region on both sides.
Every such edge will be passed twice when going along the region: first
in one direction, then, in the opposite direction. If D is a free endpoint of
the edge DE, then when going along the contour, after passing the edge
DE in the direction E to D, we again pass the edge DE in the opposite
direction. This is the same as moving around the vertex D.

When counting the edges of a region, we count edges of this region twice
if they do no separate two distinct regions from another. Notice that the
number of sign changes when going along the contour of a region cannot
be bigger than the number n of its edges. Furthermore, this number of
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sign changes is always even, since when completing a full cycle, we return
to the initial sign.

Let Fn be the total number of regions with n edges. From the above
follows that the total number N of sign changes has the upper bound

N ≤ 2F3 + 4F4 + 4F5 + . . . .

Let V , E, and F be the number of vertices, edges and regions in a net.
By the generalized Euler formula

V − E + F ≥ 2.

This is equivalent to
4V − 8 ≥ 4E − 4F.

Since each edge either belong to two regions or is counted twice, we have

2E =
∑
n

nFn.

The total number F of regions is

F =
∑
n

Fn.

Substituting both equations in the inequality above gives

4V − 8 ≥
∑
n

2(n− 2)Fn = 2F3 + 4F4 + 6F5 + . . . .

The right-hand-side is clearly bigger than the total number N of sign
changes. Hence,

4V − 8 ≥ N.

To use Cauchy’s lemma to prove the rigidity result of convex polyhedra
in E3 or H3, requires some preparation.

The link of a vertex of a polyhedron in E3 or H3 is the spherical polygon
obtained by intersecting an infinitesimal sphere centered at the vertex
with the polyhedron, and rescaling so that the sphere has radius 1. The
edge lengths in the link are precisely the face angles at the vertex. The
link of a convex polyhedron is a convex polygon.

For a vertex at the boundary at infinity, there exists a one-parameter fam-
ily of horospheres centered at that vertex. A sufficiently small horosphere
intersects with the polyhedron in a Euclidean polygon, this polygon we
call the link of the vertex at the boundary at infinity. Notice that the link
in this case is only defined up to similarity. We may normalize the edge
length of the link by setting the length of the longest side equal to 1.

The following characterization of convex spherical polygons is shown in
detail by Alexandrov in his book on convex polyhedra, pp. 155 – 157 [20].

Theorem: If none of the angles of a spherical polygon exceeds π, then
the polygon is convex.

Lemma: Let P and Q be two convex polygons with the same number of
vertices p1, p2, . . . , pn and q1, q2, . . . , qn. Suppose that the following condi-
tions are satisfied:
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1. all their corresponding sides except pnp1 and qnq1 are of equal length,
i.e.,

|p1p2| = |q1q2|, . . . , |pn−1pn| = |qn−1qn|;

2. the angles between these sides in P do not exceed those in Q, i.e.,

∠p2 ≤ ∠q2, . . . ,∠pn−1 ≤ ∠qn−1,

and the strict inequality holds at least once.

Then the “exceptional” side of the first polygon is less than the “excep-
tional” side of the second, i.e.,

|pnp1| < |qnq1|.

Proof: The proof goes by induction on the number of vertices of the
polygons.

For triangles the lemma reduces to the well known result that if two
triangles p1p2p3 and q1q2q3 have two sides of equal lengths, let’s say
|p1p2| = |q1q2| and |p2p3| = |q2q3|, and the angles between these two
sides differ, then the third side is shorter in that triangle where the angle
is smaller.

Suppose the theorem is true for (n−1)-gons. We prove that it is then also
true for n-gons. Given two n-gons P and Q satisfying the conditions of the
theorem, we distinguish two cases. Either (1) all angles at p2, . . . , pn−1

are strictly smaller than the angles at q2, . . . , qn−1 or (2) some of those
angles are equal.

Consider the second case. Let pk and qk be corresponding vertices at which
the angles are equal. Cut off the triangles pk−1pkpk+1 and qk−1qkqk+1

from P and Q respectively. The triangles pk−1pkpk+1 and qk−1qkqk+1 are
congruent since two sides and one angle are equal. Hence, the remaining
(n− 1)-gons clearly satisfy the assumptions of the theorem and therefore
|p1pn−1| < |q1qn−1|.
Now, assume that all angles at p2, p3, . . . , pn−1 of the polygon P are
strictly smaller than the corresponding angles of the polygon Q. Let
pk be a point of the polygon P not lying on the prolongation of the side
p1pn. Construct the triangle T = pkp1pn. This way, the polygon P is cut
into three parts, two polygons P1 and P2 and the triangle T .

Transform the triangle T continuously such that the angle at pk increases
while the lengths of the segments pkp1 and pkpn remain the same. By the
elementary result for triangles, we have that |p1pn| < |p′1p′n|, where p′1 and
p′n are the points corresponding to p1 and pn after the transformation.

Transform T in such a way that the angle at p′k agrees with the angle at
qk.

If the transformed polygon P ′ is convex, then P ′ satifies the assumptions
of the second case above. Hence,

|p′1p′n| < |q1qn|.
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In particular,
|p1pn| < |q1qn|,

which was to be shown.

However, the polygon P ′ may indeed fail to be convex. Interestingly,
Cauchy missed to see this in his proof in 1813. The correction of this part
of the proof is attributed to Ernst Steinitz (1871 – 1928) and Isaac Jacob
Schönberg (1903 – 1990).

Notice that increasing the angle at pk may indeed also increase the angle
at p1 and pn. If an angle at p1 or pn exceeds π before pk reaches the size
of the angle at qk, then P ′ is not convex. In this case we may stop the
transformation process as soon as the angle at p1 or pn reaches π.

Assume that the angle at p1 reaches π before the angle at pn and before
the angle at pk reaches the size of the angle at qk. Then the tranformed
polygon P ′ is convex and the segments p′1p

′
2 and p′1p

′
n form a single seg-

ment in P ′. We can construct the triangle p′2p
′
kp
′
n and begin to increase

the length of the segment p′2p
′
n such that the angle at p′k increases. The

vertex p′′1 will be the point on the transformed segment p′′2p
′′
n such that

|p′′1p′′2 | = |p1p2|.
As previously, during the transformation, the angle at p′k increases while
the angles at p′2 and p′n increase or decrease. There are three different
possibilities of what may happen.

1. The angle at p′k can be increased to the angle at qk without violating
the convexity and such that the angle at p′2 stays smaller than the
angle at q2.

2. The angle at p′2 increases and reaches the size of the angle at q2
before p′k reaches the size of the angle at qk.

3. The angle at p′n reaches π.

In the first two cases, there exists an angle in the convex polygon P ′′ that
agrees with a corresponding angle in Q. Hence, we can conclude the proof
as we did previously.

In the third case, we again stop the transformation as soon as the angle
at p′n reaches π. In this case, the segments p′′2p

′′
1 , p′′1p

′′
n and p′′np

′′
n−1 form

a single segment and we can construct the triangle p′′2p
′′
kp
′′
n−1. When

transforming this triangle such that the angle at p′′k increases, no violation
of convexity can occur, since one of the angles at p′′2 , p′′k and p′′n−1 will
reach the size of the corresponding angle in Q. Finally we may use the
arguments above to conclude that

|p1pn| < |q1qn|.

Lemma: If two combinatorially equivalent links have corresponding sides
of equal length but not all the corresponding angles are equal, then there
are at least four sign changes in the differences between the corresponding
angles as we go around the links.

Proof: Let δi = ∠pi−∠qi, if not all δi vanish, then there must exist a sign
change. Indeed, suppose ∠p2 ≤ ∠q2, . . . ,∠pn−1 ≤ ∠qn−1 with at least
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one strict inequality, then by the theorem above |p1pn| < |q1qn|, which
contradicts the assumption.

Suppose there exists a sign change, then the number of sign changes when
travelling around the polygons is even. Hence, it suffices to show that
there cannot be exactly two sign changes. Assume we have exactly two
sign changes; number the vertices such that the angles at p1, . . . , pm are
greater than the angles at q1, . . . , qm, and the angles at pm+1, . . . , pn are
less than the angles at qm+1, . . . , qn.

Bisect the sides p1pn, pmpm+1, q1qn and qmqm+1 by adding points i, j, k
and l respectively and polygonal lines ij and kl between them. This gives
us two pairs of polygons both satisfying the assumptions of the theorem
above. Applying the lemma to the first pair p1p2 . . . pmij and q1q2 . . . qmkl
we conclude that |ij| < |kl|. Applying the lemma to the second pair, we
conclude that |kl| < |ij|, leading to the desired contradiction.

The previous lemma can be reformulated in a more convenient form.

Lemma: If two convex polyhedral angles, distinct from dihedral angles
and possibly degenerate, have corresponding planar angles of equal measure
while not all of their dihedral angles are equal, then there are at least four
sign changes in the differences between the corresponding dihedral angles
as we move around the vertices.

Proof: If the two polyhedral angles are non-degenerate, then the associ-
ated links satisfy the assumptions of the previous lemma. Hence, there
are at least four sign changes in the differences between corresponding
dihedral angles as we move around the vertices.

Assume that at least one of the polyhedral angles is degenerate. Let VP
be a degenerate polyhedral angle and denote the other by VQ. Let p1 and
p2 be the two edges of VP at which the dihedral angles are equal to zero.
If in VQ the dihedral angle at the edge q1 corresponding to p1 in VP is
zero, then so is the dihedral angle at q2. Hence, the polyhedral angles VP
and VQ are congruent.

Assume that the dihedral angle at q1 is different from zero. Then also
the dihedral angle at q2 is different from zero. In particular, the dihedral
angles at q1 and q2 are bigger than the dihedral angles at p1 and p2.
The sum of the planar angles between q1 and q2 is the same from both
sides. Hence, there exists an edge between q1 and q2 on both sides with
dihedral angle smaller than π. However, the corresponding edges in VP
have dihedral angle equal to π since VP is degenerate. Thus, there are
at least four sign changes in the difference between the corresponding
dihedral angles as we move around the vertices.

Let us return to Cauchy’s rigidity theorem. As previously, we include
among convex polyhedra doubly-covered convex polygons. For the ap-
plication of this theorem, it will turn out to be convenient to admit the
partition of faces of the polyhedron into finitely many smaller polygons,
each of which is counted as a “face”. We may distinguish two sorts of
edges and vertices: “genuine” and “fictitious”. A fictitious edge is an
edge at which the dihedral angle equals π. A fictitious vertex is a vertex
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at which the polyhedral angle is in fact a dihedral angle, in particular a
plane when the vertex lies inside a genuine face of the polyhedron.

We say that two convex polyhedra have the same structure if there exists
a one-to-one correspondence between the faces, edges and vertices that
preserves the incidence relation.

Theorem: (Cauchy) If two closed convex polyhedra in R3 or H3 have the
same structure and corresponding planar angles on corresponding faces are
equal, then the dihedral angles at the corresponding edges are also equal.

Proof: Let P and Q be two polyhedra satisfying the conditions of the
theorem. Assign either a plus or minus sign to the edges of P at which
the dihedral angle is larger or smaller than the corresponding dihedral
angle of Q. If the corresponding dihedral angles agree, no sign is assigned
to the edge.

Given two corresponding vertices p and q, then either both are genuine or
both are fictitious, since the curvatures at p and q are equal.

If p and q are genuine vertices, then by the preceeding lemma either all
dihedral angles are equal, or there are at least four sign changes as we
move around p.

If p and q are fictitious vertices, we may split the discussion in two cases.

1. There are genuine edges incident to both p and q, but to a genuine
edge incident to p corresponds a genuine edge incident to q.

2. For at least one of the vertices there are either no genuine incident
edges, or all genuine incident edges correspond to each other.

Consider the first case. Recall that a polyhedral angle at a fictitious vertex
is in fact a dihedral angle. Hence, if both p and q admit a genuine edge,
they both admit precisely two genuine edges which are the prolongation
of each other. Let e1 and e3 be the genuine edges incident to p and l2
and l4 be the genuine edges incident to q, numbered in such a way that
the ordered list e1, e2, e3, e4 corresponds to traversing p in anti-clockwise
direction. By assumption, the edges e2, e4 and l1, l3 corresponding to l2, l4
and e1, e3, respectively, are fictitious. A genuine edge has dihedral angle
less than π and a fictitious edge has dihedral angle equal to π. Therefore,
the signs of the difference between the dihedral angles at e1, e2, e3 and e4

are −,+,−,+, which yields precisely four sign changes.

The second case may be further split up into

1. neither p nor q have incident genuine edges;

2. only one of the vertices has genuine edges;

3. both p and q have genuine edges which correspond to each other.

If all edges incident to p and q are fictitious, all dihedral angles are equal
to π. Hence, there does not occur any labeling around p and the vertices
p and q and all edges incident to these vertices can be removed.

Assume that p has a genuine edge e1. Since p is in fact dihedral, e1 admits
a prolongation e2 and p has precisely two genuine edges. Let l1 and l2 be
the corresponding edges incident to q. If q has any genuine edge, then l1
and l2 are precisely its genuine edges. All other edges incident to p and q
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are fictitious and can be removed. The edges l1 and l2 are prolongations
of each other, since the planar angles between them agree with the planar
angles between the edges e1 and e2 which are π. The dihedral angles at
l1 and l2 are equal. Therefore, the labels attached to e1 and e2 agree. We
may remove the vertices p and q by assigning the edge e1 ∪ e2 to the edge
l1 ∪ l2.

We conclude that all fictitious vertices can be removed. Hence, if there
exist sign assignments to the edges of the polyhedron P as above, there
would exist at least four sign changes at every vertex contained in some
labeled edge. This is impossible by Cauchy’s lemma. Hence there are no
labeled edges at all, which means that the corresponding dihedral angles
of P and Q are equal.

Cauchy’s theorem can be used straightforwardly to obtain an analog rigid-
ity statement for convex polyhedra in hyperbolic three-space with some
or all vertices at the boundary at infinity. This result is due to Hodgson
and Rivin [23]. Henceforth, we distinguish two types of vertices, vertices
inside the hyperbolic three-space and vertices on the ideal boundary.

Theorem: (Hodgson, Rivin) A convex polyhedron in H3 with some or
all vertices at the boundary at infinity is determined up to congruence by
the type of its vertices and the edge length of the link of its vertices.

Proof: Let P and P ′ be two convex polyhedra in H3 with some or all
vertices at the boundary at infinity, whose corresponding links have equal
edge lengths. Apply Cauchy’s lemma to each pair of links. We conclude
that all angles in corresponding links are equal. Hence, P and P ′ have
corresponding equal dihedral angles.

This implies that P and P ′ have congruent ends corresponding to their
vertices at the ideal boundary. If we truncate the ends of P and P ′

along suitably chosen corresponding planes, we obtain two compact convex
polyhedra Q and Q′ with equal face angles. By Cauchy’s theorem, Q and
Q′ are congruent. Hence, P and P ′ are also congruent since they are
obtained from Q and Q′ by attaching congruent ends.

Cauchy’s Theorem may be formulated in a stronger form as follows [20].

Theorem: (Aleksandrov) Every isometry ϕ from the boundary of a
closed convex polyhedron P in R3 or H3 onto the boundary of another
closed convex polyhedron Q can be realized as a motion or a motion and
a reflection, i.e. there is a motion, or a motion followed by a reflection,
which takes each point of the boundary of P to its image under the mapping
ϕ.

This stronger form of Cauchy’s Theorem resulted from the work of Alek-
sandrov and was published in the 1940’s.

An analogous statement can be given for convex polyhedra in H3 with
some or all vertices at the boundary at infinity [23].

Theorem: (Hodgson, Rivin) Every isometry ϕ from the boundary of
a convex polyhedron P in H3 with some or all vertices at the boundary at
infinity onto the boundary of another convex polyhedron Q can be realized
as a motion or a motion and a reflection, i.e. there is a motion, or a



17

motion followed by a reflection, which takes each point of the boundary of
P to its image under the mapping ϕ.

In the following, we return to the usual usage of the notion of a face of a
polyhedron as its genuine face without further subdivision.

Let ϕ be an isometry from the face development RP of a closed convex
polyhedron P onto the face development RQ of a closed convex polyhedron
Q. The image of the 1-skeleton of RP in RQ induces a partition of the
polygons in RQ. Analogously, the pre-image of the 1-skeleton of RQ in
RP induces a partition of the polygons in RP .

Lemma: The partition induced by ϕ cuts RP and RQ into collections
of convex polygons. ϕ induces a correspondence between those polygons
that preserves the incidence relation such that corresponding polygons are
congruent.

Proof: Let P1 be a polygon in RP and pick a polygon Q1 in RQ that is
partly covered by ϕ(P1). We like to show that Q1 ∩ ϕ(P1) is a convex
polygon.

Let q1 and q2 be two points in Q1 ∩ϕ(P1) and let p1 and p2 be their pre-
image in P1 via ϕ, respectively. Since P1 is convex, the segment p1p2 lies
in P1; hence, its image ϕ(p1p2) lies in ϕ(P1). Since ϕ is an isometry and
q1 and q2 lie on the same polygon Q1, ϕ(p1p2) agrees with the segment
q1q2. Thus, q1q2 lies in Q1 ∩ ϕ(P1) and Q1 ∩ ϕ(P1) is convex.

The image of edges of RP are shortest arcs in RQ. Shortest arcs in RQ are
polygonal lines with at most one segment in each polygon in RQ. Hence,
Q1∩ϕ(P1) is cut out from Q1 by finitely many straight line segments and
therefore forms a bounded polygon.

The isometry ϕ is cellular with respect to the partition of RP and RQ
induced by ϕ. Indeed, every element of the partition of RP will be of
the form P1 ∩ ϕ−1(Q1) for some polygons P1 and Q1 in RP and RQ
respectively. This polygon is mapped to the element ϕ(P1) ∩ Q1 of the
partition of RQ.

Proof of Alexandrov’s stronger Cauchy Theorem: Given an isometry ϕ
from the boundary of a closed convex polyhedron P onto the boundary
of a closed convex polyhedron Q, ϕ is cellular with respect to its induced
partition of RP and RQ in polygons as described above. The correspond-
ing polygons are congruent and in particular have equal angles. We can
apply Cauchy’s Lemma as discussed above to conclude that all polyhedral
angles along their edges must be equal.

Let P1 be a polygon in the partition of RP induced by ϕ and let Q1

be the corresponding polygon in the partition of RQ. Since P1 and Q1

are congruent, there exists a motion ψ that assigns to every point of the
boundary of P corresponding to P1 its image under ϕ in Q. If the image of
P under this motion and Q lie on opposite sides of the plane determined
by Q1, reflect P along this plane.

Since all dihedral angles along edges are equal, the image under ψ of
an adjacent polygon P2 of P1 in the partition of RP lies in the plane
determined by the corresponding polygon Q2 in the partition of RQ. Since
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ψ(P1) and Q1 agree on all edges, ψ(P2) and Q2 clearly agree on the edge
shared with Q1. ψ(P2) also lies on the same side of this edge as Q2, hence
ψ(P2) and Q2 agree.

Since the partition of RP is connected, ϕ can be realized by a motion or
a motion and a reflection.

Isometric embedding of polyhedral surfaces. We now return to
the previously stated question: Does every polyhedral surface of positive
curvature in E3 or H3 arise as the boundary of a convex polyhedron?
Alexandrov gave the following answer [20]:

Theorem: (Alexandrov) Let (S, ρ) be a polyhedral surface with N cone
points of strictly positive curvature, homeomorphic to the sphere. Then
(S, ρ) can be realized as the boundary of a closed convex polyhedron PN
with N vertices. This polyhedron is unique up to congruence.

We suggested to think of developments of polyhedral surfaces as coor-
dinate representations of the polyhedral surface. In this section we will
make this more precise by cutting polyhedral surfaces into triangles. From
this we will establish that the space of polyhedra with N vertices up to
congruence and the space of polyhedral surfaces of positive curvature with
N cone points are homeomorphic.

Let TPL(N) be the space of polyhedral metrics on the sphere with N
marked points. The set of marked points is required to contain all points
on the polyhedral surface of non-zero curvature. The polyhedral metrics
ρ in TPL(N) are considered up to isometry homotopic to the identity. A
triangulation of a marked sphere Sµ is a triangulation T of the sphere with
vertices the N marked points on the sphere. A geodesic triangulation of
a marked polyhedral surface TPL(N) is a triangulation of Sµ whose edges
are minimizing geodesics.

Let T be a triangulation of the marked sphere Sµ with N marked points
and E(T ) the set of edges associated to T . Let E(T )∗ be the set of
positive real valued functions on E(T ), satisfying

x(ei) + x(ej) > x(ek)

for every triangle ijk ∈ T with edges ei, ej and ek. For a function x ∈
E(T )∗ let ρx be a polyhedral metric on the sphere constructed by isometri-
cally gluing Euclidean triangles ijk ∈ T of edge lengths x(ei), x(ej), x(ek)
along corresponding edges. This provides an injective map

ι : E(T )∗ → TPL(N)

mapping x to ρx.

Let UT be the image of ι in TPL(N) and ϑT the inverse of ι on UT . The
pair (UT , ϑT ) is a length coordinate chart on TPL(N).

Theorem: The set of length coordinate charts

{(UT , ϑT ) | T triangulation of Sµ}
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forms a real-analytic atlas on TPL(N).

Proof: Every polyhedral metric on the sphere with N points of non-zero
curvature admits a geometric triangulation, hence

⋃
T UT covers TPL(N).

If two triangulations T and T ′ are related by a diagonal flip along an edge
e, then the transition function ϑT ′ϑ

−1
T is the identity in all components

except for the component associated to e. Let ABC and ADC be the
triangles in T adjacent to e. The length of the diagonally switched edge
is √

x2
AB

+x2
DC
−2xABxDC cos( arccos(

x2
AC

+x2
AB
−x2

BC
2xACxAB

)+arccos(
x2
AC

+x2
DC
−x2

AD
2xACxDC

)).

Hence, the transition function ϑT ′ϑ
−1
T is real analytic.

Given two arbitrary triangulations of Sµ, there exists a sequence of trian-
gulations of Sµ, each related to the next by a single diagonal flip along an
edge. Hence, all transition functions are real analytic.

The set of closed simply-connected marked polyhedral surfaces with N
marked points of strictly positive curvature T con

PL (N) forms a subset of
TPL(N). For some coordiante chart ϑT of TPL(N) let

∑
j αij be the

complete angle at i, where j enumerates the angles at the i-th vertex.
The complete angle is a continuous function of the edge length. The set
T con
PL (N) is determined by the inequalities∑

j

αij < 2π (i = 1, . . . , N).

Hence, T con
PL (N) is an open submanifold of TPL(N).

Lemma: If N > 3, then the manifold T con
PL (N) is a proper subset of

TPL(N) and consequently has a topological boundary in TPL(N).

Proof: We first prove that in any triangulation of an element in TPL(N)
with N > 3, there are at least three triangles touching at a single vertex.
In fact, we will show that, if at most two triangles touch at each vertex,
then N is at most three.

Let T be a geodesic triangulation of (Sµ, ρ), such that at most two trian-
gles touch at each vertex. Let ABC be a triangle in T . Suppose that some
triangle ABD is glued to the side AB of the triangle ABC. There are two
triangles touching at the vertices A and B. If there are no other triangles
touching at A and B, then the sides AC and BC must be glued to AD
and BC respectively. If AC were glued to BC, then A and B would be
identified, which is impossible by our convention of triangulation. Hence,
(Sµ, ρ) is a doubly covered triangle.

Let T be an abstract triangulation of the sphere with more than three
vertices. Construct a polyhedral surface (Sµ, ρ) by assigning length 1 to
all edges of T . By the argument above, there exists a vertex A of T where
at least three triangles touch. Construct a sequence of polyhedral surfaces
{(Sµ, ρt)}t∈[1,2] by taking ρt(e) = 1/t for every edge e adjacent to A and
constant equal to 1 otherwise. Notice that the angle at A in every triangle
increases to π as t approaches 2. Since there are at least three triangles
touching at A, there exists a t′ ∈ [1, 2) such that the sum of the angles at
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A is greater than or equal to 2π. Such a development is not contained in
T con
PL , which was to be proven.

Theorem: (Alexandrov) Let (S, ρ) be a polyhedral surface with N cone
points of strictly positive curvature, homeomorphic to the sphere. Then
(S, ρ) can be realized as the boundary of a closed convex polyhedron PN
with N vertices. This polyhedron is unique up to congruence.

Outline of the proof. Let PN be the space of closed convex polyhedra
with N vertices in R3, parametrized by the positions of their vertices.
Three vertices are sent by an isometry to the origin, the positive x-axis
and the half-plane y > 0 of the xy-plane, respectively. If the polyhedron
does not degenerate into a doubly-covered polygon, then a fourth point
not contained in the xy-plane is mapped into the half-space z > 0 by
reflecting along the z = 0 plane if needed. This eliminates the action of
the isometry group of R3. There are 3N variable coordinates, however
three vertices are constant in three, two and one coordinates respectively.
Therefore, we have 3N − 6 variable coordinates and PN is a 3N − 6
dimensional manifold.

The boundary of every closed convex polyhedron with N vertices can be
viewed as a polyhedral surface with N cone points of strictly positive
curvature homeomorphic to the sphere. Formally this gives a map g :
PN → T con

PL (N). In the following we show that g is a (1) continuous, (2)
injective and (3) closed map and (4) that every connected component of
T con
PL (N) admits a preimage in PN .

PN and T con
PL (N) are manifolds of equal dimension, by (1) and (2) and

the invariance of domain principle of Brouwer, g is an open map. Since g
is also closed, we conclude together with (4) that g is a homeomorphism
from PN onto T con

PL (N).

Remark: The fact that a polyhedron in R3 is determined by the geometry
of its surface, is particular to polyhedra in three dimensional space. A
polygon is not at all determined by the length of its edges. Also, in
higher dimensions such a correspondence does not hold in general. The
dependends of the theory on the dimension reveals itself in the usage
Brouwer’s invariance of domain principle. That the dimension of the
space of closed convex polyhedra with N vertices has the same dimension
as the space of polyhedral surfaces with N cone points of strictly positive
curvature, is particular to R3.

A triangulation of a polyhedron P with N vertices is a geometric trian-
gulation of its polyhedral surface (Sµ, ρP ).

Theorem: The map g is continuous.

Proof: Let T be a triangulation of a closed convex polyhedron P . There
exists an ε > 0 such that, if the vertices of some polyhedron Q are at
distances less than ε from the vertices in T (with exactly one vertex of
Q corresponding to a vertex of T ), then there is a unique triangulation
of Q close to T that has the same structure. The continuity of g follows
immediately.

Theorem: The map g is injective.
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Proof: The injectivity follows from the above proven theorem that, if there
exists an isometry ϕ between the boundary of two closed convex polyhedra
P and Q, i.e. their associated marked polyhedral surfaces (Sµ, ρP ) and
(Sµ, ρQ) are isometric, then there exists a motion or a motion and a
reflection from P to Q realizing ϕ. That is to say, P and Q are equal
in PN since we eliminated the action of the isometry group of R3.

Theorem: The image of g is closed.

Proof: Let ρ1, . . . , ρi, . . . be a sequence of metrics in T con
PL (N), converging

to a metric ρ. For each i let Pi be a closed convex polyhedron in PN such
that g(Pi) = ρi. There exists a closed convex polyhedron P∞ in PN such
that g(P∞) = ρ.

Indeed, since the sequence of polyhedral surfaces associated with {Pi}i≥1

converges, the distances between vertices of polyhedra in {Pi}i≥1 are uni-
formly bounded. Hence, the polyhedra are contained in some ball centered
at the origin.

Pick a subsequence {ρik}k≥1 such that all ρik admit a triangulation Tik
of the same combinatorics. The sequence of triangulations {Tik}k≥1 con-
verges to a unique triangulation T of ρ. Enumerate the vertices of the
triangulations such that the sequence of vertices associated with i con-
verges to the i-th vertex in T . This enumeration gives N sequences in
R3 associated with the vertices of the polyhedra. Pick a subsequence
{Pikl

}l≥1 such that those sequences converge. Let P∞ be the boundary
of the convex hull of the N limit points.

For notational simplicity we replace {Pi}i≥1 with the sequence {Pikl
}l≥1.

The enumeration of vertices in {Ti}i≥1 induces an enumeration of edges
in {Ti}i≥1. Given Ti, the map g induces a triangulation T ′i of Pi. We say
that Ti is plotted on Pi. Let ni denote the n-th edge in T ′i . We will make
use of the following statement, proved as a lemma below.

There exists an integer C, such that for every i the number of intersecting
points of ni with edges of Pi is bounded by C, i.e.,

sup
i

#{ni ∩ P (0)
i } ≤ C.

If for {1i}i≥1 there exist infinitely many polyhedra in {Pi}i≥1 such that
1i is an edge of Pi, take this infinite subset {Pik}k≥1. Since the edges of
{Pik}k≥1 converge, 1ik converges. Continue with {2ik}k≥1. Otherwise,
since the number of intersecting points of 1i with Pi is uniformly bounded
in i, there exists a subsequence {Pik}k≥1 such that each edge 1ik has the
same number of intersecting points with Pik and all intersecting points
converge. The segments between adjacent intersecting points converge
as well. In particular, 1ik converges. Continue with {2ik}k≥1. Define
T ′ := limk T ′ik , by continuity of g, T = g(T ′). Hence, P∞ is a closed

convex polyhedron in PN such that g(P∞) = ρ.

Lemma: There exists an integer C, such that for every i the number of
intersecting points of ni with edges of Pi is bounded by C, i.e.,

sup
i

#{ni ∩ P (0)
i } ≤ C.
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Proof: We will prove that there exists an integer C0 uniform in i, such
that if an edge of Pi does not coincide with any edge in T ′i , then the
number of intersections of this edge with all edges in T ′i is smaller than
C0. We will conclude from this the lemma above.

Let {lPi(e) | e edge of Pi, i ≥ 1} be the set of edge lengths in {Pi}i≥1

and let ∪i≥1 ∪ABC∈T ′i {hA, hB , hC} be the set of altitudes of triangles

of {T ′i }i≥1 in {ρi}i≥1. Let L := sup{lPi(e) | e edge of Pi, i ≥ 1} and
h := inf ∪i≥1 ∪ABC∈T ′i {hA, hB , hC}. Notice that h > 0 since {ρi}i≥1

converges. Let m ∈ Z>0 be the maximum of the degree of vertices in T ′i ,
this maximum exists since all triangulations in {T ′i }i≥1 have the same
combinatorics.

Assume there exists an edge e in a polyhedron Pk ∈ {Pi}i≥1 such that
the number of intersections with the edges of T ′k is

C0 >
2Lm

h
+m.

The edge e of the polyhedron is partitioned by the C0 intersecting points
into C0 + 1 segments. We will show that among these segments there are
at least m successive segments, each of length less than h/2.

If that were not the case, then in every collection of m successive segments
there would exist a segment of length greater than or equal to h/2. The
number of collections of m successive segments among all C0 +1 segments
is equal to [C0+1

m
], i.e. the integer part of the fraction C0+1

m
. Hence, the

length of the edge e would be greater than or equal to [C0+1
m

] h
2

. This is
impossible, since[C0 + 1

m

] h
2
≥

[C0

m

] h
2
≥

[2L

h
+ 1

] h
2
> L.

Set

C0 :=
2Lm

h
+m.

Let EF be the first segment of m successive segments of length less than
h/2, cut out of e by a triangle ABC in T ′k . Drop a perpendicular FG from
F to AB and a perpendicular CH from C to AB. The triangles AGF and
ACH are similar. Since FG ≤ EF < h/2 ≤ 1

2
CH, we have FA < 1

2
AC.

Hence, point F is closer to A than to C. A similar argument holds for
point E.

Leaving the triangle ABC the edge e of Pk enters a neighboring triangle
ACD of T ′k where it again has a segment of length less than h/2. Hence,
in this triangle also the segment passes closer to point A than to the other
points. Since we have m such segments, while at most m triangles touch
at A, it follows that the edge e of Pk goes around A and returns to the
side AB (even intersects it again). This is impossible, since A is a vertex
of Pk and therefore must be incident with an edge joining A with another
vertex of Pk. According to the above, this edge must then intersect e,
which is impossible, since edges meet only at vertices.

We have thus proved that the number of intersections of an arbitrary edge
of any polyhedron Pk in {Pi}i≥1 with the edges of the triangulation T ′k



23

does not exceed C0. There exists a integer C1 such that the total number
of edges in an arbitrary polyhedron Pk in {Pi}i≥1 does not exceed C1.
The total number of intersecting points in a polyhedron Pk in {Pi}i≥1 is
therefore at most C0C1. Hence, for each edge in T ′k , there are at most
C0C1 intersections with edges of Pk. Set C = C0C1.

We say that a marked polyhedral surface (Sµ, ρ) is realizable if there exists
a polyhedron P whose boundary surface (Sµ, ρP ) is isometric to (Sµ, ρ).

Theorem: Every connected component of T con
PL (N) contains a realizable

polyhedral surface.

Proof: Notice that N is at least 3, since a polyhedral surface homeomor-
phic to the sphere has total curvature equal to 4π, while the curvature
at each vertex is less than 2π. Given a polyhedral surface in T con

PL (3), let
A,B,C be the vertices of the polyhedral surface and connect them by
shortest arcs. This splits the topological sphere into two triangles, each
of which contains no interior point with cone angle other than 2π. There-
fore, the triangles can be developed on the plane (a detailed exposition of
this fact is given by Alexandrov, p. 79). Superposing them so that the
corresponding sides coincide, we obtain a doubly-covered triangle that re-
alizes the polyhedral surface in T con

PL (3). Hence, every polyhedral surface
in T con

PL (3) is realizable as a doubly-covered triangle. We will show that if
every polyhedral surface with less than N vertices is realizable, then also
every polyhedral surface in T con

PL (N) is realizable.

The manifold T con
PL (N) is an open submanifold of the manifold of polyhe-

dral surfaces TPL(N). The topological boundary of T con
PL (N) in TPL(N)

consists of polyhedral surfaces with cone angles less than or equal to 2π
and some cone angle equal to 2π. Every polyhedral surface in ∂ T con

PL (N)
is isometric to a polyhedral surface in T con

PL (N ′) for N ′ < N , which is
realizable by the induction hypothesis. Hence, ∂ T con

PL (N) is realizable.

Let C ⊂ T con
PL (N) be a connected component. We will see in the lemma

below that ∂C contains a point that admits a neighborhood devoid of any
points of any other connected component of T con

PL (N). Let (Sµ, ρ) be such
a polyhedral surface in ∂C.

Since (Sµ, ρ) is realizable, there exists a convex polyhedron P such that
g(P ) = ρ. However, not all marked points on Sµ are vertices of P , since
the cone angle at some of the marked points equals 2π. Let A1, . . . , Al
be points on P that correspond to the remaining marked points on Sµ.
These points either lie in the interior of a face of P or on an edge of P . Let
Al+1, . . . , AN be the vertices of P . Move the points A1, . . . , Al away from
the polyhedron P for a sufficiently small distance. Let Q be the convex
hull of the moved points A1, . . . , Al and Al+1, . . . , AN . Now Q is a convex
polyhedron with N vertices close to the points A1, . . . , Al, Al+1, . . . , AN
on the boundary of P . In particular, the complete angles at the points
A1, . . . , Al, Al+1, . . . , AN of (Sµ, ρQ) are less than 2π and g(Q) belongs
to T con

PL (N). Since g(Q) is close to g(P ), and close to g(P ), there are no
elements of T con

PL (N) except for those in C, g(Q) belongs to C. Thus, each
connected component of T con

PL (N) contains a realizable polyhedral surface.

Lemma: For N > 3, the boundary of every connected component of
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T con
PL (N) contains a point that admits a neighborhood devoid of any points

of any other connected component of T con
PL (N).

Proof: Recall that given a coordinate chart ϑT on TPL(N), the submani-
fold T con

PL (N) is determined by the inequalities∑
j

αij < 2π (i = 1, 2, . . . , N),

with αij denoting the j-th angle at the i-th vertex. Hence, the topologi-
cal boundary of T con

PL (N) in TPL(N) is composed of pieces of N surfaces
F1, . . . , FN determined by the equations∑

j

αij = 2π (i = 1, 2, . . . , N).

Let C ⊂ T con
PL (N) be a connected component of T con

PL (N). Let ρ ∈ ∂C be
a point on the boundary of C that belongs to the least number of surfaces
F1, . . . , FN , say F1, . . . , Fl. The corresponding polyhedral surface (Sµ, ρ)
has cone angles equal to 2π at the marked points A1, . . . , Al and cone
angles less than 2π at the marked points Al+1, . . . , AN .

Let ϑT be a coordinate chart of TPL(N) containing ρ. There exists an
ε > 0 such such that all polyhedral surfaces in the ε-ball Bε(ϑT (ρ)) have
cone angles less than 2π at Al+1, . . . , AN . In other words, ϑ−1

T (Bε(ϑT (ρ)))
contains no points of any surface Fi other than F1, . . . , Fl.

Consider the triangles in T containing the vertex A1. Let e be an edge
of one of them subtended by A1. Notice that the cone angle at A1 is an
increasing function in the length ϑT (ρ)e of e. Label the edges in T such
that e is the first edge. Let δ1, δ2 > 0 be small enough such that the disks

{ϑT (ρ)e − δ1} ×Bδ2((ϑT (ρ)2, . . . , ϑT (ρ)E))

and
{ϑT (ρ)e + δ1} ×Bδ2((ϑT (ρ)2, . . . , ϑT (ρ)E))

are contained in Bε(ϑT (ρ)), and all polyhedral surfaces in the first disk
have cone angles smaller than 2π at A1, and all polyhedral surfaces in the
second disk have cone angles greater than 2π at A1.

Let ρ1 be a point in the first disk and ρ2 its translation along the e axis
in the second disk. Since the cone angle is increasing monotonically along
the e axis when moving ρ1 to ρ2, there exists a unique point where the
cone angle equals 2π. Hence, the face F1 divides the cylinder

ϑ−1
T ( [ϑT (ρ)e − δ1, ϑT (ρ)e + δ1]×Bδ2((ϑT (ρ)2, . . . , ϑT (ρ)E)) )

into two pieces V1 and V2, where all polyhedral surfaces in V2 have cone
angles greater than 2π at A1 and all polyhedral surfaces in V1 have cone
angles less than 2π at A1.

The polyhedral surface ρ lies on the boundary ∂C of the connected com-
ponent C of T con

PL (N). Clearly, C ∩V1 is non-empty. We will show that in
fact V1 ⊂ C.
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Assume the contrary. Let ρ1 be a polyhedral surface in V1 not belonging
to C, and let ρ2 be a polyhedral surface in V1 that belongs to C. ρ1 and
ρ2 project to polyhedral surfaces ρ′1 and ρ′2 in the disk

{ϑT (ρ)e − δ1} ×Bδ2((ϑT (ρ)2, . . . , ϑT (ρ)E)).

We obtain a continuous polygonal line L = ϑT (ρ1)ϑT (ρ′1)∪ϑT (ρ′1)ϑT (ρ′2)∪
ϑT (ρ′2)ϑT (ρ2) in V1 that joins ρ1 to ρ2. Since ρ2 belongs to C and ρ1 does
not, this line must intersect the boundary ∂C.

Being a boundary point of T con
PL (N), the intersecting point of the line L

with ∂C must lie on some surface Fi. Since line L stays in V1, it cannot
lie on the face F1. Line L also lies in the ball Bε(ϑT (ρ)) and no point in
Bε(ϑT (ρ)) lies on a surface other than F1, . . . , Fl. Hence, the intersecting
point of L with ∂C lies on at most l− 1 surfaces. However, ρ was a point
on ∂C that intersects the minimal number of surfaces Fi, which was l.
We come to a contradiction, which shows that V1 is entirely contained in
the connected component C of T con

PL (N).

Since V2 does not contain any point of T con
PL (N) at all, the cylinder

ϑ−1
T ( [ϑT (ρ)e − δ1, ϑT (ρ)e + δ1]×Bδ2((ϑT (ρ)2, . . . , ϑT (ρ)E)) )

is the required neighborhood of ρ.

RIVIN’S THEORY ON IDEAL CONVEX POLYHEDRA

Isometric embedding of ideal polyhedral surfaces. Does every ideal
polyhedral surface arise from the boundary of an ideal hyperbolic polyhe-
dron? Rivin gave the following answer [21]:

Theorem: (Rivin) Let (SN , ρ̂) be an ideal polyhedral surface. Then
(SN , ρ̂) can be isometrically embedded in H3 as the boundary of a convex
polyhedron P with all vertices on the sphere at infinity.

The proof needs some specific techniques related to the fact that we are
dealing with geodesics between ideal points. Nevertheless, the proof fol-
lows essentially the same philosophy as Alexandrov’s.

Proof: (Outline) Let PNideal be the space of convex ideal polyhedra with N
vertices in H3, this space is parametrized by the positions of their vertices
on the sphere at infinity. Three of their vertices are fixed at 0, 1, and
∞. This eliminates the action of the isometry group of H3. There are 2N
variable coordinates, however three vertices are fixed. Therefore, we have
2N − 6 variable coordinates and PNideal is a 2N − 6 dimensional manifold.

Let Sµ be a surface homeomorphic to the N -times punctured sphere,
together with a marking µ, that is, a labelling of the punctures.

Let T (N) be the set of hyperbolic metrics ρ̂ on the surface Sµ, such
that the hyperbolic surface (Sµ, ρ̂) is complete and of finite volume. Two
hyperbolic metric metrics ρ̂1 and ρ̂2 in T (N) are identified if (Sµ, ρ̂1) and
(Sµ, ρ̂2) are isometric by an isometry homotopic to the identity.

The set T (N) is parametrized by shears along the edges of a geodesic
triangulation of Sµ. This notion measures the shift between two abut-
ting ideal triangles and will be introduced below. We will see that this
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parametrization turns T (N) into a 2N − 6 dimensional connected mani-
fold.

The boundary of every convex ideal polyhedron with N vertices can be
viewed as a complete hyperbolic surface of finite area, homeomorphic to
the N times punctured sphere. Formally this gives a map h : PNideal →
T (N). In the following, we show that h is a (1) continuous, (2) injective
and (3) closed map.

PNideal and T (N) are manifolds of equal dimension, by (1) and (2) and the
invariance of domain principle of Brouwer, h is an open map. Since h is
also closed, we conclude, together with the fact that T (N) is connected,
that h is a homeomorphism from PNideal onto T (N).

We will need some more notions of hyperbolic geometry to make the above
precise.

Let ABC be an ideal triangle in H2. Let hA be a horocycle centered at A,
define DABC(hA) to be the length of the arc of hA cut out by the triangle
ABC. The difference in size between arcs of two horocycles hA and h′A
cut out by ABC gives information on the distance between the arcs. More
precisely:

Lemma: Let hA and h′A be two horocycles at A. The hyperbolic distance
between hA and h′A is equal to | log(DABC(hA))/ log(DABC(h′A))|.
Proof: Let ABC be the triangle A = ∞, B = 0 and C = 1 in the upper
half-space model. The horocycles hA and h′A are horizontal lines through
i/y and i/y′, respectively. Hence, the length of the arcs of hA and h′A cut
out by ABC is 1/y and 1/y′ respectively and the distance between hA
and h′A is | log(y/y′)|.

Two ideal triangles ABC and ADC can slide with respect to each other
along the common side AC. For any choice of horocycle hA, the num-
ber ∫AC := log(DABC(hA)/DADC(hA)) measures the shear between the
triangles ABC and ADC along AC. The shear ∫AC does not depend on
which of the vertices A or C is taken as the center of the horocycles.

Intuitively, two triangles ABC and ADC are joined along AC without a
shear, if for any horocycle at A the arcs cut out by ABC and ADC have
the same “distance” to A.

The cross-ratio of four points z1, z2, z3, z4 in the complex plane is the
number

[z1, z2, z3, z4] :=
(z1 − z3)(z2 − z4)

(z1 − z2)(z3 − z4)
.

The notion of cross-ratio of four points and shear between two triangles
are related.

Lemma: The shear between two triangles ABC and ABD is equal to the
log of the absolute value of the cross-ratio [C,B,D,A].

Proof: Let ABC be the triangle A =∞, B = 1 and C = 0. In this case,
the shear between ABC and ABD is log |D|.

A triangulation of an ideal polyhedral surface is a triangulation whose ver-
tices are at the cusps of the hyperbolic surface. A geometric triangulation
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of an ideal polyhedral surface is a triangulation of the ideal polyhedral
surface whose edges are geodesics. Let T be a geometric triangulation
of an ideal polyhedral surface (Sµ, ρ̂) with N cusps. To each edge of T ,
associate the shear of the two abutting triangles of T . This information
determines the geometry of (Sµ, ρ̂) completely. Conversely, an assignment
of real numbers to the edges of T specifies a complete hyperbolic structure
on Sµ if and only if the shears around any cusp add up to zero. Hence the
set T (N) is naturally parametrized by R|E(T )|−N . According to the Euler
formula, |E(T )| − N = 2N − 6, so the dimension of this space depends
only on the number of cusps.

Lemma: Any triangulation of a complete hyperbolic surface with cusps
can be straightened to a geodesic triangulation.

Proof: We need to show that, if A,B,C and D are cusps of a complete
hyperbolic surface such that A and B are connected by a path γ1 in T
and C and D are connected by a path γ2 in T , then the corresponding
geodesics also do not intersect.

The path γ1 and γ2 do not intersect in SN if and only if their lifts to
the universal cover H2 of SN do not intersect. However, if two paths
between the ideal boundary of H2 do not intersect, then the corresponding
minimizing geodesics do not intersect either.

The shear coordinate system on T (N) corresponding to the triangulation
T of (Sµ, ρ̂) is the map ϕT : T (N) → R2N−6, associating a particular
metric with its shear along the straightened edges of T .

Notice that ϕT : T (N)→ R2N−6 is a homeomorphism. Given a point x in
R2N−6, we can compute the remaining N shears from the condition that
shears must add up to zero around vertices. Hence, T (N) is connected.

Theorem: The set of shear coordinate charts

{(T (N), ϕT ) | T triangulation ofSµ}

forms a real analytic atlas on T (N). This turns T (N) into a 2N − 6
dimensional, connected, real analytic manifold.

Proof: Let T and T ′ be two triangulations of Sµ related by flipping an
edge e. Let ABC and ADC be the triangles in T adjacent to e. Flipping
the diagonal corresponds to permuting the arguments of the cross-ratio.
A permutation of the cross-ratio is a fractional linear transformation of
the cross-ratio itself. Hence the transition function ϕT ϕ

−1
T ′ is real analytic.

Two arbitrary triangulations of Sµ can be obtained from each other by a
sequence of edge flips.

Hence, the set of shear coordinate charts forms a real analytic atlas.

We already introduced the map h : PNideal → T (N) that formalizes the
operation of viewing the boundary of a convex ideal polyhedron with N
vertices as a complete hyperbolic surface up to isometry homotopic to the
identity. In the following, we show that h is a (1) continuous, (2) injective
and (3) closed map.

For the next theorems we will view the ideal hyperbolic polyhedron P in
the upper half-space model. P is the intersection of the half-spaces defined
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by its faces. We think of the ideal boundary as the Riemann sphere C̄.
Through an isometry of H3 and re-labelling, we can transform P in such
a way that the face f1 rises above the real axis and the vertices v1, v2

and v3 are at 0, 1 and ∞, respectively. Furthermore, we assume that the
polyhedron P lies above the half-plane Im(z) ≥ 0.

The polyhedron P casts a shadow on the ideal boundary of H3 under
the orthogonal projection. The edges of P are mapped to straight line
segments and the faces of P to convex polygons in C.

This gives a tessalation in C of the set of vertices {v1, v2, . . . , vN}\{v3}
of P in C. In fact, every triangulation of this tessalation, is a Delaunay
triangulation. A Delaunay triangulation of a finite set of points V in
C is a triangulation of the convex hull of V into triangles such that no
point in V is inside the circumcircle of any other triangle. We call the
tessalation in C induced from P , the Delaunay tessalation induced by P .
Every triangulation of the Delaunay tessalation induced by P corresponds
to a triangulation of the boundary of P , we call such a triangulation a
Delaunay triangulation of the convex ideal polyhedron P .

Let T be a Delaunay triangulation of P . Let ABC and ADC be two
abutting triangles in T . If A,B,C and D are transformed by way of
hyperbolic isometry in such a way that A is mapped to ∞, B to 1, C to
0 and D to z ∈ C, then the cross-ratio

B −A
B − C :

D −A
D − C

equals z. Hence, the following theorem follows from the above discussion
of shears in the Poincaré model.

Theorem: The shear between two abutting triangles ABC and ADC in
T is given by the logarithm of the absolute value of the complex cross-ratio

B −A
B − C :

D −A
D − C .

Using the continuity of cross-ratios, we may now prove that the map g is
continuous.

Theorem: The map h is continuous.

Proof: If the Delaunay tessalation of an ideal hyperbolic polyhedron P is
already a triangulation, then any small pertubation of the vertices of P
does not change the combinatorics of the Delaunay tessalation. In this
case, the continuity of h follows directly from the continuity of cross ratios.

If the Delaunay tessalation of P is not a triangulation, then any small
pertubation of the vertices of P does change the combinatorics of the
Delaunay tessalation in C. However, in both conditions there exists a
uniform ε > 0 such that, if a point D is closer than ε to the circumcircle
of a triangle ABC, then A,B,C and D are co-circular.

In other words, for a sufficiently small ε, the Delaunay tessalation of the
perturbed polyhedron P ε is combinatorially equivalent to the Delaunay
tessalation of P with some diagonals added to the non-triangular faces.
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This shows that, for a sufficiently small pertubation of P , there always
exists a coordinate system in which h is clearly continuous. Since all
transition maps are continuous, we conclude that h is continuous.

Theorem: The map h is injective.

Proof: If h(P ) equals h(Q), then P and Q are isometric according to the
Cauchy Rivin rigidity theorem. Hence P and Q agree in PNideal.

Theorem: The map h is closed.

Proof: Let ρ̂P1 , . . . , ρ̂Pi , . . . be a sequence of hyperbolic metrics on a sur-
face Sµ homeomorphic to the N -times punctured sphere and converging
to a metric ρ̂ such that h(Pi) = ρ̂Pi .

Choose a subsequence {Pik} such that all polyhedra have the same com-
binatorics. The vertices and faces of the polyhedra are labelled such that
v1(Pik ) = 0, v2(Pik ) = 1, v3(Pik ) = ∞ and f1(Pik ) rises above the real
axis. Since the Riemann sphere C̄ is compact, there exists a limiting tes-
salation T . If T is non-degenerate, then by the continuity of h it follows
that there exists P∞ such that h(P∞) = ρ̂.

We will show that T is always non-degenerate. Suppose it is not, then
there exist two abutting triangles ABC and ADC in T such that ADC is
collapsed and ABC is not. Such two triangles exist, since the face f1 is not
collapsing. Map A to ∞, B to 1 and C to 0. Then the shear between the
two triangles equals log |D|. Since ρ̂ is a non-degenerate metric, |D| must
stay away from 0 and ∞. But this means that ADC is non-degenerate
after all.

A CONFORMAL EQUIVALENCE RELATION FOR CONVEX
POLYHEDRA

Discrete conformality of convex polyhedra. A Delaunay triangula-
tion of a development R is a Delaunay triangulation of every polygon in
R. The following lemma is a classical property of Delaunay triangulations
in the plane. A proof can be found in Aurenhammer’s book on Voronoi
diagrams [24].

Lemma: If a finite set of points in the plane admits two Delaunay trian-
gulations, then there exists a sequence of Delaunay triangulations between
them, such that each is related to the next by a diagonal switch.

Hence, if a Euclidean development R admits two distinct Delaunay trian-
gulations, then they differ by a finite number of diagonal switches between
two abbuting triangles within a polygon in R that share the same circum-
circle.

Every Euclidean development R has a unique set of circumcircles attached
to its vertices, by taking the circumcircles of a Delaunay triangulation of
R. A Euclidean triangle with its circumcircle can be viewed as an ideal
hyperbolic triangle in the Klein model. This construction does not depend
on the chosen Delaunay triangulation and associates with every Euclidean
development R with N vertices a marked ideal polyhedral surface (Sµ, ρ̂R)
with a cusp for each vertex of the development. Indeed, by the following
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theorem the associated hyperbolic surface with cusps is complete, since
the shear coordinates add up to zero around vertices.

Theorem: Let R be a Euclidean development with N vertices and T a
Delaunay triangulation of R. Let ijk and ilj be two triangles in T abutting
along the edge ij. The hyperbolic structure ρ̂R on Sµ is the unique complete
hyperbolic structure on Sµ with shear

log
ϑT (ρR)il
ϑT (ρR)ik

:
ϑT (ρR)jl
ϑT (ρR)jk

along the edge ij of T .

Proof: The map associating every Euclidean development R with a hy-
perbolic surface with cusps (Sµ, ρ̂R), can be described in upper half-space
model as follows. Consider C as the sphere at infinity of the hyperbolic
3-space H3 = C × R>0. Let ijk and ijl be two abutting triangles in
R. Embed ijk ∪ ijl into the sphere at infinity by an isometry f . The
hyperbolic metric ρ̂R on ijk ∪ ijl is the hyperbolic metric of the ideal
hyperbolic triangles in H3, having the same vertices as ijk and ijl, glued
by the same isometry f , considered as a hyperbolic motion of H3.

The shear of (Sµ, ρ̂R) along the edge ij is the logarithm of the absolute
value of the complex cross-ratio of the four vertices zi, zj , zk and zl of the
triangles ijk and ijl in C. Clearly,

log | zi − zl
zi − zk

:
zj − zl
zj − zk

| = log
ϑT (ρR)il
ϑT (ρR)ik

:
ϑT (ρR)jl
ϑT (ρR)jk

.

A Delaunay triangulation of a convex polyhedron P is a triangulation of its
boundary coming from a Delaunay triangulation of its face development
RP .

Note: A Delaunay triangulation of an ideal convex polyhedron P in H3,
is a Delaunay triangulation of a convex polyhedron if P is viewed as a
Euclidean convex polyhedron inscribed in the sphere.

Given a convex Euclidean polyhedron P . We associate with P the marked
ideal polyhedral surface (Sµ, ρ̂RP ) coming from the face development of
P . In the following, we denote (Sµ, ρ̂RP ) by (Sµ, ρ̂P ). Formally we obtain
a function f : PN → T (N) mapping P to (Sµ, ρ̂P ).

Definition: Two closed convex polyhedra P and Q with N vertices are
discrete-conformally equivalent if and only if (Sµ, ρ̂P ) and (Sµ, ρ̂Q) are
isometric.

Theorem: Let P and Q be two convex polyhedra inscribed in the unit
sphere that are discrete-conformally equivalent. Then there exists a Möbius
transformation on the sphere that maps the vertex set of P to the vertex
set of Q.

Proof: If P is inscribed in the unit sphere, then the association P →
(Sµ, ρ̂P ) defined above is nothing but interpreting P as a convex ideal
polyhedron in the Klein model and moving to the boundary. Hence, if
P and Q are discrete-conformally equivalent, there exists a hyperbolic
isometry from P onto Q. According to the rigidity theory of Cauchy,
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Alexandrov and Rivin, this isometry can be realized as a motion or a mo-
tion and a reflection in H3. Equally, there exists a Möbius transformation
on the sphere mapping the vertex set of P to the vertex set of Q.

The above rigidity theorem allows us to classify Euclidean polyhedra up
to discrete conformality.

Theorem: (Uniformization) Every closed convex polyhedron in E3 is
discrete-conformally equivalent to a closed convex polyhedron inscribed in
the unit sphere. This polyhedron is unique up to Möbius transformations
on the sphere.

The uniquness part was proven above. The existence follows from Rivin’s
isometric embedding of ideal polyhedra in hyperbolic 3-space.

Theorem: Given a convex polyhedron P in E3, there exists a convex poly-
hedron Q inscribed in the unit sphere that is discrete-conformally equiva-
lent to P .

Proof: Let (Sµ, ρ̂P ) be the marked ideal polyhedral surface associated
with P . According to Rivin’s isometric embedding theorem, (Sµ, ρ̂P ) can
be isometrically embedded in H3 as the boundary of a convex hyperbolic
polyhedron Q with all vertices on the sphere at infinity. The polyhedron
Q may be interpreted as a convex Euclidean polyhedron inscribed in the
sphere if viewed in the Klein model. This interpretation is just the inverse
of the map Q→ (Sµ, ρ̂Q). Hence, (Sµ, ρ̂P ) is isometric to (Sµ, ρ̂Q) and P
and Q are discrete-conformally equivalent.

Characterization of discrete conformality. The notion of discrete
conformality passes through hyperbolic geometry. In the following we
characterize discrete conformality of Euclidean polyhedra that share a
common Delaunay triangulation by elementary transformations on ver-
tices.

Theorem: Let P and Q be two polyhedra that share a common Delaunay
triangulation T , then P and Q are discrete-conformally equivalent if and
only if there exists a real valued function uT on the vertices of P so that
if, e is an edge in T between the vertices i and j, then the length lP (e)
and lQ(e) of e in P and Q are related by

lQ(e) = lP (e) e
1
2

(uT (i)+uT (j)).

We will first give an alternative description of the function f : PN → T (N)
using Penner’s theory on decorated Teichmüller spaces [25]. To shorten
notation, we call uT a conformal factor and write uT ∗ P = Q if P and
Q are related by the conformal factor uT as above.

A decorated ideal triangle is an ideal triangle ABC together with a choice
of horocycles hA, hB and hC . The Penner distance between two distinct
horocycles hA and hB is

lPAB := lP (hA, hB) := eλAB/2,
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where λAB := λ(hA, hB) is the signed distance between two distinct horo-
cycles.

Two decorated ideal triangles (ABC, hA, hB , hC) and (ADC, hA, hD, hC)
can be glued along the edge AC by an isometry preserving the horocycles
hA and hC .

Recall that Sµ is a surface homeomorphic to the 2-sphere with N punc-
tures, together with its marking. A decorated hyperbolic metric on Sµ is a
complete finite area hyperbolic metric ρ̂ on Sµ, together with horoballs hi
at every cusp i. Two decorated hyperbolic metrics on Sµ are equivalent
if there exists an isometry homotopic to the identity between them that
preserves the horoballs.

Let TD(N) be the set of equivalence classes of decorated hyperbolic met-
rics on Sµ. Let T (N) be the set of complete, finite volume hyperbolic
structures on Sµ as introduced above. The mapping

TD(N)→ T (N)× RN>0

(ρ̂, {hi}Ni=1) 7→ (ρ̂, (w1, . . . , wN ))

is a bijection, where wi is the sum of the lengths Dijk(hi) of horoarcs cut
out by the ideal triangles at i.

Let T be a triangulation of Sµ and E(T ) the set of edges associated to T .
Let E(T )∗ be the set of positive real valued functions on E(T ). For x ∈
E(T )∗ let (ρ̂, w) be a decorated hyperbolic metric on Sµ constructed by
isometrically gluing decorated hyperbolic triangles ijk ∈ T with Penner
distances lPij = x(ij), lPjk = x(jk) and lPik = x(ik) along corresponding
edges. This provides an injective map

ι : E(T )∗ → TD(N)

mapping x to (ρ̂, w).

Let UT be the image of ι in TD(N) and ϕT the inverse of ι on UT . The
pair (UT , ϕT ) is a Penner coordinate chart on TD(N).

Theorem: The set of Penner coordinate charts

{(UT , ϕT ) | T triangulation ofSµ}

forms a real analytic atlas on TD(N). This turns TD(N) into an |E|
dimensional, real analytic manifold.

Proof: For any two triangulations of Sµ there exists a sequence of trian-
gulations of Sµ between them, such that each is related to the next by
a diagonal switch along an edge. Hence, it is enough to show that the
transition function ϕT ϕ

−1
T ′ is real analytic if T and T ′ are related by a

diagonal switch.

In this case,

ϕT ϕ
−1
T ′ (x0, x1, . . . , xn) = (

x1x3 + x2x4

x0
, x1, x2, . . . , xn),

which is real analytic.

Let p : TD(N)→ T (N) be the projection, mapping (ρ̂, {hi}Ni=1) to ρ̂, and
let g : PN → T con

PL (N) be Alexandrov’s homeomorphism. We aim for an
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alternative description of f by constructing a function F : T con
PL (N) →

TD(N) such that p ◦F ◦ g = f. As usual we denote by ρP the image of the
polyhedron P under g in T con

PL (N). Let DPL(T ) be the set of polyhedral
metrics ρP in T con

PL (N) such that T is isotopic to a Delaunay triangulation
of the associated polyhedron P . The sets DPL(T ) for different isotopy
classes of triangulations of Sµ form a covering of T con

PL (N). Let FT =
ϕ−1
T ◦ ϑT , define a function F on T con

PL (N) by setting F (ρ) = FT (ρ) if
ρ ∈ DPL(T ).

Lemma: The function F : T con
PL (N)→ TD(N) is well-defined.

Proof: Suppose ρP ∈ DPL(T ) ∩ DPL(T ′), i.e. both T and T ′ are De-
launay triangulations of P . Then there exists a sequence of Delaunay
triangulations T = T1, . . . , Tn = T ′ of P such that Ti is obtained from
Ti+1 by a diagonal switch. In particular FT (ρP ) = FT ′(ρP ) follows from
FTi(ρP ) = FTi+1(ρP ) for i = 1, 2, . . . , n − 1. Hence, assume that T ′ is
obtained from T by a diagonal switch at an edge e.

Let ϑT (ρP ) = (x0, x1, . . . , xn). Since both T and T ′ are Delaunay trian-
gulations of P , the triangles abutting at e share a common circumcircle.
In this case the transition function is of the form

ϑT ′ϑ
−1
T (x0, x1, . . . , xn) = (

x1x3 + x2x4

x0
, x1, x2, . . . , xn).

On the other hand, according to Penner [25] the λ-lengths satisfy the
Ptolemy relation for decorated ideal triangles. Hence,

ϕT ′ϕ
−1
T (x0, x1, . . . , xn) = (

x1x3 + x2x4

x0
, x1, x2, . . . , xn).

This shows,

ϑT ′ϑ
−1
T (x0, x1, . . . , xn) = ϕT ′ϕ

−1
T (x0, x1, . . . , xn),

which is

FT (ρP ) = ϕ−1
T ◦ ϑT (ρP ) = ϕ−1

T ′ ◦ ϑT ′(ρP ) = FT ′(ρP ).

In fact, the function F maps ρP to (ρ̂P , {wi}Ni=1) where ρ̂P is the image
of P under f. To see this, we will study the shear coordinates of the
underlying ideal polyhedral surface of a decorated ideal polyhedral surface
(ρ̂, {wi}Ni=1) if (ρ̂, {wi}Ni=1) is given in Penner coordinates.

Theorem: Let (ρ̂, w) ∈ TD(N) and let ϕT be a coordinate chart contain-
ing (ρ̂, w), then the shear coordinate between two abutting triangles ilj and
ikj in T of ρ̂ is given by

log
ϕT ((ρ̂, w))il
ϕT ((ρ̂, w))ik

:
ϕT ((ρ̂, w))jl
ϕT ((ρ̂, w))jk

.

Proof: Recall that ϕT ((ρ̂, w))il = eλil/2, where λil is the signed distance
between the horospheres hi and hl. Hence,

log
ϕT ((ρ̂, w))il
ϕT ((ρ̂, w))ik

:
ϕT ((ρ̂, w))jl
ϕT ((ρ̂, w))jk

=
1

2
(λil − λlj + λjk − λki).
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Let us focus first only on the decorated triangle ijk. The axis of symmetry
through the point i of the ideal triangle ijk splits the signed distance λjk
between the horocycles hi and hl into the sum of two numbers pkij and pjki,
being the signed distance between the base point of the axis of symmetry
and the horocycle hk and hj , respectively. Doing the same for λij and λki
gives λij = pijk + pjki, λjk = pjki + pkij and λki = pkij + pijk. Solving for pjki
gives

pjki =
1

2
(λij + λjk − λki).

Doing the same for the triangle ijl gives

pjil =
1

2
(λij + λjl − λil).

Hence,

log
ϕT ((ρ̂, w))il
ϕT ((ρ̂, w))ik

:
ϕT ((ρ̂, w))jl
ϕT ((ρ̂, w))jk

= pjki − p
j
il.

But the right-hand-side is nothing but the shear between the two triangles
ijk and ijl.

We are now prepared to prove the alternative description of the function
f.

Theorem: Let f : PN → T (N) be the map associating a convex polyhe-
dron with the ideal polyhedral surface (Sµ, ρ̂P ), let g : PN → TPL(N) be
Alexandrov’s homeomorphism and let p : TD(N)→ T (N) be the projection
on the underlying hyperbolic surface. Then,

p ◦ F ◦ g = f.

Proof: Let T be a Delaunay triangulation of P . Let ijk and ilj be two
triangles in T abutting along the edge ij. The ideal polyhedral surface
f(P ) = ρ̂P has shear coordinates

log
ϑT (ρP )il
ϑT (ρP )ik

:
ϑT (ρP )jl
ϑT (ρP )jk

along the edge ij of T . Let (ρ̂, w) = F ◦ g(P ), the shear coordinates of
the decorated ideal polyhedral surface (ρ̂, w) along the edge ij is

log
ϕT ((ρ̂, w))il
ϕT ((ρ̂, w))ik

:
ϕT ((ρ̂, w))jl
ϕT ((ρ̂, w))jk

.

But g(P ) lies in DPL(T ), hence (ρ̂, w) = FT (ρP ) = ϕ−1
T ϑT (ρP ). Hence,

log
ϕT ((ρ̂, w))il
ϕT ((ρ̂, w))ik

:
ϕT ((ρ̂, w))jl
ϕT ((ρ̂, w))jk

= log
ϑT (ρP )il
ϑT (ρP )ik

:
ϑT (ρP )jl
ϑT (ρP )jk

,

and ρ̂ = ρ̂P .

Let us return to the main theorem of this section.

Theorem: Let P and Q be two polyhedra that share a common Delaunay
triangulation T , then P and Q are discrete-conformally equivalent if and
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only if there exists a real valued function uT on the vertices of P so that,
if e is an edge in T between the vertices i and j, then the length lP (e) and
lQ(e) of e in P and Q are related by

lQ(e) = lP (e) e
1
2

(uT (i)+uT (j)).

Proof: We have seen that the hyperbolic structure ρ̂Q on Sµ is the unique
complete hyperbolic structure on Sµ with shear

log
ϑT (ρQ)il
ϑT (ρQ)ik

:
ϑT (ρQ)jl
ϑT (ρQ)jk

along the edge ij of T . If there exists a conformal factor uT such that
Q = uT ∗ P , this number equals

log
e

1
2

(uT (i)+uT (l))ϑT (ρP )il

e
1
2

(uT (i)+uT (k))ϑT (ρP )ik
:
e

1
2

(uT (j)+uT (l))ϑT (ρP )jl

e
1
2

(uT (j)+uT (k))ϑT (ρP )jk
,

which equals

log
ϑT (ρP )il
ϑT (ρP )ik

:
ϑT (ρP )jl
ϑT (ρP )jk

.

Hence, (Sµ, ρ̂P ) is isometric to (Sµ, ρ̂Q).

If P and Q are discrete-conformally equivalent, i.e. f(P ) = f(Q), then
p ◦F ◦ g(P ) = p ◦F ◦ g(Q). In other words, we obtain an ideal polyhedral
surface with two decorations {hPi }Ni=1 and {hQi }

N
i=1 corresponding to P

and Q respectively.

Let λiP→Q be the signed distance between the horoballs hPi and hQi at the
i-th cone point of the given ideal polyhedral surface, which is negative if
and only if the horoball hPi is smaller than the horoball hQi . Given an
edge ij of T , the signed distances between horoballs λPij = λ(hPi , h

P
j ) and

λQij = λ(hQi , h
Q
j ) are related by

λQij = λPij + λiP→Q + λjP→Q.

In particular,

eλ
Q
ij/2 = eλ

P
ij/2 e

1
2

(λi
P→Q+λ

j
P→Q

).

Since F ◦ g(P ) = ϕ−1
T ϑT (ρP ) as well as F ◦ g(Q) = ϕ−1

T ϑT (ρQ), we have

eλ
P
ij/2 = lP (ij) and eλ

Q
ij/2 = lQ(ij). Hence, if we define

uT (i) := λiP→Q,

for every vertex i = 1, . . . , N of the polyhedron P , then uT is a conformal
factor satisfying uT ∗ P = Q.

Concepts of discrete conformality and Möbius geometry. Let
Pideal be the space of ideal convex polyhedra in H3, this space is equiv-
alent to the space of convex Euclidean polyhedra inscribed in the unit
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sphere if H3 is the Klein model of the hyperbolic 3-space. Hence, let
us interpret Pideal as the space of convex Euclidean polyhedra inscribed
in the unit sphere. Let C be the set of circle patterns covering the unit
sphere. To every circle pattern C in C corresponds a unique convex Eu-
clidean polyhedron PC in Pideal by cutting off all half-planes defined by
the circles in C. Conversely, every convex polyhedron inscribed in the unit
sphere corresponds to a unique circle pattern covering the unit sphere.

Theorem: Let C1 and C2 be two circle patterns in C and let PC1 and PC2

be the corresponding convex polyhedra inscribed in the unit sphere. There
exists a Möbius transformation f on the sphere mapping the circle pattern
C1 onto the circle pattern C2 if and only if PC1 and PC2 share a common
Delaunay triangulation T and there exists a function uT defined on the
vertex set of PC1 such that for every edge ij in the Delaunay triangulation
between vertices i and j, its length in PC2 is related to its length in PC1

by

lPC2
(ij) = lPC1

(ij) e
1
2

(uT (i)+uT (j)).

Moreover, f and uT are related by uT = log |df |V , where V is the vertex
set of PC1 .

Proof: It only remains to prove the relation of uT and the Möbius trans-
formation f . Let x and y be two distinct vertices of PC1 . Let {xn} and
{yn} be sequences on the unit sphere converging to x and y, respectively,
but not containing the points x and y. The Euclidean length cross-ratio
is invariant under Möbius transformations on the sphere. Hence

|x− xn|
|x− yn|

:
|y − xn|
|y − yn|

=
|f(x)− f(xn)|
|f(x)− f(yn)| :

|f(y)− f(xn)|
|f(y)− f(yn)| .

A rearrangment gives

|f(x)− f(yn)|
|x− yn|

|f(y)− f(xn)|
|y − xn|

=
|f(x)− f(xn)|
|x− xn|

|f(y)− f(yn)|
|y − yn|

.

Taking the limit n→∞ results in

|f(x)− f(y)|2

|x− y|2 = |df(x)||df(y)|.

This shows that PC1 and PC2 are discrete-conformally equivalent with
uT = log |df |V .

As we mentioned in the introduction, this theorem suggests a third variant
of discrete conformality, namely discrete Möbius geometry.

Roughly speaking, a Möbius structure on a set X is an equivalence class
of metrics on X, where two metrics are equivalent if they define the same
crossratio. Let M be a Möbius structure on a set X. The pair (X,M) is
called a Möbius space.

If X is a strongly hyperbolic metric space, then its ideal boundary carries
a natural Möbius structure as observed by Nica and Spakula.

Let X be a finite set, let df be the pull-back metric of the Euclidean
distance on X induced by an embedding f of X into the sphere.
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Theorem: The metric spaces (X, df1) and (X, df2) are Möbius equivalent
if and only if the associated convex polyhedra Pf1 and Pf2 are discrete-
conformally equivalent.

Proof: If (X, df1) and (X, df2) are Möbius equivalent, then (Sµ, ρ̂Pf1
) is

isometric to (Sµ, ρ̂Pf2
), i.e. Pf1 and Pf2 are discrete-conformally equiva-

lent. If Pf1 and Pf2 are discrete-conformally equivalent, then there exists
a Möbius transformation on the sphere mapping the vertex set of Pf1 onto
the vertex set of Pf2 , hence (X, df1) and (X, df2) are Möbius equivalent.

Note: It follows from previous considerations that two metric spaces
(X, df1) and (X, df2) with N points are already Möbius equivalent if only
a small subset of 2N − 6 cross-ratios is preserved, namely the cross-ratios
along edges within a quadrilateral of a common Delaunay triangulation
of Pf1 and Pf2 .

DIRECTIONS OF FURTHER RESEARCH

Characterization of discrete conformality. It would be more elegant
to have a definition of discrete-conformal equivalence of convex polyhedra
by elementary transformations on vertices. We conjecture that P and
Q are discrete-conformally equivalent if and only if there exists a finite
sequence of closed convex polyhedra P = P1, P2, . . . , Pn−1, Pn = Q such
that, for k = 1, . . . , n − 1 the polyhedra Pk and Pk+1 share a common
Delaunay triangulation Tk and there exists a real valued function uTk on
the vertices of Pk with the following property. For every edge ij in the
Delaunay triangulation between vertices i and j, its length in Pk+1 is
related to its length in Pk by

lPk+1(ij) = lPk (ij) e
1
2

(uTk (i)+uTk (j)).

Difficulties arise from the fact that a Delaunay triangulation of a Eu-
clidean convex polyhedron P is not a Delaunay triangulation of the asso-
ciated marked polyhedral surface (Sµ, ρP ). Hence, the function f can be
discontinuous when passing from a “cell” DPL(T ) to another.

Variational principles. The uniformization theory of convex polyhedra
may shed some light on the relationships between the different variational
principles developed in the context of discrete conformality. Glickenstein
suggested a formal framework in [26]. The natural appearance of real
analytic cell decompositions in the work of Gu, Luo, Sun and Wu [27],
may suggest the theory of moment maps as a general setting. According
to Atiyah, Guillemin and Sternberg, the image of the moment map of a
hamiltonian torus action on a compact connected symplectic manifold is
always a polytope [28] [29].
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