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What are Poincaré inequalities?
Convolution proof

Generalization to Carnot groups
Poincaré inequalities for mappings

Sobolev-Poincaré inequalities allow to control a function by its first derivatives.

Theorem (Classical Poincaré Inequality, global form)

If 1 ≤ q 6= ν, there exists a constant Cq with the following effect. For all functions
u : Rν → R with Du ∈ Lq ,

if q < ν, let
1
p

=
1
q
−

1
ν
; then inf

m∈R
‖u −m‖p ≤ Cq‖Du‖q ,

if q > ν, let α = 1−
ν

q
; then sup

x,y∈Rn

|u(x)− u(y)|
|x − y |α

≤ Cq‖Du‖q .

There are local versions too.

Theorem (Classical Poincaré Inequality, local form)

Let B denote the unit ball in Rν and 2B the twice larger concentric ball. If 1 ≤ q 6= ν,
there exists a constant Cq with the following effect. For all functions u : 2B → R with
Du ∈ Lq(2B),

if q < ν, let
1
p

=
1
q
−

1
ν
; then inf

m∈R
‖u −m‖Lp(B) ≤ Cq‖Du‖Lq(2B),

if q > ν, let α = 1−
ν

q
; then sup

x,y∈B

|u(x)− u(y)|
|x − y |α

≤ Cq‖Du‖Lq(2B).
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Generalization to Carnot groups
Poincaré inequalities for mappings

Here, we are concerned with mappings f : B → G ′, where B is the unit ball in a
Carnot group G of homogeneous dimension ν. We care only about the local form,
second case, q > ν. What should the condition Du ∈ Lq(B) be replaced with?

Definition

Say that a measurable function u : B → R belongs to W 1,q
loc if all its directional

derivatives Xu along horizontal vectorfields belong to Lqloc is distributional sense.Then
one writes |Dhu| := sup|X |≤1 |Xu|.
Say that a measurable mapping f : B → G ′ belongs to W 1,q if there exists a
measurable function g ∈ Lploc such that for all z ∈ G ′, the composition u = d(·, z) ◦ f
belongs to W 1,q

loc , |Dhu| ≤ g almost everywhere.
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Generalization to Carnot groups
Poincaré inequalities for mappings

Here is today’s theorem.

Theorem (Hölder bound for W 1,q mappings)

If f ∈W 1,q(2B,G ′) for q > ν and α = 1− ν
q
, then f has a continuous representative

and

sup
x,y∈B

d(f (x), f (y))

|x − y |α
≤ Cq‖g‖Lq(2B).

Remark. The Theorem follows from the special case G ′ = R.

Indeed, pick a countable dense set of points z ∈ G ′ and apply the scalar case to
uz := d(·, z) ◦ f . Countable in order to have simultaneously |Dhuz | ≤ g for all z,
almost everywhere. This gives Hölder continuity of uz , hence of f .

From now on, G ′ = R.
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Generalization to Carnot groups

Kernels of type 1
The Euclidean case

The trick is to express u in the form u = (Du) ? k for some matrix-valued function k.
Indeed,

Proposition (Kernels of type 1 map Lq to Cα)

Let k be a kernel of type 1, i.e. a smooth function on G \ {e} such that

1 |k(g)| ≤ C |g |1−ν ,
2 |k(gh)− k(g)| ≤ C |h||g |−ν .

If v ∈ Lq , v ? k ∈ Cα and ‖v ? k‖Cα ≤ Cq‖v‖Lq .

Proof. We need estimate the integral

I = (v ? k)(g0h)− (v ? k)(g0) =

∫
v(g0g

−1)(k(gh)− k(g)) dg .

We treat separately the integral I1 over B(2|h|) and the integral I2 over the
complement Bc (2|h|).

|I1| ≤
∫
B(2|h|)

|v(g0g
−1)|(|k(gh)|+ |k(g)|) dg

≤ ‖v‖q‖|k(·h)|+ |k|‖Lq′ (B(2|h|))

≤ 2‖v‖q‖k‖Lq′ (B(C |h|)).
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Kernels of type 1
The Euclidean case

By (1), |k(g)| ≤ C |g |1−ν , so ‖k‖
Lq

′
(B(C |h|)) ≤ C |h|α.

By (2) and Hölder ( 1
q
+ 1

q′ = 1),

|I2| ≤
∫
Bc (2|h|)

|v(g0g
−1)||k(gh)− k(g)| dg

≤ ‖v‖q

(∫
Bc (2|h|)

(|h||g |−ν)q
′
)1/q′

≤ ‖v‖q |h|(2|h|)−ν+(ν/q′) ≤ C ‖v‖q |h|α.

Adding up,

|(v ? k)v(g0h)− (v ? k)(g0)| ≤ |I1|+ |I2| ≤ C ‖v‖q |h|α,

which proves the Hölder estimate.
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Kernels of type 1
The Euclidean case

An exact formula like u = (Du) ? k cannot exist for all u on Rν (add a constant to u)
or on the unit ball B (the boundary interferes). But a slightly deformed version exists,
up to an additive constant.

Proposition

Let u : 2B → R. Then, for x ∈ B,

u(x)−
∮

2B
u =

∫
〈Du(x), kx (y)〉 dy

where
kx (y) = −

y

|y |
`x (y) and `x (y) ∼ |y |1−ν .

Indeed, write

u(x)− u(0) =
∫ 1

0

d

dt
u(tx) dt =

∫ 1

0
〈Du(tx), x〉 dt.∮

2B
u − u(0) = c

∫
2B

∫ 1

0
〈Du(tx), x〉 dt dx

= c

∫
|y|≤2t≤2

t−ν−1〈Du(y), y〉 dt dy

=
c

ν

∫
2B
〈Du(y), y〉((|y |/2)−ν − 1) dy .
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Step 1, Euclidean case
Steps 1 and 2, general case
Algebraic tricks

In Carnot groups, families of horizontal curves which suitably sweep space exist, this
leads to a geometric proof, see Gromov 1993.
Instead, we explain an alternative approach, due to Jerison 1986.

For v : G → R and 0 < t < 1, let It(v)(g) = t−νv ◦ δ1/t . Let φ be a smooth positive
compactly supported function with integral 1. Then Itφ converges to the Dirac mass
at e as t → 0.

1 By expanding u ? φ− u = u ?
∫ 1
0

d
dt
Itφ dt, one gets an expression

u ? φ− u = (Dhu) ? k,

where k is a kernel of type 1. So u ? φ− u ∈ Cα.
2 The vertical derivatives of u ? φ are again expressible as Dv (u ? φ) = (Dhu) ? k

′,
where k ′ belongs to L1.

3 Young’s inequality then implies that the full Euclidean derivative D(u ? φ) of u ? φ
satisfies ‖D(u ? φ)‖q ≤ Cφ‖Dhu‖q .

4 Apply the Euclidean Poincaré inequality. Since dEucl ≤ dCC, this shows that
u ? φ ∈ Cα, hence u ∈ Cα.
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Step 1, Euclidean case
Steps 1 and 2, general case
Algebraic tricks

We explain step 1 first in the Euclidean case.

∂

∂xi
(t−ν

xi

t
φ(

x

t
)) = t−ν−1φ(

x

t
) + t−ν−1 xi

t

∂φ

∂xi
(
x

t
),

d

dt
Itφ(x) =

d

dt
t−νφ(

x

t
) = −νt−ν−1φ(

x

t
)−

ν∑
i=1

t−ν−1 xi

t

∂φ

∂xi
(
x

t
)

= −
ν∑

i=1

∂

∂xi
(t−ν

xi

t
φ(

x

t
))

= −
ν∑

i=1

∂

∂xi
It(xiφ(x)).

u ? φ− u = u ?

∫ 1

0

d

dt
Itφ(x) dt = u ?

ν∑
i=1

∂

∂xi
ψi =

ν∑
i=1

∂u

∂xi
? ψi ,

where ψi (x) = −
∫ 1
0 It(xiφ(x)) dt satisfies |ψi (x)| ≤ C |x |−ν+1.
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In a general Carnot group, each adapted coordinate xi has a weight wi , and

d

dt
Itφ(x) =

d

dt
t−νφ(. . . ,

xi

twi
, . . .)

= −νt−ν−1φ(δ1/tx)−
ν∑

i=1

t−ν−1wi
xi

twi

∂φ

∂xi
(δ1/tx)

= −
ν∑

i=1

∂

∂xi
(t−νwi

xi

twi
φ(δ1/tx))

= −
ν∑

i=1

∂

∂xi
It(wixiφ(x)).

Whence an expression like
dim(G)∑
i=1

∂u

∂xi
? ψi .
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The other change derives from noncommutativity. If Y is a left-invariant vectorfield,
let Y R denote its image by g 7→ g−1. It is a right-invariant vectorfield. Then

Y (u ? v) = u ? Yv , (Yu) ? v = −u ? Y Rv .

We need replace each ∂
∂xi

with a sum of products Y R
j Dij where Y R

j are horizontal
right-invariant vectorfields and Dij are differential operators. This is a matter of linear
algebra. One gets

u ? φ− u =
∑
i,j

u ? Y R
j Dijψi =

∑
j

Yju ? (−
∑
i

Dijψi ),

and checks that the right multipliers are kernels of type 1.

To perform step 2, i.e. express vertical derivatives, one needs a similar algebraic trick,
with ∂

∂xi
replaced with a left-invariant vectorfield Yi : Yi =

∑
j Y

R
j D′ij implies that

Yi (u ? φ) = u ? Yiφ =
∑
j

u ? (
∑
j

Y R
j D′ijφ) =

∑
j

Yju ? D
′
ijφ.
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I explain the algebraic trick on the example of Engel’s group, whose Lie algebra has
basis X ,Y ,Z ,T with Z = [X ,Y ] and T = [X ,Z ]. X ,Y are homogeneous of degree
−1, Z of degree −2 and T of degree −3.

Since T is central,

T = −TR = −[XR ,ZR ] = −XRZR+[XR ,Y R ]XR = XR(−ZR+Y RXR)−Y R(XRXR).

Then Z = −ZR + aT where the vectorfield aT is homogeneous of degree −2, so is
the function Ta. Since Ta is smooth, Ta = 0, so aT = T ◦ a. Hence

Z = −XRY R + Y RXR + TR ◦ a.

Finally, X = −XR + bZ + cT where the vectorfields bZ and cT are homogeneous of
degree −1, so are the functions Zb and Tc, so both vanish. Thus

X = −XR + Z ◦ b + T ◦ c

again has the required form thanks to above expressions for Z and T .
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