Sobolev-Poincaré inequalities on Carnot groups

Pierre Pansu

March 10th, 2023

프 > 프

Sobolev-Poincaré inequalities allow to control a function by its first derivatives.

Theorem (Classical Poincaré Inequality, global form)

If $1 \leq q \neq \nu$, there exists a constant C_q with the following effect. For all functions $u : \mathbb{R}^{\nu} \to \mathbb{R}$ with $Du \in L^q$,

$$\begin{array}{ll} \text{if } q < \nu, \ \text{let } \frac{1}{p} = \frac{1}{q} - \frac{1}{\nu}; \ \text{then} & \inf_{m \in \mathbb{R}} \|u - m\|_p \leq C_q \|Du\|_q, \\ \\ \text{if } q > \nu, \ \text{let } \alpha = 1 - \frac{\nu}{q}; \ \text{then} & \sup_{x,y \in \mathbb{R}^n} \frac{|u(x) - u(y)|}{|x - y|^\alpha} \leq C_q \|Du\|_q. \end{array}$$

프 > 프

Sobolev-Poincaré inequalities allow to control a function by its first derivatives.

Theorem (Classical Poincaré Inequality, global form)

If $1 \leq q \neq \nu$, there exists a constant C_q with the following effect. For all functions $u : \mathbb{R}^{\nu} \to \mathbb{R}$ with $Du \in L^q$,

$$\begin{array}{ll} \text{if } q < \nu, \ \text{let } \frac{1}{p} = \frac{1}{q} - \frac{1}{\nu}; \ \text{then} & \inf_{m \in \mathbb{R}} \|u - m\|_p \leq C_q \|Du\|_q, \\ \\ \text{if } q > \nu, \ \text{let } \alpha = 1 - \frac{\nu}{q}; \ \text{then} & \sup_{x,y \in \mathbb{R}^n} \frac{|u(x) - u(y)|}{|x - y|^\alpha} \leq C_q \|Du\|_q. \end{array}$$

There are local versions too.

Theorem (Classical Poincaré Inequality, local form)

Let B denote the unit ball in \mathbb{R}^{ν} and 2B the twice larger concentric ball. If $1 \leq q \neq \nu$, there exists a constant C_q with the following effect. For all functions $u : 2B \to \mathbb{R}$ with $Du \in L^q(2B)$,

if
$$q < \nu$$
, let $\frac{1}{p} = \frac{1}{q} - \frac{1}{\nu}$; then $\inf_{m \in \mathbb{R}} ||u - m||_{L^p(B)} \le C_q ||Du||_{L^q(2B)}$,
if $q > \nu$, let $\alpha = 1 - \frac{\nu}{q}$; then $\sup_{x,y \in B} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \le C_q ||Du||_{L^q(2B)}$.

A 3 >

э

Definition

Say that a measurable function $u: B \to \mathbb{R}$ belongs to $W_{loc}^{1,q}$ if all its directional derivatives Xu along horizontal vectorfields belong to L_{loc}^{q} is distributional sense.

Definition

Say that a measurable function $u: B \to \mathbb{R}$ belongs to $W^{1,q}_{loc}$ if all its directional derivatives Xu along horizontal vectorfields belong to L^{q}_{loc} is distributional sense. Then one writes $|D_h u| := \sup_{|X| \le 1} |Xu|$.

Definition

Say that a measurable function $u : B \to \mathbb{R}$ belongs to $W_{loc}^{1,q}$ if all its directional derivatives Xu along horizontal vectorfields belong to L_{loc}^{q} is distributional sense. Then one writes $|D_h u| := \sup_{|X| \le 1} |Xu|$. Say that a measurable mapping $f : B \to G'$ belongs to $W^{1,q}$ if there exists a measurable function $g \in L_{loc}^{p}$ such that for all $z \in G'$, the composition $u = d(\cdot, z) \circ f$ belongs to $W_{loc}^{1,q}$, $|D_h u| \le g$ almost everywhere.

Theorem (Hölder bound for $W^{1,q}$ mappings) If $f \in W^{1,q}(2B, G')$ for $q > \nu$ and $\alpha = 1 - \frac{\nu}{q}$, then f has a continuous representative and $\sup_{x,y \in B} \frac{d(f(x), f(y))}{|x - y|^{\alpha}} \leq C_q ||g||_{L^q(2B)}.$

프 🖌 🛪 프 🛌

3

Theorem (Hölder bound for $W^{1,q}$ mappings) If $f \in W^{1,q}(2B, G')$ for $q > \nu$ and $\alpha = 1 - \frac{\nu}{q}$, then f has a continuous representative and $\sup_{x,y \in B} \frac{d(f(x), f(y))}{|x - y|^{\alpha}} \leq C_q ||g||_{L^q(2B)}.$

Remark. The Theorem follows from the special case $G' = \mathbb{R}$.

医下颌 医下颌

э

Theorem (Hölder bound for $W^{1,q}$ mappings)

If $f \in W^{1,q}(2B, G')$ for $q > \nu$ and $\alpha = 1 - \frac{\nu}{q}$, then f has a continuous representative and

$$\sup_{x,y\in B}\frac{d(f(x),f(y))}{|x-y|^{\alpha}}\leq C_q\|g\|_{L^q(2B)}.$$

Remark. The Theorem follows from the special case $G' = \mathbb{R}$.

Indeed, pick a countable dense set of points $z \in G'$ and apply the scalar case to $u_z := d(\cdot, z) \circ f$. Countable in order to have simultaneously $|D_h u_z| \leq g$ for all z, almost everywhere. This gives Hölder continuity of u_z , hence of f.

Theorem (Hölder bound for $W^{1,q}$ mappings)

If $f \in W^{1,q}(2B, G')$ for $q > \nu$ and $\alpha = 1 - \frac{\nu}{q}$, then f has a continuous representative and d(f(u), f(u))

$$\sup_{x,y\in B}\frac{d(f(x),f(y))}{|x-y|^{\alpha}}\leq C_q\|g\|_{L^q(2B)}.$$

Remark. The Theorem follows from the special case $G' = \mathbb{R}$.

Indeed, pick a countable dense set of points $z \in G'$ and apply the scalar case to $u_z := d(\cdot, z) \circ f$. Countable in order to have simultaneously $|D_h u_z| \leq g$ for all z, almost everywhere. This gives Hölder continuity of u_z , hence of f.

From now on, $G' = \mathbb{R}$.

The trick is to express u in the form $u = (Du) \star k$ for some matrix-valued function k. Indeed,

Proposition (Kernels of type 1 map L^q to C^{α})

Let k be a kernel of type 1, i.e. a smooth function on $G \setminus \{e\}$ such that

$$|k(g)| \le C |g|^{1-\nu},$$

2
$$|k(gh) - k(g)| \le C |h||g|^{-\nu}$$
.

If $v \in L^q$, $v \star k \in C^{\alpha}$ and $||v \star k||_{C^{\alpha}} \leq C_q ||v||_{L^q}$.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

The trick is to express u in the form $u = (Du) \star k$ for some matrix-valued function k. Indeed,

Proposition (Kernels of type 1 map L^q to C^{α})

Let k be a kernel of type 1, i.e. a smooth function on $G \setminus \{e\}$ such that

a
$$|k(g)| \le C |g|^{1-\nu}$$
,
a $|k(gh) - k(g)| \le C |h||g|^{-\nu}$.
If $v \in L^q$, $v * k \in C^{\alpha}$ and $||v * k||_{C^{\alpha}} \le C_q ||v||_{L^q}$.

Proof. We need estimate the integral

$$I = (v \star k)(g_0 h) - (v \star k)(g_0) = \int v(g_0 g^{-1})(k(gh) - k(g)) \, dg.$$

We treat separately the integral l_1 over B(2|h|) and the integral l_2 over the complement $B^c(2|h|)$.

・ロト ・ ア・ ・ ヨト ・ ヨト ・

The trick is to express u in the form $u = (Du) \star k$ for some matrix-valued function k. Indeed,

Proposition (Kernels of type 1 map L^q to C^{α})

Let k be a kernel of type 1, i.e. a smooth function on $G \setminus \{e\}$ such that

●
$$|k(g)| \le C |g|^{1-\nu}$$
,
● $|k(gh) - k(g)| \le C |h||g|^{-\nu}$.
f $v \in L^q$, $v \star k \in C^{\alpha}$ and $||v \star k||_{C^{\alpha}} \le C_q ||v||_{L^q}$.

Proof. We need estimate the integral

$$I = (v \star k)(g_0 h) - (v \star k)(g_0) = \int v(g_0 g^{-1})(k(gh) - k(g)) \, dg.$$

We treat separately the integral I_1 over B(2|h|) and the integral I_2 over the complement $B^c(2|h|)$.

$$\begin{split} |I_{1}| &\leq \int_{B(2|h|)} |v(g_{0}g^{-1})|(|k(gh)| + |k(g)|) \, dg \\ &\leq ||v||_{q} |||k(\cdot h)| + |k||_{L^{q'}(B(2|h|))} \\ &\leq 2||v||_{q} ||k||_{L^{q'}(B(C|h|))}. \end{split}$$

イロト 不得 とくほと 不足 とう

Kernels of type 1 The Euclidean case

By (1), $|k(g)| \leq C |g|^{1-\nu}$, so $\|k\|_{L^{q'}(B(C|h|))} \leq C |h|^{\alpha}$.

イロト 不得 とくほと 不良 とう

Ξ 9 Q (P

Kernels of type 1 The Euclidean case

By (1),
$$|k(g)| \leq C |g|^{1-\nu}$$
, so $||k||_{L^{q'}(B(C|h|))} \leq C |h|^{\alpha}$.

By (2) and Hölder $(\frac{1}{q} + \frac{1}{q'} = 1)$,

$$\begin{split} |I_2| &\leq \int_{B^c(2|h|)} |v(g_0g^{-1})| |k(gh) - k(g)| \, dg \\ &\leq \|v\|_q \left(\int_{B^c(2|h|)} (|h||g|^{-\nu})^{q'} \right)^{1/q'} \\ &\leq \|v\|_q |h|(2|h|)^{-\nu + (\nu/q')} \leq C \, \|v\|_q |h|^{\alpha}. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Kernels of type 1 The Euclidean case

By (1),
$$|k(g)| \leq C |g|^{1-\nu}$$
, so $||k||_{L^{q'}(B(C|h|))} \leq C |h|^{\alpha}$.

By (2) and Hölder
$$(\frac{1}{q} + \frac{1}{q'} = 1)$$
,
 $|I_2| \leq \int_{B^c(2|h|)} |v(g_0g^{-1})||k(gh) - k(g)| dg$
 $\leq ||v||_q \left(\int_{B^c(2|h|)} (|h||g|^{-\nu})^{q'}\right)^{1/q'}$
 $\leq ||v||_q |h|(2|h|)^{-\nu + (\nu/q')} \leq C ||v||_q |h|^{\alpha}$.

Adding up,

$$|(v \star k)v(g_0h) - (v \star k)(g_0)| \le |I_1| + |I_2| \le C ||v||_q |h|^{\alpha},$$

which proves the Hölder estimate.

프 > (프 >

Ξ.

Kernels of type 1 The Euclidean case

An exact formula like $u = (Du) \star k$ cannot exist for all u on \mathbb{R}^{ν} (add a constant to u) or on the unit ball B (the boundary interferes). But a slightly deformed version exists, up to an additive constant.

Proposition

Let $u: 2B \rightarrow \mathbb{R}$. Then, for $x \in B$,

$$u(x) - \oint_{2B} u = \int \langle Du(x), k_x(y) \rangle \, dy$$

where

$$k_x(y) = -rac{y}{|y|}\ell_x(y)$$
 and $\ell_x(y)\sim |y|^{1-
u}.$

프 > 프

Kernels of type 1 The Euclidean case

An exact formula like $u = (Du) \star k$ cannot exist for all u on \mathbb{R}^{ν} (add a constant to u) or on the unit ball B (the boundary interferes). But a slightly deformed version exists, up to an additive constant.

Proposition

Let $u: 2B \rightarrow \mathbb{R}$. Then, for $x \in B$,

$$u(x) - \oint_{2B} u = \int \langle Du(x), k_x(y) \rangle \, dy$$

where

$$k_x(y)=-rac{y}{|y|}\ell_x(y)$$
 and $\ell_x(y)\sim |y|^{1-
u}.$

Indeed, write

$$u(x) - u(0) = \int_0^1 \frac{d}{dt} u(tx) dt = \int_0^1 \langle Du(tx), x \rangle dt.$$

$$\oint_{2B} u - u(0) = c \int_{2B} \int_0^1 \langle Du(tx), x \rangle dt dx$$

$$= c \int_{|y| \le 2t \le 2} t^{-\nu - 1} \langle Du(y), y \rangle dt dy$$

$$= \frac{c}{\nu} \int_{2B} \langle Du(y), y \rangle ((|y|/2)^{-\nu} - 1) dy.$$

э

In Carnot groups, families of horizontal curves which suitably sweep space exist, this leads to a geometric proof, see Gromov 1993.

Instead, we explain an alternative approach, due to Jerison 1986.

프 🖌 👘 프

In Carnot groups, families of horizontal curves which suitably sweep space exist, this leads to a geometric proof, see Gromov 1993.

Instead, we explain an alternative approach, due to Jerison 1986.

For $v : G \to \mathbb{R}$ and 0 < t < 1, let $l_t(v)(g) = t^{-\nu} v \circ \delta_{1/t}$. Let ϕ be a smooth positive compactly supported function with integral 1. Then $l_t \phi$ converges to the Dirac mass at e as $t \to 0$.

9 By expanding $u \star \phi - u = u \star \int_0^1 \frac{d}{dt} l_t \phi \, dt$, one gets an expression

$$u\star\phi-u=(D_hu)\star k,$$

where k is a kernel of type 1. So $u \star \phi - u \in C^{\alpha}$.

< ∃⇒

In Carnot groups, families of horizontal curves which suitably sweep space exist, this leads to a geometric proof, see Gromov 1993.

Instead, we explain an alternative approach, due to Jerison 1986.

For $v : G \to \mathbb{R}$ and 0 < t < 1, let $l_t(v)(g) = t^{-\nu} v \circ \delta_{1/t}$. Let ϕ be a smooth positive compactly supported function with integral 1. Then $l_t \phi$ converges to the Dirac mass at e as $t \to 0$.

9 By expanding $u \star \phi - u = u \star \int_0^1 \frac{d}{dt} l_t \phi \, dt$, one gets an expression

$$u\star\phi-u=(D_hu)\star k,$$

where k is a kernel of type 1. So $u \star \phi - u \in C^{\alpha}$.

2 The vertical derivatives of $u \star \phi$ are again expressible as $D_v(u \star \phi) = (D_h u) \star k'$, where k' belongs to L^1 .

프 🖌 🔺 프 🕨

In Carnot groups, families of horizontal curves which suitably sweep space exist, this leads to a geometric proof, see Gromov 1993.

Instead, we explain an alternative approach, due to Jerison 1986.

For $v : G \to \mathbb{R}$ and 0 < t < 1, let $l_t(v)(g) = t^{-\nu} v \circ \delta_{1/t}$. Let ϕ be a smooth positive compactly supported function with integral 1. Then $l_t \phi$ converges to the Dirac mass at e as $t \to 0$.

9 By expanding $u \star \phi - u = u \star \int_0^1 \frac{d}{dt} I_t \phi \, dt$, one gets an expression

$$u\star\phi-u=(D_hu)\star k,$$

where k is a kernel of type 1. So $u \star \phi - u \in C^{\alpha}$.

- **2** The vertical derivatives of $u \star \phi$ are again expressible as $D_v(u \star \phi) = (D_h u) \star k'$, where k' belongs to L^1 .
- (a) Young's inequality then implies that the full Euclidean derivative $D(u \star \phi)$ of $u \star \phi$ satisfies $||D(u \star \phi)||_q \leq C_{\phi} ||D_h u||_q$.

イロト イポト イヨト イヨト

In Carnot groups, families of horizontal curves which suitably sweep space exist, this leads to a geometric proof, see Gromov 1993.

Instead, we explain an alternative approach, due to Jerison 1986.

For $v : G \to \mathbb{R}$ and 0 < t < 1, let $l_t(v)(g) = t^{-\nu} v \circ \delta_{1/t}$. Let ϕ be a smooth positive compactly supported function with integral 1. Then $l_t \phi$ converges to the Dirac mass at e as $t \to 0$.

9 By expanding $u \star \phi - u = u \star \int_0^1 \frac{d}{dt} I_t \phi \, dt$, one gets an expression

$$u\star\phi-u=(D_hu)\star k,$$

where k is a kernel of type 1. So $u \star \phi - u \in C^{\alpha}$.

- **2** The vertical derivatives of $u \star \phi$ are again expressible as $D_v(u \star \phi) = (D_h u) \star k'$, where k' belongs to L^1 .
- (a) Young's inequality then implies that the full Euclidean derivative $D(u \star \phi)$ of $u \star \phi$ satisfies $||D(u \star \phi)||_q \leq C_{\phi} ||D_h u||_q$.
- Apply the Euclidean Poincaré inequality. Since $d_{\text{Eucl}} \leq d_{\text{CC}}$, this shows that $u \star \phi \in C^{\alpha}$, hence $u \in C^{\alpha}$.

イロト イポト イヨト イヨト

 What are Poincaré inequalities? Convolution proof
 Step 1, Euclidean case

 Generalization to Carnot groups
 Algebraic tricks

We explain step 1 first in the Euclidean case.

$$\frac{\partial}{\partial x_i}(t^{-\nu}\frac{x_i}{t}\phi(\frac{x}{t})) = t^{-\nu-1}\phi(\frac{x}{t}) + t^{-\nu-1}\frac{x_i}{t}\frac{\partial \phi}{\partial x_i}(\frac{x}{t}),$$

イロト イポト イヨト イヨト

Ξ 9 Q (P

We explain step 1 first in the Euclidean case.

$$\frac{\partial}{\partial x_i}(t^{-\nu}\frac{x_i}{t}\phi(\frac{x}{t})) = t^{-\nu-1}\phi(\frac{x}{t}) + t^{-\nu-1}\frac{x_i}{t}\frac{\partial \phi}{\partial x_i}(\frac{x}{t}),$$

$$\begin{aligned} \frac{d}{dt} l_t \phi(x) &= \frac{d}{dt} t^{-\nu} \phi(\frac{x}{t}) = -\nu t^{-\nu-1} \phi(\frac{x}{t}) - \sum_{i=1}^{\nu} t^{-\nu-1} \frac{x_i}{t} \frac{\partial \phi}{\partial x_i}(\frac{x}{t}) \\ &= -\sum_{i=1}^{\nu} \frac{\partial}{\partial x_i} (t^{-\nu} \frac{x_i}{t} \phi(\frac{x}{t})) \\ &= -\sum_{i=1}^{\nu} \frac{\partial}{\partial x_i} l_t(x_i \phi(x)). \end{aligned}$$

イロト イポト イヨト イヨト

Ξ 9 Q (P

We explain step 1 first in the Euclidean case.

$$\frac{\partial}{\partial x_i}(t^{-\nu}\frac{x_i}{t}\phi(\frac{x}{t})) = t^{-\nu-1}\phi(\frac{x}{t}) + t^{-\nu-1}\frac{x_i}{t}\frac{\partial \phi}{\partial x_i}(\frac{x}{t}),$$

$$\begin{aligned} \frac{d}{dt} I_t \phi(x) &= \frac{d}{dt} t^{-\nu} \phi(\frac{x}{t}) = -\nu t^{-\nu-1} \phi(\frac{x}{t}) - \sum_{i=1}^{\nu} t^{-\nu-1} \frac{x_i}{t} \frac{\partial \phi}{\partial x_i}(\frac{x}{t}) \\ &= -\sum_{i=1}^{\nu} \frac{\partial}{\partial x_i} (t^{-\nu} \frac{x_i}{t} \phi(\frac{x}{t})) \\ &= -\sum_{i=1}^{\nu} \frac{\partial}{\partial x_i} I_t(x_i \phi(x)). \end{aligned}$$

$$u \star \phi - u = u \star \int_0^1 \frac{d}{dt} l_t \phi(x) \, dt = u \star \sum_{i=1}^{\nu} \frac{\partial}{\partial x_i} \psi_i = \sum_{i=1}^{\nu} \frac{\partial u}{\partial x_i} \star \psi_i,$$

where $\psi_i(x) = -\int_0^1 I_t(x_i\phi(x)) dt$ satisfies $|\psi_i(x)| \leq C |x|^{-\nu+1}$.

★ Ξ → < Ξ →</p>

2

In a general Carnot group, each adapted coordinate x_i has a weight w_i , and

$$\begin{aligned} \frac{d}{dt} I_t \phi(x) &= \frac{d}{dt} t^{-\nu} \phi(\dots, \frac{x_i}{t^{w_i}}, \dots) \\ &= -\nu t^{-\nu-1} \phi(\delta_{1/t} x) - \sum_{i=1}^{\nu} t^{-\nu-1} w_i \frac{x_i}{t^{w_i}} \frac{\partial \phi}{\partial x_i} (\delta_{1/t} x) \\ &= -\sum_{i=1}^{\nu} \frac{\partial}{\partial x_i} (t^{-\nu} w_i \frac{x_i}{t^{w_i}} \phi(\delta_{1/t} x)) \\ &= -\sum_{i=1}^{\nu} \frac{\partial}{\partial x_i} I_t (w_i x_i \phi(x)). \end{aligned}$$

4 D > 4 B

프 : : : : : : :

э

In a general Carnot group, each adapted coordinate x_i has a weight w_i , and

$$\begin{aligned} \frac{d}{dt} l_t \phi(x) &= \frac{d}{dt} t^{-\nu} \phi(\dots, \frac{x_i}{t^{w_i}}, \dots) \\ &= -\nu t^{-\nu-1} \phi(\delta_{1/t} x) - \sum_{i=1}^{\nu} t^{-\nu-1} w_i \frac{x_i}{t^{w_i}} \frac{\partial \phi}{\partial x_i} (\delta_{1/t} x) \\ &= -\sum_{i=1}^{\nu} \frac{\partial}{\partial x_i} (t^{-\nu} w_i \frac{x_i}{t^{w_i}} \phi(\delta_{1/t} x)) \\ &= -\sum_{i=1}^{\nu} \frac{\partial}{\partial x_i} l_t (w_i x_i \phi(x)). \end{aligned}$$

Whence an expression like

$$\sum_{i=1}^{\dim(G)} \frac{\partial u}{\partial x_i} \star \psi_i.$$

< ∃⇒

э

The other change derives from noncommutativity. If Y is a left-invariant vectorfield, let Y^R denote its image by $g \mapsto g^{-1}$. It is a right-invariant vectorfield. Then

$$Y(u \star v) = u \star Yv, \quad (Yu) \star v = -u \star Y^R v.$$

3 N A 3 N

The other change derives from noncommutativity. If Y is a left-invariant vectorfield, let Y^R denote its image by $g \mapsto g^{-1}$. It is a right-invariant vectorfield. Then

$$Y(u \star v) = u \star Yv, \quad (Yu) \star v = -u \star Y^R v.$$

We need replace each $\frac{\partial}{\partial x_i}$ with a sum of products $Y_j^R D_{ij}$ where Y_j^R are horizontal right-invariant vectorfields and D_{ij} are differential operators. This is a matter of linear algebra. One gets

$$u \star \phi - u = \sum_{i,j} u \star Y_j^R D_{ij} \psi_i = \sum_j Y_j u \star (-\sum_i D_{ij} \psi_i),$$

and checks that the right multipliers are kernels of type 1.

The other change derives from noncommutativity. If Y is a left-invariant vectorfield, let Y^R denote its image by $g \mapsto g^{-1}$. It is a right-invariant vectorfield. Then

$$Y(u \star v) = u \star Yv, \quad (Yu) \star v = -u \star Y^R v.$$

We need replace each $\frac{\partial}{\partial x_i}$ with a sum of products $Y_j^R D_{ij}$ where Y_j^R are horizontal right-invariant vectorfields and D_{ij} are differential operators. This is a matter of linear algebra. One gets

$$u \star \phi - u = \sum_{i,j} u \star Y_j^R D_{ij} \psi_i = \sum_j Y_j u \star (-\sum_i D_{ij} \psi_i),$$

and checks that the right multipliers are kernels of type 1.

To perform step 2, i.e. express vertical derivatives, one needs a similar algebraic trick, with $\frac{\partial}{\partial x_i}$ replaced with a left-invariant vectorfield Y_i : $Y_i = \sum_j Y_j^R D'_{ij}$ implies that

$$Y_i(u \star \phi) = u \star Y_i \phi = \sum_j u \star (\sum_j Y_j^R D'_{ij} \phi) = \sum_j Y_j u \star D'_{ij} \phi.$$

> < 臣 > < 臣 >

I explain the algebraic trick on the example of Engel's group, whose Lie algebra has basis X, Y, Z, T with Z = [X, Y] and T = [X, Z]. X, Y are homogeneous of degree -1, Z of degree -2 and T of degree -3.

э

★ ∃ ►

What are Poincaré inequalities?	Step 1, Euclidean case
Convolution proof	Steps 1 and 2, general case
Generalization to Carnot groups	Algebraic tricks

I explain the algebraic trick on the example of Engel's group, whose Lie algebra has basis X, Y, Z, T with Z = [X, Y] and T = [X, Z]. X, Y are homogeneous of degree -1, Z of degree -2 and T of degree -3.

Since T is central,

 $T = -T^R = -[X^R, Z^R] = -X^R Z^R + [X^R, Y^R] X^R = X^R (-Z^R + Y^R X^R) - Y^R (X^R X^R).$

< 注→ 注

I explain the algebraic trick on the example of Engel's group, whose Lie algebra has basis X, Y, Z, T with Z = [X, Y] and T = [X, Z]. X, Y are homogeneous of degree -1, Z of degree -2 and T of degree -3.

Since T is central,

$$T = -T^{R} = -[X^{R}, Z^{R}] = -X^{R}Z^{R} + [X^{R}, Y^{R}]X^{R} = X^{R}(-Z^{R} + Y^{R}X^{R}) - Y^{R}(X^{R}X^{R}).$$

Then $Z = -Z^R + aT$ where the vectorfield aT is homogeneous of degree -2, so is the function Ta. Since Ta is smooth, Ta = 0, so $aT = T \circ a$. Hence

$$Z = -X^R Y^R + Y^R X^R + T^R \circ a.$$

3.5 3

I explain the algebraic trick on the example of Engel's group, whose Lie algebra has basis X, Y, Z, T with Z = [X, Y] and T = [X, Z]. X, Y are homogeneous of degree -1, Z of degree -2 and T of degree -3.

Since T is central,

$$T = -T^{R} = -[X^{R}, Z^{R}] = -X^{R}Z^{R} + [X^{R}, Y^{R}]X^{R} = X^{R}(-Z^{R} + Y^{R}X^{R}) - Y^{R}(X^{R}X^{R}).$$

Then $Z = -Z^R + aT$ where the vectorfield aT is homogeneous of degree -2, so is the function Ta. Since Ta is smooth, Ta = 0, so $aT = T \circ a$. Hence

$$Z = -X^R Y^R + Y^R X^R + T^R \circ a.$$

Finally, $X = -X^R + bZ + cT$ where the vectorfields bZ and cT are homogeneous of degree -1, so are the functions Zb and Tc, so both vanish. Thus

$$X = -X^R + Z \circ b + T \circ c$$

again has the required form thanks to above expressions for Z and T.

★ ∃ ►