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What are Poincaré inequalities?

Poincaré inequalities for mappings

Sobolev-Poincaré inequalities allow to control a function by its first derivatives.

Theorem (Classical Poincaré Inequality, global form)

If 1 < q # v, there exists a constant Cq with the following effect. For all functions
u:RY - R with Du e L9,

1
ifq<uv, let — =—— =; then inf |lu—m|p, < Cq4||Dullq,
P meR

ifq>v, letao=1— —; then  sup [uC) = u)l < Gql||Dullq-
q
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What are Poincaré inequalities?

Poincaré inequalities for mappings

Sobolev-Poincaré inequalities allow to control a function by its first derivatives.

Theorem (Classical Poincaré Inequality, global form)

If 1 < q # v, there exists a constant Cq with the following effect. For all functions
u:RY - R with Du e L9,

1
ifq<uv, let — =—— =; then inf |lu—m|p, < Cq4||Dullq,
P meR

ifq>v, leta=1— —; then sup M
q xyeRr X —yl®

1 1
q v
v

< Gl Dullg-

There are local versions too.

Theorem (Classical Poincaré Inequality, local form)

Let B denote the unit ball in R¥ and 2B the twice larger concentric ball. If 1 < q # v,
there exists a constant Cq with the following effect. For all functions u : 2B — R with
Du € L9(2B),

1
i B — i = <
ifq<uv, let -  then  inf [|lu—ml|io(g) < Gql|Dull a2,

ux)—u
cthen sup VTN < by o,
xyeB |x—yl

1
q

ifgq>v, leta=1—

QX Y|+
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What are Poincaré inequalities?

Poincaré inequalities for mappings

Here, we are concerned with mappings f : B — G’, where B is the unit ball in a
Carnot group G of homogeneous dimension v. We care only about the local form,
second case, g > v. What should the condition Du € L9(B) be replaced with?
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What are Poincaré inequalities?

Poincaré inequalities for mappings

Here, we are concerned with mappings f : B — G’, where B is the unit ball in a
Carnot group G of homogeneous dimension v. We care only about the local form,
second case, g > v. What should the condition Du € L9(B) be replaced with?

Definition

Say that a measurable function u : B — R belongs to Wlt’cq if all its directional

derivatives Xu along horizontal vectorfields belong to Lfo . Is distributional sense.
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What are Poincaré inequalities?

Poincaré inequalities for mappings

Here, we are concerned with mappings f : B — G’, where B is the unit ball in a
Carnot group G of homogeneous dimension v. We care only about the local form,
second case, g > v. What should the condition Du € L9(B) be replaced with?

Definition

Say that a measurable function u : B — R belongs to Wlt’cq if all its directional
derivatives Xu along horizontal vectorfields belong to Lfo . Is distributional sense. Then
one writes |Dyu| := sup|x <y [Xul.
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What are Poincaré inequalities?

Poincaré inequalities for mappings

Here, we are concerned with mappings f : B — G’, where B is the unit ball in a
Carnot group G of homogeneous dimension v. We care only about the local form,
second case, g > v. What should the condition Du € L9(B) be replaced with?

Definition

Say that a measurable function u : B — R belongs to Wlt’cq if all its directional
derivatives Xu along horizontal vectorfields belong to Lfo . Is distributional sense. Then
one writes |Dyu| := sup|x <y [Xul.

Say that a measurable mapping f : B — G’ belongs to W:9 if there exists a

measurable function g € Lfoc such that for all z € G’, the composition u = d(-,z) o f

belongs to V\/lth |Dpu| < g almost everywhere.
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What are Poincaré inequalities?

Poincaré inequalities for mappings

Here is today's theorem.

Theorem (Holder bound for W?:9 mappings)

If f € WH9(2B, G') forq >v and o = 1 — & then f has a continuous representative

d(f(x), f(v))
xyeB |x—yl®

and

< GllgllLaqesy-
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What are Poincaré inequalities?

Poincaré inequalities for mappings

Here is today's theorem.

Theorem (Holder bound for W?:9 mappings)

If f € WH9(2B, G') forq >v and o = 1 — & then f has a continuous representative

d(f(x), f(v))
xyeB |x—yl®

and

< GllgllLaqesy-

Remark. The Theorem follows from the special case G’ = R.
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What are Poincaré inequalities?

Poincaré inequalities for mappings

Here is today's theorem.

Theorem (Holder bound for W?:9 mappings)

If f € WH9(2B, G') forq >v and o = 1 — & then f has a continuous representative

d(f(x), f(v))
xyeB |x—yl®

and

< GllgllLaqesy-

Remark. The Theorem follows from the special case G’ = R.

Indeed, pick a countable dense set of points z € G’ and apply the scalar case to
uy :=d(-,z) o f. Countable in order to have simultaneously |Dyu;| < g for all z,
almost everywhere. This gives Holder continuity of u,, hence of f.
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What are Poincaré inequalities?

Poincaré inequalities for mappings

Here is today's theorem.

Theorem (Holder bound for W?:9 mappings)

If f € WH9(2B, G') forq >v and o = 1 — & then f has a continuous representative

d(f(x), f(v))
xyeB |x—yl®

and

< GllgllLaqesy-

Remark. The Theorem follows from the special case G’ = R.

Indeed, pick a countable dense set of points z € G’ and apply the scalar case to
uy :=d(-,z) o f. Countable in order to have simultaneously |Dyu;| < g for all z,
almost everywhere. This gives Holder continuity of u,, hence of f.

From now on, G’ = R.
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Kernels of type 1

onvolution proof .
Convolution p: The Euclidean case

The trick is to express u in the form u = (Du) x k for some matrix-valued function k.
Indeed,

Proposition (Kernels of type 1 map L9 to C%)

Let k be a kernel of type 1, i.e. a smooth function on G \ {e} such that

0 |k(g)l < Clgl|t™v,
@ |k(gh) — k(g)| < C|hllg|~>.

Ifveld, vxke CYand |vx*k|ca < Cqyllv]La-
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Kernels of type 1

onvolution proof .
Convolution p: The Euclidean case

The trick is to express u in the form u = (Du) x k for some matrix-valued function k.
Indeed,

Proposition (Kernels of type 1 map L9 to C%)

Let k be a kernel of type 1, i.e. a smooth function on G \ {e} such that
Q |k(g)l < Clegl*~,
Q |k(gh) — k(g)l < C|hllg|™".

Ifveld, vxke CYand |vx*k|ca < Cqyllv]La-

Proof. We need estimate the integral
I = (v K)(goh) — (v x k)(eo) = [ vieog ™ )(k(eh) — k() de.

We treat separately the integral /1 over B(2|h|) and the integral > over the
complement B€(2|h|).
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Kernels of type 1

onvolution proof .
Convolution p: The Euclidean case

The trick is to express u in the form u = (Du) x k for some matrix-valued function k.
Indeed,

Proposition (Kernels of type 1 map L9 to C%)

Let k be a kernel of type 1, i.e. a smooth function on G \ {e} such that
Q |k(g)l < Clegl*~,
Q |k(gh) — k(g)l < C|hllg|™".

Ifveld, vxke CYand |vx*k|ca < Cqyllv]La-

Proof. We need estimate the integral
I = (v K)(goh) — (v x k)(eo) = [ vieog ™ )(k(eh) — k() de.

We treat separately the integral /1 over B(2|h|) and the integral > over the
complement B€(2|h|).

Ih| s/ vigog~1)|(Ik(gh)] + [k(g)]) dg
B(2|h])

< lvllqlllk(-h) + ‘km/_q’(g(zw))

< 2”V||q||k||Lq’(B(c|h\))-
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Kernels of type 1
The Euclidean case

Convolution proof

By (1), [k(g)| < Clgl*™", so | y < C LA,

[kl g (e
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Kernels of type 1

onvolution proof .
Convolution p: The Euclidean case

By (1): |k(g)‘ < C|g|17V: SO Hk”Lq/(B(CM\)) < C‘h|a'

By (2) and Halder ( + & = 1),

Q

| < / v(gog 1)l k(gh) — k(g)| de
Be(2]h|)

) 1/q
< lIvllq </gc(2h|>(h"g'")q>

< |Ivllqlhl(2|Al) /9 < C vlqlAl®.
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Kernels of type 1

onvolution proof .
Convolution p: The Euclidean case

By (1): |k(g)‘ < C|g|17V: SO Hk”Lq/(B(CM\)) < C‘h|a'

By (2) and Halder ( + & = 1),

Q

| < / v(gog 1)l k(gh) — k(g)| de
Be(2]h|)

) 1/q
< lIvllq </gc(2h|>(h"g'")q>

< |Ivilqlhl(IA) ™79 < Cvqlhl®.
Adding up,

(v x k)v(goh) — (v x k)(go)| < L] +[l2| < Cllvllq|hl?,

which proves the Holder estimate.
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Kernels of type 1

Convolution proof The Euclidean case

An exact formula like u = (Du) % k cannot exist for all u on R” (add a constant to u)
or on the unit ball B (the boundary interferes). But a slightly deformed version exists,
up to an additive constant.

Proposition

Let u:2B — R. Then, for x € B,

u) = §_u= [(Dux) () oy

where

kx(y)?g—'ex(y) and  L(y) ~ lyI*".

Pierre Pansu Sobolev-Poincaré inequalities on Carnot groups



Kernels of type 1

Convolution proof The Euclidean case

An exact formula like u = (Du) % k cannot exist for all u on R” (add a constant to u)
or on the unit ball B (the boundary interferes). But a slightly deformed version exists,
up to an additive constant.

Proposition

Let u:2B — R. Then, for x € B,
u) = §_u= [(Dux) () oy

kx(y)?g—'ex(y) and  L(y) ~ lyI*".

where

Indeed, write

u(x) — u( / () de = /01<Du(tx),x>dt

f. u—u(0) = / / (Du(tx), x) dt dx
2B 2B

/ ~=1(Du(y), ) dt dy
\y|§2t§2

< / (Du(y),)((Iy1/2)~* — 1) dy.
v J2B
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Step 1, Euclidean case
Steps 1 and 2, general case

Generalization to Carnot groups Algebraic tricks

In Carnot groups, families of horizontal curves which suitably sweep space exist, this
leads to a geometric proof, see Gromov 1993.
Instead, we explain an alternative approach, due to Jerison 1986.
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Step 1, Euclidean case
Steps 1 and 2, general case

Generalization to Carnot groups Algebraic tricks

In Carnot groups, families of horizontal curves which suitably sweep space exist, this
leads to a geometric proof, see Gromov 1993.
Instead, we explain an alternative approach, due to Jerison 1986.

Forv:G—Rand0<t<1,leth(v)(g)=t""vody,. Letbea smooth positive
compactly supported function with integral 1. Then /:¢ converges to the Dirac mass
ateast — 0.

@ By expanding ux¢ —u=ux fol %Itqb dt, one gets an expression
u* ¢ — u=(Duu)*k,

where k is a kernel of type 1. So ux¢ —u € C*.
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Step 1, Euclidean case
Steps 1 and 2, general case

Generalization to Carnot groups Algebraic tricks

In Carnot groups, families of horizontal curves which suitably sweep space exist, this
leads to a geometric proof, see Gromov 1993.
Instead, we explain an alternative approach, due to Jerison 1986.

Forv:G—Rand0<t<1,leth(v)(g)=t""vody,. Letbea smooth positive
compactly supported function with integral 1. Then /:¢ converges to the Dirac mass
ateast — 0.

@ By expanding ux¢ —u=ux fol %Itqb dt, one gets an expression
u* ¢ — u=(Duu)*k,

where k is a kernel of type 1. So ux¢ —u € C*.

@ The vertical derivatives of u * ¢ are again expressible as D, (u x ¢) = (Dpu) * k',
where k’ belongs to L.
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Step 1, Euclidean case
Steps 1 and 2, general case

Generalization to Carnot groups Algebraic tricks

In Carnot groups, families of horizontal curves which suitably sweep space exist, this
leads to a geometric proof, see Gromov 1993.
Instead, we explain an alternative approach, due to Jerison 1986.

Forv:G—Rand0<t<1,leth(v)(g)=t""vody,. Letbea smooth positive
compactly supported function with integral 1. Then /:¢ converges to the Dirac mass
ateast — 0.

@ By expanding ux¢ —u=ux fol %Itqb dt, one gets an expression
u* ¢ — u=(Duu)*k,

where k is a kernel of type 1. So ux¢ —u € C*.

@ The vertical derivatives of u * ¢ are again expressible as D, (u x ¢) = (Dpu) * k',
where k’ belongs to L.

© Young's inequality then implies that the full Euclidean derivative D(u* ¢) of u* ¢
satisfies |[D(u* ¢)|lqg < Cy||Dpullq-
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Step 1, Euclidean case
Steps 1 and 2, general case

Generalization to Carnot groups Algebraic tricks

In Carnot groups, families of horizontal curves which suitably sweep space exist, this
leads to a geometric proof, see Gromov 1993.
Instead, we explain an alternative approach, due to Jerison 1986.

Forv:G—Rand0<t<1,leth(v)(g)=t""vody,. Letbea smooth positive
compactly supported function with integral 1. Then /:¢ converges to the Dirac mass
ateast — 0.

@ By expanding ux¢ —u=ux fol %Itqb dt, one gets an expression
u* ¢ — u=(Duu)*k,

where k is a kernel of type 1. So ux¢ —u € C*.

@ The vertical derivatives of u * ¢ are again expressible as D, (u x ¢) = (Dpu) * k',
where k’ belongs to L.

© Young's inequality then implies that the full Euclidean derivative D(u* ¢) of u* ¢
satisfies |[D(u* ¢)|lqg < Cy||Dpullq-

@ Apply the Euclidean Poincaré inequality. Since dgyc < dcc, this shows that
ux@¢ € C% hence ue C«.
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Step 1, Euclidean case
Steps 1 and 2, general case

Generalization to Carnot groups Algebraic tricks

We explain step 1 first in the Euclidean case.

7]

9 xi 99
aX,'

t 8X,'

X

(o) = o) + 22,
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Step 1, Euclidean case
Steps 1 and 2, general case

Generalization to Carnot groups Algebraic tricks

We explain step 1 first in the Euclidean case.

i X XN\ 1 X —u—lﬁ% x

5 (TR = T R,
d 4, - v-1X 99 x
ﬁ’td’(x)_dtt e ) o= ) ; tax,-(r)

=3 g )

:72 It(x, (x))-
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Step 1, Euclidean case
Steps 1 and 2, general case

Generalization to Carnot groups Algebraic tricks

We explain step 1 first in the Euclidean case.

O (v Xi XNy X —po1%i b x
3><,-(t L) =t o)t tax,-(t)’
—v—1 ,l,,lx,- 8¢ X
Do) = Ztva(%) = o(3) - z_; e
L9 X, X
:*Zax,-(f L)
*Z It(x, (x))-
1 d v 9 v ou
u*¢>7u:u*/0 al@(x)dt:u*;af)qd;i:;a)q*d]h
where 9;(x) = ffo It (x;p(x)) dt satisfies |1;(x)| < C |x| ¥ +1.
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Step 1, Euclidean case
Steps 1 and 2, general case

Generalization to Carnot groups Algebraic tricks

In a general Carnot group, each adapted coordinate x; has a weight w;, and

d -V
() = Et B2l
v .0
= —vt (81 ex) — ; t™ w ;V 2 (51/t><)
= *Ea(lﬁ —¢(d1/¢x))

- ; %/r(WiX@(X))
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Step 1, Euclidean case
Steps 1 and 2, general case

Generalization to Carnot groups Algebraic tricks

In a general Carnot group, each adapted coordinate x; has a weight w;, and

d
— 1, = —t v
dt t¢(X) dt ¢( tW/ ’ )
e N1 X 09
= ot (B0 = D T w2 S (5 )
i=1
= *Zafxi(lﬁ — - P(01/¢x))
i=1
.9
== l(wixi(x))-
— Ox;
i=1
Whence an expression like
dim(G)
du
2 ot
im1 OXi
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Step 1, Euclidean case
Steps 1 and 2, general case

Generalization to Carnot groups Algebraic tricks

The other change derives from noncommutativity. If Y is a left-invariant vectorfield,
let YR denote its image by g — g~ . It is a right-invariant vectorfield. Then

Y(wrv)=uxYv, (Yu)xv=—uxYRy.
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Step 1, Euclidean case
Steps 1 and 2, general case
Generalization to Carnot groups Algebraic tricks

The other change derives from noncommutativity. If Y is a left-invariant vectorfield,
let YR denote its image by g — g~ . It is a right-invariant vectorfield. Then

Y(uxv)=uxYv, (Yu)xv=—uxYFRy

We need replace each Z- prs with a sum of products YRD,J where YR are horizontal

right-invariant vectorfields and Dj; are differential operators. ThIS is a matter of linear
algebra. One gets

uxd—u=>> ux YDy =" Yiux (=Y Djy),
ij Jj i

and checks that the right multipliers are kernels of type 1.
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Step 1, Euclidean case
Steps 1 and 2, general case
Generalization to Carnot groups Algebraic tricks

The other change derives from noncommutativity. If Y is a left-invariant vectorfield,
let YR denote its image by g — g~ . It is a right-invariant vectorfield. Then

Y(uxv)=uxYv, (Yu)xv=—uxYFRy

We need replace each Z- prs with a sum of products YRD,J where YR are horizontal

right-invariant vectorfields and Dj; are differential operators. ThIS is a matter of linear
algebra. One gets

uxd—u=>> ux YDy =" Yiux (=Y Djy),
iJ Jj i
and checks that the right multipliers are kernels of type 1.

To perform step 2, i.e. express vertical derivatives, one needs a similar algebraic trick,
with 8% replaced with a left-invariant vectorfield Y;: Y; = Zj YJ-RD{j implies that
U

Yilux @) =uxYio =3 ux(3_ Y Djo) =3 Yiux Djo.
J J

J
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Step 1, Euclidean case
Steps 1 and 2, general case

Generalization to Carnot groups Algebraic tricks

| explain the algebraic trick on the example of Engel’s group, whose Lie algebra has
basis X, Y,Z, T with Z=[X,Y] and T =[X,Z]. X,Y are homogeneous of degree
—1, Z of degree —2 and T of degree —3.
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Step 1, Euclidean case
Steps 1 and 2, general case

Generalization to Carnot groups Algebraic tricks

| explain the algebraic trick on the example of Engel’s group, whose Lie algebra has
basis X, Y,Z, T with Z=[X,Y] and T =[X,Z]. X,Y are homogeneous of degree
—1, Z of degree —2 and T of degree —3.

Since T is central,

T=-—TR= xR zR] = -xRZR4L[XR, yRIXR = XR(—ZR+YRXR)—yR(XRXR).
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Step 1, Euclidean case
Steps 1 and 2, general case

Generalization to Carnot groups Algebraic tricks

| explain the algebraic trick on the example of Engel’s group, whose Lie algebra has
basis X, Y,Z, T with Z=[X,Y] and T =[X,Z]. X,Y are homogeneous of degree
—1, Z of degree —2 and T of degree —3.

Since T is central,

T=-—TR= xR zR] = -xRZR4L[XR, yRIXR = XR(—ZR+YRXR)—yR(XRXR).
Then Z = —ZR 4 aT where the vectorfield aT is homogeneous of degree —2, so is
the function Ta. Since Ta is smooth, Ta=0, so aT = T o a. Hence

Z=-XRYR L YRXR L TRoa.
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Step 1, Euclidean case
Steps 1 and 2, general case

Generalization to Carnot groups Algebraic tricks

| explain the algebraic trick on the example of Engel’s group, whose Lie algebra has

basis X, Y,Z, T with Z=[X,Y] and T =[X,Z]. X,Y are homogeneous of degree

—1, Z of degree —2 and T of degree —3.

Since T is central,

T=-—TR= xR zR] = -xRZR4L[XR, yRIXR = XR(—ZR+YRXR)—yR(XRXR).

Then Z = —ZR 4 aT where the vectorfield aT is homogeneous of degree —2, so is

the function Ta. Since Ta is smooth, Ta=0, so aT = T o a. Hence
Z=-XRYR 4L yRXR L TRoa.

Finally, X = —XR 4+ bZ + cT where the vectorfields bZ and cT are homogeneous of

degree —1, so are the functions Zb and Tc, so both vanish. Thus

X=-XR4+Zob+Toc

again has the required form thanks to above expressions for Z and T.
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