$\ell^{q, p}$ cohomology of certain Carnot groups

Pierre Pansu, Univ. Paris-Sud. Joint with A. Baldi, B. Franchi, M. Rumin

February 22nd, 2018

Definition

X simplicial complex. Cochains are functions on simplices. When is an ℓ^{p} cocycle the coboundary of an ℓ^{q} cochain ? Set

$$
\ell^{q, p} H^{k}(X)=\left\{\ell^{p} k \text {-cocycles }\right\} / d\left\{\ell^{q} k-1 \text {-cochains }\right\} .
$$

X finite : topological invariant. X infinite : quasi-isometry invariant. Well defined for discrete groups, gives rise to numerical invariants of discrete groups...

Definition

X simplicial complex. Cochains are functions on simplices. When is an ℓ^{p} cocycle the coboundary of an ℓ^{q} cochain ? Set

$$
\ell^{q, p} H^{k}(X)=\left\{\ell^{p} k \text {-cocycles }\right\} / d\left\{\ell^{q} k-1 \text {-cochains }\right\} .
$$

X finite : topological invariant. X infinite : quasi-isometry invariant. Well defined for discrete groups, gives rise to numerical invariants of discrete groups...

Example. $X=$ subdivided line. Then all $\ell^{q, p} H^{0}(X)=0, \ell^{\infty, 1} H^{1}(X)=0$, all other $\ell^{q, p} H^{1}(X) \neq 0$.

Definition

X simplicial complex. Cochains are functions on simplices. When is an ℓ^{p} cocycle the coboundary of an ℓ^{q} cochain? Set

$$
\ell^{q, p} H^{k}(X)=\left\{\ell^{p} k \text {-cocycles }\right\} / d\left\{\ell^{q} k-1 \text {-cochains }\right\} .
$$

X finite : topological invariant. X infinite : quasi-isometry invariant. Well defined for discrete groups, gives rise to numerical invariants of discrete groups...

Example. $X=$ subdivided line. Then all $\ell^{q, p} H^{0}(X)=0, \ell^{\infty, 1} H^{1}(X)=0$, all other $\ell^{q, p} H^{1}(X) \neq 0$.

Example. $X=$ tesselated plane. Then $\ell^{q, p} H^{1}(X)=0$ if $\frac{1}{p}-\frac{1}{q} \geq \frac{1}{2}$. Indeed, Sobolev inequality allows to handle the case of finitely supported cocycles. It states that, for a smooth compactly supported function u on the plane, if $p<2$,

$$
\|u\|_{q} \leq C\|d u\|_{p}
$$

Questions. Handle infinitely supported cocycles? Pass from discrete to continuous and backward?

Definition

X Riemannian manifold. Set

$$
L^{q, p} H^{k}(X)=\left\{L^{p} \text { closed } k \text {-forms }\right\} / d\left\{L^{q} k-1 \text {-forms } \omega \text { such that } d \omega \in L^{p}\right\} .
$$

Questions. Compute it. If X is triangulated, does $L^{q, p} H^{k}(X)=\ell^{q, p} H^{k}(X)$?

Definition

X Riemannian manifold. Set

$$
L^{q, p} H^{k}(X)=\left\{L^{p} \text { closed } k \text {-forms }\right\} / d\left\{L^{q} k-1 \text {-forms } \omega \text { such that } d \omega \in L^{p}\right\} \text {. }
$$

Questions. Compute it. If X is triangulated, does $L^{q, p} H^{k}(X)=\ell^{q, p} H^{k}(X)$?
Example. $X=\mathbb{R}^{n}$. Then $L^{q, p} H^{k}(X)=0$ if $1<p \leq q<\infty$ and $\frac{1}{p}-\frac{1}{q}=\frac{1}{n}$.
Proof. Let $\Delta=d^{*} d+d d^{*}$. Then Δ has a pseudo-differential inverse which commutes with $d . T=d^{*} \Delta^{-1}$ has a homogeneous kernel of degree $1-n$, hence is bounded $L^{p} \rightarrow L^{q}$ provided $\frac{1}{p}-\frac{1}{q}=\frac{1}{n}$ (Calderon-Zygmund 1952). Finally $1=d T+T d$.

Definition

X Riemannian manifold. Set
$L^{q, p} H^{k}(X)=\left\{L^{p}\right.$ closed k-forms $\} / d\left\{L^{q} k-1\right.$-forms ω such that $\left.d \omega \in L^{p}\right\}$.
Questions. Compute it. If X is triangulated, does $L^{q, p} H^{k}(X)=\ell^{q, p} H^{k}(X)$?
Example. $X=\mathbb{R}^{n}$. Then $L^{q, p} H^{k}(X)=0$ if $1<p \leq q<\infty$ and $\frac{1}{p}-\frac{1}{q}=\frac{1}{n}$.
Proof. Let $\Delta=d^{*} d+d d^{*}$. Then Δ has a pseudo-differential inverse which commutes with d. $T=d^{*} \Delta^{-1}$ has a homogeneous kernel of degree $1-n$, hence is bounded $L^{p} \rightarrow L^{q}$ provided $\frac{1}{p}-\frac{1}{q}=\frac{1}{n}$ (Calderon-Zygmund 1952). Finally $1=d T+T d$.

Example. $X=$ ball in \mathbb{R}^{n}. Then $L^{q, p} H^{k}(X)=0$ if $1<p \leq q<\infty$ and $\frac{1}{p}-\frac{1}{q} \leq \frac{1}{n}$.
Proof (Iwaniec-Lutoborsky 1993). Cartan's homotopy formula provides a homotopy $T, 1=d T+T d$, which has a homogeneous kernel of degree $1-n$. It does not require forms to be globally defined. Hölder $\Rightarrow q$ can be lessened. Works for convex sets.

Theorem (Leray, circa 1946)

Vanishing of $L^{q, p} H^{\cdot}$ of all simplices suffices to prove that $L^{q, p} H^{-}=\ell^{q, p} H^{\cdot}$ for bounded geometry triangulated manifolds.

Thus Iwaniec-Lutoborsky $\Longrightarrow \ell^{q, p} H^{\cdot}=L^{q, p} H^{\cdot}$ if $\frac{1}{p}-\frac{1}{q} \leq \frac{1}{n}$.

Theorem (Leray, circa 1946)

Vanishing of $L^{q, p} H^{\circ}$ of all simplices suffices to prove that $L^{q, p} H^{\cdot}=\ell^{q, p} \mathrm{H}^{\prime}$ for bounded geometry triangulated manifolds.

Thus Iwaniec-Lutoborsky $\Longrightarrow \ell^{q, p} H^{\cdot}=L^{q, p} H^{\cdot}$ if $\frac{1}{p}-\frac{1}{q} \leq \frac{1}{n}$.

Proposition (Rumin)

Proposition persists in the form $\ell^{q, p} H^{\cdot}=L_{\infty}^{q, p} H^{\prime}$, for all $1 \leq p, q \leq \infty$, where $L_{\infty}^{p}=\left\{\right.$ forms all of whose derivatives are in $\left.L^{p}\right\}$.
"Loss on differentiability is allowed". Useful since no restriction on exponent q.

Theorem (Leray, circa 1946)

Vanishing of $L^{q, p} H^{\cdot}$ of all simplices suffices to prove that $L^{q, p} H^{-}=\ell^{q, p} H^{\cdot}$ for bounded geometry triangulated manifolds.

Thus Iwaniec-Lutoborsky $\Longrightarrow \ell^{q, p} H^{\cdot}=L^{q, p} H^{\cdot}$ if $\frac{1}{p}-\frac{1}{q} \leq \frac{1}{n}$.

Proposition (Rumin)

Proposition persists in the form $\ell^{q, p} H^{\cdot}=L_{\infty}^{q, p} H^{\prime}$, for all $1 \leq p, q \leq \infty$, where $L_{\infty}^{p}=\left\{\right.$ forms all of whose derivatives are in $\left.L^{p}\right\}$.
"Loss on differentiability is allowed". Useful since no restriction on exponent q.

Proposition (Pansu)

Proposition merely requires even weaker analytic information : it suffices that a closed form on ball of radius 2 have a primitive on unit ball with controlled norms.
"Loss on domain is allowed". Useful to prove quasiisometry invariance.

Need homogeneous Laplacian. Use homogeneous groups. Special case: Carnot groups $G, \mathfrak{g}=\mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{s}, \delta_{t}=t^{i}$ on \mathfrak{g}_{i}.

Need homogeneous Laplacian. Use homogeneous groups. Special case : Carnot groups $G, \mathfrak{g}=\mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{s}, \delta_{t}=t^{i}$ on \mathfrak{g}_{i}.

Kohn's Laplacian. For a function u, let $d_{R} u=d u_{\mathfrak{g}_{1}}$ and let $\Delta u=d_{R}^{*} d_{R}$. This homogeneous of degree 2 under Carnot dilations δ_{t}.

Need homogeneous Laplacian. Use homogeneous groups. Special case : Carnot groups $G, \mathfrak{g}=\mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{s}, \delta_{t}=t^{i}$ on \mathfrak{g}_{i}.

Kohn's Laplacian. For a function u, let $d_{R} u=d u_{\mathfrak{g}_{1}}$ and let $\Delta u=d_{R}^{*} d_{R}$. This homogeneous of degree 2 under Carnot dilations δ_{t}.

In general, there is no differential homogeneous Laplacian on forms, since left-invariant forms split under δ_{t} into several weight spaces.

Example. On the Heisenberg group, two weights on k-forms, k and $k+1$, since $\Lambda^{k} \mathfrak{g}^{*}=\Lambda^{k} \mathfrak{g}_{1}^{*} \oplus \Lambda^{k-1} \mathfrak{g}_{1}^{*} \otimes \mathfrak{g}_{2}^{*}$.

A pseudodifferential homogeneous Laplacian. Let $|\nabla|=\Delta^{1 / 2}$. Let $|\nabla|^{N}$ be the operator acting componentwise which is $|\nabla|^{w}$ on forms of weight w. Then $d^{\nabla}:=|\nabla|^{-N} d|\nabla|^{N}$ is pseudodifferential of order 0 , so is its Laplacian $\Delta^{\nabla}=\left(d^{\nabla}\right)^{*} d^{\nabla}+d^{\nabla}\left(d^{\nabla}\right)^{*}$. Both are homogeneous.

A pseudodifferential homogeneous Laplacian. Let $|\nabla|=\Delta^{1 / 2}$. Let $|\nabla|^{N}$ be the operator acting componentwise which is $|\nabla|^{w}$ on forms of weight w. Then $d^{\nabla}:=|\nabla|^{-N} d|\nabla|^{N}$ is pseudodifferential of order 0 , so is its Laplacian $\Delta^{\nabla}=\left(d^{\nabla}\right)^{*} d^{\nabla}+d^{\nabla}\left(d^{\nabla}\right)^{*}$. Both are homogeneous.
$\Delta \nabla$ admits a pseudodifferential inverse (Helffer-Nourrigat 1979, Christ-Geller-Glowacki-Polin 1992), hence d^{∇} admits a homotopy $K^{\nabla}:=\left(d^{\nabla}\right)^{*}\left(\Delta^{\nabla}\right)^{-1}, 1=d^{\nabla} K^{\nabla}+K^{\nabla} d^{\nabla}$, hence a homogeneous homotopy $K:=|\nabla|^{N} K^{\nabla}|\nabla|^{-N}$ for d.

A pseudodifferential homogeneous Laplacian. Let $|\nabla|=\Delta^{1 / 2}$. Let $|\nabla|^{N}$ be the operator acting componentwise which is $|\nabla|^{w}$ on forms of weight w. Then $d^{\nabla}:=|\nabla|^{-N} d|\nabla|^{N}$ is pseudodifferential of order 0 , so is its Laplacian $\Delta^{\nabla}=\left(d^{\nabla}\right)^{*} d^{\nabla}+d^{\nabla}\left(d^{\nabla}\right)^{*}$. Both are homogeneous.
$\Delta \nabla$ admits a pseudodifferential inverse (Helffer-Nourrigat 1979, Christ-Geller-Glowacki-Polin 1992), hence d^{∇} admits a homotopy $K^{\nabla}:=\left(d^{\nabla}\right)^{*}\left(\Delta^{\nabla}\right)^{-1}, 1=d^{\nabla} K^{\nabla}+K^{\nabla} d^{\nabla}$, hence a homogeneous homotopy $K:=|\nabla|^{N} K^{\nabla}|\nabla|^{-N}$ for d.
K^{∇} is bounded on L^{p} (Folland 1975), thus K is bounded on

$$
L^{N, p}:=\left\{\alpha ;|\nabla|^{-N} \alpha \in L^{p}\right\}
$$

and on $L^{N-m, p}$ for every constant m.

On functions,

$$
L_{\infty}^{p}=\bigcap_{m=0}^{\infty} L^{N-m, p} .
$$

On the space of forms whose weight lies between a and b, Ω_{a}^{b},

$$
\Omega_{\mathrm{a}}^{b} \cap \bigcap_{m=a}^{\infty} L^{N-m, p} \subset \Omega_{a}^{b} \cap L_{\infty}^{p} \subset \bigcap_{m=b}^{\infty} L^{N-m, p} .
$$

On functions,

$$
L_{\infty}^{p}=\bigcap_{m=0}^{\infty} L^{N-m, p} .
$$

On the space of forms whose weight lies between a and b, Ω_{a}^{b},

$$
\Omega_{a}^{b} \cap \bigcap_{m=a}^{\infty} L^{N-m, p} \subset \Omega_{a}^{b} \cap L_{\infty}^{p} \subset \bigcap_{m=b}^{\infty} L^{N-m, p} .
$$

$|\nabla|^{-\mu}$ is bounded from L^{p} to L^{q} if $\frac{1}{p}-\frac{1}{q}=\frac{\mu}{Q}, Q=\sum i \operatorname{dim}\left(\mathfrak{g}_{i}\right)$ (Folland 1975).
Whence the graded Poincaré inequality

$$
L^{N-m, p} \subset L^{N-m+\mu, q} .
$$

On functions,

$$
L_{\infty}^{p}=\bigcap_{m=0}^{\infty} L^{N-m, p} .
$$

On the space of forms whose weight lies between a and b, Ω_{a}^{b},

$$
\Omega_{a}^{b} \cap \bigcap_{m=a}^{\infty} L^{N-m, p} \subset \Omega_{a}^{b} \cap L_{\infty}^{p} \subset \bigcap_{m=b}^{\infty} L^{N-m, p} .
$$

$|\nabla|^{-\mu}$ is bounded from L^{p} to L^{q} if $\frac{1}{p}-\frac{1}{q}=\frac{\mu}{Q}, Q=\sum i \operatorname{dim}\left(\mathfrak{g}_{i}\right)$ (Folland 1975).
Whence the graded Poincaré inequality

$$
L^{N-m, p} \subset L^{N-m+\mu, q} .
$$

Assume that $K\left(\Omega_{a}^{b}\right) \subset \Omega_{a^{\prime}}^{b^{\prime}}$. If $\mu=b-a^{\prime}$, then
$K\left(L_{\infty}^{p} \cap \Omega_{a}^{b}\right) \subset \Omega_{a^{\prime}}^{b^{\prime}} \cap \bigcap_{m=b}^{\infty} L^{N-m, p} \subset \Omega_{a^{\prime}}^{b^{\prime}} \cap \bigcap_{m=b}^{\infty} L^{N-m+\mu, q}=\Omega_{a^{\prime}}^{b^{\prime}} \cap \bigcap_{m=a^{\prime}}^{\infty} L^{N-m, q} \subset L_{\infty}^{q}$,

Proposition

$\ell^{q, p} H^{k}(G)=0$ if $1<p, q<\infty, \frac{1}{p}-\frac{1}{q} \geq \frac{b-a^{\prime}}{Q}$, where b is the maximal weight in degree k, a^{\prime} is the minimal weight in degree $k-1$.

Example. For Heisenberg group, $b=k+1, a^{\prime}=k-1, b-a^{\prime}=2$. Unsharp.

Proposition

$\ell^{q, p} H^{k}(G)=0$ if $1<p, q<\infty, \frac{1}{p}-\frac{1}{q} \geq \frac{b-a^{\prime}}{Q}$, where b is the maximal weight in degree k, a^{\prime} is the minimal weight in degree $k-1$.

Example. For Heisenberg group, $b=k+1, a^{\prime}=k-1, b-a^{\prime}=2$. Unsharp.
Strategy. Replace d with a subcomplex that uses less weights: Rumin's complex (1994, 1999).

Forms on G split into several weights under dilations. Let d_{0} be the weight 0 (algebraic) part of d. Pick complements of $\operatorname{ker}\left(d_{0}\right)$ and $\operatorname{im}\left(d_{0}\right)$ and define d_{0}^{-1}. Then powers of $1-d_{0}^{-1} d-d d_{0}^{-1}$ stabilize to a projector Π_{E} onto a subcomplex E. $\Pi_{0}=1-d_{0}^{-1} d_{0}-d_{0} d_{0}^{-1}$ projects to a subspace E_{R} of forms where less weights occur. Set

$$
d_{R}=\Pi_{0} \circ d \circ \Pi_{E}
$$

Then Rumin's complex $\left(E_{R}, d_{R}\right)$ is homotopic to de Rham's complex.

Example. For the 3-dimensional Heisenberg group,

- E_{R}^{1} consists of horizontal 1-forms, $d_{R}: E_{R}^{0} \rightarrow E_{R}^{1}$ is the horizontal gradient.
- E_{R}^{2} consists of vertical 2-forms. Π_{E} extends a horizontal 1-form α in such a way that $d \Pi_{E} \alpha$ is vertical (unique choice). Hence $d_{R} \alpha=d \Pi_{E} \alpha$ involves second derivatives.

In general, for the $2 m+1$-dimensional Heisenberg group, E_{R} has one weight in each degree, $w=k$ if $k \leq m, w=k+1$ if $k \geq m+1$, and $d_{R}: E_{R}^{m} \rightarrow E_{R}^{m+1}$ has order 2 .

Example. For the 3-dimensional Heisenberg group,

- E_{R}^{1} consists of horizontal 1-forms, $d_{R}: E_{R}^{0} \rightarrow E_{R}^{1}$ is the horizontal gradient.
- E_{R}^{2} consists of vertical 2-forms. Π_{E} extends a horizontal 1-form α in such a way that $d \Pi_{E} \alpha$ is vertical (unique choice). Hence $d_{R} \alpha=d \Pi_{E} \alpha$ involves second derivatives.

In general, for the $2 m+1$-dimensional Heisenberg group, E_{R} has one weight in each degree, $w=k$ if $k \leq m, w=k+1$ if $k \geq m+1$, and $d_{R}: E_{R}^{m} \rightarrow E_{R}^{m+1}$ has order 2 .

Theorem (Pansu-Rumin)

Let G be a Carnot group of homogeneous dimension Q. Let $[a, b]$ be the scope of weights in Rumin k-forms, let [a^{\prime}, b^{\prime}] be the scope of weights in Rumin $k-1$-forms.
(1) $\ell^{q, p} H^{k}(G)=0$ provided $1<p, q<\infty$ and

$$
\frac{1}{p}-\frac{1}{q} \geq \frac{b-a^{\prime}}{Q}
$$

(2) $\ell^{q, p} H^{k}(G) \neq 0$ if $1 \leq p, q \leq \infty, \frac{1}{p}-\frac{1}{q}<\frac{\max \left\{1, b^{\prime}-a\right\}}{Q}$.

Example. For Heisenberg groups, $b-a^{\prime}=b^{\prime}-a=1$, except in middle dimension where $b-a^{\prime}=b^{\prime}-a=2$.

Example. For all Carnot groups, $b-a^{\prime}=b^{\prime}-a=1$ in degrees 1 and $n=\operatorname{dim}(G)$.

Theorem (Baldi-Franchi-Pansu)

Closed L^{p} forms defined on the Heisenberg 2-ball have d_{R}-primitives on the unit ball which are L^{q}, provided $1<p, q<\infty$ and $\frac{1}{p}-\frac{1}{q} \leq \frac{1}{2 m+2}$ (resp. $\frac{2}{2 m+2}$ in degree $m+1$).

Theorem (Baldi-Franchi-Pansu)

Closed L^{p} forms defined on the Heisenberg 2-ball have d_{R}-primitives on the unit ball which are L^{q}, provided $1<p, q<\infty$ and $\frac{1}{p}-\frac{1}{q} \leq \frac{1}{2 m+2}$ (resp. $\frac{2}{2 m+2}$ in degree $m+1$).

Proof. No subRiemannian Cartan homotopy formula.
Instead, one uses Rumin's homotopy Π_{E} followed by Iwaniec-Lutoborsky's Euclidian homotopy. Since Π_{E} is differential, a preliminary smoothing homotopy is needed.

Theorem (Baldi-Franchi-Pansu)

Closed L^{p} forms defined on the Heisenberg 2-ball have d_{R}-primitives on the unit ball which are L^{q}, provided $1<p, q<\infty$ and $\frac{1}{p}-\frac{1}{q} \leq \frac{1}{2 m+2}$ (resp. $\frac{2}{2 m+2}$ in degree $m+1$).

Proof. No subRiemannian Cartan homotopy formula.
Instead, one uses Rumin's homotopy Π_{E} followed by Iwaniec-Lutoborsky's Euclidian homotopy. Since Π_{E} is differential, a preliminary smoothing homotopy is needed.

Fix a subRiemannian metric in order to define adjoints. $\Delta_{R}:=d_{R}^{*} d_{R}+d_{R} d_{R}^{*}$ is replaced with $\Delta_{R}:=\left(d_{R}^{*} d_{R}\right)^{2}+d_{R} d_{R}^{*}$ ou $d_{R}^{*} d_{R}+\left(d_{R} d_{R}^{*}\right)^{2}$ in degrees m and $m+1$. Then Δ_{R} is maximally hypoelliptic, thus $T_{R}=d_{R}^{*} \Delta_{R}^{-1}$ has a smooth and homogeneous kernel.

Theorem (Baldi-Franchi-Pansu)

Closed L^{p} forms defined on the Heisenberg 2-ball have d_{R}-primitives on the unit ball which are L^{q}, provided $1<p, q<\infty$ and $\frac{1}{p}-\frac{1}{q} \leq \frac{1}{2 m+2}$ (resp. $\frac{2}{2 m+2}$ in degree $m+1$).

Proof. No subRiemannian Cartan homotopy formula.
Instead, one uses Rumin's homotopy Π_{E} followed by Iwaniec-Lutoborsky's Euclidian homotopy. Since Π_{E} is differential, a preliminary smoothing homotopy is needed.

Fix a subRiemannian metric in order to define adjoints. $\Delta_{R}:=d_{R}^{*} d_{R}+d_{R} d_{R}^{*}$ is replaced with $\Delta_{R}:=\left(d_{R}^{*} d_{R}\right)^{2}+d_{R} d_{R}^{*}$ ou $d_{R}^{*} d_{R}+\left(d_{R} d_{R}^{*}\right)^{2}$ in degrees m and $m+1$. Then Δ_{R} is maximally hypoelliptic, thus $T_{R}=d_{R}^{*} \Delta_{R}^{-1}$ has a smooth and homogeneous kernel.
Let K_{R} be the kernel of T_{R}. Write $K_{R}=K^{1}+K^{2}$ where K_{1} has small support and K_{2} is smooth. Then $T_{R}=T^{1}+T^{2}$,

$$
1=d_{R} T^{1}+T^{1} d_{R}+S
$$

where S is smoothing. T^{1} and therefore S map forms defined on ball of radius 2 to forms defined on unit ball. T^{1} maps L^{p} to L^{q} like T_{R}. S wins the derivatives that Π_{E} looses.

Corollary (Baldi-Franchi-Pansu)

Rumin's complex can be used to compute $\ell^{q, p}$-cohomology of contact $2 m+1$-manifolds with bounded geometry, provided $1<p, q<\infty$ and $\frac{1}{p}-\frac{1}{q} \leq \frac{1}{2 m+2}$ (resp. $\frac{2}{2 m+2}$ in degree $m+1$): $\ell^{q, p} H^{\cdot}=L^{q, p} H^{\cdot}\left(d_{c}\right)$. Also, the complex $\left(E_{R}, d_{R}\right)$ admits a smoothing homotopy.

Question. Cases when $p=1$ or $q=\infty$? Work in progress with Baldi and Franchi.

