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`q,p cohomology
Carnot group case

Local Poincaré inequality

Motivation
Euclidean Poincaré inequality
Leray’s acyclic covering theorem revisited

Definition

X simplicial complex. Cochains are functions on simplices. When is an `p cocycle the
coboundary of an `q cochain ? Set

`q,pHk (X ) = {`p k-cocycles}/d{`q k − 1-cochains}.

X finite : topological invariant. X infinite : quasi-isometry invariant. Well defined for
discrete groups, gives rise to numerical invariants of discrete groups...

Example. X = subdivided line. Then all `q,pH0(X ) = 0, `∞,1H1(X ) = 0, all other
`q,pH1(X ) 6= 0.

Example. X = tesselated plane. Then `q,pH1(X ) = 0 if
1

p
−

1

q
≥

1

2
. Indeed, Sobolev

inequality allows to handle the case of finitely supported cocycles. It states that, for a
smooth compactly supported function u on the plane, if p < 2,

‖u‖q ≤ C ‖du‖p .

Questions. Handle infinitely supported cocycles ? Pass from discrete to continuous and
backward ?
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Carnot group case

Local Poincaré inequality

Motivation
Euclidean Poincaré inequality
Leray’s acyclic covering theorem revisited

Definition

X Riemannian manifold. Set

Lq,pHk (X ) = {Lp closed k-forms}/d{Lq k − 1-forms ω such that dω ∈ Lp}.

Questions. Compute it. If X is triangulated, does Lq,pHk (X ) = `q,pHk (X ) ?

Example. X = Rn. Then Lq,pHk (X ) = 0 if 1 < p ≤ q <∞ and
1

p
−

1

q
=

1

n
.

Proof. Let ∆ = d∗d + dd∗. Then ∆ has a pseudo-differential inverse which commutes
with d . T = d∗∆−1 has a homogeneous kernel of degree 1− n, hence is bounded
Lp → Lq provided 1

p
− 1

q
= 1

n
(Calderon-Zygmund 1952). Finally 1 = dT + Td .

Example. X = ball in Rn. Then Lq,pHk (X ) = 0 if 1 < p ≤ q <∞ and
1

p
−

1

q
≤

1

n
.

Proof (Iwaniec-Lutoborsky 1993). Cartan’s homotopy formula provides a homotopy
T , 1 = dT + Td , which has a homogeneous kernel of degree 1− n. It does not require
forms to be globally defined. Hölder ⇒ q can be lessened. Works for convex sets.
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forms to be globally defined. Hölder ⇒ q can be lessened. Works for convex sets.

Pierre Pansu, Univ. Paris-Sud. Joint with A. Baldi, B. Franchi, M. Rumin `q,p cohomology of certain Carnot groups
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Carnot group case

Local Poincaré inequality

Motivation
Euclidean Poincaré inequality
Leray’s acyclic covering theorem revisited

Theorem (Leray, circa 1946)

Vanishing of Lq,pH· of all simplices suffices to prove that Lq,pH· = `q,pH· for
bounded geometry triangulated manifolds.

Thus Iwaniec-Lutoborsky =⇒ `q,pH· = Lq,pH· if
1

p
−

1

q
≤

1

n
.

Proposition (Rumin)

Proposition persists in the form `q,pH· = Lq,p∞ H·, for all 1 ≤ p, q ≤ ∞, where
Lp∞ = {forms all of whose derivatives are in Lp}.

”Loss on differentiability is allowed”. Useful since no restriction on exponent q.

Proposition (Pansu)

Proposition merely requires even weaker analytic information : it suffices that a closed
form on ball of radius 2 have a primitive on unit ball with controlled norms.

”Loss on domain is allowed”. Useful to prove quasiisometry invariance.
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Carnot group case

Local Poincaré inequality

Vanishing result
Role of anisotropic pseudodifferential calculus
Rumin’s complex

Need homogeneous Laplacian. Use homogeneous groups. Special case : Carnot groups
G , g = g1 ⊕ · · · ⊕ gs , δt = t i on gi .

Kohn’s Laplacian. For a function u, let dRu = du|g1
and let ∆u = d∗RdR . This

homogeneous of degree 2 under Carnot dilations δt .

In general, there is no differential homogeneous Laplacian on forms, since left-invariant
forms split under δt into several weight spaces.

Example. On the Heisenberg group, two weights on k-forms, k and k + 1, since
Λkg∗ = Λkg∗1 ⊕ Λk−1g∗1 ⊗ g∗2 .
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`q,p cohomology
Carnot group case

Local Poincaré inequality

Vanishing result
Role of anisotropic pseudodifferential calculus
Rumin’s complex

A pseudodifferential homogeneous Laplacian. Let |∇| = ∆1/2. Let |∇|N be the
operator acting componentwise which is |∇|w on forms of weight w . Then
d∇ := |∇|−Nd |∇|N is pseudodifferential of order 0, so is its Laplacian
∆∇ = (d∇)∗d∇ + d∇(d∇)∗. Both are homogeneous.

∆∇ admits a pseudodifferential inverse (Helffer-Nourrigat 1979,
Christ-Geller-Glowacki-Polin 1992), hence d∇ admits a homotopy
K∇ := (d∇)∗(∆∇)−1, 1 = d∇K∇ + K∇d∇, hence a homogeneous homotopy
K := |∇|NK∇|∇|−N for d .

K∇ is bounded on Lp (Folland 1975), thus K is bounded on

LN,p := {α ; |∇|−Nα ∈ Lp},

and on LN−m,p for every constant m.
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Vanishing result
Role of anisotropic pseudodifferential calculus
Rumin’s complex

On functions,

Lp∞ =
∞⋂
m=0

LN−m,p .

On the space of forms whose weight lies between a and b, Ωb
a ,

Ωb
a ∩

∞⋂
m=a

LN−m,p ⊂ Ωb
a ∩ Lp∞ ⊂

∞⋂
m=b

LN−m,p .

|∇|−µ is bounded from Lp to Lq if 1
p
− 1

q
= µ

Q
, Q =

∑
i dim(gi ) (Folland 1975).

Whence the graded Poincaré inequality

LN−m,p ⊂ LN−m+µ,q .

Assume that K(Ωb
a) ⊂ Ωb′

a′ . If µ = b − a′, then

K(Lp∞ ∩Ωb
a) ⊂ Ωb′

a′ ∩
∞⋂

m=b

LN−m,p ⊂ Ωb′
a′ ∩

∞⋂
m=b

LN−m+µ,q = Ωb′
a′ ∩

∞⋂
m=a′

LN−m,q ⊂ Lq∞,
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Vanishing result
Role of anisotropic pseudodifferential calculus
Rumin’s complex

Proposition

`q,pHk (G) = 0 if 1 < p, q <∞, 1
p
− 1

q
≥ b−a′

Q
, where b is the maximal weight in

degree k, a′ is the minimal weight in degree k − 1.

Example. For Heisenberg group, b = k + 1, a′ = k − 1, b − a′ = 2. Unsharp.

Strategy. Replace d with a subcomplex that uses less weights : Rumin’s complex
(1994, 1999).

Forms on G split into several weights under dilations. Let d0 be the weight 0
(algebraic) part of d . Pick complements of ker(d0) and im(d0) and define d−1

0 . Then

powers of 1− d−1
0 d − dd−1

0 stabilize to a projector ΠE onto a subcomplex E .

Π0 = 1− d−1
0 d0 − d0d

−1
0 projects to a subspace ER of forms where less weights occur.

Set

dR = Π0 ◦ d ◦ ΠE .

Then Rumin’s complex (ER , dR) is homotopic to de Rham’s complex.
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Role of anisotropic pseudodifferential calculus
Rumin’s complex

Example. For the 3-dimensional Heisenberg group,

E1
R consists of horizontal 1-forms, dR : E0

R → E1
R is the horizontal gradient.

E2
R consists of vertical 2-forms. ΠE extends a horizontal 1-form α in such a way

that dΠEα is vertical (unique choice). Hence dRα = dΠEα involves second
derivatives.

In general, for the 2m + 1-dimensional Heisenberg group, ER has one weight in each
degree, w = k if k ≤ m, w = k + 1 if k ≥ m + 1, and dR : Em

R → Em+1
R has order 2.

Theorem (Pansu-Rumin)

Let G be a Carnot group of homogeneous dimension Q. Let [a, b] be the scope of
weights in Rumin k-forms, let [a′, b′] be the scope of weights in Rumin k − 1-forms.

1 `q,pHk (G) = 0 provided 1 < p, q <∞ and

1

p
−

1

q
≥

b − a′

Q
.

2 `q,pHk (G) 6= 0 if 1 ≤ p, q ≤ ∞, 1
p
− 1

q
<

max{1,b′−a}
Q

.

Example. For Heisenberg groups, b − a′ = b′ − a = 1, except in middle dimension
where b − a′ = b′ − a = 2.

Example. For all Carnot groups, b − a′ = b′ − a = 1 in degrees 1 and n = dim(G).
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Example. For all Carnot groups, b − a′ = b′ − a = 1 in degrees 1 and n = dim(G).
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Theorem (Baldi-Franchi-Pansu)

Closed Lp forms defined on the Heisenberg 2-ball have dR -primitives on the unit ball
which are Lq , provided 1 < p, q <∞ and 1

p
− 1

q
≤ 1

2m+2
(resp. 2

2m+2
in degree m+ 1).

Proof. No subRiemannian Cartan homotopy formula.

Instead, one uses Rumin’s homotopy ΠE followed by Iwaniec-Lutoborsky’s Euclidian
homotopy. Since ΠE is differential, a preliminary smoothing homotopy is needed.

Fix a subRiemannian metric in order to define adjoints. ∆R := d∗RdR + dRd
∗
R is

replaced with ∆R := (d∗RdR)2 + dRd
∗
R ou d∗RdR + (dRd

∗
R)2 in degrees m and m + 1.

Then ∆R is maximally hypoelliptic, thus TR = d∗R∆−1
R has a smooth and

homogeneous kernel.

Let KR be the kernel of TR . Write KR = K1 + K2 where K1 has small support and K2

is smooth. Then TR = T 1 + T 2,

1 = dRT
1 + T 1dR + S

where S is smoothing. T 1 and therefore S map forms defined on ball of radius 2 to
forms defined on unit ball. T 1 maps Lp to Lq like TR . S wins the derivatives that ΠE

looses.
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Smoothing homotopy
Result

Theorem (Baldi-Franchi-Pansu)

Closed Lp forms defined on the Heisenberg 2-ball have dR -primitives on the unit ball
which are Lq , provided 1 < p, q <∞ and 1

p
− 1

q
≤ 1

2m+2
(resp. 2

2m+2
in degree m+ 1).

Proof. No subRiemannian Cartan homotopy formula.

Instead, one uses Rumin’s homotopy ΠE followed by Iwaniec-Lutoborsky’s Euclidian
homotopy. Since ΠE is differential, a preliminary smoothing homotopy is needed.

Fix a subRiemannian metric in order to define adjoints. ∆R := d∗RdR + dRd
∗
R is

replaced with ∆R := (d∗RdR)2 + dRd
∗
R ou d∗RdR + (dRd

∗
R)2 in degrees m and m + 1.

Then ∆R is maximally hypoelliptic, thus TR = d∗R∆−1
R has a smooth and

homogeneous kernel.

Let KR be the kernel of TR . Write KR = K1 + K2 where K1 has small support and K2

is smooth. Then TR = T 1 + T 2,

1 = dRT
1 + T 1dR + S

where S is smoothing. T 1 and therefore S map forms defined on ball of radius 2 to
forms defined on unit ball. T 1 maps Lp to Lq like TR . S wins the derivatives that ΠE

looses.

Pierre Pansu, Univ. Paris-Sud. Joint with A. Baldi, B. Franchi, M. Rumin `q,p cohomology of certain Carnot groups



`q,p cohomology
Carnot group case

Local Poincaré inequality
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Smoothing homotopy
Result

Corollary (Baldi-Franchi-Pansu)

Rumin’s complex can be used to compute `q,p-cohomology of contact
2m + 1-manifolds with bounded geometry, provided 1 < p, q <∞ and 1

p
− 1

q
≤ 1

2m+2

(resp. 2
2m+2

in degree m + 1) : `q,pH· = Lq,pH·(dc ). Also, the complex (ER , dR)
admits a smoothing homotopy.

Question. Cases when p = 1 or q =∞ ? Work in progress with Baldi and Franchi.
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