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What is it ?

topological space → cohomology

manifold → de Rham cohomology

metric space → cohomology with decay condition

Riemannian manifold → de Rham cohomology with decay condition

Definition
Let M be a Riemannian manifold. Let p > 1. Lp-cohomology of M is the cohomology
of the complex of Lp-differential forms on M whose exterior differentials are Lp as well,

Hk,p = closed k-forms in Lp/d((k − 1)-forms in Lp),

Rk,p = closed k-forms in Lp/closure of d((k − 1)-forms in Lp),

T k,p = closure of d((k − 1)-forms in Lp)/d((k − 1)-forms in Lp).

Rk,p is called the reduced cohomology. T k,p is called the torsion.
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Example : the real hyperbolic plane H2
R

Here H0,p = 0 = H2,p for all p.

If p = 2, since the Laplacian on L2 functions is bounded below, T 1,2 = 0. Therefore

H1,2 = R1,2

= {L2 harmonic 1-forms}
= {harmonic functions h on H2

R with ∇h ∈ L2}/R .

Using conformal invariance, switch from hyperbolic metric to euclidean metric on the
disk D.

H1,2 = {harmonic functions h on D with ∇h ∈ L2}/R
= {Fourier series Σane

inθ with a0 = 0,Σ|n| |an|2 < +∞},

which is Sobolev space H1/2(R/2πZ) mod constants.

More generally, for p > 1, T 1,p = 0 and H1,p is equal to the Besov space

B
1/p
p,p (R/2πZ) mod constants.
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Example : the real line R

H0,p = 0.

R1,p = 0,
since every function in Lp(R) can be approximated in Lp with derivatives of compactly
supported functions. Therefore H1,p is only torsion.

T 1,p is non zero and thus infinite dimensional.
Indeed, the 1-form dt

t
(cut off near the origin) is in Lp for all p > 1 but it is not the

differential of a function in Lp .
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What are our favourite spaces ?

I Lp-cohomology has been used (L. Saper, S. Zucker) to study manifolds with thin
ends. The answer is related to the topology of a compactification.

I In this talk: manifolds with large ends, e.g. groups. Lp-cohomology is related to
analytic features of a compactification.



Functoriality

cohomology → continuous maps

Lp-cohomology → uniform maps.

Definition
A map f : X → Y between metric spaces is uniform if d(f (x), f (x ′)) is bounded from
above in terms of d(x , x ′) only.

Examples
The obvious map Z→ R is uniform. Any homomorphism between groups (with left
invariant metrics) is uniform. The parametrization of a cusp by a punctured disk is not
uniform.

Proposition
Among contractible Riemannian manifolds admitting a cocompact isometric group
action, Lp-cohomology is natural under uniform maps.
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Lp-cohomology of discrete groups

Lp-cohomology can be discretized.

It makes sense for discrete groups, and cannot see
any difference between a cocompact lattice in a semi-simple Lie group G , the Lie
group G itself or the Riemannian homogeneous space G/K , K compact.

In conclusion,

I Lp-cohomology is a tool to investigate discrete groups.

I It shares nearly all properties of usual cohomology.

I Nevertheless, it is not easy to calculate it.

I In the case of cocompact lattices in Lie groups, it can probably be computed by
analytic means.

L2-invariants are a huge subject. In this course, we explain a few applications of
Lp-cohomology, p 6= 2, to negatively curved Riemannian manifolds and groups.

1. Hopf Euler characteristic conjecture

2. Cannon conjecture on hyperbolic groups with boundary a 2-sphere

3. Classification of hyperbolic compactly generated groups

4. Coarse and large scale conformal embeddings

5. Curvature pinching



Lp-cohomology of discrete groups

Lp-cohomology can be discretized. It makes sense for discrete groups, and cannot see
any difference between a cocompact lattice in a semi-simple Lie group G , the Lie
group G itself or the Riemannian homogeneous space G/K , K compact.

In conclusion,

I Lp-cohomology is a tool to investigate discrete groups.

I It shares nearly all properties of usual cohomology.

I Nevertheless, it is not easy to calculate it.

I In the case of cocompact lattices in Lie groups, it can probably be computed by
analytic means.

L2-invariants are a huge subject. In this course, we explain a few applications of
Lp-cohomology, p 6= 2, to negatively curved Riemannian manifolds and groups.

1. Hopf Euler characteristic conjecture

2. Cannon conjecture on hyperbolic groups with boundary a 2-sphere

3. Classification of hyperbolic compactly generated groups

4. Coarse and large scale conformal embeddings

5. Curvature pinching



Lp-cohomology of discrete groups

Lp-cohomology can be discretized. It makes sense for discrete groups, and cannot see
any difference between a cocompact lattice in a semi-simple Lie group G , the Lie
group G itself or the Riemannian homogeneous space G/K , K compact.

In conclusion,

I Lp-cohomology is a tool to investigate discrete groups.

I It shares nearly all properties of usual cohomology.

I Nevertheless, it is not easy to calculate it.

I In the case of cocompact lattices in Lie groups, it can probably be computed by
analytic means.

L2-invariants are a huge subject. In this course, we explain a few applications of
Lp-cohomology, p 6= 2, to negatively curved Riemannian manifolds and groups.

1. Hopf Euler characteristic conjecture

2. Cannon conjecture on hyperbolic groups with boundary a 2-sphere

3. Classification of hyperbolic compactly generated groups

4. Coarse and large scale conformal embeddings

5. Curvature pinching



Lp-cohomology of discrete groups

Lp-cohomology can be discretized. It makes sense for discrete groups, and cannot see
any difference between a cocompact lattice in a semi-simple Lie group G , the Lie
group G itself or the Riemannian homogeneous space G/K , K compact.

In conclusion,

I Lp-cohomology is a tool to investigate discrete groups.

I It shares nearly all properties of usual cohomology.

I Nevertheless, it is not easy to calculate it.

I In the case of cocompact lattices in Lie groups, it can probably be computed by
analytic means.

L2-invariants are a huge subject. In this course, we explain a few applications of
Lp-cohomology, p 6= 2, to negatively curved Riemannian manifolds and groups.

1. Hopf Euler characteristic conjecture

2. Cannon conjecture on hyperbolic groups with boundary a 2-sphere

3. Classification of hyperbolic compactly generated groups

4. Coarse and large scale conformal embeddings

5. Curvature pinching



Outline

1. Hopf Euler characteristic conjecture

2. Cannon conjecture on groups with boundary a 2-sphere

3. Classification of hyperbolic compactly generated groups

4. Coarse and large scale conformal embeddings

5. Curvature pinching



Hopf conjecture

Remark

I Compact 2-dimensional negatively curved manifolds have negative Euler
characteristic.

I 2m-dimensional compact hyperbolic manifolds have Euler characteristic
proportional to (−1)m.

I This generalizes to all compact negatively curved locally symmetric spaces
(Gauss-Bonnet).

Conjecture (H. Hopf)
If M is 2m-dimensional compact negatively curved, then (−1)mχ(M) > 0.

The conjecture is often extended to all aspherical manifolds. See M. Davies and B.
Eckman’s surveys in Guido’s book of conjectures, and W. Lück’s survey in Bulletin of
the Manifold Atlas.

Theorem
(M. Gromov, 1991). This is true provided M also admits a Kähler metric.
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Role of the Kähler condition

Definition
A Riemannian manifold M is Kähler if it admits a parallel complex structure.

Then M is a complex manifold. Every complex submanifold in complex projective
space admits a Kähler metric.

Proposition
(Part of hard Lefschetz theorem). Let M2m be a compact Kähler manifold with Kähler
form ω. Then wedging with ω maps harmonic forms to harmonic forms, and this
induces an injection in cohomology Hk (M,R)→ Hk+2(M,R) for all k < m.

Corollary
Let M2m be a complete Kähler manifold with Kähler form ω. Then wedging with ω
maps L2-harmonic forms to L2-harmonic forms, and this induces an injection in
reduced L2-cohomology Rk,2(M)→ Rk+2(M) for all k < m.
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Role of negative curvature

Proposition
(M. Gromov). Let M̃ be a complete simply connected negatively curved Riemannian
manifold. Let k ≥ 2.

I (Coning of cycles). Every k − 1-cycle z spans a k-chain c with
vol(c) ≤ const. vol(z).

I (Coning of forms). Every closed bounded differential k-form α on M̃ is the
differential of a bounded (k − 1)-form β with ‖ β ‖L∞ ≤ const. ‖ α ‖L∞ .

Corollary
Assume M̃2m covers both a compact Kähler manifold and a compact negatively curved
Riemannian manifold. Then Rk,2(M̃) = 0 for all k 6= m. Furthermore, T∗,2(M̃) = 0.

Proof. Lift Kähler form to universal cover M̃. Write ω = db with b bounded. Let
k < m. For α a closed k-form in L2,

ω ∧ α = d(b ∧ α) and b ∧ α ∈ L2,

thus ω ∧ α = 0 in Rk+2,2(M̃). If α is harmonic, conclude that α = 0 in Rk,2(M̃).
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differential of a bounded (k − 1)-form β with ‖ β ‖L∞ ≤ const. ‖ α ‖L∞ .

Corollary
Assume M̃2m covers both a compact Kähler manifold and a compact negatively curved
Riemannian manifold. Then Rk,2(M̃) = 0 for all k 6= m. Furthermore, T∗,2(M̃) = 0.

Proof. Lift Kähler form to universal cover M̃. Write ω = db with b bounded.

Let
k < m. For α a closed k-form in L2,

ω ∧ α = d(b ∧ α) and b ∧ α ∈ L2,

thus ω ∧ α = 0 in Rk+2,2(M̃). If α is harmonic, conclude that α = 0 in Rk,2(M̃).
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Vanishing of torsion

Let α be a k-form in L2, k < m. Let us show that ‖α‖2
2 ≤ C 〈∆α, α〉.

‖α‖2 = ‖ω ∧ α‖2 = 〈ω ∧ α, db ∧ α〉 = 〈ω ∧ α, d(b ∧ α)〉+ 〈ω ∧ α, b ∧ dα〉
≤ ‖b‖∞‖α‖(‖d∗(ω ∧ α)‖+ ‖dα‖).

‖d∗(ω ∧ α)‖2 + ‖d(ω ∧ α)‖2 = 〈∆(ω ∧ α), ω ∧ α〉 = 〈ω ∧∆α, ω ∧ α〉 = 〈∆α, α〉.

thus

‖α‖2 ≤ 4‖b‖2
∞〈∆α, α〉 = C2 (‖dα‖2 + ‖d∗α‖2).

We show that T k,2 = 0 by induction on k. On 0-forms, dα = 0, hence
‖α‖ ≤ C ‖dα‖, and dL2Ω0 is closed in L2Ω1. If α ∈ L2Ω2, α = dβ is an exact 2-form,
there exists β′ ∈ L2Ω1 of minimal norm such that dβ′ = α. Since d∗β′ = 0,
‖β′‖ ≤ C ‖dβ′‖ = ‖α‖, and dL2Ω1 is closed in L2Ω2, and so on.

Furthermore ∆ is invertible on (ker∆)⊥. Indeed, Hodge decomposition L2Ωm =

ker∆⊕ dL2Ωm−1 ⊕ d∗L2Ωm+1, which holds in general for complete Riemannian

manifolds, reads L2Ωm = ker∆⊕ dL2Ωm−1 ⊕ ?dL2Ωm−1. Since ∆ commutes with d
and ?, inequality ‖α‖2 ≤ C2〈∆α, α〉 persists on (ker∆)⊥ in degree m.



Vanishing of torsion

Let α be a k-form in L2, k < m. Let us show that ‖α‖2
2 ≤ C 〈∆α, α〉.

‖α‖2 = ‖ω ∧ α‖2 = 〈ω ∧ α, db ∧ α〉 = 〈ω ∧ α, d(b ∧ α)〉+ 〈ω ∧ α, b ∧ dα〉
≤ ‖b‖∞‖α‖(‖d∗(ω ∧ α)‖+ ‖dα‖).

‖d∗(ω ∧ α)‖2 + ‖d(ω ∧ α)‖2 = 〈∆(ω ∧ α), ω ∧ α〉 = 〈ω ∧∆α, ω ∧ α〉 = 〈∆α, α〉.

thus

‖α‖2 ≤ 4‖b‖2
∞〈∆α, α〉 = C2 (‖dα‖2 + ‖d∗α‖2).

We show that T k,2 = 0 by induction on k. On 0-forms, dα = 0, hence
‖α‖ ≤ C ‖dα‖, and dL2Ω0 is closed in L2Ω1. If α ∈ L2Ω2, α = dβ is an exact 2-form,
there exists β′ ∈ L2Ω1 of minimal norm such that dβ′ = α. Since d∗β′ = 0,
‖β′‖ ≤ C ‖dβ′‖ = ‖α‖, and dL2Ω1 is closed in L2Ω2, and so on.

Furthermore ∆ is invertible on (ker∆)⊥. Indeed, Hodge decomposition L2Ωm =

ker∆⊕ dL2Ωm−1 ⊕ d∗L2Ωm+1, which holds in general for complete Riemannian

manifolds, reads L2Ωm = ker∆⊕ dL2Ωm−1 ⊕ ?dL2Ωm−1. Since ∆ commutes with d
and ?, inequality ‖α‖2 ≤ C2〈∆α, α〉 persists on (ker∆)⊥ in degree m.



Vanishing of torsion

Let α be a k-form in L2, k < m. Let us show that ‖α‖2
2 ≤ C 〈∆α, α〉.

‖α‖2 = ‖ω ∧ α‖2 = 〈ω ∧ α, db ∧ α〉 = 〈ω ∧ α, d(b ∧ α)〉+ 〈ω ∧ α, b ∧ dα〉
≤ ‖b‖∞‖α‖(‖d∗(ω ∧ α)‖+ ‖dα‖).

‖d∗(ω ∧ α)‖2 + ‖d(ω ∧ α)‖2 = 〈∆(ω ∧ α), ω ∧ α〉 = 〈ω ∧∆α, ω ∧ α〉 = 〈∆α, α〉.

thus

‖α‖2 ≤ 4‖b‖2
∞〈∆α, α〉 = C2 (‖dα‖2 + ‖d∗α‖2).

We show that T k,2 = 0 by induction on k. On 0-forms, dα = 0, hence
‖α‖ ≤ C ‖dα‖, and dL2Ω0 is closed in L2Ω1. If α ∈ L2Ω2, α = dβ is an exact 2-form,
there exists β′ ∈ L2Ω1 of minimal norm such that dβ′ = α. Since d∗β′ = 0,
‖β′‖ ≤ C ‖dβ′‖ = ‖α‖, and dL2Ω1 is closed in L2Ω2, and so on.

Furthermore ∆ is invertible on (ker∆)⊥. Indeed, Hodge decomposition L2Ωm =

ker∆⊕ dL2Ωm−1 ⊕ d∗L2Ωm+1, which holds in general for complete Riemannian

manifolds, reads L2Ωm = ker∆⊕ dL2Ωm−1 ⊕ ?dL2Ωm−1. Since ∆ commutes with d
and ?, inequality ‖α‖2 ≤ C2〈∆α, α〉 persists on (ker∆)⊥ in degree m.



Vanishing of torsion

Let α be a k-form in L2, k < m. Let us show that ‖α‖2
2 ≤ C 〈∆α, α〉.

‖α‖2 = ‖ω ∧ α‖2 = 〈ω ∧ α, db ∧ α〉 = 〈ω ∧ α, d(b ∧ α)〉+ 〈ω ∧ α, b ∧ dα〉
≤ ‖b‖∞‖α‖(‖d∗(ω ∧ α)‖+ ‖dα‖).

‖d∗(ω ∧ α)‖2 + ‖d(ω ∧ α)‖2 = 〈∆(ω ∧ α), ω ∧ α〉 = 〈ω ∧∆α, ω ∧ α〉 = 〈∆α, α〉.

thus

‖α‖2 ≤ 4‖b‖2
∞〈∆α, α〉 = C2 (‖dα‖2 + ‖d∗α‖2).

We show that T k,2 = 0 by induction on k. On 0-forms, dα = 0, hence
‖α‖ ≤ C ‖dα‖, and dL2Ω0 is closed in L2Ω1. If α ∈ L2Ω2, α = dβ is an exact 2-form,
there exists β′ ∈ L2Ω1 of minimal norm such that dβ′ = α. Since d∗β′ = 0,
‖β′‖ ≤ C ‖dβ′‖ = ‖α‖, and dL2Ω1 is closed in L2Ω2, and so on.

Furthermore ∆ is invertible on (ker∆)⊥. Indeed, Hodge decomposition L2Ωm =

ker∆⊕ dL2Ωm−1 ⊕ d∗L2Ωm+1, which holds in general for complete Riemannian

manifolds, reads L2Ωm = ker∆⊕ dL2Ωm−1 ⊕ ?dL2Ωm−1. Since ∆ commutes with d
and ?, inequality ‖α‖2 ≤ C2〈∆α, α〉 persists on (ker∆)⊥ in degree m.



Vanishing of torsion

Let α be a k-form in L2, k < m. Let us show that ‖α‖2
2 ≤ C 〈∆α, α〉.

‖α‖2 = ‖ω ∧ α‖2 = 〈ω ∧ α, db ∧ α〉 = 〈ω ∧ α, d(b ∧ α)〉+ 〈ω ∧ α, b ∧ dα〉
≤ ‖b‖∞‖α‖(‖d∗(ω ∧ α)‖+ ‖dα‖).

‖d∗(ω ∧ α)‖2 + ‖d(ω ∧ α)‖2 = 〈∆(ω ∧ α), ω ∧ α〉 = 〈ω ∧∆α, ω ∧ α〉 = 〈∆α, α〉.

thus

‖α‖2 ≤ 4‖b‖2
∞〈∆α, α〉 = C2 (‖dα‖2 + ‖d∗α‖2).

We show that T k,2 = 0 by induction on k. On 0-forms, dα = 0, hence
‖α‖ ≤ C ‖dα‖, and dL2Ω0 is closed in L2Ω1. If α ∈ L2Ω2, α = dβ is an exact 2-form,
there exists β′ ∈ L2Ω1 of minimal norm such that dβ′ = α. Since d∗β′ = 0,
‖β′‖ ≤ C ‖dβ′‖ = ‖α‖, and dL2Ω1 is closed in L2Ω2, and so on.

Furthermore ∆ is invertible on (ker∆)⊥. Indeed, Hodge decomposition L2Ωm =

ker∆⊕ dL2Ωm−1 ⊕ d∗L2Ωm+1, which holds in general for complete Riemannian

manifolds, reads L2Ωm = ker∆⊕ dL2Ωm−1 ⊕ ?dL2Ωm−1. Since ∆ commutes with d
and ?, inequality ‖α‖2 ≤ C2〈∆α, α〉 persists on (ker∆)⊥ in degree m.



L2-Betti numbers

Let M̃ cover a compact manifold M. If nonzero, Rk,2(M̃) is infinite dimensional.

Nevertheless, M. Atiyah has defined a von Neumann dimension

bk,2(M) = dimvNR
k,2(M̃),

called the k-th L2-Betti number of M.

Example (W. Lück)
If M admits a tower of finite degree dj normal coverings Mj such that⋂

j π1(Mj ) = {1}, then

bk,2(M) = lim
j→∞

bk (Mj ,R)

dj
.

Proposition
Let M̃ cover a compact manifold M. Then

χ(M) =
∑
k

(−1)kbk,2(M).



L2-Betti numbers

Let M̃ cover a compact manifold M. If nonzero, Rk,2(M̃) is infinite dimensional.
Nevertheless, M. Atiyah has defined a von Neumann dimension

bk,2(M) = dimvNR
k,2(M̃),

called the k-th L2-Betti number of M.

Example (W. Lück)
If M admits a tower of finite degree dj normal coverings Mj such that⋂

j π1(Mj ) = {1}, then

bk,2(M) = lim
j→∞

bk (Mj ,R)

dj
.

Proposition
Let M̃ cover a compact manifold M. Then

χ(M) =
∑
k

(−1)kbk,2(M).



L2-Betti numbers

Let M̃ cover a compact manifold M. If nonzero, Rk,2(M̃) is infinite dimensional.
Nevertheless, M. Atiyah has defined a von Neumann dimension

bk,2(M) = dimvNR
k,2(M̃),

called the k-th L2-Betti number of M.

Example (W. Lück)
If M admits a tower of finite degree dj normal coverings Mj such that⋂

j π1(Mj ) = {1}, then

bk,2(M) = lim
j→∞

bk (Mj ,R)

dj
.

Proposition
Let M̃ cover a compact manifold M. Then

χ(M) =
∑
k

(−1)kbk,2(M).



L2-Betti numbers

Let M̃ cover a compact manifold M. If nonzero, Rk,2(M̃) is infinite dimensional.
Nevertheless, M. Atiyah has defined a von Neumann dimension

bk,2(M) = dimvNR
k,2(M̃),

called the k-th L2-Betti number of M.

Example (W. Lück)
If M admits a tower of finite degree dj normal coverings Mj such that⋂

j π1(Mj ) = {1}, then

bk,2(M) = lim
j→∞

bk (Mj ,R)

dj
.

Proposition
Let M̃ cover a compact manifold M. Then

χ(M) =
∑
k

(−1)kbk,2(M).



Index theorem

Proposition
(Relative index theorem, M. Gromov-B. Lawson). Let M̃ be a simply connected
nonpositively curved Riemannian manifold. Then there exists k such that
Hk,2(M̃) 6= 0.

See Pansu’s notes on L2 Betti numbers.

Proof of Gromov’s theorem. Assume M is compact and admits both a negatively
curved metric and a Kähler metric. Then all bk,2(M) vanish except bm,2(M), which is
nonzero, thus (−1)mχ(M) = bm,2(M) > 0.

In conclusion, we have used

I Lefschetz mechanism, L2-Betti numbers.

I Vanishing of L∞-cohomology.

I Cup-product Hk,2 ⊗ H2,∞ → Hk+2,∞.
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Further remarks

Gromov calls Kähler manifolds (M, ω) such that ω = db, b ∈ L∞, Kähler hyperbolic
manifolds. Hermitian symmetric spaces are Kähler hyperbolic. Teichmüller space is
Kähler hyperbolic (S. Kruskal).

For such manifolds, Gromov’s theorem determines the sign of the Euler characteristics
of all the sheaves Ωq of exterior powers of the complex cotangent bundle.

Nonvanishing of L2-cohomology is equivalent to 0 belonging to the L2 spectrum of ∆.
J. Lott’s zero in the spectrum conjecture states that this should be the case for the
universal coverings of all compact aspherical manifolds. There is a non-aspherical
counterexample (M. Farber and S. Weinberger).
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Interlude: more on L∞/Lp cohomology of hyperbolic groups

2. Cannon conjecture on groups with boundary a 2-sphere

3. Classification of hyperbolic compactly generated groups

4. Coarse and large scale conformal embeddings

5. Curvature pinching



More on L∞ cohomology of hyperbolic groups

Remark
H0,∞ counts connected components. For unbounded metric spaces, H1,∞ 6= 0.

Theorem (M. Gromov 1986)
For a finitely generated group G,
G is hyperbolic ⇔ H2,∞(G) = 0⇔ Hk,∞(G) = 0 for all k ≥ 2.

Step 1. Duality Lemma. For a manifold M,
Hk,∞(M) = 0⇔ linear filling in dimension k,
i.e. every k-cycle S bounds a k + 1-current T with Mass(T ) ≤ C Mass(S).

Step 2. Filling inequalities are quasi-isometry invariant. Pass from current to disk...

Step 3. Bonk-Schramm show that G hyperbolic is quasi-isometric to a convex subset
of Hn

R, n large.

Step 4. In a convex subset of Hn
R, the cone over S has Mass ≤ C Mass(S).

Conclusion. H2,∞(M) = 0⇒ linear filling of loops ⇒ G hyperbolic.
Conversely, G hyperbolic ⇒ linear filling in all dimensions k ≥ 2⇒ Hk,∞(M) = 0.
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Proof of Duality Lemma

Lemma
Hk,∞ = 0⇔ ∀ bounded closed k-form α, ∃β with ‖β‖∞ ≤ C ‖α‖∞ s. t. dβ = α.

Proof. Use norm ‖α‖∞ + ‖dα‖∞ to complete smooth differential forms into a
Banach space C. Then d : C → C is continuous, with kernel Z. It descends to a
continuous operator d̄ : C/Z → Z. If L∞-cohomology vanishes, this is a continuous
bijection between Banach spaces, hence an isomorphism. Get a smooth β...

Proof of Duality Lemma.
A k-cycle S of finite mass M(S) := sup{〈S , β〉 ; ‖β‖∞ ≤ 1} defines a functional on
smooth bounded k-forms, which vanishes on exact forms. If L∞-cohomology vanishes,
one can define a functional T on smooth bounded exact k + 1-forms by
〈T , α〉 = 〈S, β〉 for some β such that dβ = α. Then T is bounded above by
C M(S)‖ · ‖∞. By Hahn-Banach, T extends to a linear functional on smooth
k + 1-forms, i.e. a current, of finite mass M(T ) ≤ C M(S) and such that ∂T = S.

The converse follows from the symmetry between differential forms and currents,
‖α‖∞ = sup{〈T , α〉 ; M(T ) ≤ 1}.



More on Lp cohomology of hyperbolic groups

Example
Let M be n-dimensional, 1-connected, curvature −a2 ≤ K ≤ −1. Then H1,p(M) 6= 0
provided p > (n − 1)a.

In horospherical coordinates (r , θ), u = u(θ) has |∇u| ≤ C e−r , vol ≤ e(n−1)ar .

This is sharp. Functions with ‖∇u‖p <∞ on Hn
R have a limit u∞ along almost every

ray, u ∈ Lp ⇔ u∞ = 0. If p ≤ n − 1, ‖∇u∂B(r)‖p tends to 0, hence H1,p(Hn
R) = 0 if

p ≤ n − 1.

Theorem (Bourdon-Pajot)
Let G be a hyperbolic group.

1. There exists p(G) such that H1,p(G) 6= 0 for p > p(G).

2. 1, p-cohomology classes on hyperbolic groups have well-defined boundary values,
so H1,p(G) identifies with a function space on ∂G.

Fix a visual metric on ∂G . Pick a maximal ball packing of ∂G at each scale 2−k and
work on the incidence graph X whose vertices v correspond to balls B(xv , rv ). Then
X is quasi-isometric to G . Given a Lipschitz function u on ∂G , set u(v) = u(xv ).
Then |∇u|(v) ∼ rv . If metric is Q-Ahlfors-regular, ‖∇u‖p <∞ if p > Q.
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2. Cannon conjecture on groups with boundary a 2-sphere

3. Classification of hyperbolic compactly generated groups

4. Coarse and large scale conformal embeddings
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Cannon conjecture

Theorem (W. Thurston 1979, G. Perelman 2002)
A closed 3-manifold group which is infinite, does not split as a free product and does
not contain Z2 is a cocompact lattice in SO(3, 1).

If G is a lattice in SO(n, 1), then G is hyperbolic and its ideal boundary is an
n − 1-sphere.

Conjecture (J. Cannon, circa 1988)
Let G be a hyperbolic group whose ideal boundary is a topological 2-sphere. Then G
is virtually a cocompact lattice in SO(3, 1).

Before Perelman, it was thought of as an alternative to Thurston’s methods.
Avatar of Riemann mapping theorem: uniqueness of a (coarse) conformal structure on
the 2-sphere with a large conformal group.
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Conformal dimension

Remark
The ideal boundary of a hyperbolic group carries a natural conformal structure
(technically, a quasi-Möbius structure), but no canonical metric.

Definition (Bourdon-Pajot)
Define the conformal dimension of a hyperbolic group as the least Hausdorff
dimension of an Ahlfors-regular metric in the natural quasi-Möbius structure.

Strategy (B. Kleiner). Prove that this infimum is achieved. Then prove that dimension
minimizing metrics are Riemannian if boundary is 2-dimensional. Then apply a result
of D. Sullivan (1978): every uniformly quasiconformal group of the standard 2-sphere
is conjugate to a subgroup of SO(3, 1).

Theorem (S. Keith-T. Laakso, M. Bonk-B. Kleiner 2005)
Let G be a hyperbolic group whose ideal boundary is a 2-sphere. If conformal
dimension is achieved, then G is virtually a cocompact lattice in SO(3, 1).
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Lp-dimension

Remark
For hyperbolic groups, H1,p is nonzero for p large, but zero for p small.

Definition
Define the Lp-dimension of a group as the least p > 1 such that its H1,p is nonzero.

For instance, Lp-dimension of hyperbolic n-space is n − 1.

Theorem (Same people + M. Bourdon-H. Pajot 2003)
Let G be a hyperbolic group. Then Lp-dimension is less than or equal to conformal
dimension. If conformal dimension is achieved, then G does not split over a virtually
cyclic subgroup, and Lp-dimension and conformal dimension coincide.

Examples (M. Bourdon-H. Pajot)
There exist hyperbolic groups for which conformal dimension > 2 ≥ Lp-dimension
(and which do not split over virtually cyclic subgroups). For such groups, conformal
dimension cannot be achieved.
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Bourdon-Pajot’s examples

Let G = A ?C B where A and B are hyperbolic, C is quasi-convex and malnormal in
both A and B. Then G is hyperbolic, A and B are quasi-convex in G , hence

ConfDim(G) ≥ max{ConfDim(A),ConfDim(B)}.

Mayer-Vietoris implies that

b1,2(G) ≥ b1,2(A) + b1,2(B)− b1,2(C) > 0,

if b1,2(A) > b1,2(C). For instance, let A and B be lattices of isometries of Bourdon
buildings, A of large covolume and negative Euler characteristic, B of large conformal
dimension, and C a free group on 2 generators. Then H1,2(G) 6= 0, hence
Lp − dim(G) ≤ 2 < ConfDim(G).

For a Bourdon building with p-sided right-angled faces and thickness q, Euler
characteristic is proportional to q2 − p(q − 1), conformal dimension equals

1 + log q

arg cosh( p−2
2

)
.

In conclusion, we have used

I Mayer-Vietoris and L2-Betti numbers.

I Expression of H1,p as a function space on the ideal boundary.
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Further remarks

Bourdon-Kleiner show that conformal dimension is equal to the infimum of p such
that the continuous part of Lp cohomology separates points of the ideal boundary.

Continuous part means continuous functions on ∂G which continuously extend to
functions on G with finite `p norm of gradient.

Theorem (Bourdon 2008)
Consider the continuous part of Lp cohomology of G as a Banach algebra Ap(G) with
norm ‖ · ‖∞ + ‖ · ‖H1,p(G).
Let G1, G2 be hyperbolic groups which do not split over finite groups. Let
p > max{ConfDim(G1),ConfDim(G1)}. Then any Banach algebra isomorphism
Ap(G1)→ Ap(G2) is induced by a quasi-isometry.

Question. Is ∂G retrievable from the whole H1,p(G), and not its continuous part ?

In 2015, Bourdon-Kleiner implemented succesfully Kleiner’s strategy for Coxeter
groups. They fully describe the equivalence relations on ∂G induced by H1,p(G) when
Lp − dim(G) ≤ p ≤ ConfDim(G) in this special case.
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Curvature pinching

Remark
Rank one symmetric spaces are hyperbolic spaces over the reals Hn

R, the complex

numbers Hm
C , the quaternions Hm

H , and the octonions H2
O.

Real hyperbolic space has sectional curvature −1. Other rank one symmetric spaces
are − 1

4
-pinched, i.e. their sectional curvature ranges between −1 and − 1

4
.

Definition
Define the optimal pinching δ(G) of a discrete (or Lie) group G as the least δ > −1
such that G is bi-uniformly equivalent to a δ-pinched Riemannian manifold.

Conjecture
The optimal pinching of SU(m, 1), Sp(m, 1) (m ≥ 2) and F−20

4 is − 1
4

.
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Lp-cohomology of real hyperbolic spaces



Lp-cohomology and pinching

Theorem
If Mn is simply connected and δ-pinched for some δ ∈ [−1, 0), then

p < 1 +
n − k

k − 1

√
−δ ⇒ T k,p(M) = 0.

This is sharp. For instance, consider the semidirect product G = R3 oα R where
α = diag(1, 1, 2).

I It admits a − 1
4

-pinched left-invariant Riemannian metric, therefore δ(G) ≤ − 1
4

.

I It has T 2,p(G) 6= 0 for 2 < p ≤ 4. This implies that δ(G) = − 1
4

.

Remark
Complex hyperbolic plane H2

C is isometric to G ′ = Heis3 oα R where α = diag(1, 1, 2)
and Heis denotes the Heisenberg group. Therefore it is very close to G.

Theorem
T 2,p(H2

C) = 0 for 2 < p < 4.
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Proofs of vanishing theorems

Proof of torsion comparison theorem
Use the gradient vectorfield ξ of a Busemann function and its flow φt , whose
derivative is controlled by sectional curvature. For α a closed k-form in Lp ,

φ∗t α = α+ d

(∫ t

0
φ∗s ιξα ds

)
has a limit as t → +∞ under the assumptions of the theorem. This boundary value
map injects Hk,p into a function space of closed forms on the ideal boundary, showing
that Hk,p is Hausdorff.

Proof of torsion vanishing for H2
C

For p /∈ {4/3, 2, 4}, differential forms α on H2
C split into components α+ and α+

which are contracted (resp. expanded) by φt . Then

Bt : α 7→
∫ t

0
φ∗s ιξα+ ds −

∫ 0

−t
φ∗s ιξα− ds

converges as t → +∞ to a bounded operator B on Lp . P = 1− dB − Bd retracts the
Lp de Rham complex onto a complex of differential forms on Heis3 with missing
components and weakly regular coefficients. If 2 < p < 4, this complex is nonzero in
degrees 1 and 2, but it is so small that its cohomology can be shown to be Hausdorff.
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Non-vanishing of torsion

Use Poincaré duality. Let p′ = p/p − 1 denote the conjugate exponent. In order to
prove that a closed k-form α is nonzero in cohomology, it suffices to construct a
sequence ψj of (n− k)-forms such that ‖ dψj ‖Lp′ tends to zero but

∫
α∧ψj does not

tend to zero.

In conclusion, we have used

I Poincaré duality.

I A deformation retraction of space onto a subspace, with controlled effect on the
Lp-norms of forms. For certain ranges of p, this provides a boundary value.

Conjecture

I For rank 1 symmetric spaces, T k,p = 0 except for at most 1 value of p in each
degree.

I For higher rank symmetric spaces, Hk,p = 0 for k < rank, T k,p = 0 for k = rank.

I For k = rank, Rk,p 6= 0 for p large, and Rk,p is a function space on the maximal
boundary.

I For each p > 1, there exists k such that Hk,p 6= 0.
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