Poincaré inequalities for differential forms on Heisenberg groups

Pierre Pansu, Univ. Paris-Sud. Joint with A. Baldi, B. Franchi, Bologna

October 17th, 2017

Euclidean Poincaré inequality Leray's acyclic covering theorem revisited

Definition

X simplicial complex. Cochains are functions on simplices. When is an ℓ^p cocycle the coboundary of an ℓ^q cochain? Set

```
\ell^{q,p}H^k(X) = \{\ell^p \ k\text{-}cocycles\}/d\{\ell^q \ k-1\text{-}cochains\}.
```

X finite : topological invariant. X infinite : quasi-isometry invariant. Well defined for discrete groups, gives rise to numerical invariants of discrete groups...

Euclidean Poincaré inequality Leray's acyclic covering theorem revisited

Definition

X simplicial complex. Cochains are functions on simplices. When is an ℓ^p cocycle the coboundary of an ℓ^q cochain? Set

$$\ell^{q,p}H^k(X) = \{\ell^p \ k\text{-}cocycles\}/d\{\ell^q \ k-1\text{-}cochains\}.$$

X finite : topological invariant. X infinite : quasi-isometry invariant. Well defined for discrete groups, gives rise to numerical invariants of discrete groups...

Example. X = subdivided line. Then all $\ell^{q,p}H^0(X) = 0$, $\ell^{\infty,1}H^1(X) = 0$, all other $\ell^{q,p}H^1(X) \neq 0$.

Definition

X simplicial complex. Cochains are functions on simplices. When is an ℓ^p cocycle the coboundary of an ℓ^q cochain? Set

$$\ell^{q,p}H^k(X) = \{\ell^p \ k\text{-}cocycles\}/d\{\ell^q \ k-1\text{-}cochains\}.$$

X finite : topological invariant. X infinite : quasi-isometry invariant. Well defined for discrete groups, gives rise to numerical invariants of discrete groups...

Example. X = subdivided line. Then all $\ell^{q,p}H^0(X) = 0$, $\ell^{\infty,1}H^1(X) = 0$, all other $\ell^{q,p}H^1(X) \neq 0$.

Example. X = tesselated plane. Then $\ell^{q,p}H^1(X) = 0$ if $\frac{1}{p} - \frac{1}{q} \ge \frac{1}{2}$. Indeed, Sobolev inequality allows to handle the case of finitely supported cocycles. It states that, for a smooth compactly supported function u on the plane, if p < 2,

$$\|u\|_q \leq C \, \|du\|_p.$$

 ${\bf Questions}.$ Handle infinitely supported cocycles ? Pass from discrete to continuous and backward ?

э

< 🗇 🕨

B 🕨 🖌 B 🕨

Definition

X Riemannian manifold. Set

$$L^{q,p}H^k(X) = \{L^p \text{ closed } k \text{-forms}\}/d\{L^q k - 1 \text{-forms } \omega \text{ such that } d\omega \in L^p\}.$$

Questions. Compute it. If X is triangulated, does $L^{q,p}H^k(X) = \ell^{q,p}H^k(X)$?

Definition

X Riemannian manifold. Set

$$L^{q,p}H^k(X) = \{L^p \text{ closed } k \text{-forms}\}/d\{L^q k - 1 \text{-forms } \omega \text{ such that } d\omega \in L^p\}$$

Questions. Compute it. If X is triangulated, does $L^{q,p}H^k(X) = \ell^{q,p}H^k(X)$?

Example.
$$X = \mathbb{R}^n$$
. Then $L^{q,p}H^k(X) = 0$ if $1 and $\frac{1}{p} - \frac{1}{q} = \frac{1}{n}$.$

Proof. Let $\Delta = d^*d + dd^*$. Then Δ has a pseudo-differential inverse which commutes with d. $T = d^*\Delta^{-1}$ has a homogeneous kernel of degree n - 1, hence is bounded $L^p \rightarrow L^q$ provided $\frac{1}{p} - \frac{1}{q} = \frac{1}{n}$ (Calderon-Zygmund). Finally 1 = dT + Td.

Definition

X Riemannian manifold. Set

$$L^{q,p}H^k(X) = \{L^p \text{ closed } k \text{-forms}\}/d\{L^q k - 1 \text{-forms } \omega \text{ such that } d\omega \in L^p\}$$

Questions. Compute it. If X is triangulated, does $L^{q,p}H^k(X) = \ell^{q,p}H^k(X)$?

Example.
$$X = \mathbb{R}^n$$
. Then $L^{q,p}H^k(X) = 0$ if $1 and $\frac{1}{p} - \frac{1}{q} = \frac{1}{n}$.$

Proof. Let $\Delta = d^*d + dd^*$. Then Δ has a pseudo-differential inverse which commutes with d. $T = d^*\Delta^{-1}$ has a homogeneous kernel of degree n - 1, hence is bounded $L^p \rightarrow L^q$ provided $\frac{1}{p} - \frac{1}{q} = \frac{1}{n}$ (Calderon-Zygmund). Finally 1 = dT + Td.

Example. $X = \text{ball in } \mathbb{R}^n$. Then $L^{q,p}H^k(X) = 0$ if $1 and <math>\frac{1}{p} - \frac{1}{q} \le \frac{1}{n}$.

Proof (lwaniec-Lutoborsky). Poincaré's homotopy formula provides a homotopy T, 1 = dT + Td, which has a homogeneous kernel of degree n - 1. It does not require forms to be globally defined. Hölder $\Rightarrow q$ can be lessened. Works for convex sets.

Proposition (Leray)

Vanishing of $L^{q,p}H^{\cdot}$ of all simplices suffices to prove that $L^{q,p}H^{\cdot} = \ell^{q,p}H^{\cdot}$ for bounded geometry triangulated manifolds.

Example. (U_i) covering by stars of vertices. ω closed 1 form on X. $\omega_{|U_i|} = du_i$, $u_i - u_j = \kappa_{ij}$ is constant on simplex $U_i \cap U_j$, it is a 1-cocycle of the triangulation. Conversely, pick partition of unity χ_i . Given cocycle κ , set $u_i = \sum_j \chi_j \kappa_{ij}$. Then $du_i - du_i = 0$ on $U_i \cap U_i$, hence defines a closed 1-form.

Proposition (Leray)

Vanishing of $L^{q,p}H^{\cdot}$ of all simplices suffices to prove that $L^{q,p}H^{\cdot} = \ell^{q,p}H^{\cdot}$ for bounded geometry triangulated manifolds.

Example. (U_i) covering by stars of vertices. ω closed 1 form on X. $\omega_{|U_i|} = du_i$, $u_i - u_j = \kappa_{ij}$ is constant on simplex $U_i \cap U_j$, it is a 1-cocycle of the triangulation. Conversely, pick partition of unity χ_i . Given cocycle κ , set $u_i = \sum_j \chi_j \kappa_{ij}$. Then $du_i - du_i = 0$ on $U_i \cap U_j$, hence defines a closed 1-form.

Theorem (Pansu)

Proposition merely requires even weaker analytic information : it suffices that a closed form on ball of radius 2 have a primitive on unit ball with controlled norms.

"Loss on domain is allowed".

 Motivation
 Rumin's complex

 Sub-Riemannian case
 Heisenberg Poincaré inequality

 Questions
 Back to $\ell^{p,q}$ -cohomology

To handle Carnot groups G, need homogeneous Laplacian : Rumin?

Forms on *G* split into several weights under dilations. Let d_0 be the weight 0 (algebraic) part of *d*. Pick complements of $\ker(d_0)$ and $\operatorname{im}(d_0)$ and define d_0^{-1} . Then powers of $1 - d_0^{-1}d - dd_0^{-1}$ stabilize to a projector Π_E onto a subcomplex *E*. $\Pi_0 = 1 - d_0^{-1}d_0 - d_0d_0^{-1}$ projects to a subspace E_R of forms where less weights occur. Set

 $d_R = \Pi_0 \circ d \circ \Pi_E.$

Then Rumin's complex (E_R, d_R) is homotopic to the de Rham complex.

 $\begin{array}{c|c} & \text{Rumin's complex} \\ \text{Sub-Riemannian case} \\ & \text{Questions} \end{array} \qquad \begin{array}{c} \text{Rumin's complex} \\ \text{Heisenberg Poincaré inequalit} \\ \text{Back to } \ell^{p,q} \text{-cohomology} \end{array}$

To handle Carnot groups G, need homogeneous Laplacian : Rumin?

Forms on *G* split into several weights under dilations. Let d_0 be the weight 0 (algebraic) part of *d*. Pick complements of $\ker(d_0)$ and $\operatorname{im}(d_0)$ and define d_0^{-1} . Then powers of $1 - d_0^{-1}d - dd_0^{-1}$ stabilize to a projector Π_E onto a subcomplex *E*. $\Pi_0 = 1 - d_0^{-1}d_0 - d_0d_0^{-1}$ projects to a subspace E_R of forms where less weights occur. Set

$$d_R = \Pi_0 \circ d \circ \Pi_E.$$

Then Rumin's complex (E_R, d_R) is homotopic to the de Rham complex.

Example. Heisenberg group \mathbb{H}^1 .

- E_R^1 consists of horizontal 1-forms, $d_R: E_R^0 \to E_R^1$ is the horizontal gradient.
- E_R^2 consists of vertical 2-forms. Π_E extends a horizontal 1-form α in such a way that $d\Pi_E \alpha$ is vertical (unique choice). Hence $d_R \alpha = d\Pi_E \alpha$ involves second derivatives.

 $\begin{array}{c|c} & \text{Motivation} \\ \text{Sub-Riemannian case} \\ & \text{Questions} \end{array} \qquad \begin{array}{c} \text{Rumin's complex} \\ \text{Heisenberg Poincaré inequality} \\ \text{Back to } \ell^{p,q} \text{-cohomology} \end{array}$

More generally, for Heisenberg group \mathbb{H}^n , E_R has exactly one weight in each degree, hence d_R is homogeneous under Heisenberg dilations. It has order 1, except in degree n where it has order 2.

One can make choices in a contact invariant manner : (E_R, d_R) is invariantly defined for contact manifolds.

In presence of a sub-Riemannian metric, adjoints are defined. Let $\Delta_R := d_R^* d_R + d_R d_R^*$ be replaced with $\Delta_R := (d_R^* d_R)^2 + d_R d_R^*$ or $d_R^* d_R + (d_R d_R^*)^2$ in degrees n and n + 1. Then Δ_R is maximally hypoelliptic, hence $d_R^* \Delta_R^{-1}$ has a smooth (away from the origin), homogeneous kernel.

Proposition (Coifman-Weiss, Koranyi-Vagi 1971)

 $T_R := d_R^* \Delta_R^{-1} \text{ is bounded } L^p \text{ to } L^q \text{ provided } 1$

Again, $1 = d_R T + T d_R$.

- - E - b

Motivation Rumi Sub-Riemannian case Questions Back

Rumin's complex Heisenberg Poincaré inequality Back to $\ell^{P,q}$ -cohomology

Need local version.

Theorem (Baldi-Franchi-Pansu)

Closed L^p forms defined on the Heisenberg 2-ball have d_R -primitives on the unit ball which are L^q , provided $1 < p, q < \infty$ and $\frac{1}{p} - \frac{1}{q} \leq \frac{1}{2n+2}$ (resp. $\frac{2}{2n+2}$ in degree n + 1).

Motivation Rumin's complex Sub-Riemannian case Questions

Heisenberg Poincaré inequality

Need local version

Theorem (Baldi-Franchi-Pansu)

Closed L^p forms defined on the Heisenberg 2-ball have d_R -primitives on the unit ball which are L^q , provided $1 < p, q < \infty$ and $\frac{1}{p} - \frac{1}{q} \leq \frac{1}{2p+2}$ (resp. $\frac{2}{2p+2}$ in degree n + 1).

Proof. The sub-Riemannian analogue of Poincaré's homotopy formula is not compatible with Rumin's construction.

Instead, use Rumin's homotopy Π_F and then apply Iwaniec-Lutoborsky. Since Π_F is differential, this requires a preliminary smoothing homotopy.

Let K_R be the kernel of T_R . Write $K_R = K^1 + K^2$ where K_1 has small support and K_2 is smooth. Then $T_R = T^1 + T^2$,

$$1 = d_R T^1 + T^1 d_R + S$$

where S is smoothing. T^1 and therefore S map forms defined on ball of radius 2 to forms defined on unit ball. T^1 maps L^p to L^q like T_R . S wins the derivatives that Π_F looses.

MotivationRumin's complexSub-Riemannian caseHeisenberg Poincaré inequalityQuestionsBack to $\ell^{p,q}$ -cohomology

Leray's method requires control on $||d_R(\chi\omega)||_p$ in terms of $||\omega||_p$ and $||d_R\omega||_p$. This fails when d_R is second order. The way around this is

Theorem (Baldi-Franchi-Pansu)

Let $1 < p, q < \infty$ and $\frac{1}{p} - \frac{1}{q} \leq \frac{1}{2n+2}$ (resp. $\frac{2}{2n+2}$ in degree n + 1). On contact manifolds with C^{k+1} -bounded geometry, global smoothing homotopies $1 = d_R T + T d_R + S$ are defined, where $T : W^{s,p} \to W^{s+1,q}$ and $S : W^{s,p} \to W^{s+k,q}$, $-k \leq s \leq 0$.

Corollary

Rumin's complex can be used to compute $\ell^{q,p}$ -cohomology of contact manifolds with bounded geometry for this range of p, q.

Corollary

$$\ell^{q,p}H^{\cdot}(\mathbb{H}^n) = 0$$
 provided $1 and $\frac{1}{p} - \frac{1}{q} \ge \frac{1}{2n+2}$ (resp. $\frac{2}{2n+2}$ in degree $n+1$).$

Questions.

- **1** Sobolev inequality (i.e. for compactly supported forms)? Yes.
- ② Sharpness ? Probably yes.
- **③** Cases when p = 1 and $q = \infty$? Work in progress with Baldi and Franchi.
- Other Carnot groups? Work in progress with Rumin, but sharp intervals are rarely attained.