On Besicovitch's $\frac{1}{2}$ -problem [after Preiss and Tišer]

Pierre Pansu, Université Paris-Saclay

November 5th, 2020

ㅋ ㅋ

The problem The method

M metric space, $E \subset M$. The lower density at x is

$$\underline{D}(E,x) = \liminf_{r \to 0} \frac{\mathrm{H}^1(E \cap B(x,r))}{2r}.$$

Theorem (Besicovitch 1938)

If $M = \mathbb{R}^2$, any subset E of finite \mathcal{H}^1 -measure such that $\underline{D}(E, x) > \frac{3}{4}$ at \mathcal{H}^1 -almost every point of E is rectifiable.

Besicovitch gives examples showing that $\frac{3}{4}$ cannot be improved beyond $\frac{1}{2}$ and conjectures that the optimal bound is $\frac{1}{2}$.

Image: Second second

The problem The method

M metric space, $E \subset M$. The lower density at x is

$$\underline{D}(E,x) = \liminf_{r \to 0} \frac{\mathrm{H}^1(E \cap B(x,r))}{2r}.$$

Theorem (Besicovitch 1938)

If $M = \mathbb{R}^2$, any subset E of finite \mathcal{H}^1 -measure such that $\underline{D}(E, x) > \frac{3}{4}$ at \mathcal{H}^1 -almost every point of E is rectifiable.

Besicovitch gives examples showing that $\frac{3}{4}$ cannot be improved beyond $\frac{1}{2}$ and conjectures that the optimal bound is $\frac{1}{2}$.

Theorem (Preiss, Tišer 1992)

For arbitrary metric spaces M, any subset $E \subset M$ of finite \mathcal{H}^1 -measure such that $\underline{D}(E, x) > \frac{2+\sqrt{46}}{12}$ at \mathcal{H}^1 -almost every point of E is rectifiable.

B K 4 B K

Goal : construct a *continuum* (compact connected subset) in *E*.

< ∃→

æ

Goal : construct a *continuum* (compact connected subset) in *E*. Indeed (Eilenberg-Harrold 1943), continua of finite \mathcal{H}^1 -measure are rectifiable.

4 E b

э

The problem The method

Goal : construct a *continuum* (compact connected subset) in *E*. Indeed (Eilenberg-Harrold 1943), continua of finite \mathcal{H}^1 -measure are rectifiable.

By contradiction, if construction fails, one encounters a pair of disjoint compact sets E_1 and E_2 of rather high density. Then one uses the *Besicovitch pair condition* to get a contradiction.

글 > 글

The problem The method

By contradiction, if construction fails, one encounters a pair of disjoint compact sets E_1 and E_2 of rather high density. Then one uses the *Besicovitch pair condition* to get a contradiction.

Definition

Say that M satisfies the Besicovitch pair condition with parameter $\sigma \in (0,1)$ if whenever μ is a measure on M satisfying $\mu(S) \leq \operatorname{diam}(S)$ for every subset S, then there exists $\tau > 0$ such that $\forall \lambda > 0$, $\exists \delta > 0$ such that for every pair of Borel subsets E_1 and E_2 for which

• $0 < dist(E_1, E_2) < \delta$, and

• $\mu(B(x, s)) > 2\sigma s$ for every $x \in E_1 \cup E_2$ and every $0 < s < \lambda$,

there exists a subset $U \subset M$ intersecting both E_1 and E_2 and such that

 $\mu(U\smallsetminus (E_1\cup E_2))>\tau\operatorname{diam}(U).$

- A 🖻 🕨

3

The problem The method

By contradiction, if construction fails, one encounters a pair of disjoint compact sets E_1 and E_2 of rather high density. Then one uses the *Besicovitch pair condition* to get a contradiction.

Definition

Say that M satisfies the Besicovitch pair condition with parameter $\sigma \in (0,1)$ if whenever μ is a measure on M satisfying $\mu(S) \leq \operatorname{diam}(S)$ for every subset S, then there exists $\tau > 0$ such that $\forall \lambda > 0$, $\exists \delta > 0$ such that for every pair of Borel subsets E_1 and E_2 for which

- $0 < dist(E_1, E_2) < \delta$, and
- $\mu(B(x, s)) > 2\sigma s$ for every $x \in E_1 \cup E_2$ and every $0 < s < \lambda$,

there exists a subset $U \subset M$ intersecting both E_1 and E_2 and such that

 $\mu(U\smallsetminus (E_1\cup E_2))>\tau\operatorname{diam}(U).$

The proof of the theorem splits into two steps :

- Every metric space satisfies BPC(σ) for $\sigma = \frac{2+\sqrt{46}}{12}$.
- **2** BPC(σ) \implies the theorem with bound σ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

Proof of BPC

Let μ be a measure on M satisfying $\mu(S) \leq \operatorname{diam}(S)$ for every subset S. Fix $\lambda > 0$. Let E_1 and E_2 be subsets for which

- $0 < dist(E_1, E_2) < \delta := \lambda$, and
- $\mu(B(x,s)) > 2\sigma s$ for every $x \in E_1 \cup E_2$ and every $0 < s < \lambda$,

Image: Second second

э

Proof of BPC

Let μ be a measure on M satisfying $\mu(S) \leq \operatorname{diam}(S)$ for every subset S. Fix $\lambda > 0$. Let E_1 and E_2 be subsets for which

- $0 < dist(E_1, E_2) < \delta := \lambda$, and
- $\mu(B(x,s)) > 2\sigma s$ for every $x \in E_1 \cup E_2$ and every $0 < s < \lambda$,

Pick $x \in E_1$, $y \in E_2$ with $d(x, y) = d(E_1, E_2) \coloneqq r$. Then (up two switching x and y),

$$\forall t \ge 0, \ \mu(B(x,t) \cap E_1) \le t + \frac{1}{2}r.$$

$$\tag{1}$$

Image: Second second

3

Proof of BPC

Let μ be a measure on M satisfying $\mu(S) \leq \operatorname{diam}(S)$ for every subset S. Fix $\lambda > 0$. Let E_1 and E_2 be subsets for which

- $0 < dist(E_1, E_2) < \delta := \lambda$, and
- $\mu(B(x,s)) > 2\sigma s$ for every $x \in E_1 \cup E_2$ and every $0 < s < \lambda$,

Pick $x \in E_1$, $y \in E_2$ with $d(x, y) = d(E_1, E_2) := r$. Then (up two switching x and y),

$$\forall t \ge 0, \ \mu(B(x,t) \cap E_1) \le t + \frac{1}{2}r.$$

$$\tag{1}$$

Image: Second second

For BPC(σ), it suffices to set U = B(x, 2r) and prove that $\mu(B(x, 2r) \smallsetminus (E_1 \cup E_2)) > 4\tau r$ for a $\tau > 0$ that depends only on σ .

Proof of BPC

Let μ be a measure on M satisfying $\mu(S) \leq \operatorname{diam}(S)$ for every subset S. Fix $\lambda > 0$. Let E_1 and E_2 be subsets for which

- $0 < dist(E_1, E_2) < \delta := \lambda$, and
- $\mu(B(x,s)) > 2\sigma s$ for every $x \in E_1 \cup E_2$ and every $0 < s < \lambda$,

Pick $x \in E_1$, $y \in E_2$ with $d(x, y) = d(E_1, E_2) := r$. Then (up two switching x and y),

$$\forall t \ge 0, \ \mu(B(x,t) \cap E_1) \le t + \frac{1}{2}r.$$
 (1)

Image: Second second

For BPC(σ), it suffices to set U = B(x, 2r) and prove that $\mu(B(x, 2r) \smallsetminus (E_1 \cup E_2)) > 4\tau r$ for a $\tau > 0$ that depends only on σ . Assume instead that $\mu(B(x, 2r) \smallsetminus (E_1 \cup E_2)) \le 4\tau r$.

$$d := \operatorname{diam}(B(x, r) \cap E_1) = \mu(B(x, r) \cap E_1)$$

$$\geq \mu(B(x, r)) - \mu(B(x, 2r) \setminus (E_1 \cup E_2))$$

$$> 2\sigma r - 4\tau r.$$

Proof of BPC

Let μ be a measure on M satisfying $\mu(S) \leq \operatorname{diam}(S)$ for every subset S. Fix $\lambda > 0$. Let E_1 and E_2 be subsets for which

- $0 < dist(E_1, E_2) < \delta := \lambda$, and
- $\mu(B(x,s)) > 2\sigma s$ for every $x \in E_1 \cup E_2$ and every $0 < s < \lambda$,

Pick $x \in E_1$, $y \in E_2$ with $d(x, y) = d(E_1, E_2) := r$. Then (up two switching x and y),

$$\forall t \ge 0, \ \mu(B(x,t) \cap E_1) \le t + \frac{1}{2}r.$$
 (1)

э

For BPC(σ), it suffices to set U = B(x, 2r) and prove that $\mu(B(x, 2r) \smallsetminus (E_1 \cup E_2)) > 4\tau r$ for a $\tau > 0$ that depends only on σ . Assume instead that $\mu(B(x, 2r) \smallsetminus (E_1 \cup E_2)) \le 4\tau r$.

$$d := \operatorname{diam}(B(x, r) \cap E_1) = \mu(B(x, r) \cap E_1)$$

$$\geq \mu(B(x, r)) - \mu(B(x, 2r) \setminus (E_1 \cup E_2))$$

$$> 2\sigma r - 4\tau r.$$

Thus one can pack inside B(x, 2r) two disjoint balls of not too small radii centered at points of E_1 . Their measures are not too small, this contradicts (1) if $\sigma \ge \frac{2+\sqrt{46}}{12}$.

When the BPC will be used, the measure μ will be a constant multiple of $\mathcal{H}^1 \sqcup A$ for a suitable A. The fact that $\mu(S) \leq \operatorname{diam}(S)$ for all $S \subset M$ comes from the

Proposition (Besicovitch)

Let M be a metric space with $\mathcal{H}^1(M) < \infty$. At \mathcal{H}^1 -almost all points $x \in M$,

$$\limsup_{\mathrm{diam}(S)\to 0}\frac{\mathcal{H}^1(S)}{\mathrm{diam}(S)}\leq 1.$$

When the BPC will be used, the measure μ will be a constant multiple of $\mathcal{H}^1 \sqcup A$ for a suitable A. The fact that $\mu(S) \leq \operatorname{diam}(S)$ for all $S \subset M$ comes from the

Proposition (Besicovitch)

Let M be a metric space with $\mathcal{H}^1(M) < \infty$. At \mathcal{H}^1 -almost all points $x \in M$,

$$\limsup_{\mathrm{diam}(S)\to 0}\frac{\mathcal{H}^1(S)}{\mathrm{diam}(S)}\leq 1.$$

For some $\tilde{\sigma} > \sigma$, this allows to pick compact sets $B \subset A \subset M$ of positive \mathcal{H}^1 measure such that $\mathcal{H}^1(A \setminus B) < \frac{\tau}{15} \mathcal{H}^1(B)$ (where τ is the constant in $BPC(\sigma)$) and

$$S \cap A \neq \emptyset$$
, diam (S) small $\implies \mathcal{H}^1(S) \le \frac{\tilde{\sigma}}{\sigma} \operatorname{diam}(S)$,
 $x \in B, s \text{ small } \implies \mathcal{H}^1(B(x,s) \cap A) \ge 2\tilde{\sigma}s$,

and set $\mu(S) = \frac{\sigma}{\tilde{\sigma}} \mathcal{H}^1(S \cap A)$.

Besicovitch's upper bound on density Filling holes Applying BPC Removing additions

Embed A isometrically in a separable Banach space X ($X = C^0(A)$).

→ Ξ → → Ξ →

Ξ.

Density and rectifiability Proof of BPC Proof of Theorem Proof of Theorem

Embed A isometrically in a separable Banach space X ($X = C^{0}(A)$).

Strategy. Add to *B* the convex hulls of its intersections with a suitable collection of convex sets. Show that the result is connected (or at least contains a large connected subset). Replace convex hulls with line segments. The result is a continuum of finite \mathcal{H}^1 measure, hence rectifiable. Then remove (slightly larger) convex sets and show that the remainder, which is contained in *M*, has positive \mathcal{H}^1 measure.

э

Density and rectifiability Proof of BPC Proof of Theorem Proof of Theorem

Embed A isometrically in a separable Banach space X ($X = C^{0}(A)$).

Strategy. Add to *B* the convex hulls of its intersections with a suitable collection of convex sets. Show that the result is connected (or at least contains a large connected subset). Replace convex hulls with line segments. The result is a continuum of finite \mathcal{H}^1 measure, hence rectifiable. Then remove (slightly larger) convex sets and show that the remainder, which is contained in *M*, has positive \mathcal{H}^1 measure.

Notation. $W^p = \{x \in X ; d(x, W)$

3

Density and rectifiability Proof of BPC Proof of Theorem Proof of Theorem

Embed A isometrically in a separable Banach space X ($X = C^{0}(A)$).

Strategy. Add to *B* the convex hulls of its intersections with a suitable collection of convex sets. Show that the result is connected (or at least contains a large connected subset). Replace convex hulls with line segments. The result is a continuum of finite \mathcal{H}^1 measure, hence rectifiable. Then remove (slightly larger) convex sets and show that the remainder, which is contained in *M*, has positive \mathcal{H}^1 measure.

Notation. $W^p = \{x \in X ; d(x, W)$

Among the family \mathcal{V} of convex subsets W of X intersecting B and for which $\mu(W \setminus B) > \tau \operatorname{diam}(W)$, pick a disjointed sequence W_i such that

 $\forall W \in \mathcal{V}, \exists i, W \cap W_i \neq \emptyset \text{ and } \operatorname{diam}(W) < 2 \operatorname{diam}(W_i).$

★ Ξ ►

э.

Density and rectifiability Proof of BPC Proof of Theorem Proof of Theorem Proof of Theorem

Embed A isometrically in a separable Banach space X ($X = C^{0}(A)$).

Strategy. Add to *B* the convex hulls of its intersections with a suitable collection of convex sets. Show that the result is connected (or at least contains a large connected subset). Replace convex hulls with line segments. The result is a continuum of finite \mathcal{H}^1 measure, hence rectifiable. Then remove (slightly larger) convex sets and show that the remainder, which is contained in *M*, has positive \mathcal{H}^1 measure.

Notation. $W^p = \{x \in X ; d(x, W)$

Among the family \mathcal{V} of convex subsets W of X intersecting B and for which $\mu(W \setminus B) > \tau \operatorname{diam}(W)$, pick a disjointed sequence W_i such that

 $\forall W \in \mathcal{V}, \exists i, W \cap W_i \neq \emptyset \text{ and } \operatorname{diam}(W) < 2 \operatorname{diam}(W_i).$

Then $\sum_i \operatorname{diam}(W_i) < \frac{1}{\tau} \sum_i \mu(W_i \setminus B) \le \frac{1}{\tau} \mu(A \setminus B) < \frac{1}{15} \mu(B)$.

医下颌 医下颌

∃ \$\\$<</p>

Density and rectifiability Proof of BPC Proof of Theorem Proof of Theorem Proof of Theorem

Embed A isometrically in a separable Banach space X ($X = C^{0}(A)$).

Strategy. Add to *B* the convex hulls of its intersections with a suitable collection of convex sets. Show that the result is connected (or at least contains a large connected subset). Replace convex hulls with line segments. The result is a continuum of finite \mathcal{H}^1 measure, hence rectifiable. Then remove (slightly larger) convex sets and show that the remainder, which is contained in *M*, has positive \mathcal{H}^1 measure.

Notation. $W^p = \{x \in X ; d(x, W)$

Among the family \mathcal{V} of convex subsets W of X intersecting B and for which $\mu(W \setminus B) > \tau \operatorname{diam}(W)$, pick a disjointed sequence W_i such that

 $\forall W \in \mathcal{V}, \exists i, W \cap W_i \neq \emptyset \text{ and } \operatorname{diam}(W) < 2 \operatorname{diam}(W_i).$

Then $\sum_{i} \operatorname{diam}(W_{i}) < \frac{1}{\tau} \sum_{i} \mu(W_{i} \setminus B) \leq \frac{1}{\tau} \mu(A \setminus B) < \frac{1}{15} \mu(B)$. This implies that $\mu(\bigcup_{i} W_{i}^{7}) \leq \sum_{i} \operatorname{diam}(W_{i}^{7}) < \mu(B).$

・ 同下 ・ ヨト ・ ヨト …

∃ \$\\$<</p>

Density and rectifiability Proof of BPC Proof of Theorem Proof of Theorem Proof of Theorem

Embed A isometrically in a separable Banach space X ($X = C^{0}(A)$).

Strategy. Add to *B* the convex hulls of its intersections with a suitable collection of convex sets. Show that the result is connected (or at least contains a large connected subset). Replace convex hulls with line segments. The result is a continuum of finite \mathcal{H}^1 measure, hence rectifiable. Then remove (slightly larger) convex sets and show that the remainder, which is contained in *M*, has positive \mathcal{H}^1 measure.

Notation. $W^p = \{x \in X ; d(x, W)$

Among the family \mathcal{V} of convex subsets W of X intersecting B and for which $\mu(W \setminus B) > \tau \operatorname{diam}(W)$, pick a disjointed sequence W_i such that

 $\forall W \in \mathcal{V}, \exists i, W \cap W_i \neq \emptyset \text{ and } \operatorname{diam}(W) < 2 \operatorname{diam}(W_i).$

Then $\sum_{i} \operatorname{diam}(W_{i}) < \frac{1}{\tau} \sum_{i} \mu(W_{i} \setminus B) \leq \frac{1}{\tau} \mu(A \setminus B) < \frac{1}{15} \mu(B)$. This implies that

$$\mu(\bigcup_i W_i^7) \leq \sum_i \operatorname{diam}(W_i^7) < \mu(B).$$

Hence there exists a point z in $B \setminus \bigcup_i W_i^7$ where the density of $A \setminus B$ vanishes. In particular, for some small s, $\mu(B(z, 2s) \setminus B) < \frac{\sigma_T}{14}s$.

イロト イポト イヨト イヨト

Density and rectifiability Proof of BPC Proof of Theorem Proof of Theorem Proof additions

Let $Q = B \cup \bigcup_i \operatorname{conv}(B \cap W_i^2)$. This is a compact set. One uses $BPC(\sigma)$ to show that the connected component C of Q containing z has diameter $> \frac{\sigma_s}{2}$.

э

Image: Second second

Let $Q = B \cup \bigcup_i \operatorname{conv}(B \cap W_i^2)$. This is a compact set. One uses $BPC(\sigma)$ to show that the connected component C of Q containing z has diameter $> \frac{\sigma_s}{2}$.

Otherwise, there is a clopen H of Q containing z and contained in $B(z, \frac{\sigma_2}{2})$. Then BPC(σ) applies to $E_1 = B \cap H$ and $E_2 = B \setminus H$, yielding a set U intersecting both E_1 and E_2 and such that

 $\mu(U\smallsetminus B)=\mu(U\smallsetminus (E_1\cup E_2))>\tau\operatorname{diam}(U).$

Let $Q = B \cup \bigcup_i \operatorname{conv}(B \cap W_i^2)$. This is a compact set. One uses $BPC(\sigma)$ to show that the connected component C of Q containing z has diameter $> \frac{\sigma_s}{2}$.

Otherwise, there is a clopen H of Q containing z and contained in $B(z, \frac{\sigma_2}{2})$. Then BPC(σ) applies to $E_1 = B \cap H$ and $E_2 = B \setminus H$, yielding a set U intersecting both E_1 and E_2 and such that

$$\mu(U\smallsetminus B)=\mu(U\smallsetminus (E_1\cup E_2))>\tau\operatorname{diam}(U).$$

Then $W = conv(U) \in \mathcal{V}$. Thus $\exists i, W \cap W_i \neq \emptyset$ and $diam(W) < 2 diam(W_i)$, so $W \subset W_i^2$.

Let $Q = B \cup \bigcup_i \operatorname{conv}(B \cap W_i^2)$. This is a compact set. One uses $BPC(\sigma)$ to show that the connected component C of Q containing z has diameter $> \frac{\sigma_s}{2}$.

Otherwise, there is a clopen H of Q containing z and contained in $B(z, \frac{\sigma_2}{2})$. Then BPC(σ) applies to $E_1 = B \cap H$ and $E_2 = B \setminus H$, yielding a set U intersecting both E_1 and E_2 and such that

$$\mu(U\smallsetminus B)=\mu(U\smallsetminus (E_1\cup E_2))>\tau\operatorname{diam}(U).$$

Then $W = conv(U) \in \mathcal{V}$. Thus $\exists i, W \cap W_i \neq \emptyset$ and $diam(W) < 2 diam(W_i)$, so $W \subset W_i^2$.

But inside W_i^2 , Q is convex, so its disconnectedness cannot happen there, contradiction.

In the sequel, one sticks to those W_i 's such that $W_i^3 \cap C \neq \emptyset$. Then

$$\sum_{i} \operatorname{diam}(W_{i}^{3}) \leq \frac{7}{\tau} \sum_{i} \mu(W_{i} \setminus B) \leq \frac{7}{\tau} \mu(B(z, 2s) \setminus B) < \frac{7}{\tau} \frac{\sigma \tau s}{14} \leq \operatorname{diam}(C).$$

문 🕨 문

In the sequel, one sticks to those W_i 's such that $W_i^3 \cap C \neq \emptyset$. Then

$$\sum_{i} \operatorname{diam}(W_{i}^{3}) \leq \frac{7}{\tau} \sum_{i} \mu(W_{i} \setminus B) \leq \frac{7}{\tau} \mu(B(z, 2s) \setminus B) < \frac{7}{\tau} \frac{\sigma \tau s}{14} \leq \operatorname{diam}(C).$$

Replace each $W_i^3 \cap C$ with a line segment. This produces a continuum D satisfying

- $\operatorname{diam}(D) = \operatorname{diam}(C)$,
- $\mathcal{H}^1(D \cap \bigcup_i W_i^3) < \operatorname{diam}(C)$.
- $K := D \setminus \bigcup_i W_i^3 \subset C$.

∃ ⊳

In the sequel, one sticks to those W_i 's such that $W_i^3 \cap C \neq \emptyset$. Then

$$\sum_{i} \operatorname{diam}(W_{i}^{3}) \leq \frac{7}{\tau} \sum_{i} \mu(W_{i} \setminus B) \leq \frac{7}{\tau} \mu(B(z, 2s) \setminus B) < \frac{7}{\tau} \frac{\sigma \tau s}{14} \leq \operatorname{diam}(C).$$

Replace each $W_i^3 \cap C$ with a line segment. This produces a continuum D satisfying

- $\operatorname{diam}(D) = \operatorname{diam}(C)$,
- $\mathcal{H}^1(D \cap \bigcup_i W_i^3) < \operatorname{diam}(C)$.
- $K := D \setminus \bigcup_i W_i^3 \subset C$.

Then

$$\mathcal{H}^1(K) \geq \operatorname{diam}(C) - \mathcal{H}^1(D \cap \bigcup_i W_i^3) > 0.$$

∃ ⊳

In the sequel, one sticks to those W_i 's such that $W_i^3 \cap C \neq \emptyset$. Then

$$\sum_{i} \operatorname{diam}(W_{i}^{3}) \leq \frac{7}{\tau} \sum_{i} \mu(W_{i} \setminus B) \leq \frac{7}{\tau} \mu(B(z, 2s) \setminus B) < \frac{7}{\tau} \frac{\sigma \tau s}{14} \leq \operatorname{diam}(C).$$

Replace each $W_i^3 \cap C$ with a line segment. This produces a continuum D satisfying

- $\operatorname{diam}(D) = \operatorname{diam}(C)$,
- $\mathcal{H}^1(D \cap \bigcup_i W_i^3) < \operatorname{diam}(C)$.
- $K := D \setminus \bigcup_i W_i^3 \subset C$.

Then

$$\mathcal{H}^1(K) \geq \operatorname{diam}(C) - \mathcal{H}^1(D \cap \bigcup_i W_i^3) > 0.$$

By Eilenberg-Harrold's theorem, D is rectifiable, thus so is K. Thus M contains a rectifiable subset of positive \mathcal{H}^1 measure.

In the sequel, one sticks to those W_i 's such that $W_i^3 \cap C \neq \emptyset$. Then

$$\sum_{i} \operatorname{diam}(W_{i}^{3}) \leq \frac{7}{\tau} \sum_{i} \mu(W_{i} \setminus B) \leq \frac{7}{\tau} \mu(B(z, 2s) \setminus B) < \frac{7}{\tau} \frac{\sigma \tau s}{14} \leq \operatorname{diam}(C).$$

Replace each $W_i^3 \cap C$ with a line segment. This produces a continuum D satisfying

- $\operatorname{diam}(D) = \operatorname{diam}(C)$,
- $\mathcal{H}^1(D \cap \bigcup_i W_i^3) < \operatorname{diam}(C)$.
- $K := D \setminus \bigcup_i W_i^3 \subset C$.

Then

$$\mathcal{H}^1(K) \geq \operatorname{diam}(C) - \mathcal{H}^1(D \cap \bigcup_i W_i^3) > 0.$$

By Eilenberg-Harrold's theorem, D is rectifiable, thus so is K.

Thus M contains a rectifiable subset of positive \mathcal{H}^1 measure.

Remove from M the union of a \mathcal{H}^1 measure maximizing sequence of rectifiable subsets. Apply previous result to remainder, conclude that it has measure 0, so M is rectifiable.