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M metric space, E ⊂M. The lower density at x is

D(E , x) = lim inf
r→0

H1(E ∩B(x , r))
2r

.

Theorem (Besicovitch 1938)

If M = R2, any subset E of finite H1-measure such that D(E , x) > 3
4

at H1-almost
every point of E is rectifiable.

Besicovitch gives examples showing that 3
4

cannot be improved beyond 1
2

and

conjectures that the optimal bound is 1
2

.

Theorem (Preiss, Tǐser 1992)

For arbitrary metric spaces M, any subset E ⊂M of finite H1-measure such that

D(E , x) > 2+√46
12

at H1-almost every point of E is rectifiable.
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Goal : construct a continuum (compact connected subset) in E .

Indeed
(Eilenberg-Harrold 1943), continua of finite H1-measure are rectifiable.

By contradiction, if construction fails, one encounters a pair of disjoint compact sets
E1 and E2 of rather high density. Then one uses the Besicovitch pair condition to get
a contradiction.

Definition

Say that M satisfies the Besicovitch pair condition with parameter σ ∈ (0,1) if
whenever µ is a measure on M satisfying µ(S) ≤ diam(S) for every subset S, then
there exists τ > 0 such that ∀λ > 0, ∃δ > 0 such that for every pair of Borel subsets E1

and E2 for which

0 < dist(E1,E2) < δ, and

µ(B(x , s)) > 2σs for every x ∈ E1 ∪ E2 and every 0 < s < λ,

there exists a subset U ⊂M intersecting both E1 and E2 and such that

µ(U ∖ (E1 ∪ E2)) > τ diam(U).

The proof of the theorem splits into two steps :

1 Every metric space satisfies BPC(σ) for σ = 2+√46
12

.

2 BPC(σ) Ô⇒ the theorem with bound σ.
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Density and rectifiability
Proof of BPC

Proof of Theorem

Proof of BPC

Let µ be a measure on M satisfying µ(S) ≤ diam(S) for every subset S . Fix λ > 0. Let
E1 and E2 be subsets for which

0 < dist(E1,E2) < δ ∶= λ, and

µ(B(x , s)) > 2σs for every x ∈ E1 ∪ E2 and every 0 < s < λ,

Pick x ∈ E1, y ∈ E2 with d(x , y) = d(E1,E2) ∶= r . Then (up two switching x and y),

∀t ≥ 0, µ(B(x , t) ∩ E1) ≤ t + 1

2
r . (1)

For BPC(σ), it suffices to set U = B(x ,2r) and prove that
µ(B(x ,2r) ∖ (E1 ∪ E2)) > 4τ r for a τ > 0 that depends only on σ.

Assume instead that µ(B(x ,2r) ∖ (E1 ∪ E2)) ≤ 4τ r .

d ∶= diam(B(x , r) ∩ E1) = µ(B(x , r) ∩ E1)
≥ µ(B(x , r)) − µ(B(x ,2r) ∖ (E1 ∪ E2))
> 2σr − 4τ r .

Thus one can pack inside B(x ,2r) two disjoint balls of not too small radii centered at

points of E1. Their measures are not too small, this contradicts (1) if σ ≥ 2+√46
12

.
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Pierre Pansu, Université Paris-Saclay On Besicovitch’s 1
2

-problem [after Preiss and Tǐser]
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Besicovitch’s upper bound on density
Filling holes
Applying BPC
Removing additions

When the BPC will be used, the measure µ will be a constant multiple of H1 ⌞A for a
suitable A. The fact that µ(S) ≤ diam(S) for all S ⊂M comes from the

Proposition (Besicovitch)

Let M be a metric space with H1(M) <∞. At H1-almost all points x ∈M,

lim sup
diam(S)→0

H1(S)
diam(S)

≤ 1.

For some σ̃ > σ, this allows to pick compact sets B ⊂ A ⊂M of positive H1 measure
such that H1(A ∖B) < τ

15
H1(B) (where τ is the constant in BPC(σ)) and

S ∩A /= ∅, diam(S) small Ô⇒ H1(S) ≤ σ̃
σ
diam(S),

x ∈ B, s small Ô⇒ H1(B(x , s) ∩A) ≥ 2σ̃s,

and set µ(S) = σ
σ̃
H1(S ∩A).
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Besicovitch’s upper bound on density
Filling holes
Applying BPC
Removing additions

Embed A isometrically in a separable Banach space X (X = C0(A)).

Strategy. Add to B the convex hulls of its intersections with a suitable collection of
convex sets. Show that the result is connected (or at least contains a large connected
subset). Replace convex hulls with line segments. The result is a continuum of finite
H1 measure, hence rectifiable. Then remove (slightly larger) convex sets and show
that the remainder, which is contained in M, has positive H1 measure.

Notation. W p = {x ∈ X ; d(x ,W ) < p diam(W )}.

Among the family V of convex subsets W of X intersecting B and for which
µ(W ∖B) > τ diam(W ), pick a disjointed sequence Wi such that

∀W ∈ V, ∃i , W ∩Wi /= ∅ and diam(W ) < 2diam(Wi).

Then ∑i diam(Wi) < 1
τ ∑i µ(Wi ∖B) ≤ 1

τ
µ(A ∖B) < 1

15
µ(B). This implies that

µ(⋃
i

W 7
i ) ≤∑

i

diam(W 7
i ) < µ(B).

Hence there exists a point z in B ∖⋃i W
7
i where the density of A ∖B vanishes. In

particular, for some small s, µ(B(z,2s) ∖B) < στ
14

s.
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Density and rectifiability
Proof of BPC

Proof of Theorem

Besicovitch’s upper bound on density
Filling holes
Applying BPC
Removing additions

Embed A isometrically in a separable Banach space X (X = C0(A)).

Strategy. Add to B the convex hulls of its intersections with a suitable collection of
convex sets. Show that the result is connected (or at least contains a large connected
subset). Replace convex hulls with line segments. The result is a continuum of finite
H1 measure, hence rectifiable. Then remove (slightly larger) convex sets and show
that the remainder, which is contained in M, has positive H1 measure.

Notation. W p = {x ∈ X ; d(x ,W ) < p diam(W )}.

Among the family V of convex subsets W of X intersecting B and for which
µ(W ∖B) > τ diam(W ), pick a disjointed sequence Wi such that

∀W ∈ V, ∃i , W ∩Wi /= ∅ and diam(W ) < 2diam(Wi).

Then ∑i diam(Wi) < 1
τ ∑i µ(Wi ∖B) ≤ 1

τ
µ(A ∖B) < 1

15
µ(B). This implies that

µ(⋃
i

W 7
i ) ≤∑

i

diam(W 7
i ) < µ(B).

Hence there exists a point z in B ∖⋃i W
7
i where the density of A ∖B vanishes. In

particular, for some small s, µ(B(z,2s) ∖B) < στ
14

s.
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∀W ∈ V, ∃i , W ∩Wi /= ∅ and diam(W ) < 2diam(Wi).

Then ∑i diam(Wi) < 1
τ ∑i µ(Wi ∖B) ≤ 1

τ
µ(A ∖B) < 1

15
µ(B). This implies that

µ(⋃
i

W 7
i ) ≤∑

i

diam(W 7
i ) < µ(B).

Hence there exists a point z in B ∖⋃i W
7
i where the density of A ∖B vanishes. In

particular, for some small s, µ(B(z,2s) ∖B) < στ
14

s.
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Let Q = B ∪⋃i conv(B ∩W 2
i ). This is a compact set. One uses BPC(σ) to show that

the connected component C of Q containing z has diameter > σs
2

.

Otherwise, there is a clopen H of Q containing z and contained in B(z, σs
2
). Then

BPC(σ) applies to E1 = B ∩H and E2 = B ∖H, yielding a set U intersecting both E1

and E2 and such that

µ(U ∖B) = µ(U ∖ (E1 ∪ E2)) > τ diam(U).

Then W = conv(U) ∈ V. Thus ∃i , W ∩Wi /= ∅ and diam(W ) < 2diam(Wi), so
W ⊂W 2

i .

But inside W 2
i , Q is convex, so its disconnectedness cannot happen there,

contradiction.
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In the sequel, one sticks to those Wi ’s such that W 3
i ∩ C /= ∅. Then

∑
i

diam(W 3
i ) ≤

7

τ
∑
i

µ(Wi ∖B) ≤ 7

τ
µ(B(z,2s) ∖B) < 7

τ

στs

14
≤ diam(C).

Replace each W 3
i ∩ C with a line segment. This produces a continuum D satisfying

diam(D) = diam(C),
H1(D ∩⋃i W

3
i ) < diam(C).

K ∶= D ∖⋃i W
3
i ⊂ C .

Then
H1(K) ≥ diam(C) −H1(D ∩⋃

i

W 3
i ) > 0.

By Eilenberg-Harrold’s theorem, D is rectifiable, thus so is K .

Thus M contains a rectifiable subset of positive H1 measure.

Remove from M the union of a H1 measure maximizing sequence of rectifiable subsets.
Apply previous result to remainder, conclude that it has measure 0, so M is rectifiable.
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