On Besicovitch's $\frac{1}{2}$-problem [after Preiss and Tišer]

Pierre Pansu, Université Paris-Saclay

November 5th, 2020
M metric space, $E \subset M$. The lower density at x is

$$
\underline{D}(E, x)=\liminf _{r \rightarrow 0} \frac{\mathrm{H}^{1}(E \cap B(x, r))}{2 r} .
$$

Theorem (Besicovitch 1938)

If $M=\mathbb{R}^{2}$, any subset E of finite \mathcal{H}^{1}-measure such that $\underline{D}(E, x)>\frac{3}{4}$ at \mathcal{H}^{1}-almost every point of E is rectifiable.

Besicovitch gives examples showing that $\frac{3}{4}$ cannot be improved beyond $\frac{1}{2}$ and conjectures that the optimal bound is $\frac{1}{2}$.
M metric space, $E \subset M$. The lower density at x is

$$
\underline{D}(E, x)=\liminf _{r \rightarrow 0} \frac{\mathrm{H}^{1}(E \cap B(x, r))}{2 r} .
$$

Theorem (Besicovitch 1938)

If $M=\mathbb{R}^{2}$, any subset E of finite \mathcal{H}^{1}-measure such that $\underline{D}(E, x)>\frac{3}{4}$ at \mathcal{H}^{1}-almost every point of E is rectifiable.

Besicovitch gives examples showing that $\frac{3}{4}$ cannot be improved beyond $\frac{1}{2}$ and conjectures that the optimal bound is $\frac{1}{2}$.

Theorem (Preiss, Tišer 1992)

For arbitrary metric spaces M, any subset $E \subset M$ of finite \mathcal{H}^{1}-measure such that $\underline{D}(E, x)>\frac{2+\sqrt{46}}{12}$ at \mathcal{H}^{1}-almost every point of E is rectifiable.

Goal : construct a continuum (compact connected subset) in E.

Goal : construct a continuum (compact connected subset) in E. Indeed (Eilenberg-Harrold 1943), continua of finite \mathcal{H}^{1}-measure are rectifiable.

Goal : construct a continuum (compact connected subset) in E. Indeed (Eilenberg-Harrold 1943), continua of finite \mathcal{H}^{1}-measure are rectifiable.

By contradiction, if construction fails, one encounters a pair of disjoint compact sets E_{1} and E_{2} of rather high density. Then one uses the Besicovitch pair condition to get a contradiction.

Goal : construct a continuum (compact connected subset) in E. Indeed (Eilenberg-Harrold 1943), continua of finite \mathcal{H}^{1}-measure are rectifiable.

By contradiction, if construction fails, one encounters a pair of disjoint compact sets E_{1} and E_{2} of rather high density. Then one uses the Besicovitch pair condition to get a contradiction.

Definition

Say that M satisfies the Besicovitch pair condition with parameter $\sigma \in(0,1)$ if whenever μ is a measure on M satisfying $\mu(S) \leq \operatorname{diam}(S)$ for every subset S, then there exists $\tau>0$ such that $\forall \lambda>0, \exists \delta>0$ such that for every pair of Borel subsets E_{1} and E_{2} for which

- $0<\operatorname{dist}\left(E_{1}, E_{2}\right)<\delta$, and
- $\mu(B(x, s))>2 \sigma s$ for every $x \in E_{1} \cup E_{2}$ and every $0<s<\lambda$, there exists a subset $U \subset M$ intersecting both E_{1} and E_{2} and such that

$$
\mu\left(U \backslash\left(E_{1} \cup E_{2}\right)\right)>\tau \operatorname{diam}(U)
$$

Goal : construct a continuum (compact connected subset) in E. Indeed (Eilenberg-Harrold 1943), continua of finite \mathcal{H}^{1}-measure are rectifiable.

By contradiction, if construction fails, one encounters a pair of disjoint compact sets E_{1} and E_{2} of rather high density. Then one uses the Besicovitch pair condition to get a contradiction.

Definition

Say that M satisfies the Besicovitch pair condition with parameter $\sigma \in(0,1)$ if whenever μ is a measure on M satisfying $\mu(S) \leq \operatorname{diam}(S)$ for every subset S, then there exists $\tau>0$ such that $\forall \lambda>0, \exists \delta>0$ such that for every pair of Borel subsets E_{1} and E_{2} for which

- $0<\operatorname{dist}\left(E_{1}, E_{2}\right)<\delta$, and
- $\mu(B(x, s))>2 \sigma s$ for every $x \in E_{1} \cup E_{2}$ and every $0<s<\lambda$, there exists a subset $U \subset M$ intersecting both E_{1} and E_{2} and such that

$$
\mu\left(U \backslash\left(E_{1} \cup E_{2}\right)\right)>\tau \operatorname{diam}(U)
$$

The proof of the theorem splits into two steps :
(1) Every metric space satisfies $\operatorname{BPC}(\sigma)$ for $\sigma=\frac{2+\sqrt{46}}{12}$.
(2) $\mathrm{BPC}(\sigma) \Longrightarrow$ the theorem with bound σ.

Proof of BPC

Let μ be a measure on M satisfying $\mu(S) \leq \operatorname{diam}(S)$ for every subset S. Fix $\lambda>0$. Let E_{1} and E_{2} be subsets for which

- $0<\operatorname{dist}\left(E_{1}, E_{2}\right)<\delta:=\lambda$, and
- $\mu(B(x, s))>2 \sigma s$ for every $x \in E_{1} \cup E_{2}$ and every $0<s<\lambda$,

Proof of BPC

Let μ be a measure on M satisfying $\mu(S) \leq \operatorname{diam}(S)$ for every subset S. Fix $\lambda>0$. Let E_{1} and E_{2} be subsets for which

- $0<\operatorname{dist}\left(E_{1}, E_{2}\right)<\delta:=\lambda$, and
- $\mu(B(x, s))>2 \sigma s$ for every $x \in E_{1} \cup E_{2}$ and every $0<s<\lambda$,

Pick $x \in E_{1}, y \in E_{2}$ with $d(x, y)=d\left(E_{1}, E_{2}\right):=r$. Then (up two switching x and y),

$$
\begin{equation*}
\forall t \geq 0, \mu\left(B(x, t) \cap E_{1}\right) \leq t+\frac{1}{2} r . \tag{1}
\end{equation*}
$$

Proof of BPC

Let μ be a measure on M satisfying $\mu(S) \leq \operatorname{diam}(S)$ for every subset S. Fix $\lambda>0$. Let E_{1} and E_{2} be subsets for which

- $0<\operatorname{dist}\left(E_{1}, E_{2}\right)<\delta:=\lambda$, and
- $\mu(B(x, s))>2 \sigma s$ for every $x \in E_{1} \cup E_{2}$ and every $0<s<\lambda$,

Pick $x \in E_{1}, y \in E_{2}$ with $d(x, y)=d\left(E_{1}, E_{2}\right):=r$. Then (up two switching x and y),

$$
\begin{equation*}
\forall t \geq 0, \mu\left(B(x, t) \cap E_{1}\right) \leq t+\frac{1}{2} r . \tag{1}
\end{equation*}
$$

For $\operatorname{BPC}(\sigma)$, it suffices to set $U=B(x, 2 r)$ and prove that $\mu\left(B(x, 2 r) \backslash\left(E_{1} \cup E_{2}\right)\right)>4 \tau r$ for a $\tau>0$ that depends only on σ.

Proof of BPC

Let μ be a measure on M satisfying $\mu(S) \leq \operatorname{diam}(S)$ for every subset S. Fix $\lambda>0$. Let E_{1} and E_{2} be subsets for which

- $0<\operatorname{dist}\left(E_{1}, E_{2}\right)<\delta:=\lambda$, and
- $\mu(B(x, s))>2 \sigma s$ for every $x \in E_{1} \cup E_{2}$ and every $0<s<\lambda$,

Pick $x \in E_{1}, y \in E_{2}$ with $d(x, y)=d\left(E_{1}, E_{2}\right):=r$. Then (up two switching x and y),

$$
\begin{equation*}
\forall t \geq 0, \mu\left(B(x, t) \cap E_{1}\right) \leq t+\frac{1}{2} r . \tag{1}
\end{equation*}
$$

For $\operatorname{BPC}(\sigma)$, it suffices to set $U=B(x, 2 r)$ and prove that $\mu\left(B(x, 2 r) \backslash\left(E_{1} \cup E_{2}\right)\right)>4 \tau r$ for a $\tau>0$ that depends only on σ.
Assume instead that $\mu\left(B(x, 2 r) \backslash\left(E_{1} \cup E_{2}\right)\right) \leq 4 \tau r$.

$$
\begin{aligned}
d:=\operatorname{diam}\left(B(x, r) \cap E_{1}\right) & =\mu\left(B(x, r) \cap E_{1}\right) \\
& \geq \mu(B(x, r))-\mu\left(B(x, 2 r) \backslash\left(E_{1} \cup E_{2}\right)\right) \\
& >2 \sigma r-4 \tau r .
\end{aligned}
$$

Proof of BPC

Let μ be a measure on M satisfying $\mu(S) \leq \operatorname{diam}(S)$ for every subset S. Fix $\lambda>0$. Let E_{1} and E_{2} be subsets for which

- $0<\operatorname{dist}\left(E_{1}, E_{2}\right)<\delta:=\lambda$, and
- $\mu(B(x, s))>2 \sigma s$ for every $x \in E_{1} \cup E_{2}$ and every $0<s<\lambda$,

Pick $x \in E_{1}, y \in E_{2}$ with $d(x, y)=d\left(E_{1}, E_{2}\right):=r$. Then (up two switching x and y),

$$
\begin{equation*}
\forall t \geq 0, \mu\left(B(x, t) \cap E_{1}\right) \leq t+\frac{1}{2} r . \tag{1}
\end{equation*}
$$

For $\operatorname{BPC}(\sigma)$, it suffices to set $U=B(x, 2 r)$ and prove that $\mu\left(B(x, 2 r) \backslash\left(E_{1} \cup E_{2}\right)\right)>4 \tau r$ for a $\tau>0$ that depends only on σ.
Assume instead that $\mu\left(B(x, 2 r) \backslash\left(E_{1} \cup E_{2}\right)\right) \leq 4 \tau r$.

$$
\begin{aligned}
d:=\operatorname{diam}\left(B(x, r) \cap E_{1}\right) & =\mu\left(B(x, r) \cap E_{1}\right) \\
& \geq \mu(B(x, r))-\mu\left(B(x, 2 r) \backslash\left(E_{1} \cup E_{2}\right)\right) \\
& >2 \sigma r-4 \tau r .
\end{aligned}
$$

Thus one can pack inside $B(x, 2 r)$ two disjoint balls of not too small radii centered at points of E_{1}. Their measures are not too small, this contradicts (1) if $\sigma \geq \frac{2+\sqrt{46}}{12}$.

When the BPC will be used, the measure μ will be a constant multiple of $\mathcal{H}^{1}\llcorner A$ for a suitable A. The fact that $\mu(S) \leq \operatorname{diam}(S)$ for all $S \subset M$ comes from the

Proposition (Besicovitch)

Let M be a metric space with $\mathcal{H}^{1}(M)<\infty$. At \mathcal{H}^{1}-almost all points $x \in M$,

$$
\limsup _{\operatorname{diam}(S) \rightarrow 0} \frac{\mathcal{H}^{1}(S)}{\operatorname{diam}(S)} \leq 1
$$

When the BPC will be used, the measure μ will be a constant multiple of $\mathcal{H}^{1}\llcorner A$ for a suitable A. The fact that $\mu(S) \leq \operatorname{diam}(S)$ for all $S \subset M$ comes from the

Proposition (Besicovitch)

Let M be a metric space with $\mathcal{H}^{1}(M)<\infty$. At \mathcal{H}^{1}-almost all points $x \in M$,

$$
\limsup _{\operatorname{diam}(S) \rightarrow 0} \frac{\mathcal{H}^{1}(S)}{\operatorname{diam}(S)} \leq 1
$$

For some $\tilde{\sigma}>\sigma$, this allows to pick compact sets $B \subset A \subset M$ of positive \mathcal{H}^{1} measure such that $\mathcal{H}^{1}(A \backslash B)<\frac{\tau}{15} \mathcal{H}^{1}(B)$ (where τ is the constant in $\left.\operatorname{BPC}(\sigma)\right)$ and

$$
\begin{aligned}
S \cap A \neq \varnothing, \operatorname{diam}(S) \text { small } & \Longrightarrow \mathcal{H}^{1}(S) \leq \frac{\tilde{\sigma}}{\sigma} \operatorname{diam}(S), \\
x \in B, s \text { small } & \Longrightarrow \mathcal{H}^{1}(B(x, s) \cap A) \geq 2 \tilde{\sigma} s,
\end{aligned}
$$

and set $\mu(S)=\frac{\sigma}{\tilde{\sigma}} \mathcal{H}^{1}(S \cap A)$.

Embed A isometrically in a separable Banach space $X\left(X=C^{0}(A)\right)$.

Embed A isometrically in a separable Banach space $X\left(X=C^{0}(A)\right)$.
Strategy. Add to B the convex hulls of its intersections with a suitable collection of convex sets. Show that the result is connected (or at least contains a large connected subset). Replace convex hulls with line segments. The result is a continuum of finite \mathcal{H}^{1} measure, hence rectifiable. Then remove (slightly larger) convex sets and show that the remainder, which is contained in M, has positive \mathcal{H}^{1} measure.

Embed A isometrically in a separable Banach space $X\left(X=C^{0}(A)\right)$.
Strategy. Add to B the convex hulls of its intersections with a suitable collection of convex sets. Show that the result is connected (or at least contains a large connected subset). Replace convex hulls with line segments. The result is a continuum of finite \mathcal{H}^{1} measure, hence rectifiable. Then remove (slightly larger) convex sets and show that the remainder, which is contained in M, has positive \mathcal{H}^{1} measure.

Notation. $W^{p}=\{x \in X ; d(x, W)<p \operatorname{diam}(W)\}$.

Embed A isometrically in a separable Banach space $X\left(X=C^{0}(A)\right)$.
Strategy. Add to B the convex hulls of its intersections with a suitable collection of convex sets. Show that the result is connected (or at least contains a large connected subset). Replace convex hulls with line segments. The result is a continuum of finite \mathcal{H}^{1} measure, hence rectifiable. Then remove (slightly larger) convex sets and show that the remainder, which is contained in M, has positive \mathcal{H}^{1} measure.

Notation. $W^{p}=\{x \in X ; d(x, W)<p \operatorname{diam}(W)\}$.
Among the family \mathcal{V} of convex subsets W of X intersecting B and for which $\mu(W \backslash B)>\tau \operatorname{diam}(W)$, pick a disjointed sequence W_{i} such that

$$
\forall W \in \mathcal{V}, \exists i, W \cap W_{i} \neq \varnothing \text { and } \operatorname{diam}(W)<2 \operatorname{diam}\left(W_{i}\right)
$$

Embed A isometrically in a separable Banach space $X\left(X=C^{0}(A)\right)$.
Strategy. Add to B the convex hulls of its intersections with a suitable collection of convex sets. Show that the result is connected (or at least contains a large connected subset). Replace convex hulls with line segments. The result is a continuum of finite \mathcal{H}^{1} measure, hence rectifiable. Then remove (slightly larger) convex sets and show that the remainder, which is contained in M, has positive \mathcal{H}^{1} measure.

Notation. $W^{p}=\{x \in X ; d(x, W)<p \operatorname{diam}(W)\}$.
Among the family \mathcal{V} of convex subsets W of X intersecting B and for which $\mu(W \backslash B)>\tau \operatorname{diam}(W)$, pick a disjointed sequence W_{i} such that

$$
\forall W \in \mathcal{V}, \exists i, W \cap W_{i} \neq \varnothing \text { and } \operatorname{diam}(W)<2 \operatorname{diam}\left(W_{i}\right)
$$

Then $\sum_{i} \operatorname{diam}\left(W_{i}\right)<\frac{1}{\tau} \sum_{i} \mu\left(W_{i} \backslash B\right) \leq \frac{1}{\tau} \mu(A \backslash B)<\frac{1}{15} \mu(B)$.

Embed A isometrically in a separable Banach space $X\left(X=C^{0}(A)\right)$.
Strategy. Add to B the convex hulls of its intersections with a suitable collection of convex sets. Show that the result is connected (or at least contains a large connected subset). Replace convex hulls with line segments. The result is a continuum of finite \mathcal{H}^{1} measure, hence rectifiable. Then remove (slightly larger) convex sets and show that the remainder, which is contained in M, has positive \mathcal{H}^{1} measure.

Notation. $W^{p}=\{x \in X ; d(x, W)<p \operatorname{diam}(W)\}$.
Among the family \mathcal{V} of convex subsets W of X intersecting B and for which $\mu(W \backslash B)>\tau \operatorname{diam}(W)$, pick a disjointed sequence W_{i} such that

$$
\forall W \in \mathcal{V}, \exists i, W \cap W_{i} \neq \varnothing \text { and } \operatorname{diam}(W)<2 \operatorname{diam}\left(W_{i}\right)
$$

Then $\sum_{i} \operatorname{diam}\left(W_{i}\right)<\frac{1}{\tau} \sum_{i} \mu\left(W_{i} \backslash B\right) \leq \frac{1}{\tau} \mu(A \backslash B)<\frac{1}{15} \mu(B)$. This implies that

$$
\mu\left(\bigcup_{i} W_{i}^{7}\right) \leq \sum_{i} \operatorname{diam}\left(W_{i}^{7}\right)<\mu(B) .
$$

Embed A isometrically in a separable Banach space $X\left(X=C^{0}(A)\right)$.
Strategy. Add to B the convex hulls of its intersections with a suitable collection of convex sets. Show that the result is connected (or at least contains a large connected subset). Replace convex hulls with line segments. The result is a continuum of finite \mathcal{H}^{1} measure, hence rectifiable. Then remove (slightly larger) convex sets and show that the remainder, which is contained in M, has positive \mathcal{H}^{1} measure.

Notation. $W^{p}=\{x \in X ; d(x, W)<p \operatorname{diam}(W)\}$.
Among the family \mathcal{V} of convex subsets W of X intersecting B and for which $\mu(W \backslash B)>\tau \operatorname{diam}(W)$, pick a disjointed sequence W_{i} such that

$$
\forall W \in \mathcal{V}, \exists i, W \cap W_{i} \neq \varnothing \text { and } \operatorname{diam}(W)<2 \operatorname{diam}\left(W_{i}\right)
$$

Then $\sum_{i} \operatorname{diam}\left(W_{i}\right)<\frac{1}{\tau} \sum_{i} \mu\left(W_{i} \backslash B\right) \leq \frac{1}{\tau} \mu(A \backslash B)<\frac{1}{15} \mu(B)$. This implies that

$$
\mu\left(\bigcup_{i} W_{i}^{7}\right) \leq \sum_{i} \operatorname{diam}\left(W_{i}^{7}\right)<\mu(B) .
$$

Hence there exists a point z in $B \backslash \cup_{i} W_{i}^{7}$ where the density of $A \backslash B$ vanishes. In particular, for some small $s, \mu(B(z, 2 s) \backslash B)<\frac{\sigma \tau}{14} s$.

Let $Q=B \cup \bigcup_{i} \operatorname{conv}\left(B \cap W_{i}^{2}\right)$. This is a compact set. One uses $\operatorname{BPC}(\sigma)$ to show that the connected component C of Q containing z has diameter $>\frac{\sigma s}{2}$.

Let $Q=B \cup \bigcup_{i} \operatorname{conv}\left(B \cap W_{i}^{2}\right)$. This is a compact set. One uses $\operatorname{BPC}(\sigma)$ to show that the connected component C of Q containing z has diameter $>\frac{\sigma S}{2}$.

Otherwise, there is a clopen H of Q containing z and contained in $B\left(z, \frac{\sigma s}{2}\right)$. Then $\operatorname{BPC}(\sigma)$ applies to $E_{1}=B \cap H$ and $E_{2}=B \backslash H$, yielding a set U intersecting both E_{1} and E_{2} and such that

$$
\mu(U \backslash B)=\mu\left(U \backslash\left(E_{1} \cup E_{2}\right)\right)>\tau \operatorname{diam}(U) .
$$

Let $Q=B \cup \bigcup_{i} \operatorname{conv}\left(B \cap W_{i}^{2}\right)$. This is a compact set. One uses $\operatorname{BPC}(\sigma)$ to show that the connected component C of Q containing z has diameter $>\frac{\sigma S}{2}$.

Otherwise, there is a clopen H of Q containing z and contained in $B\left(z, \frac{\sigma s}{2}\right)$. Then $\operatorname{BPC}(\sigma)$ applies to $E_{1}=B \cap H$ and $E_{2}=B \backslash H$, yielding a set U intersecting both E_{1} and E_{2} and such that

$$
\mu(U \backslash B)=\mu\left(U \backslash\left(E_{1} \cup E_{2}\right)\right)>\tau \operatorname{diam}(U)
$$

Then $W=\operatorname{conv}(U) \in \mathcal{V}$. Thus $\exists i, W \cap W_{i} \neq \varnothing$ and $\operatorname{diam}(W)<2 \operatorname{diam}\left(W_{i}\right)$, so $W \subset W_{i}^{2}$.

Let $Q=B \cup \bigcup_{i} \operatorname{conv}\left(B \cap W_{i}^{2}\right)$. This is a compact set. One uses $\operatorname{BPC}(\sigma)$ to show that the connected component C of Q containing z has diameter $>\frac{\sigma s}{2}$.

Otherwise, there is a clopen H of Q containing z and contained in $B\left(z, \frac{\sigma s}{2}\right)$. Then $\operatorname{BPC}(\sigma)$ applies to $E_{1}=B \cap H$ and $E_{2}=B \backslash H$, yielding a set U intersecting both E_{1} and E_{2} and such that

$$
\mu(U \backslash B)=\mu\left(U \backslash\left(E_{1} \cup E_{2}\right)\right)>\tau \operatorname{diam}(U)
$$

Then $W=\operatorname{conv}(U) \in \mathcal{V}$. Thus $\exists i, W \cap W_{i} \neq \varnothing$ and $\operatorname{diam}(W)<2 \operatorname{diam}\left(W_{i}\right)$, so $W \subset W_{i}^{2}$.

But inside W_{i}^{2}, Q is convex, so its disconnectedness cannot happen there, contradiction.

In the sequel, one sticks to those W_{i} 's such that $W_{i}^{3} \cap C \neq \varnothing$. Then

$$
\sum_{i} \operatorname{diam}\left(W_{i}^{3}\right) \leq \frac{7}{\tau} \sum_{i} \mu\left(W_{i} \backslash B\right) \leq \frac{7}{\tau} \mu(B(z, 2 s) \backslash B)<\frac{7}{\tau} \frac{\sigma \tau s}{14} \leq \operatorname{diam}(C)
$$

In the sequel, one sticks to those W_{i} 's such that $W_{i}^{3} \cap C \neq \varnothing$. Then

$$
\sum_{i} \operatorname{diam}\left(W_{i}^{3}\right) \leq \frac{7}{\tau} \sum_{i} \mu\left(W_{i} \backslash B\right) \leq \frac{7}{\tau} \mu(B(z, 2 s) \backslash B)<\frac{7}{\tau} \frac{\sigma \tau s}{14} \leq \operatorname{diam}(C)
$$

Replace each $W_{i}^{3} \cap C$ with a line segment. This produces a continuum D satisfying

- $\operatorname{diam}(D)=\operatorname{diam}(C)$,
- $\mathcal{H}^{1}\left(D \cap \cup_{i} W_{i}^{3}\right)<\operatorname{diam}(C)$.
- $K:=D \backslash \cup_{i} W_{i}^{3} \subset C$.

In the sequel, one sticks to those W_{i} 's such that $W_{i}^{3} \cap C \neq \varnothing$. Then

$$
\sum_{i} \operatorname{diam}\left(W_{i}^{3}\right) \leq \frac{7}{\tau} \sum_{i} \mu\left(W_{i} \backslash B\right) \leq \frac{7}{\tau} \mu(B(z, 2 s) \backslash B)<\frac{7}{\tau} \frac{\sigma \tau s}{14} \leq \operatorname{diam}(C)
$$

Replace each $W_{i}^{3} \cap C$ with a line segment. This produces a continuum D satisfying

- $\operatorname{diam}(D)=\operatorname{diam}(C)$,
- $\mathcal{H}^{1}\left(D \cap \cup_{i} W_{i}^{3}\right)<\operatorname{diam}(C)$.
- $K:=D \backslash \cup_{i} W_{i}^{3} \subset C$.

Then

$$
\mathcal{H}^{1}(K) \geq \operatorname{diam}(C)-\mathcal{H}^{1}\left(D \cap \bigcup_{i} W_{i}^{3}\right)>0 .
$$

In the sequel, one sticks to those W_{i} 's such that $W_{i}^{3} \cap C \neq \varnothing$. Then

$$
\sum_{i} \operatorname{diam}\left(W_{i}^{3}\right) \leq \frac{7}{\tau} \sum_{i} \mu\left(W_{i} \backslash B\right) \leq \frac{7}{\tau} \mu(B(z, 2 s) \backslash B)<\frac{7}{\tau} \frac{\sigma \tau s}{14} \leq \operatorname{diam}(C)
$$

Replace each $W_{i}^{3} \cap C$ with a line segment. This produces a continuum D satisfying

- $\operatorname{diam}(D)=\operatorname{diam}(C)$,
- $\mathcal{H}^{1}\left(D \cap \cup_{i} W_{i}^{3}\right)<\operatorname{diam}(C)$.
- $K:=D \backslash \cup_{i} W_{i}^{3} \subset C$.

Then

$$
\mathcal{H}^{1}(K) \geq \operatorname{diam}(C)-\mathcal{H}^{1}\left(D \cap \bigcup_{i} W_{i}^{3}\right)>0 .
$$

By Eilenberg-Harrold's theorem, D is rectifiable, thus so is K. Thus M contains a rectifiable subset of positive \mathcal{H}^{1} measure.

In the sequel, one sticks to those W_{i} 's such that $W_{i}^{3} \cap C \neq \varnothing$. Then

$$
\sum_{i} \operatorname{diam}\left(W_{i}^{3}\right) \leq \frac{7}{\tau} \sum_{i} \mu\left(W_{i} \backslash B\right) \leq \frac{7}{\tau} \mu(B(z, 2 s) \backslash B)<\frac{7}{\tau} \frac{\sigma \tau s}{14} \leq \operatorname{diam}(C)
$$

Replace each $W_{i}^{3} \cap C$ with a line segment. This produces a continuum D satisfying

- $\operatorname{diam}(D)=\operatorname{diam}(C)$,
- $\mathcal{H}^{1}\left(D \cap \cup_{i} W_{i}^{3}\right)<\operatorname{diam}(C)$.
- $K:=D \backslash \cup_{i} W_{i}^{3} \subset C$.

Then

$$
\mathcal{H}^{1}(K) \geq \operatorname{diam}(C)-\mathcal{H}^{1}\left(D \cap \bigcup_{i} W_{i}^{3}\right)>0 .
$$

By Eilenberg-Harrold's theorem, D is rectifiable, thus so is K. Thus M contains a rectifiable subset of positive \mathcal{H}^{1} measure.

Remove from M the union of a \mathcal{H}^{1} measure maximizing sequence of rectifiable subsets. Apply previous result to remainder, conclude that it has measure 0 , so M is rectifiable.

