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ABSTRACT. In the last few years the authors proved Poincaré and Sobolev type inequal-
ities in Heisenberg groups Hn for differential forms in the Rumin’s complex. The need
to substitute the usual de Rham complex of differential forms for Euclidean spaces with
the Rumin’s complex is due to the different stratification of the Lie algebra of Heisenberg
groups. The crucial feature of Rumin’s complex is that dc is a differential operator of order
1 or 2 according to the degree of the form.

Roughly speaking, Poincaré and Sobolev type inequalities are quantitative formula-
tions of the well known topological problem whether a closed form is exact. More pre-
cisely, for suitable p and q, we mean that every exact differential form ω in Lp admits a
primitive φ in Lq such that ‖φ‖Lq ≤ C ‖ω‖Lp . The cases of the norm Lp, p ≥ 1 and
q <∞ have been already studied in a series of papers by the authors. In the present paper
we deal with the limiting case where q = ∞: it is remarkable that, unlike in the scalar
case, when the degree of the forms ω is at least 2, we can take q =∞ in the left-hand side
of the inequality. The corresponding inequality in the Euclidean setting RN (p = N and
q =∞) was proven by Bourgain & Brezis.
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mula.
1



2 ANNALISA BALDI, BRUNO FRANCHI, PIERRE PANSU

1. INTRODUCTION

1.1. Euclidean spaces and de Rham complex. To begin with, let us consider preliminar-
ily the Euclidean space RN , N > 1 and the differential forms of the de Rham complex
(Ω•, d) on RN . It is well known that closed forms ω ∈ Ω• are exact, i.e. dω = 0 im-
plies that there exists φ ∈ Ω•−1 such that dφ = ω. This can expressed by saying that the
cohomology groups

(1) Hh
dR := (Ωh ∩ ker d)/dΩh−1 are trivial for 1 ≤ h ≤ N .

Global Poincaré and Sobolev inequalities in (Ω•, d) are meant to give a quantitative
meaning to (1). More precisely, if 1 ≤ p, q ≤ ∞, we say that a global Poincaré inequality
holds on RN , if there exists a positive constant C = C(p, q) such that for every exact
h-form ω on RN , belonging to Lp, there exists a (h− 1)-form φ such that dφ = ω and

‖φ‖Lq ≤ C ‖ω‖Lp .

Shortly, we shall write that Poincarép,q(h) inequality holds, or that the Lq,p-cohomology
vanishes. For further comments and applications, we refer to [28]. Notice that a homo-
geneity argument shows that, if 1 ≤ p < N , then we can take p ≤ q ≤ pN/(N − p).

In addition, we say that a global Sobolev inequality holds on RN , if for every exact
compactly supported h-form ω on RN , belonging toLp, there exists a compactly supported
(h− 1)-form φ such that dφ = ω and

‖φ‖Lq ≤ C ‖ω‖Lp .

Again, we shall write that Sobolevp,q(h) holds.
We point out that if u is a scalar function on RN (i.e. u ∈ Ω0), then Poincarép,q(1) and

Sobolev p,q(1) for du are nothing but the usual Poincaré and Sobolev inequalities.
Besides global inequalities, it is natural to consider local inequalities, where the Eu-

clidean space RN is replaced (for instance) with a Euclidean ball. If 1 < p < N , a local
Poincaré inequality in de Rham complex has been proved by Iwaniec & Lutoborsky [24],
and a Sobolev inequality for bounded convex sets has been proved by Mitrea, Mitrea &
Monniaux [26].

The notions of Poincaré and Sobolev inequalities can be weakened through the notions
of interior inequalities. More precisely, we say that an interior Poincarép,q(h) inequality
holds on RN if there exists a fixed λ ≥ 1 large enough such that for every r > 0 small
enough there exists a constant C = C(M,p, q, r, λ) such that for every x ∈ RN and every
exact h-form ω on B(x, λr), belonging to Lp, there exists a (h − 1)-form φ on B(x, r)
such that dφ = ω on B(x, r) and

‖φ‖Lq(B(x,r)) ≤ C ‖ω‖Lp(B(x,λr)).(2)

Analogously, by interior Sobolev inequalities, we mean that, if ω is supported in B(x, r),
then there exists φ supported in B(x, λr) such that dφ = ω and

‖φ‖Lq(B(x,λr)) ≤ C ‖ω‖Lp(B(x,r)).(3)

Here we use the word interior to stress the fact that inequality (2) provides no information
on the behaviour of differential forms near the boundary of their domain of definition.

It turns out that in several situations, the loss on domain is harmless. This is for instance
the case of Lq,p-cohomological applications, see [28].

Relying on these weaker notions, we have been able to cover also the case p = 1 (see
[5]). The other endpoint result p = N , q = ∞, is more delicate. Indeed, it is well known
that the interior PoincaréN,∞(1) fails to hold in RN (see e.g. [38], p. 484), and has to be
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replaced by the so-called Trudinger exponential estimate (see [36]) or by the more precise
Adams-Trudinger inequality ([38], Theorem 15.30).

However, rather surprisingly, in [14] Bourgain & Brezis proved that a global PoincaréN,∞(h)
holds for 1 < h < N − 1.

1.2. Heisenberg groups and Rumin’s complex. In the last few years, the authors of
the present paper have attacked the study of Poincaré and Sobolev inequalities in sub-
Riemannian manifolds endowed with a “suitable” complex of differential forms (we re-
mind that the data of a smooth manifold M and of a sub-bundle H ⊂ TM equipped with
a scalar product g is called a sub-Riemannian manifold). See, e.g., [23], [27].

More precisely, we have considered differential forms of the so-called Rumin complex
of Heisenberg groups: see [3], [4], [8], [6], [7]. The Heisenberg group Hn, n ≥ 1, is the
connected, simply connected Lie group whose Lie algebra is the central extensions

(4) h = h1 ⊕ h2, with h2 = R = Z(h),

with bracket h1 ⊗ h1 → h2 = R being a non-degenerate skew-symmetric 2-form. Due to
its stratification (4), the Heisenberg Lie algebra admits a one parameter group of automor-
phisms δt,

δt = t on h1, δt = t2 on h2,

which are counterparts of the usual Euclidean dilations in RN . Through exponential co-
ordinates, Hn can be identified with the Euclidean space R2n+1, endowed with the non-
commutative product induced by the Campbell-Hausdorff formula. In this system of coor-
dinates, the identity element e ∈ Hn is the zero of the vector space R2n+1, and p−1 = −p.
In addition, in this system of coordinates, the Haar measure of the group is the (2n + 1)-
dimensional Lebesgue measure L2n+1.

Heisenberg groups are the simplest nontrivial (i.e. non-commutative) instance of the so
called Carnot groups, connected, simply connected and stratified Lie groups. Heisenberg
groups can be viewed as sub-Riemannian spaces, where the sub-Riemannian structure is
obtained by left-translating h1 (we remind that the Lie algebra of Hn can be identified
with the tangent space to Hn at e). In addition, Heisenberg groups are the local models of
contact manifolds, since, according to a theorem by Darboux, every 2n + 1-dimensional
contact manifold is locally contactomorphic to Hn.

For a general review on Heisenberg groups and their properties, we refer for instance
to [34], [23], [13], [37]. The main properties of Hn that we shall need in this paper will
be presented below in Section 2. Here we limit ourselves to reminding that Heisenberg
groups carry natural left-invariant metrics, either Carnot-Carathéodory distances as sub-
Riemannian manifolds or, equivalently, Cygan-Korányi norms ρ (see (9) below). Through-
out this paper we use systematically the Cygan-Korányi distance d(p, q) := ρ(p−1 · q).
The distance d is homogeneous of degree one with respect to group dilations δt, so that,
if we denote by B(p, r) the Cygan-Korányi ball of radius r > 0 centered at p ∈ Hn, then
L2n+1(B(p, r)) = cr2n+2. In particular, this implies that the Hausdorff dimension of Hn
with respect to d equals Q := 2n+ 2.

As a consequence of the stratification (4), the differential forms on h split into 2 eigen-
spaces under δt, therefore de Rham complex lacks scale invariance under these anisotropic
dilations. A substitute for de Rham’s complex, that recovers scale invariance under δt has
been defined by M. Rumin, [30].

Let h = 0, . . . , 2n+1. Rumin’s substitute for smooth differential forms of degree h are
the smooth sections of a left-invariant vector bundle Eh0 . If h ≤ n, Eh0 is a subbundle of
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ΛhH∗. If h ≥ n,Eh0 is a subbundle of ΛhH⊗(TM/H). Rumin’s substitute for de Rham’s
exterior differential is a linear differential operator dc from sections of Eh0 to sections of
Eh+1

0 such that d2
c = 0. Further details about Rumin’s complex are contained in Section

2.2 below. We refer to also to [30], [9] [10] and [11] for details of the construction.

We stress that the operator dc is a left-invariant differential operator of order 2 when
acting on forms of degree n and of order 1 otherwise.

This phenomenon will be a major issue in our results and will affect the proofs (think for
instance of Leibniz formula) as well as the choice of the exponents p, q in our inequalities.

1.3. Poincaré and Sobolev inequalities: precise definitions. We can state now the no-
tions of (global and interior) Poincaré and Sobolev inequalities in the setting of Rumin’s
complex.

Definition 1.1. If 1 ≤ h ≤ 2n + 1 and 1 ≤ p ≤ q ≤ ∞, we say that the global
H-Poincarép,q inequality holds in Eh0 if there exists a constant C such that, for every dc-
exact differential h-form ω in Lp(Hn;Eh0 ) there exists a differential (h − 1)-form φ in
Lq(Hn, Eh−1

0 ) such that dcφ = ω and

‖φ‖Lq(Hn,Eh−1
0 ) ≤ C ‖ω‖Lp(Hn,Eh0 ) globalH-Poincarép,q(h).(5)

Definition 1.2. Let B := B(e, 1) and Bλ := B(e, λ). Given 1 ≤ h ≤ 2n + 1 and 1 ≤
p ≤ q ≤ ∞, we say that the interior H-Poincarép,q inequality holds in Eh0 if there exist
constants λ > 1 and C such that, for every dc-exact differential h-form ω in Lp(Bλ;Eh0 )

there exists a differential (h− 1)-form φ in Lq(B,Eh−1
0 ) such that dcφ = ω and

‖φ‖Lq(B,Eh−1
0 ) ≤ C ‖ω‖Lp(Bλ,Eh0 ) interiorH-Poincarép,q(h).(6)

Definition 1.3. If 1 ≤ h ≤ 2n + 1, 1 ≤ p ≤ q ≤ ∞, we say that the global H-
Sobolevp,q(h) inequality holds if there exists a constant C such that for every compactly
supported dc-exact differential h-form ω inLp(Hn;Eh0 ) there exists a compactly supported
differential (h− 1)-form φ in Lq(Hn, Eh−1

0 ) such that dcφ = ω and

‖φ‖Lq(Hn,Eh−1
0 ) ≤ C ‖ω‖Lp(Hn,Eh0 ) globalH-Sobolevp,q(h).(7)

Definition 1.4. Let B := B(e, 1) and Bλ := B(e, λ). Given 1 ≤ h ≤ 2n, 1 ≤ p ≤
q ≤ ∞, we say that the interior H-Sobolevp,q(h) inequality holds if there exist constants
λ > 1 and C such that for every compactly supported dc-exact differential h-form ω in
Lp(B;Eh0 ) there exists a compactly supported differential (h−1)-form φ inLq(Bλ, Eh−1

0 )
such that dcφ = ω in Bλ and

‖φ‖Lq(Bλ,Eh−1
0 ) ≤ C ‖ω‖Lp(B,Eh0 ) interiorH-Sobolevp,q(h).(8)

Here we have extended ω by 0 to all of Bλ.

Remark 1.5. As in [8], Corollary 5.21, an elementary scaling argument shows that, if
h 6= n, 1 ≤ p < Q and q = pQ/(Q− p), or h = n, 1 ≤ p < Q/2 and q = pQ/(Q− 2p)
then the interior H-Sobolevp,q(h) implies the global H-Sobolevp,q(h) inequality.

Suppose 1 < h < 2n. If h 6= n, p = Q take q =∞, and, h = n, p = Q/2 take q =∞.
We shall see later that (unlike in the case h = 1 or h = 2n), interior H-SobolevQ,∞(h)
hold. Then, again the corresponding global inequalities hold, thanks to the same scaling
argument.

In the sequel, we shall refer to the exponents q = pQ/(Q − p) or q = pQ/(Q − 2p)
according to the degree of the forms as to the sharp Sobolev exponent.
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1.4. State of the art. In [8] and [6] the following Poincaré and Sobolev inequalities have
been proven. More precisely, [8] deals with the case p > 1, whereas [6] covers the case
p = 1.

Theorem 1.6 (Poincaré inequality). If 1 ≤ h ≤ 2n+ 1, we have:

i) if h 6= n+ 1, 2n+ 1 and 1 ≤ p < Q, then the interior H-Poincarép,pQ/(Q−p)(h)
holds;

ii) if h = n+ 1 and 1 ≤ p < Q/2, then the interior H-Poincarép,pQ/(Q−2p)(n+ 1)
holds;

iii) if h = 2n+ 1 and 1 < p < Q, then the interior H-Poincarép,pQ/(Q−p)(h) holds.

Analogous statements hold for global Poincaré inequalities on Hn.

Theorem 1.7 (Sobolev inequality). If 1 ≤ h ≤ 2n+ 1, we have:

i) if h 6= n+ 1, 2n+ 1 and 1 ≤ p < Q, then the interior H-Sobolevp,pQ/(Q−p)(h)
holds;

ii) if h = n + 1 and 1 ≤ p < Q/2, then the interior H-Sobolevp,pQ/(Q−2p)(n + 1)
holds;

iii) if h = 2n+ 1 and 1 < p < Q, then the interior H-Sobolevp,pQ/(Q−p)(h) holds.

Analogous statements hold for global Sobolev inequalities on Hn.

1.5. Main results and sketch of the proofs. The aim of the present paper is to complete
the results gathered in Section 1.4, by covering (when possible) the endpoints p = Q or
p = Q/2 according to the degree of the forms.

Thus, the core of the present paper consists of the following theorems:

Theorem 1.8. If 2 ≤ h ≤ 2n+ 1, we have:

i) if h 6= n+ 1, then the interior H-PoincaréQ,∞(h) holds;
ii) if h = n+ 1, then the interior H-PoincaréQ/2,∞(n) holds.

Analogous statements hold for global Poincaré inequalities on Hn.

Theorem 1.9. If 2 ≤ h ≤ 2n+ 1, we have:

i) if h 6= n+ 1, then the interior H-SobolevQ,∞(h) holds;
ii) if h = n+ 1, then the interior H-SobolevQ/2,∞(n) holds.

Analogous statements hold for global Sobolev inequalities on Hn.

Remark 1.10. In Euclidean space RN it is well known that the interior PoincaréN,∞(1)
fails to hold (see e.g. [38], p. 484), and has to be replaced with Trudinger’s exponential
estimate (see [36]) or the more precise Adams-Trudinger inequality ([38], Theorem 15.30).
Analogous estimates in Heisenberg groups can be found e.g. in [12], [15] (see also [7]).

On the contrary, the statement of Theorem 1.8 states the H-Poincarép,∞(h) holds for
h ≥ 2 with sharp exponent p = Q or p = Q/2, according to the degree of the forms.

We refer to [14], Theorem 5, for related statements in Euclidean spaces.

Remark 1.11. By the way, the proofs presented here can be carried out (with obvious sim-
plifications) also in the Euclidean setting. In particular, we can obtain interior estimates
that are, at least partially, the interior counterparts of the results of [14].
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Let us give a sketch of the paper. Section 2 gathers the basic notions about Heisenberg
groups. In particular, in Section 2.1 we state several properties of the convolution kernels
in Hn. These results are more or less known, but they have to be handled carefully because
of the presence of L∞-spaces, precluding density arguments. Subsequently, Section 2.2
contains a minimal presentation of Rumin’s complex, with the aim of making the paper
as self-contained as possible. In particular, Lemma 2.11 deals with Leibniz formula when
the exterior differential dc of the complex is a differential operator of order 2. A more
extensive presentation of the complex is contained in the Appendix (Section 8). Finally,
Section 2.3 contains some basic properties of Rumin’s Laplacian in (E•0 , dc) and of its
fundamental solution.

The core of the present paper is contained in Sections 3 – 7 where the proofs of Theo-
rems 1.8 and 1.9 are carried out.

More precisely, Section 3 produces our proof of Poincaré inequalities (Theorem 1.8)
which relies both on the formulation by duality of the Poincaré inequalites H-Poincarép,∞(h).
Therein we prove a relationship between H-Sobolev1,p′(2n+2−h) and H-Poincarép,∞(h)
when 1 < p, p′ <∞ are dual exponents, and eventually we combine this relationship with
the previous duality argument for Poincaré inequalites.

Contrary to what happens when 1 ≤ p < Q (or 1 ≤ p < Q/2), where the proofs of
Poincaré and Sobolev inequalities proceeded on parallel tracks, here the proof of Sobolev
inequalities require more delicate arguments: first we prove a L∞-homotopy formula (see
Section 4) and then we derive interior H-Poincaré∞,∞ and H-Sobolev∞,∞ inequalities.
Then the subsequent step (Section 6) consists in proving that the L∞,∞ cohomology of
Rumin’s forms vanishes on a suitable family of (Cygan-Korányi) annuli. Finally, Section
7 contains L∞-estimates associated with Leibniz formula and hence ends with the proof
of Sobolev inequalities stated in Theorem 1.9.

2. HEISENBERG GROUPS: DEFINITIONS AND PRELIMINARY RESULTS

We denote by Hn the n-dimensional Heisenberg group, identified with R2n+1 through
exponential coordinates. A point p ∈ Hn is denoted by p = (x, y, t), with both x, y ∈ Rn
and t ∈ R. If p and p′ ∈ Hn, the group operation is defined by

p · p′ = (x+ x′, y + y′, t+ t′ +
1

2

n∑
j=1

(xjy
′
j − yjx′j)).

The unit element of Hn is the origin, that will be denote by e. For any q ∈ Hn, the (left)
translation τq : Hn → Hn is defined as

p 7→ τqp := q · p.

The Lebesgue measure in R2n+1 is a Haar measure in Hn.
For a general review on Heisenberg groups and their properties, we refer to [34], [23]

and to [37]. We limit ourselves to fix some notations, following [19].
The Heisenberg group Hn can be endowed with the homogeneous norm (Cygan-Korányi

norm)

(9) %(p) =
(
|p′|4 + 16 p2

2n+1

)1/4
,

and we define the gauge distance (a true distance, see [34], p. 638), that is left invariant i.e.
d(τqp, τqp

′) = d(p, p′) for all p, p′ ∈ Hn) as

(10) d(p, q) := %(p−1 · q).
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Finally, the balls for the metric d are le so-called Korányi balls

(11) B(p, r) := {q ∈ Hn; d(p, q) < r}.
Notice that Korányi balls are star-shaped with respect to the origin and convex smooth

sets.
A straightforward computation shows that there exists c0 > 1 such that

(12) c−2
0 |p| ≤ ρ(p) ≤ |p|1/2,

provided p is close to e. In particular, for r > 0 small, if we denote by BEuc(e, r) the
Euclidean ball centred at e of radius r,

(13) BEuc(e, r2) ⊂ B(e, r) ⊂ BEuc(e, c20r).

We denote by h the Lie algebra of the left invariant vector fields of Hn. The standard
basis of h is given, for i = 1, . . . , n, by

Xi := ∂xi −
1

2
yi∂t, Yi := ∂yi +

1

2
xi∂t, T := ∂t.

The only non-trivial commutation relations are [Xi, Yi] = T , for i = 1, . . . , n. The
horizontal subspace h1 is the subspace of h spanned by X1, . . . , Xn and Y1, . . . , Yn:
h1 := span {X1, . . . , Xn, Y1, . . . , Yn} .
Coherently, from now on, we refer to X1, . . . , Xn, Y1, . . . , Yn (identified with first order
differential operators) as the horizontal derivatives. Denoting by h2 the linear span of T ,
the 2-step stratification of h is expressed by

h = h1 ⊕ h2.

The stratification of the Lie algebra h induces a family of non-isotropic dilations δλ :
Hn → Hn, λ > 0 as follows: if p = (x, y, t) ∈ Hn, then

(14) δλ(x, y, t) = (λx, λy, λ2t).

Notice that the gauge norm (9) is positively δλ-homogenous, so that the Lebesgue measure
of the ball B(x, r) is r2n+2 up to a geometric constant (the Lebesgue measure of B(e, 1)).

Thus, the homogeneous dimension of Hn with respect to δλ, λ > 0, equals

Q := 2n+ 2.

It is well known that the topological dimension of Hn is 2n+1, since as a smooth manifold
it coincides with R2n+1, whereas the Hausdorff dimension of (Hn, d) is Q.

The vector space h can be endowed with an inner product, indicated by 〈·, ·〉, making
X1, . . . , Xn, Y1, . . . , Yn and T orthonormal.

Throughout this paper, we write also

(15) Wi := Xi, Wi+n := Yi and W2n+1 := T, for i = 1, . . . , n.

As in [17], we also adopt the following multi-index notation for higher-order deriva-
tives. If I = (i1, . . . , i2n+1) is a multi–index, we set

(16) W I = W i1
1 · · ·W

i2n
2n T i2n+1 .

By the Poincaré–Birkhoff–Witt theorem, the differential operators W I form a basis for the
algebra of left invariant differential operators in Hn. Furthermore, we set

|I| := i1 + · · ·+ i2n + i2n+1

the order of the differential operator W I , and

d(I) := i1 + · · ·+ i2n + 2i2n+1
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its degree of homogeneity with respect to group dilations.
The dual space of h is denoted by

∧1
h. The basis of

∧1
h, dual to the basis {X1, . . . , Yn, T},

is the family of covectors {dx1, . . . , dxn, dy1, . . . , dyn, θ} where

θ := dt− 1

2

n∑
j=1

(xjdyj − yjdxj)

is the contact form in Hn. We denote by 〈·, ·〉 the inner product in
∧1

h that makes
(dx1, . . . , dyn, θ) an orthonormal basis.

2.1. Sobolev spaces, distributions and kernels in Hn. Let U ⊂ Hn be an open set. We
shall use the following classical notations: E(U) is the space of all smooth function on U ,
and D(U) is the space of all compactly supported smooth functions on U , endowed with
the standard topologies (see e.g. [35]). The spaces E ′(U) and D′(U) are their dual spaces
of distributions.

Let 1 ≤ p ≤ ∞ and m ∈ N, Wm,p
Euc (U) denotes the usual Sobolev space.

We remind also the notion of (integer order) Folland-Stein Sobolev space (for a general
presentation, see e.g. [16] and [17]).

Definition 2.1. If U ⊂ Hn is an open set, 1 ≤ p ≤ ∞ and m ∈ N, then the space
Wm,p(U) is the space of all u ∈ Lp(U) such that, with the notation of (16),

W Iu ∈ Lp(U) for all multi-indices I with d(I) ≤ m,
endowed with the natural norm

‖u‖Wk,p(U) :=
∑

d(I)≤m

‖W Iu‖Lp(U).

Folland-Stein Sobolev spaces enjoy the following properties akin to those of the usual
Euclidean Sobolev spaces (see [16], and, e.g. [18]).

Theorem 2.2. If U ⊂ Hn, 1 ≤ p ≤ ∞, and k ∈ N, then
i) W k,p(U) is a Banach space.

In addition, if p <∞,
ii) W k,p(U) ∩ C∞(U) is dense in W k,p(U);

iii) if U = Hn, then D(Hn) is dense in W k,p(U);
iv) if 1 < p <∞, then W k,p(U) is reflexive.

Theorem 2.3. [see [16], Theorem 5.15] If p > Q, then

W 1,p(Hn) ⊂ L∞(Hn)

algebraically and topologically.

Definition 2.4. If U ⊂ Hn is open and if 1 ≤ p < ∞, we denote by
◦
W k,p(U) the

completion of D(U) in W k,p(U).

Remark 2.5. If U ⊂ Hn is bounded, by (iterated) Poincaré inequality (see e.g. [25]), it
follows that the norms

‖u‖Wk,p(U) and
∑

d(I)=k

‖W Iu‖Lp(U)

are equivalent on
◦
W k,p(U) when 1 ≤ p <∞.
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Again as in [17] it is possible to associate with the group structure a convolution (still
denoted by ∗): if, for instance, f ∈ D(Hn) and g ∈ L1

loc(Hn), we set

(17) f ∗ g(p) :=

∫
f(q)g(q−1p) dq for q ∈ Hn.

We remind that, if (say) g is a smooth function and L is a left invariant differential
operator, then L(f ∗g) = f ∗Lg.We remind also that the convolution is again well defined
when f, g ∈ D′(Hn), provided at least one of them has compact support (as customary,
we denote by E ′(Hn) the class of compactly supported distributions in Hn identified with
R2n+1). In this case the following identities hold

(18) 〈f ∗ g|φ〉 = 〈g|vf ∗ φ〉 and 〈f ∗ g|φ〉 = 〈f |φ ∗ vg〉
for any test function φ (if f is a real function defined in Hn, we denote by vf the function
defined by vf(p) := f(p−1) and, if T ∈ D′(Hn), then vT is the distribution defined by
〈vT |φ〉 := 〈T |vφ〉 for any test function φ).

Suppose now f ∈ E ′(Hn) and g ∈ D′(Hn). Then, if ψ ∈ D(Hn), we have

〈(W If) ∗ g|ψ〉 = 〈W If |ψ ∗ vg〉 = (−1)|I|〈f |ψ ∗ (W I vg)〉

= (−1)|I|〈f ∗ vW I vg|ψ〉.
(19)

Proposition 2.6. We have:
(1) if φ ∈ D(Hn) and T ∈ D′(Hn), then φ ∗ T ∈ E(Hn) (see [35], Theorem 7.23);
(2) the convolution maps E(Hn)× E ′(Hn) into E(Hn) (see [35], p. 288);
(3) the map (S, T )→ S ∗ T defined by

〈S ∗ T |φ〉D′,D =: 〈S|φ ∗ vT 〉E′,E
is a separately continuous bilinear map from E ′(Hn)×D′(Hn) to D′(Hn);

(4) if T ∈ E ′(Hn), andP is a differential operator, thenPT ∈ E ′(Hn) and supp PT ⊂
supp T (see [35], 24.3);

(5) let U,U ′ ⊂ Hn be open sets, U ⊂ U ′. If T ∈ D′(U ′), we define its restriction

T∣∣
U

∈ D′(U)

in the sense of [35], Example II pag. 245, i.e. for all φ ∈ D(U) ⊂ D(U ′) we set

〈T∣∣
U

|φ〉 := 〈T |φ〉.

(6) let U,U ′ ⊂ Hn be open sets, U b U ′. Let β, β̂ ∈ E ′(Hn) be such that β̂∣∣
U′

=

β∣∣
U′

. If k ∈ L1(Hn) and supp k ⊂ B(e,R) with R > 0 small enough, then(
β ∗ k

)∣∣
U

=
(
β̂ ∗ k

)∣∣
U

.

Proof. Let us prove (6). Take φ ∈ D(U) and assume R < dist (U, ∂U ′). Then

〈β ∗ k|φ〉 = 〈β|φ ∗ vk〉

= 〈β̂|φ ∗ vk〉 (since supp φ ∗ vk is contained in a R-neighborhood of U )

= 〈β̂ ∗ k|φ〉.
�

Theorem 2.7. We have:
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i) Hausdorff-Young’s inequality holds, i.e., if f ∈ Lp(Hn), g ∈ Lq(Hn), 1 ≤
p, q, r ≤ ∞ and 1

p + 1
q − 1 = 1

r , then f ∗ g ∈ Lr(Hn) (see [17], Proposition
1.18) .

ii) If K is a kernel of type 0, 1 < p < ∞, s ≥ 0, then the mapping T : u → u ∗K
defined for u ∈ D(Hn) extends to a bounded operator on W s,p(Hn) (see [16],
Theorem 4.9).

iii) Suppose 0 < µ < Q, 1 < p < Q/µ and 1
q = 1

p −
µ
Q . Let K be a kernel of type

µ. If u ∈ Lp(Hn) the convolutions u ∗K and K ∗ u exists a.e. and are in Lq(Hn)
and there is a constant Cp > 0 such that

‖u ∗K‖q ≤ Cp‖u‖p and ‖K ∗ u‖q ≤ Cp‖u‖p
(see [16], Proposition 1.11).

iv) Suppose s ≥ 1, 1 < p < Q, and let U be a bounded open set. If K is a kernel of
type 1 and u ∈W s−1,p(Hn) with supp u ⊂ U , then

‖u ∗K‖W s,p(Hn) ≤ CU‖u‖W s−1,p(Hn).

Proof. The proof of iv) can be carried out relying on Theorems 4.10, 4.9 and Proposition
1.11 of [16], keeping into account that LpQ/(Q−p)(U) ⊂ Lp and ii) above. Indeed

‖u ∗K‖W s,p(Hn) ≤ C
{
‖u ∗K‖Lp(Hn) +

m∑
`=1

‖u ∗W`K‖W s−1,p(Hn)

}
≤ C

{
‖u ∗K‖Lp(Hn) + ‖u‖W s−1,p(Hn)

}
≤ C

{
‖u‖LpQ/(Q−p(Hn) + ‖u‖W s−1,p(Hn)

}
≤ CU‖u‖W s−1,p(Hn).

�

We state now a few properties related to the convolution in L∞ that will be used in the
sequel and - as far as we know - are not explicitly stated in the literature.

We stress that we have to proceed carefully and we cannot use the corresponding results
in [8], [6] because of the presence of the L∞-space. The proofs follow verbatim those of
analogous statements in the Euclidean setting, keeping in mind that the group convolution
is not commutative.

We remind first that, if a ∈ L∞(Hn) ⊂ L1
loc, then the map φ 7→

∫
a(x)φ(x) dx defines

a distribution in D′(U) for all open sets U ⊂ Hn.

Lemma 2.8. Let a ∈ E ′(Hn) (i.e. a ∈ D′(Hn) and a has compact support, see [35]
Theorem 24.2). If φ ∈ D(Hn) and K is a kernel in L1

loc, we notice first that φ ∗ vK ∈
E(Hn) so that the map

φ 7→ 〈a|φ ∗ vK〉E′,E =: 〈a ∗K|φ〉D′,D
belongs to D′.

Moreover, if W is a horizontal derivative, then the convolution a ∗WK is well defined
since a is compactly supported. In addition,

(20) W (a ∗K) = a ∗WK.

Proof. The first statement follows from [35], Definition 27.3 and Theorem 27.6.
As for the last statement, consider a test function φ ∈ D(Hn). We claim that

〈W (a ∗K)|φ〉 = 〈a ∗K|Wφ〉 = 〈a ∗WK|φ〉.
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Indeed 〈a ∗K|Wφ〉 = 〈a|Wφ ∗ vK〉. Since

Wφ ∗ vK(x) =

∫
Wφ(y)K(x−1y) dy =

∫
φ(y)(WK)(x−1y) dy = φ ∗ v(WK)(x),

we can conclude since 〈a|Wφ ∗ vK〉 = 〈a|φ ∗ v(WK)〉 = 〈a ∗WK|φ〉.
�

Proposition 2.9. Let U be a bounded open subset of Hn, and suppose a ∈ L∞(U) is
compactly supported. If K is a kernel in L1

loc, then the convolution a ∗ K defined in
Lemma 2.8 belongs to L∞(U), and

‖a ∗K‖L∞(U) ≤ C(K,U, supp a)‖a‖L∞(U).

Proof. Take φ ∈ D(U). We note first that φ ∗ vK belongs to L1(supp a) and

(21) ‖φ ∗ vK‖L1(supp a) ≤ C(K)‖φ‖L1(U).

Indeed, if x ∈ supp a,

|(φ ∗ vK)(x)| ≤
∫
d(z,e)≤R

|φ(xz)| |K(z)| dz,

since
d(z, e) ≤ d(z−1, x) + d(x, e) ≤ diam (U) + d(supp a, e) =: R.

Thus

‖φ ∗ vK‖L1(supp a) ≤ ‖|φ| ∗ (|K|χB(e,R)‖L1(Hn) ≤ C(K,R)‖φ‖L1(U).

Thus, by definition,

|〈a ∗K|φ〉D′,D| ≤ C(K,U, supp a)‖φ‖L1(U)‖a‖L∞(U),

and the assertion follows by duality since L∞ = (L1)∗. �

2.2. Multilinear algebra in Hn and Rumin’s complex. Unfortunately, when dealing
with differential forms in Hn, the de Rham complex lacks scale invariance under anisotropic
dilations (see (14)). Thus, a substitute for de Rham’s complex, that recovers scale invari-
ance under δt has been defined by M. Rumin, [30]. In turn, this notion makes sense for
arbitrary contact manifolds. We refer to [30] and [9], [8] for details of the construction. In
the present paper, we shall merely need the following list of formal properties (for the sake
of completeness, in an Appendix we describe in more detail the construction of Rumin’s
complex).

Throughout this paper,
∧h

h denotes the h-th exterior power of the Lie algebra h. Keep-
ing in mind that the Lie algebra h can be identified with the tangent space to Hn at x = e

(see, e.g. [21], Proposition 1.72), starting from
∧h

h we can define by left translation a
fiber bundle over Hn that we can still denote by

∧h
h '

∧h
T ∗Hn. Moreover, a scalar

product in h induces a scalar product and a norm on
∧h

h.
We can think of h-forms as sections of

∧h
h and we denote by Ωh the vector space of

all smooth h-forms.

• For h = 0, . . . , 2n + 1, the space of Rumin h-forms, Eh0 , is the space of smooth
sections of a left-invariant subbundle of

∧h
h (that we still denote by Eh0 ). Hence

it inherits the inner product and the norm of
∧h

h.
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• A differential operator dc : Eh0 → Eh+1
0 is defined. It is left-invariant, homoge-

neous with respect to group dilations. It is a first order homogeneous operator in
the horizontal derivatives in degree 6= n, whereas it is a second order homoge-
neous horizontal operator in degree n.

• Altogether, operators dc form a complex: dc ◦ dc = 0.

• This complex is homotopic to de Rham’s complex (Ω•, d). More precisely there
exist a sub-complex (E, d) of the de Rham complex and a suitable “projection”
ΠE : Ω• → E• such that ΠE is a differential operator of order ≤ 1 in the hori-
zontal derivatives.

• ΠE is a chain map, i.e.

dΠE = ΠEd.

• Let ΠE0
be the orthogonal projection on E•0 . Then

ΠE0ΠEΠE0 = ΠE0 and ΠEΠE0ΠE = ΠE .

(we stress that ΠE0
is an algebraic operator).

• The exterior differential dc can be written as

dc = ΠE0
dΠEΠE0

.

Let us list a bunch of notations for vector-valued function spaces (for the scalar case,
we refer to Section 2.1).

Definition 2.10. If U ⊂ Hn is an open set, 0 ≤ h ≤ 2n + 1, 1 ≤ p ≤ ∞ and m ≥ 0,

we denote by Lp(U,
∧h

h), E(U,
∧h

h),D(U,
∧h

h),Wm,p(U,
∧h

h) (by
◦
Wm,p(U,

∧h
h))

the space of all sections of
∧h

h such that their components with respect to a given left-
invariant frame belong to the corresponding scalar spaces.

The spaces Lp(U,Eh0 ), E(U,Eh0 ), D(U,Eh0 ), Wm,p(U,Eh0 ) and
◦
Wm,p(U,Eh0 ) are de-

fined in the same way.

Finally, the spaces Wm,p
Euc (U,

∧h
h),

◦
W
m,p
Euc(U,

∧h
h), Wm,p

Euc (U,Eh0 ) and
◦
W
m,p
Euc(U,Eh0 )

are defined replacing Folland-Stein Sobolev spaces by usual Sobolev spaces.
Clearly, all these definitions are independent of the choice of frame.

When dc is second order (when acting on forms of degree n), (E•0 , dc) stops behaving
like a differential module. This is the source of many complications. In particular, the
classical Leibniz formula for the de Rham complex d(α∧β) = dα∧β±α∧dβ in general
fails to hold (see [10]-Proposition A.7). This causes several technical difficulties when we
want to localize our estimates by means of cut-off functions.

Lemma 2.11 (see also [6], Lemma 4.1). If ζ is a smooth real function, then the following
formulae hold in the sense of distributions:

i) if h 6= n, then on Eh0 we have

[dc, ζ] = Ph0 (Wζ),

where Ph0 (Wζ) : Eh0 → Eh+1
0 is a linear homogeneous differential operator of

order zero with coefficients depending only on the horizontal derivatives of ζ. If
h 6= n+ 1, an analogous statement holds if we replace dc in degree h with d∗c in
degree h+ 1;
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ii) if h = n, then on En0 we have

[dc, ζ] = Pn1 (Wζ) + Pn0 (W 2ζ),

where Pn1 (Wζ) : En0 → En+1
0 is a linear homogeneous differential operator of

order 1 (and therefore horizontal) with coefficients depending only on the horizon-
tal derivatives of ζ, and where Ph0 (W 2ζ) : En0 → En+1

0 is a linear homogeneous
differential operator in the horizontal derivatives of order 0 with coefficients de-
pending only on second order horizontal derivatives of ζ. If h = n+ 1, an analo-
gous statement holds if we replace dc in degree n with d∗c in degree n+ 1.

Remark 2.12. On forms of degree h > n, Lemma 2.11 i) takes the following simpler form.
If α ∈ L1

loc(Hn, Eh0 ) with h > n and ψ ∈ E(Hn), then

dc(ψα) = d(ψα) = dψ ∧ α+ ψdα = dcψ ∧ α+ ψdcα,

This follows from Theorem 8.6, viii), since α is a multiple of θ.

Leibniz formula has the following quantitative form.

Remark 2.13. Denote by B = B(e, 1) the unit ball in Hn. If λ > 1, let ζ be a smooth
function on Hn that is supported outside of a neighborhood of B, such that Wiζ is com-
pactly supported in Bλ = B(e, λ) for i = 1, . . . , 2n.

i) If h 6= n, let σ ∈ L∞
(
Bλ, E

h
0

)
∩ d−1L∞

(
Bλ, E

h
0

)
, then

(22) ‖dc(ζσ)‖L∞(Bλ,Eh0 ) ≤ Cζ
(
‖σ‖L∞(Bλ,Eh0 ) + ‖dcσ‖L∞(Bλ,E

h+1
0 )

)
.

ii) If h = n let σ ∈W 1,∞ (Bλ, E
n
0 ) ∩ d−1L∞ (Bλ, E

n
0 ) and, then

(23) ‖dc(ζσ)‖L∞(Bλ,E
n+1
0 ) ≤ Cζ

(
‖σ‖W 1,∞(Bλ,En0 ) + ‖dcσ‖L∞(Sζ ,E

n+1
0 )

)
,

where Sζ is a neighborhood in Bλ of supp ζ ∩Bλ (contained in Bλ \B).

The following generalizes Remark 2.16 of [9]. The proof uses a notation from the
Appendix, Theorem 8.6.

Lemma 2.14. Let U ⊂ Hn be an open set.

i) Let ψ be an h-form in L1
loc(U,Eh0 ) and α ∈ D(U,E2n−h

0 ). Then∫
U

(dcφ) ∧ α = (−1)h+1

∫
U

φ ∧ dcα,

where the left-hand side is understood in distribution sense.

Assume further that U is contractible. Let ω and ψ be dc-closed Rumin forms on U of
complementary degrees h and 2n+ 1− h, with 1 ≤ h ≤ 2n. Then∫

U

ω ∧ ψ = 0

in the following cases:

ii) ω ∈ L1
loc(U,Eh0 ) and ψ ∈ D(U,E2n+1−h

0 ).
iii) 1 < p < ∞, 1

p + 1
p′ = 1, ω ∈ Lploc(U,Eh0 ) and ψ ∈ Lp

′
(U,E2n+1−h

0 ) is
compactly supported in U .
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Proof. Assume first that φ is smooth. Since φ ∧ α has degree 2n ≥ n + 1, d(φ ∧ α) =
dc(φ ∧ α). If h 6= n, the formula

dc(φ ∧ α) = (dcφ) ∧ α+ (−1)hφ ∧ dcα
is established in [29], Prop. 4.2. Let us assume that both φ and α have degree n. Then, by
definition, dcφ = dΠEφ where ΠEφ − φ has weight n + 1 (see Theorem 8.6 ix)). Since
dcα has weight n + 2, (ΠEφ − φ) ∧ dcα = 0. Symmetrically, (ΠEα − α) ∧ dcφ = 0. It
follows that

d(ΠEφ ∧ΠEα) = (dcφ) ∧ α+ (−1)nφ ∧ dcα.
In all cases, we have come up with a compactly supported primitive of (dcφ)∧α+(−1)hφ∧
dcα, hence ∫

U

((dcφ) ∧ α+ (−1)hφ ∧ dcα) = 0.

Formula i) extends to Rumin forms φ with distributional coefficients, and in particular to
forms in L1

loc(U,Eh0 ).

Assume first that ω and ψ are smooth. Since Rumin’s complex is homotopic to de
Rham’s, ω admits a smooth primitive φ on U , dcφ = ω. Then i) implies that∫

U

ω ∧ ψ =

∫
U

(dcφ) ∧ ψ = ±
∫
U

φ ∧ dcψ = 0.

ii) By right convolution (which commutes with the left-invariant operator dc), closed
forms are dense in L1

loc dc-closed forms, so the identity extends to the case where
ω ∈ L1

loc(U,Eh0 ).
iii) Again by right convolution, smooth dc-closed forms are dense in Lploc(U,Eh0 )

dc-closed forms and smooth compactly supported dc-closed forms are dense in
compactly supported Lp

′
(U,E2n+1−h

0 ) dc-closed forms.
�

2.3. Rumin’s Laplacian.

Definition 2.15. In Hn, following [30], we define the operators ∆H,h on Eh0 by setting

∆H,h =

 dcd
∗
c + d∗cdc if h 6= n, n+ 1;

(dcd
∗
c)

2 + d∗cdc if h = n;
dcd
∗
c + (d∗cdc)

2 if h = n+ 1.

Notice that −∆H,0 =
∑2n
j=1(W 2

j ) is the usual sub-Laplacian of Hn.
For sake of simplicity, once a basis of Eh0 is fixed, the operator ∆H,h can be identified

with a matrix-valued map, still denoted by ∆H,h,

(24) ∆H,h = (∆ij
H,h)i,j=1,...,Nh : D′(Hn,RNh)→ D′(Hn,RNh),

where D′(Hn,RNh) is the space of vector-valued distributions on Hn, and Nh is the di-
mension of Eh0 (see [2]).

This identification makes possible to avoid the notion of currents: we refer to [9] for a
more elegant presentation.

Combining [30], Section 3, and [11], Theorems 3.1 and 4.1, we obtain the following
result.

Theorem 2.16 (see [11], Theorem 3.1). If 0 ≤ h ≤ 2n+ 1, then the differential operator
∆H,h is homogeneous of degree µ with respect to group dilations, where µ = 2 if h 6=
n, n+ 1 and µ = 4 if h = n, n+ 1. It follows that
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i) for j = 1, . . . , Nh there exists

(25) Kj =
(
K1j , . . . ,KNhj

)
, j = 1, . . . Nh

with Kij ∈ D′(Hn) ∩ E(Hn \ {0}), i, j = 1, . . . , Nh;
ii) if µ < Q, then the Kij’s are kernels of type µ for i, j = 1, . . . , Nh

If µ = Q, then the Kij’s satisfy the logarithmic estimate |Kij(p)| ≤ C(1 +
| ln ρ(p)|) and hence belong to L1

loc(Hn). Moreover, their horizontal derivatives
W`Kij , ` = 1, . . . , 2n, are kernels of type Q− 1;

iii) when α ∈ D(Hn,RNh), if we set

(26) ∆−1
H,hα :=

(∑
j

αj ∗K1j , . . . ,
∑
j

αj ∗KNhj

)
,

then ∆h∆−1
H,hα = α. Moreover, if µ < Q, also ∆−1

H,h∆hα = α.
iv) if µ = Q, then for any α ∈ D(Hn,RNh) there exists βα := (β1, . . . , βNh) ∈ RNh ,

such that
∆−1

H,h∆hα− α = βα.

iv) ∆−1
H,h : D(Hn,RNh)→ E(Hn,RNh) and ∆−1

H,h : E ′(Hn,RNh)→ D′(Hn,RNh).

Remark 2.17. If µ < Q, ∆H,h(∆−1
H,h −

v∆−1
H,h) = 0 and hence ∆−1

H,h = v∆−1
H,h, by the

Liouville-type theorem of [11], Proposition 3.2.

Remark 2.18. From now on, if there are no possible misunderstandings, we identify ∆−1
H,h

with its kernel.

Lemma 2.19 (see [8], Lemma 4.11). If φ ∈ D(Hn, Eh0 ) and n ≥ 1, then
i) dc∆−1

H,hφ = ∆−1
H,h+1dcφ, h = 0, 1, . . . , 2n, h 6= n− 1, n+ 1.

ii) dc∆−1
H,n−1φ = dcd

∗
c∆
−1
H,ndcφ (h = n− 1).

iii) dcd∗cdc∆
−1
H,n+1φ = ∆−1

H,n+2dcφ, (h = n+ 1).
iv) d∗c∆

−1
H,hφ = ∆−1

H,h−1d
∗
cφ h = 1, . . . , 2n+ 1, h 6= n, n+ 2.

v) d∗c∆
−1
H,n+2φ = d∗cdc∆

−1
H,n+1d

∗
cφ (h = n+ 2).

vi) d∗cdcd
∗
c∆
−1
H,nφ = ∆−1

H,n−1d
∗
cφ, (h = n).

3. DUAL FORMULATIONS AND PROOF OF THEOREM 1.8

The interior Poincaré inequality of Theorem 1.8 relies on three tools:
i) the formulation by duality of the interior Poincaré inequality H-Poincarép,∞(h)

(see Proposition 3.1) below;
ii) the integration by parts formula of Lemma 2.14;

iii) the relationship between H-Sobolev1,p′(2n+2−h) and H-Poincarép,∞(h), when
1 < p <∞ and p′ is the dual exponent of p.

Proposition 3.1. Assume that 1 ≤ h < 2n + 1. Let B, Bλ be concentric balls as in
Definition 1.2. Take 1 < p < ∞. Then the H-Poincarép,∞(h) inequality in Eh0 holds if
and only if there exists a constant C such that for every dc-closed differential h-form ω on
Lp(Bλ, E

h
0 ) and every smooth differential (2n + 1 − h)-form α with compact support in

B,

(27) |
∫
B

ω ∧ α| ≤ C ‖ω‖Lp(Bλ,Eh0 )‖dcα‖L1(B,E2n+2−h
0 ).

An analogous statement holds for the global Poincaré inequality on Hn.
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Proof. Suppose ω is a h-form satisfying Definition 1.2. If ω|B = dcφwith φ ∈ L∞(Hn, Eh−1
0 )

as in Definition 1.2, and α ∈ D(B,E2n+1−h
0 ), then, according to Lemma 2.14 i),

|
∫
B

ω ∧ α| = |
∫
B

φ ∧ dcα|

≤ ‖φ‖L∞(B,Eh−1)‖dcα‖L1(B,E2n+2−h
0 ).

Since ‖φ‖L∞(B,Eh−1
0 ) can be estimated by ‖ω‖Lp(Bλ,Eh0 ), inequality (27) follows.

Conversely, assume that for all forms α ∈ D(B;E2n+1−h
0 ),

|
∫
B

ω ∧ α| ≤ C ‖ω‖Lp(Bλ;Eh0 )‖dcα‖L1(B;E2n+2−h
0 ).

Define a linear functional η on differentials of smooth (2n + 1 − k)-forms with compact
support in B as follows. If β = dcα, α ∈ D(B;E2n+1−h

0 ), set

η(β) =

∫
B

ω ∧ α.

Then η is well defined since ω ∈ L1
loc, and is continuous in L1(B;E2n+2−h

0 )-norm, by
(27), i.e.

|η(β)| ≤ C ‖ω‖Lp(Bλ;Eh0 )‖β‖L1(B;E2n+2−h
0 ).

By the Hahn-Banach theorem, η extends to a linear functional on all of L1(B;E2n+2−h
0 ),

with the same norm. Such a functional is represented by a differential form φ ∈ L∞(B;Eh−1
0 )

as follows,

η(β) =

∫
B

φ ∧ β.

The L∞-norm of φ is at most C ‖ω‖Lp(Bλ;Eh0 ). Since, for all forms α ∈ D(B;E2n+1−h
0 ),∫

B

φ ∧ dcα = η(dcα) =

∫
B

ω ∧ α,

one concludes that dcφ = ω on B in the distributional sense.
The proof of the statement for the global Poincaré inequality can be carried out repeating

verbatim the same arguments. �

Proposition 3.2. If 2 ≤ h ≤ 2n + 1, 1 < p < ∞ and p′ is the dual exponent of p, then
the interior H-Sobolev1,p′(2n+ 2−h) inequality implies the interior H-Poincarép,∞(h)
inequality.

An analogous statement holds for global inequalities on Hn.

Proof. To prove the assertion, we argue by duality relying on Proposition 3.1. Let B
and Bλ be concentric balls, such that H-Sobolev1,p′(2n + 2 − h) inequality holds in
B,Bλ. Take a dc-closed h-form ω in Lp(Bλ, Eh0 ) and an arbitrary smooth differential
(2n + 1 − h)-form α with compact support in B. By Sobolev inequality, there exists a
compactly supported differential (2n + 1 − h)-form β ∈ Lp

′
(Bλ, E

2n+1−h
0 ) such that

dcβ = dcα in B and

‖β‖Lp′ (Bλ,E2n+1−h
0 ) ≤ C ‖dcα‖L1(B,E2n+2−h

0 ).(28)
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If h = 2n + 1, α and β are compactly supported functions and dc(β − α) = 0, hence
β = α. Otherwise, since ψ = β − α ∈ Lp′(Bλ, E2n+1−h

0 ) is dc-closed, Lemma 2.14 iii)
implies that ∫

Bλ

ω ∧ (β − α) = 0.

Therefore in both cases, by Hölder inequality and by (28),

|
∫
B

ω ∧ α| = |
∫
Bλ

ω ∧ α| = |
∫
Bλ

ω ∧ β| ≤ C ‖ω‖Lp(Bλ,Eh0 )‖dcα‖L1(B,E2n+2−h
0 ).

By Proposition 3.1, this implies H-Poincarép,∞(h).
The global Sobolev inequality implies the global Poincaré inequality in the same man-

ner.
�

Proof of Theorem 1.8. Theorem 1.8 follows straightforwardly, combining theL1 Sobolev
inequality proven in [6], Corollary 6.5, and previous Proposition 3.2.

�

4. HOMOTOPY FORMULÆ IN L∞

The following global homotopy formula has been proven in D(Hn, E•0 ) in [8], Propo-
sition 6.9. However we have to stress that here we deal with L∞ forms, hence we have to
adapt the proof since we cannot rely on a density argument in L∞.

Proposition 4.1. If α ∈ L∞(Hn, Eh0 ) is compactly supported, then the following homo-
topy formulas hold: there exist operators K1,K2 such that

i) if h 6= n, n + 1, then α = dcK1α + K1dcα in the sense of distributions, where
K1 is associated with a kernel k1 of type 1;

ii) if h = n, then α = dcK1α + K2dcα in the sense of distributions, where K1 and
K2 are associated with kernels k1, k2 of type 1 and 2, respectively;

iii) if h = n + 1, then α = dcK2α + K1dcα in the sense of distributions, where K2

and K1 are associated with kernels k2, k1 of type 2 and 1, respectively.

Proof. The proof can be carried out by duality. Consider for instance the case i), and let
φ ∈ D(Hn, Eh0 ) be a test form. By Theorem 2.16,

〈α|φ〉D′,D = 〈α|(dcd∗c + d∗cdc)∆
−1
H φ〉D′,D = 〈α|(dcd∗c + d∗cdc)∆

−1
H φ〉E′,E

= 〈α|∆−1
H dcd

∗
cφ〉E′,E + 〈α|d∗c∆−1

H dcφ〉E′,E (by Lemma 2.19)

= 〈∆−1
H α|dcd∗cφ〉D′,D + 〈d∗c∆−1

H dcα|φ〉D′,D (since dcα ∈ E ′)
= 〈dcd∗c∆−1

H α|φ〉D′,D + 〈d∗c∆−1
H dcα|φ〉D′,D

=: 〈dcK1α+K1dcα|φ〉D′,D,

and the assertion follows since K1 := d∗c∆
−1
H is a kernel of type 1 by Theorem 2.16.

The proofs of ii) and iii) can be carried out through similar duality arguments keeping
in mind [8], Proposition 6.9.

�

Remark 4.2. To avoid cumbersome notations, from now on we denote by K0 one of the
convolution operators K1, K2, so that the homotopy formulas of Proposition 4.1 can be
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written concisely as follows: if α ∈ L∞(Hn, Eh0 ) is compactly supported then K0α and
K0dcα are well defined distributions by Lemma 2.8 and

(29) α = dcK0α+K0dcα,

where K0 is associated with a kernel of type 1 or 2, depending on the degree of α. Notice
that in any case, K0 belongs to L1

loc.

Proposition 4.3. Let U b U ′ be bounded open sets in Hn. For h = 1, . . . , 2n, for every
s ∈ N, there exist a bounded operator

(30) T : L∞(U ′, E•0 )→ L∞(U,E•−1
0 )

and a smoothing operator

(31) S : L∞(U ′, E•0 )→ E(U,E•−1
0 )

such that, in addition,

(32) S ∈ L
(
L∞(U ′, E•0 ),W s,∞(U,E•−1

0 )
)

so that for any h-forms α in L∞(U ′, E•0 ) such that dcα ∈ L∞(U ′, E•+1
0 ) the following

approximate homotopy formula holds in the sense of distributions

(33) α = dcTα+ Tdcα+ Sα on U.

In addition, on forms of degree n+ 1, T is bounded

(34) T : L∞(U ′, En+1
0 )→W 1,∞(U,En0 ).

Finally, if α ∈ L∞(U ′, E•0 ) ∩ d−1
c (L∞(U ′, E•+1

0 )) we notice that, by difference,

dcTα ∈ L∞(U,Eh0 ).

Proof. If α ∈ L∞(U ′, Eh0 ), we set α0 to be α continued by zero outside U ′, the so-called
trivial extension of α. Obviously, α0 belongs to L∞(Hn, Eh0 ) and is compactly supported,
hence belongs to E ′(Hn, Eh0 ). The trivial extension defines a continuous linear map from
D(U ′) to D(U).

Denote by k0 the kernel associated with K0 as defined in Remark 4.2. We consider a
cut-off function ψR supported in a R-neighborhood of the origin, such that ψR ≡ 1 near
the origin. Then we have k0 = k0ψR + (1 − ψR)k0 Let us denote by K0,R the convolu-
tion operator associated with k0,R := ψRk0 and by K ′0,R = K0 −K0,R the convolution
operator associated with the kernel k′0,R := k0 − k0,R.

The kernel ψRk0 ∈ L1(Hn), so that, by Theorem 2.7, i), K0,R maps L∞ to L∞.
Let us apply Proposition 4.1 using the decomposition K0 = K0,R + K ′0,R: for φ ∈

D(Hn, Eh0 ),

〈α0|φ〉D′,D = 〈dcK0,Rα0 +K0,Rdcα0 + dcK
′
0,Rα0 +K ′0,Rdcα0|φ〉D′,D,

i.e.
α0 = dcK0,Rα0 +K0,Rdcα0 + dcK

′
0,Rα0 +K ′0,Rdcα0

in the sense of distributions. Taking the restriction to U , we get

(35) α =
(
dcK0,Rα0

)∣∣
U

+
(
K0,Rdcα0

)∣∣
U

+
(
dcK

′
0,Rα0 +K ′0,Rdcα0

)∣∣
U

,

where the restriction has to be meant as restriction of a distribution as in Proposition 2.6,
(5). First we notice that, by Proposition 2.6, ii) and iv), we have

Sα :=
(
dcK

′
0,Rα0 +K ′0,Rdcα0

)∣∣
U

∈ E(U),
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yielding (31). Since derivatives commute with restriction, if R > 0 is small enough, we
have (

dcK0,Rα0

)∣∣
U

= dc
(
K0,Rα0

)∣∣
U

,

and (35) reads

(36) α∣∣
U

= dc
(
K0,Rα0

)∣∣
U

+
(
K0,Rdcα0

)∣∣
U

+ Sα.

If now β ∈ L∞(U ′, E•0 ), we set

Tβ := K0,Rβ0
∣∣
U

.

Thus, in (36), we have
dc
(
K0,Rα0

)∣∣
U

= dcTα.

Consider now in (36) the term
(
K0,Rdcα0

)∣∣
U

. We observe preliminarily that

(37) (dcα0)∣∣
U′

=
(
(dcα)0

)∣∣
U′
,

where, as above, (dcα)0 is the trivial extension of dcα. Indeed, if φ ∈ D(U ′, E•+1
0 ) then

〈dcα0|φ〉D′,D = 〈α0|d∗cφ〉D′,D =

∫
U ′
〈α, d∗cφ〉 dx =

∫
U ′
〈dcα, φ〉 dx

=

∫
Hn
〈(dcα)0, φ〉 dx = 〈(dcα)0|φ〉D′,D.

This proves (37). Thus, we can apply Proposition 2.6, (6) and we get, for R small enough,(
K0,Rdcα0

)∣∣
U

=
(
(dcα0) ∗ k0,R

)∣∣
U

=
(
(dcα)0 ∗ k0,R

)∣∣
U

=
(
K0,R(dcα)0

)∣∣
U

= T (dcα).

Eventually, identity (36) becomes

α = dcTα+ Tdcα+ Sα in U.

This proves the homotopy formula (33).
Since the kernel k0,R belongs to L1(Hn), by Hausdorff-Young inequality (see Theorem

2.7, i),
T : L∞(U ′, E•0 )→ L∞(U,E•−1

0 ),

and this proves (30).
Let us prove the continuity estimates (32) for the operator S. Consider first the term(

dc(K
′
0,Rα0)

)∣∣
U

=
(
dc(α0 ∗ k′0,R)

)∣∣
U

.

If 1 ≤ h ≤ 2n, let (ξh1 , . . . , ξ
h
dimEh0

) be a basis of Eh0 . Then α =
∑
j αjξ

h
j with αj ∈

L∞(U ′), j = 1, . . . ,dimEh0 . Obviously, α0 =
∑
j(αj)0ξ

h
j , and dc(α0 ∗ k′0,R) can be

written as sum of terms of the form

W I
(
(αj)0 ∗ κ

)
= (αj)0 ∗W Iκ,

where κ is a smooth kernel and d(I) = 1 or d(I) = 2, according to the degree h. Thus, in
order to prove (32) we have to estimate the L∞-norms in U of a sum of terms of the form

(αj)0 ∗W Jκ,
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with d(J) = s + 1 or d(J) = s + 2, according to the degree h. Then the assertion
follows by Proposition 2.9, since the smooth kernel W Jκ belongs to L1

loc(Hn) (notice that
‖αj‖L∞(U) = ‖(αj)0‖L∞(Hn)).

Analogously, if we aim to estimate the term K ′0,Rdcα0 = (dcα0) ∗ k′0,R, we have to
estimate in L∞(U) a sum of terms of the form (keep in mind (19))

(W I(αj)0) ∗W Jκ = (αj)0) ∗ vW IvW Jκ,

where κ is a smooth kernel, d(J) = s and d(I) = 1 or d(I) = 2 according to the degree
h. Since vW IvW Jκ is still a smooth kernel, the estimate can be carried out as for the first
term.

Thus we are left with the proof of (34). To this end, we notice first that on forms of
degree h = n+ 1, the kernel of K0,R is obtained by truncation near the origin of a kernel
of type 2. Therefore, on forms of degree h = n + 1 all the horizontal derivatives WK0,R

belongs to L1 and, if α ∈ L∞(U ′, En+1
0 ), then

‖WTα‖L∞(U,En0 ) = ‖W (α ∗ k0,R)‖L∞(U,En0 )

= ‖α ∗Wk0,R‖L∞(U,En0 ),

and the proof can be carried out again by Proposition 2.9.
�

Remark 4.4. Since, in U ′, W 2s,p ⊂ W s,p
Euc for 1 ≤ p ≤ ∞, then (32) can be equivalently

stated as

(38) S ∈ L
(
L∞(U ′, E•0 ),W s,∞

Euc (U,E•−1
0 )

)
.

5. INTERMEDIATE TOOLS: INTERIOR H-Poincaré∞,∞ AND H-Sobolev∞,∞
INEQUALITIES

In [24], starting from Cartan’s homotopy formula, the authors proved that, if D ⊂ RN
is a convex set, 1 < p <∞, 1 ≤ h ≤ N , then there exists a bounded linear map:

KEuc,h : Lp(D,
∧

h)→W 1,p
Euc(D,

∧
h−1)

that is a homotopy operator, i.e.

(39) ω = dKEuc,hω +KEuc,h+1dω for all ω ∈ C∞(D,
∧
h).

(see Proposition 4.1 and Lemma 4.2 in [24]). More precisely, KEuc,h has the form

(40) KEuc,hω(x) =

∫
D

ψ(y)Kyω(x) dy,

where ψ ∈ D(D),
∫
D
ψ(y) dy = 1, and

〈Kyω(x)|ξ1 ∧ · · · ∧ ξh−1)〉 :=∫ 1

0

th−1〈ω(y + t(x− y))|(x− y) ∧ ξ1 ∧ · · · ∧ ξh−1)〉.
(41)

The definition (41) can be written as

Kyω(x) =

∫ 1

0

t`−1ιx−yω(yt) dt,

where yt = y + t(x− y). Here, ι denotes the interior product of a differential form with a
vector field, i.e. ι :

∧
h+1 →

∧
h and is defined by

〈ιY ω|v1 ∧ · · · ∧ vh〉 := 〈ω|Y ∧ v1 ∧ · · · ∧ vh〉.
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Let us remind the following identity that follows straightforwardly from the relationship
between the Lie derivative LX along a vector field X of a differential form and the interior
product of a vector field Y and a differential form:

(42) [LX , ιY ] = ι[X,Y ].

The following theorem provides a continuity result in W k,p of Iwaniec & Lutoborski’s
kernel KEuc,•, though with a loss on domain.

Theorem 5.1. Let B = B(0, 1) and B′ = B(0, 2) be concentric Euclidean balls in RN .
Then for k ∈ N and p ∈ [1,∞], Iwaniec-Lutoborski’s homotopy KEuc,h is a bounded
operator

KEuc,h : W k,p
Euc(B′,

∧
•)→W k,p

Euc(B,
∧
•−1)

Proof. For the sake of simplicity, from now on we omit the degree h of the form and we
write simply KEuc. We show that for every k-th order partial derivative Dk there exist
matrix valued kernels M1 and M2 on the ball of radius 2 such that for every differential
form ω on the unit ball,

DkKEucω = M1 ∗ (Dkω) +M2 ∗ (RDk−1ω),

where RDk−1 is a constant coefficient (k − 1)-order differential operator and for all h ∈
Rn, |h| < 2, i = 1, 2,

|Mi(h)| ≤ C |h|1−N .

We set yt = y + t(x− y). Iterating (42), we obtain

Dk(ιx−yω(yt)) = tkιx−yD
kω(yt) + tk−1RDk−1ω(yt),

where RDk−1 denotes the following (k − 1)-order differential operator from `-forms to
`− 1 forms. If, for sake of simplicity, we take Dk of the form Dk = D1 · · ·Dk,

RDk−1ω =

k∑
i=1

ιDi(D1 · · ·Di−1Di+1 · · ·Dkω).

Therefore

DkKEucω(x) =

∫ 1

0

t`−1

∫
B

φ(y)Dk(ιx−yω(yt)) dy dt

=

∫
B

∫ 1

0

t`−1φ(y)(tkιx−yD
kω(yt) + tk−1RDk−1ω(yt)) dy dt.

Let us perform a change of variables z = yt and denote by h = x − z. T hen y =
1

1−tz −
t

1−tx = z − t
1−th, x− y = (1− t)−1h, dy = (1− t)−ndz, whence

DkKEucω(x) =

∫
B

∫ 1

0

t`−1φ(z − sh)(tk(1− t)−1ιhD
kω(z)

+ tk−1RDk−1ω(z)) (1− t)−N dt dz.
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We treat both terms separately. The first one is∫
B

∫ 1

0

t`−1φ(z − t

1− t
h)tk(1− t)−1ιhD

kω(z) (1− t)−N dt dz

=

∫
B

∫ 1

0

tk+`−1(1− t)−N−1φ(z − t

1− t
h)ιhD

kω(z) dt dz

=

∫
B

〈
∫ ∞

0

(
s

1 + s
)k+`−1(1 + s)N−1φ(z − sh)ιh ds,D

kω(z)〉 dz,

where we have made the change of variables s = t
1−t . One recognizes the convolution of

the Λ`-valued function Dkω with the matrix valued kernel

M1(z, h) :=

∫ ∞
0

(
s

1 + s
)k+`−1(1 + s)N−1φ(z − sh)ιh ds.

The second term is∫
B

∫ 1

0

t`−1φ(z − t

1− t
h)tk−1RDk−1ω(z) (1− t)−N dt dz

=

∫
B

∫ 1

0

tk+`−2(1− t)−Nφ(z − t

1− t
h)RDk−1ω(z) dt dz

=

∫
B

〈
∫ ∞

0

(
s

1 + s
)k+`−2(1 + s)Nφ(z − sh) ds,RDk−1ω(z)〉 dz.

Again, this is the convolution of the Λ`−1-valued function SW k−1ω with the scalar kernel

M2(z, h) :=

∫ ∞
0

(
s

1 + s
)k+`−2(1 + s)N−2φ(z − sh) ds.

Since φ has compact support in B, in both cases, the integral stops no later that 2|h|−1,
thus

|M1(z, h)| ≤ C |h|
∫ 2|h|−1

0

(1 + s)N−1 ds ≤ C |h|1−N ,

|M2(z, h)| ≤ C
∫ 2|h|−1

0

(1 + s)N−2 ds ≤ C |h|1−N .

With Young’s inequality, this implies that for all p ∈ [1,∞],

‖DkKEucω‖Lp(B,
∧•−1) ≤ C

(
‖∇kω‖Lp(B′,

∧•) + ‖∇k−1ω‖Lp(B′,
∧•)) .

Since this holds for every k-th order partial derivative,

‖KEucω‖Wk,p
Euc(B,

∧•−1) ≤ C ‖ω‖Wk,p
Euc(B′,

∧•).
�

Starting from [24], in [26], Theorem 4.1, the authors define a compact homotopy op-
erator JEuc,h in Lipschitz star-shaped domains in Euclidean space RN , providing an ex-
plicit representation formula for JEuc,h, together with continuity properties among Sobolev
spaces. More precisely:

Theorem 5.2. [(see [26], formula (167))] if D ⊂ RN is a star-shaped Lipschitz domain
and 1 ≤ h ≤ N , then there exists

JEuc,h : Lp(D,
∧

h)→W 1,p
0,Euc(D,

∧
h−1)
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such that
ω = dJEuc,hω + JEuc,h+1dω for all ω ∈ D(D,

∧
h)

and for 1 < p <∞ and k ∈ N ∪ {0}

JEuc,h : W k,p
0,Euc(D,

∧
h)→W k+1,p

0,Euc (D,
∧

h−1).

Furthermore, JEuc,h maps smooth compactly supported forms to smooth compactly
supported forms.

We need now construct a homotopy operator, fitting the intrinsic group structure, that
can invert Rumin’s differential dc. To this aim take D = B(e, 1) =: B and N = 2n + 1.
If ω ∈ C∞(B,Eh0 ), then we set

K = ΠE0
◦ΠE ◦KEuc ◦ΠE(43)

(for the sake of simplicity, from now on we drop the index h - the degree of the form -
writing, e.g., KEuc instead of KEuc,h).

Analogously, we can define

J = ΠE0 ◦ΠE ◦ JEuc ◦ΠE .(44)

Then K and J invert Rumin’s differential dc on closed forms of the same degree. More
precisely, we have:

Lemma 5.3. If ω is a smooth dc-exact differential form, then

(45) ω = dcKω if 1 ≤ h ≤ 2n+ 1 and ω = dcJω if 1 ≤ h ≤ 2n+ 1.

In addition, if ω is compactly supported in B, then Jω is still compactly supported in B.

For the proof of the lemma above we refer to Lemma 5.7 in [8].
Imitating [8], we are now able to prove interior Poincaré inequality and Sobolev in-

equality for Rumin forms in the sense of Definitions 1.2 and 1.4.

Theorem 5.4. Take λ > 1 and set B = B(e, 1) and Bλ = B(e, λ). If 1 ≤ h ≤ 2n + 1
then

i) an interior H-Poincaré∞,∞(h) inequality holds with respect to the balls B and
Bλ;

ii) in addition, an interior H-Sobolev∞,∞(h) inequality holds for 1 ≤ h ≤ 2n+ 1.

Proof. Consider the balls B := B(e, 1) b B(e, λ/2) b B(e, λ) =: Bλ, so that Propo-
sition 4.3 and Theorem 5.1 can be applied to the couple B(e, 1), B(e, λ/2) and can be
applied also to the couple B(e, λ/2), B(e, λ). Put B1 := B(e, λ/2).

i) Interior H-Poincaré∞,∞(h) inequality: let ω ∈ L∞(Bλ, E
h
0 ) be dc-closed. By (33), if

we take therein U := B and U ′ := Bλ, we can write

(46) ω = dcTω + Sω in B.

By (31) Sω ∈ C∞(B,Eh0 ) and dcSω = 0 since dcω = d2
cTω + dcSω in B and dcω = 0

(by assumption).
Thus we can apply (45) to Sω and we get Sω = dcKSω, where K is defined in (43).

In B, put now
φ := (KS + T )ω.

Trivially,

(47) dcφ = dcKSω + dcTω = Sω + dcTω = ω,

by (46).
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On the other hand,

(48) ‖φ‖L∞(B,Eh−1
0 ) ≤ ‖KSω‖L∞(B,Eh−1

0 ) + ‖Tω‖L∞(B,Eh−1
0 ).

First of all, by (30),

(49) ‖Tω‖L∞(B,Eh−1
0 ) ≤ C‖ω‖L∞(B,Eh−1

0 ).

Take now q > 2n + 1. By [1], Theorem 4.12, keeping in mind that ΠE is an operator of
order 0 or 1, depending on the degree of the form, we have:

‖KSω‖L∞(B,Eh−1
0 ) ≤ C‖KSω‖W 1,q

Euc(B,Eh−1
0 )

= C‖(ΠE0 ◦ΠE ◦KEuc ◦ΠE)Sω‖W 1,q
Euc(B,Eh−1

0 )

≤ C‖(ΠE ◦KEuc ◦ΠE)Sω‖W 1,q
Euc(B,

∧
h−1)

≤ C‖(KEuc ◦ΠE)Sω‖W 2,q
Euc(B,

∧
h−1)

≤ C‖ΠESω‖W 2,q
Euc(B1,

∧
h−1) (by Theorem 5.1)

≤ C‖Sω‖W 3,q
Euc(B1,E

h−1
0 ) ≤ C‖Sω‖W 3,∞

Euc (B1,E
h−1
0 )

≤ C‖ω‖L∞(Bλ,E
h−1
0 ) (by (32)).

(50)

Combining (49) and (50) it follows from (48) that

(51) ‖φ‖L∞(B,Eh−1
0 ) ≤ C‖ω‖L∞(Bλ,E

h−1
0 ),

i.e. (keeping in mind (47)), interior H-Poincaré∞,∞(h) inequality holds.

ii) Interior H-Sobolev∞,∞(h) inequality: let ω ∈ L∞(Bλ, E
h
0 ) be dc-closed and com-

pactly supported. By (33), if we take therein U := B1 and U ′ := Bλ, we can write

ω = dcTω + Sω in B1.

By (31) Sω ∈ C∞(B1, E
h
0 ) and dcSω = 0 since dcω = d2

cTω+ dcSω in B1 and dcω = 0
(by assumption).

We notice now that Tω is supported in B1 provided R > 0 is small enough, so that, by
(31), also Sω is supported in B1. Thus, arguing as above, we can apply (45) to Sω and we
get Sω = dcJSω, where J is defined in (44). In B1, put now

φ := (JS + T )ω.

We stress that, again by Lemma 5.3, JSω is compactly supported in B1. Again as above,

(52) dcφ = dcJSω + dcTω = Sω + dcTω = ω.

We can repeat now the arguments yielding the estimates (50) and (51), replacing Theorem
5.1 by Theorem 5.2. Thus interior H-Sobolev∞,∞(h) inequality follows. �

6. COHOMOLOGY FOR ANNULI

The proof of H-PoincaréQ,∞(h) (Theorem 1.8) given in Section 3 relies basically on a
duality argument and the dual inequality of [6] (see Theorem 1.7).

On the contrary, the proof of H-SobolevQ,∞(h) (Theorem 1.9) requires a more sophis-
ticated argument based on localization on Korányi annuli. The present section is precisely
devoted to prove that the L∞,∞ cohomology of Rumin’s closed forms vanishes on Korányi
annuli. To this end, we prove first that de Rham L∞,∞ cohomology of closed forms van-
ishes on Euclidean annuli. It follows that the same statement holds for suitable Korányi
annuli (see Corollary 6.6) end eventually the assertion is proven.

Let us start with the following definition.
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Definition 6.1. Let D ⊂ R2n+1 be an open set. Let s ∈ N and 1 ≤ p, q ≤ ∞. If
1 ≤ h ≤ 2n+ 1, we define cohomology spaces

Hs,q,p,h
de Rham(D) = (W s,p

Euc(D,
∧h

h) ∩ kerd)/dW s,q
Euc(D,

∧h−1
h),

and we denote by

EHs,q,p,h
de Rham(D) = ker(Hs,q,p,h

de Rham(D)→ Hh(D))

the cohomology of exact differential forms. Similar definitions hold with d replaced with
dc, yielding the corresponding spaces

Hs,q,p,h
E0

and EHs,q,p,h
E0

for Rumin’s differential forms.
If s = 0 we shall write Hq,p,h

E0
forH0,q,p,h

E0
.

Notation 6.2. If 0 < s1 < s2 we denote by AEuc
s1,s2 the (Euclidean) annulus

AEuc
s1,s2 = BEuc(e, s2) \BEuc(e, s1).

Analogously, if 0 < r1 < r2, we denote by Ar1,r2 the (Korányi) annulus

Ar1,r2 = B(e, r2) \B(e, r1).

Given 0 < r1 < r2, let Ar1,r2 be the (Korányi) annulus in Hn. Put ∂+Ar1.r2 :=
∂B(e, r2) and ∂−Ar1.r2 := ∂B(e, r1). The meaning, in the Euclidean case, of ∂±AEuc

r1.r2
is analogous. Set

V := A1,2

and σ1 := 1
2 min∂−V |x| > 0 and σ2 := 2 max∂+V |x|. It turns out that V b AEuc

σ1,σ2
=: Ṽ .

Put now Ṽ ′ := AEuc
1
2σ1,2σ2

, obviously Ṽ b Ṽ ′. Finally set τ1 := 1
2 min∂−Ṽ ′ ρ(x) > 0 and

we fix (once for all) τ2 > max∂+Ṽ ′ ρ(x). Then the Korány annulus V ′ := A 1
2 τ1,2τ2

satisfies

(53) V b Ṽ b Ṽ ′ b V ′.

Notice that σ1 = 1
2 minB(e,1)c |x|, τ1 = 1

2 minBEuc(e, 12σ1)c ρ(x) and σ2 = 2 maxB(e,2) |x|,
τ2 = 2 maxBEuc(e,2σ2) ρ(x).

Definition 6.3. With the notation introduced above, let U = As1,s2 and U ′ = Ar1,r2 be
concentric Korányi annuli in Hn, U ⊂ U ′. We say that the couple (U,U ′) is annulus-
admissible if, with the notations of (53), there exists t > 0 such that

V ′ ⊂ δtU ′ and δtU ⊂ V.

Remark 6.4. A straightforward computation shows that the previous definition make sense.
Indeed, if 0 < r1 < r2 <

τ2
τ1
r1 there exist 0 < s1 < s2 such that the couple

U := As1,s2 and U ′ := Ar1,r2

is annulus admissible. More precisely the assertion holds provided
r2

τ2
< s1 <

r1

τ1
or

2r2

τ2
< s2 <

2r1

τ1
.

Proposition 6.5. Let 1 ≤ p ≤ ∞. Let AEuc
s1,s2 b AEuc

r1,r2 be concentric Euclidean an-
nuli in R2n+1. Then the map EHs,p,p,∗

de Rham(AEuc
r1,r2) → EHs,p,p,∗

de Rham(AEuc
s1,s2) induced by the

inclusion AEuc
s1,s2 ⊂ A

Euc
r1,r2 vanishes.
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Proof. We use a diffeomorphism of U ′ to (−2, 2)× Σ mapping U to (−1, 1)× Σ, where
Σ denotes the 2n-sphere. Then we use Poincaré’s homotopy formula in order to relate the
cohomology of (−2, 2)×Σ to the cohomology of Σ. Forms on the product can be written

ω = at + dt ∧ bt,
where at and bt are forms on Σ. Then

dω = dat + dt ∧ (
∂at
∂t
− dbt),

where the right-hand side d is the exterior differential on Σ. Assuming that dω = 0, i.e.
dat = 0 and ∂at

∂t = dbt for all t ∈ (−2, 2), set, for σ ∈ Σ and x ∈ (−1, 1),

γx(t, σ) =

∫ t

x

bu du.

We observe that for all p ≥ 1,

‖1

2

∫ 1

−1

γx dx‖W s,p
Euc
≤ ‖ω‖W s,p

Euc

By construction,

dγx = dt ∧ bt +

∫ t

x

dbu du = ω − ax.

Now assume that ω is exact, ω = d(et + dt ∧ ft). Then det = at for all t ∈ (−2, 2). Set

γ =
1

2

∫ 1

−1

(ex + γx) dx, so that dγ = ω.

If ω ∈W s,p
Euc, so is each γx. On Σ, use the coexact primitive ex = δ∆−1ax (see, e.g. [22],

Section 2.5). Here ∆ is the usual Hodge Laplacian on de Rham’s differential d). Then, if
p <∞,

‖1

2

∫ 1

−1

ex dx‖W s+1,p
Euc

≤ C ‖1

2

∫ 1

−1

ax dx‖W s,p
Euc
≤ C ′ ‖ω‖W s,p

Euc
.

If p =∞, one picks p > 2n+ 1, so that the Sobolev embedding theorem applies,

‖1

2

∫ 1

−1

ex dx‖W s,∞
Euc
≤ C ‖1

2

∫ 1

−1

ex dx‖W s+1,p
Euc

.

Obviously, ‖ω‖W s,p
Euc
≤ C ‖ω‖W s,∞

Euc
. Hence the primitive γ is bounded by ω inW s,p

Euc norm
in all cases. This shows that the cohomology class of ω in EHs,p,p,∗

de Rham(U) vanishes. �

As a consequence of the previous result and keeping in mind Definition 6.3, we can
prove the following corollary.

Corollary 6.6. Let U,U ′ be concentric Korányi annuli in Hn, U ⊂ U ′ such that the couple
(U,U ′) is annulus-admissible. Then the map EHs,p,p,•

de Rham(U ′)→ EHs,p,p,•
de Rham(U) induced

by the inclusion U ⊂ U ′ vanishes for 1 ≤ p ≤ ∞.

Proof. Suppose U ′ ⊂ δtV
′ and δtV ⊂ U , where V, V ′ and t > 0 are as in Defini-

tion 6.3. By (53) and Proposition 6.5 we can conclude straightforwardly that the map
EHs,p,p,∗

de Rham(V ′) → EHs,p,p,∗
de Rham(V ) induced by the inclusion V ⊂ V ′ vanishes, so that

the map EHs,p,p,∗
de Rham(δtU) → EHs,p,p,∗

de Rham(δtU
′) vanishes. The assertion follows by a

pull-back argument.
�
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Proposition 6.7. Let U = As1,s2 and U ′′ = Ar1,r2 be concentric Korány annuli in Hn.
Assume (U,U ′′) are annulus-admissible (see Definition 6.3). Then the map

EH∞,∞,•E0
(Ar1,r2)→ EH∞,∞,•E0

(As1,s2)

induced by inclusion U ⊂ U ′′ vanishes.

Proof. Let the annulus U ′ be such that U ⊂ U ′ ⊂ U ′′ and such that the couple (U,U ′) is
still annulus-admissible as in Definition 6.3 (this is possible by Remark 6.4).

Let ω be a dc-exact Rumin form on U ′′, which belongs to L∞(U ′′, E•0 ).
Apply formula (32) of Proposition 4.3 with s = 5. Then, if we set Sω =: ω′ ∈

W 5,∞(U ′, E•0 ), we have

(54) ω = ω′ + dcα on U ′, where α = Tω ∈ L∞(U ′, E•−1
0 ).

Consider ω′′ := ΠEω
′. Obviously, ω′′ = ΠEω

′′. Moreover, by Theorem 8.6-iv),
ΠE0

ΠEΠE0
= ΠE0

, and ΠE0
ω′ since ω′ is a Rumin form. Therefore

ΠE0
ω′′ = ΠE0

ΠEω
′ = ΠE0

ΠEΠE0
ω′ = ω′.

Notice that dω′′ = 0 in U ′. Indeed, since ω is dc-exact, then 0 = dcω and hence dcω′ = 0
in U ′. Therefore 0 = dcω

′ = ΠE0
ΠEdω

′, so that 0 = ΠEΠE0
ΠEdω

′ = ΠEdω
′ =

dΠeω
′ = dω′′ in U ′ (keep in mind dΠE = ΠEd by Theorem 8.6).

In addition, ω′′ ∈W 4,∞(U ′,Ω•) ⊂W 2,∞
Euc (U ′,Ω•).

According to Corollary 6.6, there exists a differential form γ ∈ W 2,∞
Euc (U) such that

ω′′ = dγ on U . Hence

ω′′ = ΠEω
′′ = ΠEdγ = dΠEγ.

If we set η = ΠE0
ΠEγ, then in particular η ∈ L∞(U,E•−1

0 ) and it follows that

dcη = ΠE0
dΠEΠE0

ΠEγ = ΠE0
dΠEγ

= ΠE0ΠEdγ = ΠE0ΠEω
′′ = ΠE0ω

′′ = ω′.

Hence, by (54),
ω = dc(η + α) in U .

This shows that the cohomology class of the restriction of ω toU vanishes inEH∞,∞,•E0
(U).
�

Remark 6.8. Repeating verbatim the proof of the previous theorem and keeping into ac-
count (34) in Proposition 4.3, when dealing with (n + 1)-forms the previous result guar-
antees the existence of a W 1,∞-primitive, i.e. the map

EH∞,∞,n+1
E0

(Ar1,r2)→ EH1,∞,∞,n+1
E0

(As1,s2)

induced by the inclusion U ⊂ U ′′ vanishes.

7. PROOF OF THEOREM 1.9

We are now able to prove the Sobolev inequality as stated in Theorem 1.9.
The proof will be carried out starting from the corresponding Poincaré inequality by

means of localizations of our estimates on a family of annuli via a suitable cut-off. Then
a problem arises since the differential dc may have order 1 or 2 according to the degree of
the forms on which it acts. Keeping in mind Remark 2.13, for technical reasons, during
the proof we are led to distinguish the case h 6= n+ 2 from the case h = n+ 2.
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Proof of Theorem 1.9. We set

q = q(h) :=

 Q if h 6= n;

Q/2 if h = n.

Take B := B(e, 1) and Bλ := B(e, λ) with 1 + ε < λ < τ2
τ1

(1 + ε), where ε > 0 and
τ1, τ2 are the geometric constants introduced in Definition 6.3.

By Remark 6.4 there exist 0 < s1 < s2 such that for two concentric annuli A1+ε,λ and
As1,s2 , the couple (A1+ε,λ , As1,s2) is annulus-admissible in the sense of Definition 6.3
and

As1,s2 ⊂ A1+ε,λ ⊂ Bλ \B.
If we set U ′ := A1+ε,λ and U := As1,s2 , the inclusion above reads as

U ⊂ U ′ ⊂ Bλ \B.

Let α ∈ Lq(B,Eh0 ) be a compactly supported dc-exact h-form on the unit ball B. If
h = 2n+ 1, this implies that

∫
B
α = 0. Otherwise, this simply means that dcα = 0 in B.

We continue α by zero on Hn \B.
We apply H-Poincaréq,∞(h) in 2Bλ (see Theorem 1.8), and we find γ ∈ L∞(Bλ, E

h−1
0 )

such that
(55)
dcγ = α in Bλ and ‖γ‖L∞(Bλ,E

h−1
0 ) ≤ C ‖α‖Lq(2Bλ,Eh0 ) = ‖α‖Lq(B,Eh0 ).

We emphasize here that the exponent q in (55) equals Q if h 6= n and Q/2 if h = n.
As announced above, we have to distinguish two cases: h 6= n + 2 and h = n + 2.

Since in U ′ ⊂ Bλ \B we have dcγ = 0 in U ′. Furthermore, if h = 2n+ 1,∫
∂B

γ =

∫
B

α = 0,

which implies that γ is exact on Bλ \ B. Hence by Proposition 6.7, if h − 2 6= n, there
exists a (h− 2)-form γ′ on U such that

(56) dcγ
′ = γ in U and ‖γ′‖L∞(U,Eh−2

0 ) ≤ C ‖γ‖L∞(U ′,Eh−1
0 ).

On the other hand, if h − 2 = n then, by Remark 6.8, there exists a γ′ ∈ W 1,∞(U,En0 )
such that dcγ′ = γ in U and

(57) ‖γ′‖W 1,∞(U,En0 ) ≤ C ‖γ‖L∞(U ′,En+1
0 ).

Let ζ be a smooth function in Bλ vanishing in c1B with s1 < c1 < s2, such that ζ ≡ 1
outside of c2B, where c1 < c2 < s2. We stress that γ′ is defined onU , and ζγ′ is supported
outside of a neighborhood of c1B and therefore can be continued by 0 on all the ball c1B
and then is defined on all of s2B.

We set

(58) β := γ − dc(ζγ′)

(that is still defined on all of s2B). Now on s2B \ c2B = U \ c2B we have

β = γ − dcγ′ ≡ 0,

so that β is compactly supported in s2B and can be continued by 0 to a compactly sup-
ported form in Bλ.
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In addition, by (55),

dcβ = dcγ = α in Bλ.

By Remark 2.13, keeping into account that ζγ′ ∈ Eh−2
0 , if h− 2 6= n, we have

‖β‖L∞(Bλ,E
h−1
0 ) = ‖β‖L∞(s2B,E

h−1
0 )) ≤ ‖γ‖L∞(Bλ,E

h−1
0 )) + ‖dc(ζγ′)‖L∞(s2B,E

h−1
0 )

= ‖γ‖L∞(Bλ,E
h−1
0 ) + ‖dc(ζγ′)‖L∞(U,Eh−1

0 )

≤ ‖γ‖L∞(Bλ,E
h−1
0 ) + ‖dcγ′‖L∞(U,Eh−1

0 ) + C‖γ′‖L∞(U,Eh−2
0 )

≤ ‖γ‖L∞(Bλ,E
h−1
0 ) + ‖γ‖L∞(U,Eh−1

0 ) + C‖γ‖L∞(U ′,Eh−1
0 ) (by (56))

≤ C‖γ‖L∞(Bλ,E
h−1
0 ) ≤ C‖α‖Lq(B,Eh0 ) (by (55)).

Thus, H-Sobolevq,∞(h) holds for h 6= n+ 2.
On the other hand, when h− 2 = n , keeping into account Remark 2.13-ii), we have

‖β‖L∞(Bλ,E
h−1
0 ) = ‖β‖L∞(s2B,E

h−1
0 )) ≤ ‖γ‖L∞(Bλ,E

h−1
0 )) + ‖dc(ζγ′)‖L∞(s2B,E

h−1
0 )

= ‖γ‖L∞(Bλ,E
h−1
0 ) + ‖dc(ζγ′)‖L∞(U,Eh−1

0 )

≤ ‖γ‖L∞(Bλ,E
h−1
0 ) + ‖dcγ′‖L∞(U,Eh−1

0 ) + C‖γ′‖W 1,∞(U,Eh−2
0 )

≤ ‖γ‖L∞(Bλ,E
h−1
0 ) + ‖γ‖L∞(U,Eh−1

0 ) + C‖γ‖L∞(U ′,Eh−1
0 ) (by (57))

≤ C‖γ‖L∞(Bλ,E
h−1
0 ) ≤ C‖α‖Lq(B,Eh0 ) (by (55)).

Thus, by Definition 1.4, H-Sobolevq,∞(n+ 2) holds. �
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8. APPENDIX: RUMIN’S COMPLEX

Coherently with the notations introduced through the paper, we set (see (15))

ωi := dxi, ωi+n := dyi and ω2n+1 := θ, for i = 1, . . . , n

we denote by 〈·, ·〉 the inner product in
∧1

h that makes (dx1, . . . , dyn, θ) an orthonormal
basis.

We put
∧

0 h :=
∧0

h = R and, for 1 ≤ h ≤ 2n+ 1,∧h
h := span{ωi1 ∧ · · · ∧ ωih : 1 ≤ i1 < · · · < ih ≤ 2n+ 1}.

In the sequel we shall denote by Θh the basis of
∧h

h defined by

Θh := {ωi1 ∧ · · · ∧ ωih : 1 ≤ i1 < · · · < ih ≤ 2n+ 1}.

To avoid cumbersome notations, if I := (i1, . . . , ih), we write

ωI := ωi1 ∧ · · · ∧ ωih .

The inner product 〈·, ·〉 on
∧1

h yields naturally a inner product 〈·, ·〉 on
∧h

h making Θh

an orthonormal basis.
The volume (2n+ 1)-form θ1 ∧ · · · ∧ θ2n+1 will be also written as dV .
Throughout this paper, the elements of

∧h
h are identified with left invariant differential

forms of degree h on Hn.

Definition 8.1. A h-form α on Hn is said left invariant if

τ#
q α = α for any q ∈ Hn.

Here τ#
q α denotes the pull-back of α through the left translation τq .

The same construction can be performed starting from the vector subspace h1 ⊂ h,
obtaining the horizontal h-covectors∧h

h1 := span{ωi1 ∧ · · · ∧ ωih : 1 ≤ i1 < · · · < ih ≤ 2n}.

It is easy to see that

Θh
0 := Θh ∩

∧h
h1

provides an orthonormal basis of
∧h

h1.
Keeping in mind that the Lie algebra h can be identified with the tangent space to Hn at

x = e (see, e.g. [21], Proposition 1.72), starting from
∧h

h we can define by left translation
a fiber bundle over Hn that we can still denote by

∧h
h. We can think of h-forms as sections

of
∧h

h. We denote by Ωh the vector space of all smooth h-forms.
We already pointed out in Section 2 that the stratification of the Lie algebra h yields

a lack of homogeneity of de Rham’s exterior differential with respect to group dilations
δλ. Thus, to keep into account the different degrees of homogeneity of the covectors when
they vanish on different layers of the stratification, we introduce the notion of weight of a
covector as follows.

Definition 8.2. If η 6= 0, η ∈
∧1

h1, we say that η has weight 1, and we write w(η) = 1.
If η = θ, we say w(η) = 2. More generally, if η ∈

∧h
h, η 6= 0, we say that η has pure

weight p if η is a linear combination of covectors ωi1 ∧ · · · ∧ ωih with w(ωi1) + · · · +
w(ωih) = p.
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Notice that, if η, ζ ∈
∧h

h and w(η) 6= w(ζ), then 〈η, ζ〉 = 0 (see [9], Remark 2.4).
We notice also that w(dθ) = w(θ).

We stress that generic covectors may fail to have a pure weight: it is enough to consider
H1 and the covector dx1 +θ ∈

∧1
h. However, the following result holds (see [9], formula

(16)):

(59)
∧h

h =
∧h,h

h⊕
∧h,h+1

h =
∧h

h1 ⊕
(∧h−1

h1

)
∧ θ,

where
∧h,p

h denotes the linear span of the h-covectors of weight p. By our previous
remark, the decomposition (59) is orthogonal. In addition, since the elements of the basis
Θh have pure weights, a basis of

∧h,p
h is given by Θh,p := Θh ∩

∧h,p
h (such a basis is

usually called an adapted basis).
As above, starting from

∧h,p
h, we can define by left translation a fiber bundle over

Hn that we can still denote by
∧h,p

h. Thus, if we denote by Ωh,p the vector space of all
smooth h–forms in Hn of weight p, i.e. the space of all smooth sections of

∧h,p
h, we have

(60) Ωh = Ωh,h ⊕ Ωh,h+1.

Definition of Rumin’s complex
Let us give a short introduction to Rumin’s complex. For a more detailed presentation

we refer to Rumin’s papers [33] following verbatim the presentation of [8]. Here we follow
the presentation of [9].

The exterior differential d does not preserve weights. It splits into

d = d0 + d1 + d2

where d0 preserves weight, d1 increases weight by 1 unit and d2 increases weight by 2
units.

More explicitly, let α ∈ Ωh be a (say) smooth form of pure weight h. We can write

α =
∑

ωI∈Θh0

αI ωI , with αI ∈ C∞(Hn).

Then

dα =
∑

ωI∈Θh0

2n∑
j=1

(WjαI)ωj ∧ ωI +
∑

ωI∈Θh0

(TαI) θ ∧ ωI = d1α+ d2α,

and d0α = 0. On the other hand, if α ∈ Ωh,h+1 has pure weight h+ 1, then

α =
∑

ωJ∈Θh−1
0

αJ θ ∧ ωJ ,

and

dα =
∑

ωJ∈Θh0

αJ dθ ∧ ωJ +
∑

ωJ∈Θh0

2n∑
j=1

(WjαJ)ωj ∧ θ ∧ ωI = d0α+ d1α,

and d2α = 0.
It is crucial to notice that d0 is an algebraic operator, in the sense that for any real-valued

f ∈ C∞(Hn) we have
d0(fα) = fd0α,

so that its action can be identified at any point with the action of a linear operator from∧h
h to

∧h+1
h (that we denote again by d0).
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Following M. Rumin ([33], [31]) we give the following definition:

Definition 8.3. If 0 ≤ h ≤ 2n+1, keeping in mind that
∧h

h is endowed with a canonical
inner product, we set

Eh0 := ker d0 ∩ (Im d0)⊥.

Straightforwardly, Eh0 inherits from
∧h

h the inner product.

As above, E•0 defines by left translation a fibre bundle over Hn, that we still denote by
E•0 . To avoid cumbersome notations, we denote also by E•0 the space of sections of this
fibre bundle.

Let L :
∧h

h→
∧h+2

h the Lefschetz operator defined by

(61) Lξ = dθ ∧ ξ.

Then the spaces E•0 can be defined explicitly as follows:

Theorem 8.4 (see [30], [32]). We have:

i) E1
0 =

∧1
h1;

ii) if 2 ≤ h ≤ n, then Eh0 =
∧h

h1 ∩
(∧h−2

h1 ∧ dθ
)⊥

(i.e. Eh0 is the space of the
so-called primitive covectors of

∧h
h1);

iii) if n < h ≤ 2n + 1, then Eh0 = {α = β ∧ θ, β ∈
∧h−1

h1, γ ∧ dθ = 0} =
θ ∧ kerL;

iv) if 1 < h ≤ n, then Nh := dimEh0 =
(

2n
h

)
−
(

2n
h−2

)
;

v) if ∗ denotes the Hodge duality associated with the inner product in
∧•

h and the
volume form dV , then ∗Eh0 = E2n+1−h

0 .
Notice that all forms inEh0 have weight h if 1 ≤ h ≤ n and weight h+1 if n < h ≤ 2n+1.

A further geometric interpretation (in terms of decomposition of h and of graphs within
Hn) can be found in [20].

Notice that there exists a left invariant orthonormal basis

(62) Ξh0 = {ξh1 , . . . , ξhdimEh0
}

of Eh0 that is adapted to the filtration (59). Such a basis is explicitly constructed by induc-
tion in [2].

The core of Rumin’s theory consists in the construction of a suitable “exterior differ-
ential” dc : Eh0 → Eh+1

0 making E0 := (E•0 , dc) a complex homotopic to the de Rham
complex.

Let us sketch Rumin’s construction: first the next result (see [9], Lemma 2.11 for a
proof) allows us to define a (pseudo) inverse of d0 :

Lemma 8.5. If 1 ≤ h ≤ n, then ker d0 =
∧h

h1. Moreover, if β ∈
∧h+1

h, then there
exists a unique γ ∈

∧h
h ∩ (ker d0)⊥ such that

d0γ − β ∈ R(d0)⊥.

With the notations of the previous lemma, we set

γ := d−1
0 β.

We notice that d−1
0 preserves the weights.

The following theorem summarizes the construction of the intrinsic differential dc (for
details, see [33] and [9], Section 2) .
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Theorem 8.6. The de Rham complex (Ω•, d) splits into the direct sum of two sub-complexes
(E•, d) and (F •, d), with

E := ker d−1
0 ∩ ker(d−1

0 d) and F := R(d−1
0 ) +R(dd−1

0 ).

Let ΠE be the projection on E along F (that is not an orthogonal projection). We have

i) If γ ∈ Eh0 , then
• ΠEγ = γ − d−1

0 d1γ if 1 ≤ h ≤ n;
• ΠEγ = γ if h > n.

ii) ΠE is a chain map, i.e.

dΠE = ΠEd.

iii) Let ΠE0
be the orthogonal projection from

∧∗
h on E•0 , then

(63) ΠE0
= Id− d−1

0 d0 − d0d
−1
0 , ΠE⊥0

= d−1
0 d0 + d0d

−1
0 .

iv) ΠE0ΠEΠE0 = ΠE0 and ΠEΠE0ΠE = ΠE .

Set now

dc = ΠE0
dΠE : Eh0 → Eh+1

0 , h = 0, . . . , 2n.

We have:

v) d2
c = 0;

vi) the complex E0 := (E•0 , dc) is homotopic to the de Rham complex;
vii) dc : Eh0 → Eh+1

0 is a homogeneous differential operator in the horizontal deriva-
tives of order 1 if h 6= n, whereas dc : En0 → En+1

0 is an homogeneous differential
operator in the horizontal derivatives of order 2;

viii) on forms of degree h > n we have dc = d. Indeed, if γ ∈ Eh0 with h > n, then,
by i) and iv)

dcγ = ΠE0
ΠEdγ = ΠEΠE0

ΠEdγ = ΠEdγ = dΠEγ = dγ,

(see also [10]).
ix) on forms of degree h = n, ΠE − IdEn0 = −d−1

0 d1 raises weight by one unit, i.e.
it maps En0 ⊂

∧n,n to
∧n,n+1.

The next remarkable property of Rumin’s complex is its invariance under contact trans-
formations. In particular,

Proposition 8.7. If we write a form α =
∑
j αjξ

h
j in coordinates with respect to a left-

invariant basis of Eh0 (see (62)) we have:

(64) τ#
q α =

∑
j

(αj ◦ τq)ξhj

for all q ∈ Hn. In addition, for t > 0,

(65) δ#
t α = th

∑
j

(αj ◦ δt)ξhj if 1 ≤ h ≤ n

and

(66) δ#
t α = th+1

∑
j

(αj ◦ δt)ξhj if n+ 1 ≤ h ≤ 2n+ 1 .



34 ANNALISA BALDI, BRUNO FRANCHI, PIERRE PANSU

ACKNOWLEDGMENTS

A.B. and B.F. are supported by the University of Bologna, funds for selected research
topics, and by MAnET Marie Curie Initial Training Network, and by GNAMPA of INdAM
(Istituto Nazionale di Alta Matematica “F. Severi”), Italy.

P.P. is supported by MAnET Marie Curie Initial Training Network, by Agence Na-
tionale de la Recherche, ANR-10-BLAN 116-01 GGAA and ANR-15-CE40-0018 SRGI.
P.P. gratefully acknowledges the hospitality of Isaac Newton Institute, of EPSRC under
grant EP/K032208/1, and of Simons Foundation.

REFERENCES

1. Robert A. Adams and John J. F. Fournier, Sobolev spaces, second ed., Pure and Applied Mathematics (Ams-
terdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. MR 2424078

2. Annalisa Baldi, Marilena Barnabei, and Bruno Franchi, A recursive basis for primitive forms in symplectic
spaces and applications to Heisenberg groups, Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 3, 265–285.
MR 3456421

3. Annalisa Baldi and Bruno Franchi, Maxwell’s equations in anisotropic media and Carnot groups as varia-
tional limits, Adv. Nonlinear Stud. 15 (2015), no. 2, 333–362. MR 3337877

4. Annalisa Baldi, Bruno Franchi, and Pierre Pansu, Gagliardo-Nirenberg inequalities for differential forms in
Heisenberg groups, Math. Ann. 365 (2016), no. 3-4, 1633–1667. MR 3521101
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30. Michel Rumin, Formes différentielles sur les variétés de contact, J. Differential Geom. 39 (1994), no. 2,
281–330. MR MR1267892 (95g:58221)

31. , Differential geometry on C-C spaces and application to the Novikov-Shubin numbers of nilpotent
Lie groups, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 11, 985–990. MR MR1733906 (2001g:53063)

32. , Sub-Riemannian limit of the differential form spectrum of contact manifolds, Geom. Funct. Anal.
10 (2000), no. 2, 407–452. MR MR1771424 (2002f:53044)

33. , Around heat decay on forms and relations of nilpotent Lie groups, Séminaire de Théorie Spectrale
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Università di Bologna, Dipartimento di Matematica
Piazza di Porta S. Donato 5, 40126 Bologna, Italy.
e-mail: annalisa.baldi2@unibo.it, bruno.franchi@unibo.it.

Pierre Pansu
Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay
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