A SURVEY OF THE THEORY OF GRAPHONS AND PERMUTONS

PIERRE-LOÏC MÉLIOT

Abstract. The purpose of this note is to present the theory of graphons and permutons.

Contents

1. Graphons and their topology 2
1.1. Graphs and morphisms 2
1.2. Graph parameters and graph functions 3
1.3. The space of graphons 6
1.4. Concentration of the graphon models 9
2. Permutons and their topology 12
2.1. Permutations and patterns 12
2.2. Probability measures on the square and permutons 13
2.3. Convergence in the space of permutons 15
References 19

1. Graphons and their topology

1.1. Graphs and morphisms. In this paper, a graph will be a finite undirected simple graph, that is to say a pair (V, E) with V finite set of vertices, and E subset of the set $\mathfrak{P}_{2}(V)$ of pairs of vertices. Thus, E is a finite set of pairs $\left\{v_{1}, v_{2}\right\}$ with $v_{1}, v_{2} \in V$ and $v_{1} \neq v_{2}$. These pairs are the edges of the graph.

Figure 1. A graph G with vertex set $V=\llbracket 1,6 \rrbracket$ and edge set $E=$ $\{\{1,5\},\{2,3\},\{2,4\},\{2,6\},\{3,6\}\}$.

A morphism (cf. [LSO6]) from a graph $F=\left(V_{F}, E_{F}\right)$ to a graph $G=\left(V_{G}, E_{G}\right)$ is a map ϕ : $V_{F} \rightarrow V_{G}$ such that, if $\left(v_{1}, v_{2}\right) \in E_{F}$, then $\left(\phi\left(v_{1}\right), \phi\left(v_{2}\right)\right) \in E_{G}$. We denote hom (F, G) the set of morphisms from F to G, and the morphism density from F to G is defined by

$$
t(F, G)=\frac{|\operatorname{hom}(F, G)|}{\left|V_{G}\right|^{\left|V_{F}\right|} \mid}
$$

where $|A|$ denotes the cardinality of a set A. This is a real number between 0 and 1 , which measures the number of copies of F inside G. One can also work with embeddings of F into G, that is morphisms that are injective maps $V_{F} \rightarrow V_{G}$. Set

$$
t_{0}(F, G)=\frac{|\operatorname{emb}(F, G)|}{\left|V_{G}\right|^{\left|\downarrow V_{F}\right|}}
$$

where $\operatorname{emb}(F, G)$ is the set of embeddings of F into G, and $n^{\downarrow k}=n(n-1) \cdots(n-k+1)$ denotes a falling factorial - thus, $\left|V_{G}\right|^{\mid\langle | V_{F} \mid}$ is the number of injective maps from V_{F} to V_{G}. The two quantities $t(F, G)$ and $t_{0}(F, G)$ are close when G is sufficiently large:

Lemma 1. For any finite graphs F and G,

$$
\left|t(F, G)-t_{0}(F, G)\right| \leq \frac{1}{\left|V_{G}\right|}\binom{\left|V_{F}\right|}{2}
$$

Proof. We have:

$$
\begin{aligned}
t(F, G)-t_{0}(F, G) & =\frac{|\operatorname{hom}(F, G)|}{\left|V_{G}\right|^{\left|V_{F}\right|}}-\frac{|\operatorname{emb}(F, G)|}{\left|V_{G}\right|\left|V_{F}\right|} \\
& \leq \frac{|\operatorname{hom}(F, G)|}{\left|V_{G}\right|^{\left|V_{F}\right|}}-\frac{|\operatorname{emb}(F, G)|}{\left|V_{G}\right|^{\left|V_{F}\right|}} \\
& \leq \frac{\mid \text { number of non-injective morphisms } F \rightarrow G \mid}{\left|V_{G}\right| V_{F} \mid} .
\end{aligned}
$$

Set $n=\left|V_{G}\right|$ and $k=\left|V_{F}\right|$. To construct a non-injective map from V_{F} to V_{G}, it suffices to choose a pair $\{a, b\}$ of vertices in V_{F} that will be sent to the same image in $V_{G}\binom{k}{2}$ possibilities for the pair, and n possibilities for the image), and then to choose the $k-2$ other images (n^{k-2} possibilities).

So, the number of non-injective maps, and therefore the number of non-injective morphisms from F to G is smaller than $\binom{k}{2} n^{k-1}$, and

$$
t(F, G)-t_{0}(F, G) \leq \frac{1}{n^{k}}\left(\binom{k}{2} n^{k-1}\right)=\frac{1}{n}\binom{k}{2} .
$$

Similarly,

$$
\left.\begin{array}{rl}
t(F, G)-t_{0}(F, G) & =\frac{|\operatorname{hom}(F, G)|}{\left|V_{G}\right|^{\left|V_{F}\right|}}-\frac{|\operatorname{emb}(F, G)|}{\left|V_{G}\right|^{\left|V_{F}\right|}} \\
& \geq|\operatorname{emb}(F, G)|\left(\frac{1}{\left|V_{G}\right|^{\left|V_{F}\right|}}-\frac{1}{\left|V_{G}\right| \downarrow\left|V_{F}\right|}\right.
\end{array}\right)=t_{0}(F, G)\left(\frac{\left.\left|V_{G}\right|\right|^{\left|V_{F}\right|}}{\left|V_{G}\right|^{\left|V_{F}\right|}}-1\right),
$$

the last inequality coming from the same argument as before.

Definition 2. Let $\left(G_{n}\right)_{n \in \mathbb{N}}$ be a sequence of graphs. One says that $\left(G_{n}\right)_{n \in \mathbb{N}}$ converges if, for any fixed graph F, the density of morphisms $t\left(F, G_{n}\right)$ admits a limit when n goes to infinity. If $\left|V_{G_{n}}\right| \rightarrow \infty$, then by the previous lemma this is equivalent to ask that $t_{0}\left(F, G_{n}\right)$ admits a limit for any fixed graph F.

We call graph parameter a family of real numbers $(t(F))_{F \text { graph }}$ indexed by the countable set of (isomorphism classes of) finite graphs, such that there exists a sequence of finite graphs G_{n} with

$$
\lim _{n \rightarrow \infty} t\left(F, G_{n}\right)=t(F)
$$

for any F. The theory of graphons will allow us to identify all the graph parameters.
1.2. Graph parameters and graph functions. A graph function is a function $f:[0,1]^{2} \rightarrow[0,1]$ that is measurable and symmetric: $f(x, y)=f(y, x)$ Lebesgue almost surely on $[0,1]^{2}$. Thus, the graph functions form a subset \mathcal{W} of the space $\mathrm{L}^{\infty}\left([0,1]^{2}\right)$ of essentially bounded measurable functions on the square $[0,1]$. If f is a graph function, then one can associate to it a family $(t(F, f))_{F \text { graph }}$ indexed by finite graphs:

$$
t(F, f)=\int_{[0,1]^{k}}\left(\prod_{e=(i, j) \in E_{F}} f\left(x_{i}, x_{j}\right)\right) d x_{1} d x_{2} \cdots d x_{k}
$$

where V_{F} is identified with $\llbracket 1, k \rrbracket$ if $k=\left|V_{F}\right|$. For instance, if F is the graph of Figure 1, then

$$
t(F, f)=\int_{[0,1]^{6}} f\left(x_{1}, x_{5}\right) f\left(x_{2}, x_{3}\right) f\left(x_{2}, x_{4}\right) f\left(x_{2}, x_{6}\right) f\left(x_{3}, x_{6}\right) d x
$$

Notice that if $\sigma:[0,1] \rightarrow[0,1]$ is a map that preserves the Lebesgue measure, then $t(F, f(\sigma(\cdot), \sigma(\cdot)))=$ $t(F, f(\cdot, \cdot))$. Therefore, the map $t(F, \cdot): \mathcal{W} \rightarrow[0,1]$ is invariant by the action of the Lebesgue isomorphisms of $[0,1]$. In a moment, we shall define graphons as orbits in \mathcal{W} under this action. We first describe the connection between graph functions and graph parameters:

Theorem 3 (Theorem 2.2 in [LSO6]). A family $(t(F))_{F}$ is a graph parameter if and only if there exists a graph function f such that $t(F, f)=t(F)$ for any finite graph F.

Let us first see why graph functions give rise to graph parameters. If G is a finite graph with vertex set $V_{G}=\llbracket 1, n \rrbracket$, then one can associate to it a graph function g as follows: g is the function
on the square that takes its values in $\{0,1\}$, and is such that

$$
g(x, y)=1 \text { if } x \in\left[\frac{i-1}{n}, \frac{i}{n}\right), y \in\left[\frac{j-1}{n}, \frac{j}{n}\right) \text { and } i \sim j \text { in } G,
$$

and 0 otherwise.

Figure 2. The graph function associated to the graph of Figure 1.

It is then easily seen that $t(F, G)=t(F, g)$ for any finite graph F, so a finite graph G can be embedded in the space \mathcal{W} of graph functions in a way that is compatible with graph parameters. There is a reciprocal to this construction, which associates to any graph function w a model of random graphs. Fix a graph function w, and for $n \geq 1$, consider a family $\left(X_{1}, \ldots, X_{n}\right)$ of independent uniform random variables with values in $[0,1]$. We denote $G_{n}(w)$ the random graph with vertex set $\llbracket 1, n \rrbracket$, and with i connected to j with probability $w\left(X_{i}, X_{j}\right)$. Thus, the random variables X_{1}, \ldots, X_{n} being drawn, we consider new independent Bernoulli random variables $B_{i \neq j}$ of parameters $w\left(X_{i}, X_{j}\right)$, and we connect i to j in $G_{n}(w)$ if and only if $B_{i j}=1$. Again, the laws of these random graphs $G_{n}(w)$ are invariant under the action of any Lebesgue isomorphism of $[0,1]$ on w.

Figure 3. Two random graphs of size $n=20$ associated to the graph functions $w(x, y)=\frac{x+y}{2}$ and $w^{\prime}(x, y)=x y$.

Proposition 4. If $w \in \mathcal{W}$, then for any $n \geq 1$,

$$
\begin{aligned}
\mathbb{E}\left[t_{0}\left(F, G_{n}(w)\right)\right] & =t(F, w) ; \\
\operatorname{var}\left(t\left(F, G_{n}(w)\right)\right) & \leq \frac{3\left|V_{F}\right|^{2}}{n} .
\end{aligned}
$$

Proof. Set $k=\left|V_{F}\right|$, and let ϕ be an injective map from $\llbracket 1, k \rrbracket$ to $\llbracket 1, n \rrbracket$. Conditionally to the random variables X_{1}, \ldots, X_{n}, the probability that ϕ is an embedding of F into the random graph $G_{n}(w)$ is $\prod_{(i, j) \in E_{F}} w\left(X_{\phi(i)}, X_{\phi(j)}\right)$. Therefore,

$$
\begin{aligned}
\mathbb{P}[\phi \text { is an embedding }] & =\int_{[0,1]^{n}}\left(\prod_{(i, j) \in E_{F}} w\left(x_{\phi(i)}, x_{\phi(j)}\right)\right) d x_{1} \cdots d x_{n} \\
& =\int_{[0,1]^{k}}\left(\prod_{(i, j) \in E_{F}} w\left(x_{i}, x_{j}\right)\right) d x_{1} \cdots d x_{k}=t(F, w) .
\end{aligned}
$$

As a consequence,

$$
\mathbb{E}\left[t_{0}\left(F, G_{n}(w)\right)\right]=\frac{1}{n^{\downarrow k}} \sum_{\phi \text { injective map }} t(F, w)=t(F, w) .
$$

To compute the variance, introduce $F_{2}=F \sqcup F$, which is the disjoint union of two copies of F. Then, $\operatorname{hom}\left(F_{2}, G\right)=\operatorname{hom}(F, G) \times \operatorname{hom}(F, G)$, and as a consequence, $t\left(F_{2}, G\right)=(t(F, G))^{2}$ for any finite graph F. We also have $t\left(F_{2}, w\right)=(t(F, w))^{2}$ for any graph function w. So, by using Lemma 1 ,

$$
\begin{aligned}
\mathbb{E}\left[\left(t\left(F, G_{n}(w)\right)\right)^{2}\right] & =\mathbb{E}\left[t\left(F_{2}, G_{n}(w)\right)\right] \leq \mathbb{E}\left[t_{0}\left(F_{2}, G_{n}(w)\right)\right]+\frac{1}{n}\binom{2 k}{2} \\
& \leq t\left(F_{2}, w\right)+\frac{2 k^{2}}{n}=(t(F, w))^{2}+\frac{2 k^{2}}{n} \\
\left(\mathbb{E}\left[t\left(F, G_{n}(w)\right)\right]\right)^{2} & \geq\left(t(F, w)-\frac{k^{2}}{2 n}\right)^{2} \geq(t(F, w))^{2}-\frac{k^{2}}{n}
\end{aligned}
$$

and $\operatorname{var}\left(t\left(F, G_{n}(w)\right)\right) \leq \frac{3 k^{2}}{n}=\frac{3\left|V_{F}\right|^{2}}{n}$.
Fix $\varepsilon>0$, and let n be large enough so that $\frac{\left|V_{F}\right|^{2}}{2 n}<\frac{\varepsilon}{2}$. We then have

$$
\left|\mathbb{E}\left[t\left(F, G_{n}(w)\right)\right]-t(F, w)\right| \leq \mathbb{E}\left[\left|t\left(F, G_{n}(w)\right)-t_{0}\left(F, G_{n}(w)\right)\right|\right] \leq \frac{\varepsilon}{2}
$$

and a direct consequence of the previous proposition is

$$
\begin{aligned}
\mathbb{P}\left[\left|t\left(F, G_{n}(w)\right)-t(F, w)\right| \geq \varepsilon\right] & \leq \mathbb{P}\left[\left|t\left(F, G_{n}(w)\right)-\mathbb{E}\left[t\left(F, G_{n}(w)\right)\right)\right| \geq \frac{\varepsilon}{2}\right] \\
& \leq \frac{4 \operatorname{var}\left(t\left(F, G_{n}(w)\right)\right)}{\varepsilon^{2}} \leq 12\left(\frac{\left|V_{F}\right|}{\varepsilon}\right)^{2} \frac{1}{n}
\end{aligned}
$$

So:
Corollary 5. For any graph function $w \in \mathcal{W}$, the model of random graphs $\left(G_{n}(w)\right)_{n \in \mathbb{N}}$ bas the property that $t\left(F, G_{n}(w)\right)$ converges in probability to $t(F, w)$ for any finite graph F.

A classical consequence of convergence in probability is the existence of a subsequence that converges almost surely (see [Bil95, Theorem 20.5]). Since the set of isomorphism classes of finite
graphs is countable, by diagonal extraction, one can find a subsequence $\left(G_{n_{k}}(w)\right)_{k \in \mathbb{N}}$ such that for any finite graph F,

$$
\lim _{k \rightarrow \infty} t\left(F, G_{n_{k}}(w)\right)=t(F, w) \quad \text { almost surely }
$$

In particular, there exists a sequence of graphs $\left(G_{n_{k}}\right)_{k \in \mathbb{N}}$ whose observables $t\left(F, G_{n_{k}}\right)$ converge to the observables $t(F, w)$, so $(t(F, w))_{F}$ is indeed a graph parameter. This ends the proof of the first half of Theorem 3.
1.3. The space of graphons. We now want to prove the second part of Theorem 3: if a sequence of graphs $\left(G_{n}\right)_{n \in \mathbb{N}}$ has all its observables $t\left(F, G_{n}\right)$ that converge, then the limits of the observables correspond to a graph function $w \in \mathcal{W}$. This is clearly a completeness result, so it is natural to try to detail the topology on \mathcal{W} that is associated to the observables $t(F, \cdot)$. Given $w \in \mathrm{~L}^{\infty}\left([0,1]^{2}\right)$, we set:

$$
\|w\|_{\square}=\sup _{S, T \subset[0,1]}\left|\int_{S \times T} w(x, y) d x d y\right| .
$$

This is a norm on the space $\mathrm{L}^{\infty}\left([0,1]^{2}\right)$, and one can show that it is equivalent to the norm of operator $\|\cdot\|_{L^{\infty}([0,1]) \rightarrow \mathrm{L}^{1}([0,1])}$ (here, $\mathrm{L}^{\infty}\left([0,1]^{2}\right)$ acts on these spaces by convolution).

Definition 6. The cut-metric on graph functions $w \in \mathcal{W}$ is defined by

$$
d_{\square}\left(w, w^{\prime}\right)=\inf _{\sigma}\left\|w^{\sigma}-w^{\prime}\right\|_{\square},
$$

where the infimum runs over Lebesgue isomorphisms σ of the interval $[0,1]$, and where

$$
w^{\sigma}(x, y)=w(\sigma(x), \sigma(y))
$$

Notice that $d_{\square}\left(w, w^{\prime}\right)$ is also the infimum $\inf _{\sigma, \tau}\left\|w^{\sigma}-\left(w^{\prime}\right)^{\tau}\right\|_{\square}$ over pairs of Lebesgue isomorphisms; as a consequence, d_{\square} satisfies the triangular inequality. We define an equivalence relation on \mathcal{W} by

$$
w \sim w^{\prime} \Longleftrightarrow d_{\square}\left(w, w^{\prime}\right)=0 .
$$

If ω and ω^{\prime} are the equivalence classes of the graph functions w and w^{\prime}, then the quotient space $\mathcal{G}=\mathcal{W} / \sim$ is endowed with the distance $\delta_{\square}\left(\omega, \omega^{\prime}\right)=d_{\square}\left(w, w^{\prime}\right)$. We call graphon an equivalence class of graph functions in \mathcal{G}, and the space of graphons $\left(\mathcal{G}, \delta_{\square}\right)$ is a metric space. Furthermore,

- the observables $t(F, \cdot)$,
- and the models of random graphs $\left(G_{n}(w)\right)_{n \in \mathbb{N}}$
are invariant by Lebesgue isomorphisms, so they are well-defined on the space of graphons. Then, we have the following fundamental result:

Theorem 7 (Theorem 5.1 in [LS07] and Theorem 3.8 in [Bor +08]). The space of graphons ($\mathcal{G}, \delta_{\square}$) is a compact metric space. A sequence of graphons $\left(\omega_{n}\right)_{n \in \mathbb{N}}$ converges in this space towards ω if and only $i f$, for any finite finite graph $F, t\left(F, \omega_{n}\right) \rightarrow t(F, \omega)$.

Before we prove Theorem 7, let us see why it implies the second half of Theorem 3. Let $\left(G_{n}\right)_{n \in \mathbb{N}}$ be a sequence of graphs whose observables converge: $\lim _{n \rightarrow \infty} t\left(F, G_{n}\right)=t(F)$ for some graph parameter $(t(F))_{F}$. One identifies the graphs G_{n} with their graph functions g_{n}, and then with the graphons γ_{n} that are the equivalence classes of the functions g_{n}. By compacity of \mathcal{G}, up to extraction, one can assume that $\gamma_{n} \rightarrow \gamma$ for some graphon $\gamma \in \mathcal{G}$. However, this convergence in the space of graphons is equivalent to the convergence of observables, so $t(F)=t(F, \gamma)$. This proves that the graph parameter $(t(F))_{F}$ comes from a graph function in \mathcal{W} (any graph function in the equivalence class γ).

The proof of the compacity part of Theorem 7 relies on several approximation lemmas in the space of graph functions, which are variants of Szemerédi's regularity lemma (see [Sze78] for the
original paper by Szemerédi; [Kom+02] for a survey of the applications of this result in graph theory; and [LSO7] for the applications of the regularity lemma to the study of graphons). Let w be a graph function. If Π is a set partition of $[0,1]$ in $\ell=\ell(\Pi)$ measurable parts $P_{1}, P_{2}, \ldots, P_{\ell}$, we denote w_{Π} the graph function that is constant on each rectangle $P_{i} \times P_{j}$, and equal on this rectangle to the average

$$
\frac{\int_{P_{i} \times P_{j}} w(x, y) d x d y}{\int_{P_{i} \times P_{j}} 1 d x d y}
$$

Lemma 8. For any graph function $w \in \mathcal{W}$ and any $\varepsilon>0$, there exists a set partition Π of $[0,1]$ with at most $4^{1 / \varepsilon^{2}}$ parts, such that

$$
\left\|w-w_{\Pi}\right\|_{\square} \leq \varepsilon
$$

Proof. Fix an integer ℓ and a set partition Π of $[0,1]$ into ℓ measurable parts. If S and T are fixed measurable subsets of $[0,1]$, let us consider the set partition Π^{\prime} that is generated by Π and by the parts S and T. Thus, Π^{\prime} is the coarsest set partition that is finer than Π and than the two set partitions $S \sqcup([0,1] \backslash S)$ and $T \sqcup([0,1] \backslash T)$. One sees at once that Π^{\prime} has at most 4ℓ parts. Now, notice that among all step functions v on $[0,1]^{2}$ that are constant on the rectangles associated to the parts of Π^{\prime}, the function $w_{\Pi^{\prime}}$ is the one that is the closest to w in L^{2}-norm (this can be seen by computing the derivative of v with respect to its value on a rectangle). Therefore, for any $t \in \mathbb{R}$,

$$
\begin{aligned}
\left\|w-w_{\Pi^{\prime}}\right\|_{\mathrm{L}^{2}}^{2} & \leq\left\|w-w_{\Pi}-t 1_{S \times T}\right\|_{\mathrm{L}^{2}}^{2} \\
& \leq\left\|w-w_{\Pi}\right\|_{\mathrm{L}^{2}}^{2}-2 t \int_{S \times T}\left(w-w_{\Pi}\right)(x, y) d x d y+t^{2} .
\end{aligned}
$$

Choosing the optimal $t=\int_{S \times T}\left(w-w_{\Pi}\right)(x, y) d x d y$, we conclude that

$$
\begin{aligned}
\left|\int_{S \times T}\left(w-w_{\Pi}\right)(x, y) d x d y\right|^{2} & \leq\left\|w-w_{\Pi}\right\|_{\mathrm{L}^{2}}^{2}-\left\|w-w_{\Pi^{\prime}}\right\|_{\mathrm{L}^{2}}^{2} \\
& \leq\left\|w_{\Pi^{\prime}}\right\|_{\mathrm{L}^{2}}^{2}-\left\|w_{\Pi}\right\|_{\mathrm{L}^{2}}^{2} ; \\
\left(\left\|w-w_{\Pi}\right\|_{\square}\right)^{2} & \leq \sup _{\Pi^{\prime}}\left(\left\|w_{\Pi^{\prime}}\right\|_{\mathrm{L}^{2}}^{2}-\left\|w_{\Pi}\right\|_{\mathrm{L}^{2}}^{2}\right)
\end{aligned}
$$

with the supremum on the last line that is taken over all set partitions Π^{\prime} of $[0,1]$ that have at most 4ℓ measurable parts.

Starting from the trivial set partition $\Pi_{0}=\{[0,1]\}$ of $[0,1]$, suppose that for any $k \leq \frac{1}{\varepsilon^{2}}$, one can find recursively a measurable set partition Π_{k+1} of $[0,1]$ with at most $4 \ell\left(\Pi_{k}\right)$ measurable parts, and such that

$$
\left(\left\|w_{\Pi_{k+1}}\right\|_{\mathrm{L}^{2}}^{2}-\left\|w_{\Pi_{k}}\right\|_{\mathrm{L}^{2}}^{2}\right)>\varepsilon^{2}
$$

Then, for any $k \leq \frac{1}{\varepsilon^{2}}$,

$$
\left\|w_{\Pi_{k+1}}\right\|_{\mathrm{L}^{2}}^{2} \geq(k+1) \varepsilon^{2}
$$

However, we also have $\|w\|_{\mathrm{L}^{2}} \leq 1$ for any graph function, so we obtain a contradiction by choosing $k=\left\lfloor\frac{1}{\varepsilon^{2}}\right\rfloor$. Therefore, there exists $k \leq \frac{1}{\varepsilon^{2}}$ such that

$$
\sup _{\Pi^{\prime}}\left(\left\|w_{\Pi^{\prime}}\right\|_{\mathrm{L}^{2}}^{2}-\left\|w_{\Pi_{k}}\right\|_{\mathrm{L}^{2}}^{2}\right) \leq \varepsilon^{2}
$$

By the previous argument, $\left\|w-w_{\Pi_{k}}\right\|_{\square} \leq \varepsilon$, and by construction, $\ell\left(\Pi_{k}\right) \leq 4^{k} \leq 4^{1 / \varepsilon^{2}}$.

Lemma 9. Fix again $w \in \mathcal{W}$ and $\varepsilon>0$. If k is an integer larger than $2^{20 / \varepsilon^{2}}$, then there exists a set partition Π of $[0,1]$ in k parts of same measure $\frac{1}{k}$, such that

$$
\left\|w-w_{\Pi}\right\|_{\square} \leq \varepsilon
$$

Proof. By the previous approximation lemma, there exists a set partition Π^{\prime} into $k^{\prime} \leq 2^{81 /\left(8 \varepsilon^{2}\right)}$ parts, such that

$$
\left\|w-w_{\Pi^{\prime}}\right\|_{\square} \leq \frac{4 \varepsilon}{9}
$$

By cutting the parts of Π^{\prime} in smaller blocks, one can then find a measurable set partition Π with exactly k parts, all of the same size, and with at most k^{\prime} parts that intersect more than one part of Π^{\prime}. Let R be the union of all these exceptional parts, and u be the step function equal to $w_{\Pi^{\prime}}$ on $([0,1] \backslash R)^{2}$, and to 0 on the complement of this set. Notice that the Lebesgue measure of R is smaller than

$$
\frac{k^{\prime}}{k} \leq 2^{-79 /\left(8 \varepsilon^{2}\right)} \leq \varepsilon^{2} 2^{-79 / 8}
$$

Then, for any measurable sets S and T,

$$
\begin{gathered}
\left|\int_{S \times T}(w-u)(x, y) d x d y\right| \leq\left\|w-w_{\Pi^{\prime}}\right\|_{\square}+\left|\int_{(S \times T) \cap[0,1]^{2} \backslash\left([0,1 \backslash \backslash R)^{2}\right.} w_{\Pi}^{\prime}(x, y) d x d y\right| \\
\quad \leq \frac{4 \varepsilon}{9}+\sqrt{\lambda\left([0,1]^{2} \backslash([0,1] \backslash R)^{2}\right)}=\frac{4 \varepsilon}{9}+\sqrt{1-(1-\lambda(R))^{2}} \\
\quad \leq \frac{4 \varepsilon}{9}+\sqrt{2 \lambda(R)} \leq\left(\frac{4}{9}+2^{-\frac{71}{16}}\right) \varepsilon \leq \frac{\varepsilon}{2},
\end{gathered}
$$

so $\|w-u\|_{\square} \leq \frac{\varepsilon}{2}$. By construction, u is a step function relatively to the set partition Π, hence $u_{\Pi}=u$. However, for any function in $\mathrm{L}^{\infty}\left([0,1]^{2}\right),\left\|w_{\Pi}\right\|_{\square} \leq\|w\|_{\square}$, so

$$
\left\|w-w_{\Pi}\right\|_{\square} \leq\|w-u\|_{\square}+\left\|u-w_{\Pi}\right\|_{\square} \leq\|w-u\|_{\square}+\left\|(u-w)_{\Pi}\right\|_{\square} \leq 2\|w-u\|_{\square} \leq \varepsilon .
$$

Corollary 10. There exists a universal sequence of integers $\left(\ell_{j}\right)_{j \geq 1}$, such that for any graph function w, one can find a sequence of measurable set partitions $\left(\Pi_{j}\right)_{j \geq 1}$ with the following properties:
(1) For any j, Π_{j+1} is a refinement of $\Pi_{j}, \ell\left(\Pi_{j}\right)=\ell_{j}$, and Π_{j} has all its parts with the same size $\frac{1}{\ell_{j}}$.
(2) For any $j,\left\|w-w_{\Pi_{j}}\right\|_{\square} \leq \frac{1}{j}$.

Proof. We can take $\ell_{1}=1$ and $\Pi_{1}=\{[0,1]\}$ for any graph function. Suppose that the sequence of integers $\ell_{1}, \ell_{2}, \ldots$ is determined up to rank j, and fix a graph function w and the corresponding set partitions Π_{1}, \ldots, Π_{j}, that are already constructed by induction hypothesis. In the proof of the previous lemma, we set $\varepsilon=\frac{1}{j+1}$, and choose Π^{\prime} such that

$$
\left\|w-w_{\Pi^{\prime}}\right\|_{\square} \leq \frac{4 \varepsilon}{9}
$$

One can then choose $\Pi=\Pi_{j+1}$ with $\ell_{j} \times k=\ell_{j+1}$ parts of the same size, that is finer than Π_{j}, and such that the number of parts of Π that intersect more than one part of $\Pi_{j} \wedge \Pi^{\prime}$ is smaller than $\ell_{j} \times k^{\prime}$, where $\Pi_{j} \wedge \Pi^{\prime}$ is the coarsest common refinement of Π_{j} and Π^{\prime}. The proof of the inequality $\left\|w-w_{\Pi_{j+1}}\right\|_{\square} \leq \varepsilon=\frac{1}{j+1}$ is then exactly the same as before, so we have indeed found an integer ℓ_{j+1} independent of w, and then a set partition Π_{j+1} with the properties required.

Proof of Theorem 7: compacity. Let $\left(\gamma^{n}\right)_{n \in \mathbb{N}}$ be a sequence of graphons. For any n, we fix a representative $g^{n} \in \mathcal{W}$ of the graphon γ^{n}, and then a sequence of set partitions $\left(\Pi_{j}^{n}\right)_{j \geq 1}$ with the properties listed in the previous corollary. Thus,

$$
\left\|g^{n}-\left(g^{n}\right)_{\Pi_{j}^{n}}\right\|_{\square} \leq \frac{1}{j}
$$

and moreover, the graph functions $\left(g^{n}\right)_{\Pi_{j}^{n}}$ have the following property of averaging: if P, Q are parts of $\Pi_{n, j}$, then the value of $\left(g_{n}\right)_{\Pi_{j}^{n}}$ on $P \times Q$ is the average of the values of $\left(g^{n}\right)_{\Pi_{j^{\prime}}^{n}}$ on this rectangle, for any $j^{\prime} \geq j$. This statement is an immediate consequence of the fact that the set partition $\Pi_{j^{\prime}}^{n}$ is a refinement of the set partition Π_{j}^{n}. Now, as the set partitions Π_{j}^{n} have parts with the same size $\left(\ell_{j}\right)^{-1}$, we can also find for any n a Lebesgue isomorphism σ^{n} that conjugates the parts of Π_{j}^{n} to the intervals of size $\left(\ell_{j}\right)^{-1}$ (notice that we can choose a common Lebesgue isomorphism σ^{n} for all the values of j; this is not very hard to see). Then, $g_{j}^{n}=\left(\left(g^{n}\right)_{\Pi_{j}^{n}}\right)^{\sigma^{n}}$ is a function that is constant on all the squares of the grid with mesh size $\frac{1}{\ell_{j}}$; and the corresponding graphon γ_{j}^{n} satisfies

$$
\delta_{\square}\left(\gamma^{n}, \gamma_{j}^{n}\right) \leq\left\|g^{n}-\left(g^{n}\right)_{\Pi_{j}^{n}}\right\|_{\square} \leq \frac{1}{j} .
$$

Moreover, for any n, the sequence of graph functions $\left(g_{j}^{n}\right)_{j \geq 1}$ has the same averaging property as stated before. Now, the space of graph functions that are constant on the squares of a fixed grid is isomorphic to a finite product of intervals [0, 1], so there is an extraction such that $\left(g_{1}^{n_{k}}\right)_{k \in \mathbb{N}}$ converges on all the squares of the grid with mesh size $\left(\ell_{1}\right)^{-1}$. By diagonal extraction, we can in fact assume that $g_{2}^{n_{k}}, g_{3}^{n_{k}}, \ldots$ are also convergent. So, there exists an extraction $\left(n_{k}\right)_{k \in \mathbb{N}}$, as well as limits g_{1}, g_{2}, \ldots that are constant functions on grids, such that $\lim _{k \rightarrow \infty} g_{j}^{n_{k}}=g_{j}$ for any j. Moreover, the limiting graph functions g_{j} have the same averaging property as before.

If (X, Y) is a uniform random variable in the square $[0,1]^{2}$, then $\left(g_{j}(X, Y)\right)_{j \geq 1}$ is a martingale, because of the averaging property. It is bounded, so it admits a limit almost surely (see [Bil95, Theorem 35.5]). It means that $g_{j}(x, y) \rightarrow g(x, y)$ for almost any $(x, y) \in[0,1]^{2}$, and some graph function g. Let γ be the graphon corresponding to g, and $\varepsilon>0$. For j large enough,

$$
\delta_{\square}\left(\gamma^{n_{k}}, \gamma_{j}^{n_{k}}\right) \leq \frac{1}{j} \leq \varepsilon,
$$

and we also have $\left\|g_{j}-g\right\|_{\square} \leq\left\|g_{j}-g\right\|_{\mathrm{L}^{1}\left([0,1]^{2}\right)} \leq \varepsilon$ by dominated convergence. Then, j being fixed, for k large enough,

$$
\begin{aligned}
\delta_{\square}\left(\gamma_{j}^{n_{k}}, \gamma\right) & \leq\left\|g_{j}^{n_{k}}-g\right\|_{\square} \leq\left\|g_{j}^{n_{k}}-g_{j}\right\|_{\square}+\left\|g_{j}-g\right\|_{\square} \\
& \leq\left\|g_{j}^{n_{k}}-g_{j}\right\|_{\square}+\varepsilon \\
& \leq 2 \varepsilon,
\end{aligned}
$$

so $\delta_{\square}\left(\gamma^{n_{k}}, \gamma\right) \leq 3 \varepsilon$ for k large enough. This ends the proof of the compacity of the metric space $\left(\mathcal{G}, \delta_{\square}\right)$.
1.4. Concentration of the graphon models. In order to prove the second part of Theorem 7 , note first that the observables $t(F, \cdot)$ are continuous with respect to the distance δ_{\square}, and even Lipschitz:

Lemma 11. For any finite graph F and any graph functions w, w^{\prime},

$$
\left|t(F, w)-t\left(F, w^{\prime}\right)\right| \leq\left|E_{F}\right|\left\|w-w^{\prime}\right\|_{\square} .
$$

Proof. We enumerate the edges of F as follows: $E_{F}=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ with $e_{s}=\left(i_{s}, j_{s}\right)$. Then,

$$
\begin{aligned}
& \left|t(F, w)-t\left(F, w^{\prime}\right)\right|=\left|\int_{[0,1]^{k}}\left(\prod_{s=1}^{m} w\left(x_{i_{s}}, x_{j_{s}}\right)-\prod_{s=1}^{m} w^{\prime}\left(x_{i_{s}}, x_{j_{s}}\right)\right) d x_{1} \cdots d x_{k}\right| \\
& \leq \sum_{t=1}^{m}\left|\int_{[0,1]^{k}}\left(\prod_{s=1}^{t-1} w^{\prime}\left(x_{i_{s}}, x_{j_{s}}\right)\right)\left(w\left(x_{i_{t}}, y_{i_{t}}\right)-w^{\prime}\left(x_{i_{t}}, y_{i_{t}}\right)\right)\left(\prod_{s=t+1}^{m} w\left(x_{i_{s}}, x_{j_{s}}\right)\right) d x_{1} \cdots d x_{k}\right| \\
& \leq m \sup _{0 \leq f, g \leq 1}\left|\int_{[0,1]^{2}} f(x) g(y)\left(w(x, y)-w^{\prime}(x, y)\right) d x d y\right|,
\end{aligned}
$$

by integrating on the last line the variables different from $x_{i_{t}}$ and $x_{j_{t}}$. The supremum over pairs of functions (f, g) is then easily seen to be equal to $\left\|w-w^{\prime}\right\|_{\square}$.

As a consequence, for any graphons γ and $\gamma^{\prime},\left|t(F, \gamma)-t\left(F, \gamma^{\prime}\right)\right| \leq\left|E_{F}\right| \delta_{\square}\left(\gamma, \gamma^{\prime}\right)$. A converse of this inequality is:

Proposition 12 (Theorem 3.7 in [Bor+08]). Let γ and γ^{\prime} be two graphons in \mathcal{G}, such that $\mid t(F, \gamma)-$ $t\left(F, \gamma^{\prime}\right) \mid \leq 3^{-k^{2}}$ for any simple graph F on k vertices. Then,

$$
\delta_{\square}\left(\gamma, \gamma^{\prime}\right) \leq \frac{22}{\sqrt{\log _{2} k}}
$$

This proposition and the previous lemma ensure that convergence with respect to the metric δ_{\square} is equivalent to the convergence of all the observables $t(F, \cdot)$, hence the second part of Theorem 7. In turn, Proposition 12 relies on a concentration result for the model of random graphs $\left(G_{n}(\gamma)\right)_{n \in \mathbb{N}}$ associated to the graphon γ, which we shall just call graphon model. Thus:

Theorem 13 (Theorem 4.7 in [Bor+08]). Let γ be any graphon in \mathcal{G}. One has

$$
\mathbb{E}\left[\delta_{\square}\left(\gamma, G_{k}(\gamma)\right)\right] \leq \frac{5}{\sqrt{\log _{2} k}},
$$

where a (random) graph $G_{k}(\gamma)$ is identified with the corresponding graph function and graphon.
Remark. One can show that with probability larger than $1-\mathrm{e}^{-\frac{k^{2}}{2 \log _{2} k}}$, the distance $\delta_{\square}\left(\gamma, G_{k}(\gamma)\right)$ is smaller than $10 / \sqrt{\log _{2} k}$. For our purpose, it will be sufficient to have a bound on the expectation of the distance.

For the proof of Theorem 13, we refer again to [Bor + 08]; the proof uses once more the approximation Lemma 8. Let us then see why Theorem 13 implies Proposition 12.

Proof of Proposition 12. Let w and w^{\prime} be graph functions in the equivalence classes γ and γ^{\prime}, and $u=\frac{1+w}{2}, u^{\prime}=\frac{1+w^{\prime}}{2}$. Clearly, $\delta_{\square}\left(w, w^{\prime}\right)=2 \delta_{\square}\left(u, u^{\prime}\right)$. We are going to construct a coupling of the random graphs $G_{k}(u)$ and $G_{k}\left(u^{\prime}\right)$, such that $G_{k}(u)=G_{k}\left(u^{\prime}\right)$ with very high probability. To this purpose, we introduce the notion of induced subgraph of a graph: a morphism $\phi: F \rightarrow G$ gives rise to an induced subgraph if it is injective from V_{F} to V_{G} (embedding), and if $\phi(i) \sim \phi(j)$ in G if and only if $i \sim j$ in F. The difference with embeddings is that for an embedding, one can have $\phi(i) \sim \phi(j)$ although $i \nsim j$ in F. Let $\operatorname{ind}(F, G)$ be the set of embeddings as induced subgraphs of F into G. Then,

$$
|\operatorname{emb}(F, G)|=\sum_{F \subset F^{\prime}}\left|\operatorname{ind}\left(F^{\prime}, G\right)\right|
$$

where the sum runs over graphs F^{\prime} with the same vertex set as F, and with more edges. By inclusion-exclusion,

$$
|\operatorname{ind}(F, G)|=\sum_{F \subset F^{\prime}}(-1)^{\left|E_{F^{\prime}}\right|-\left|E_{F}\right|}\left|\operatorname{emb}\left(F^{\prime}, G\right)\right| .
$$

If $t_{1}(F, G)=\frac{|\operatorname{ind}(F, G)|}{\left|V_{G}\right| \backslash V_{F} \mid}$ is the density of induced subgraphs, then we have similarly

$$
t_{0}(F, G)=\sum_{F \subset F^{\prime}} t_{1}\left(F^{\prime}, G\right) \quad ; \quad t_{1}(F, G)=\sum_{F \subset F^{\prime}}(-1)^{\left|E_{F^{\prime}}\right|-\left|E_{F}\right|} t_{0}\left(F^{\prime}, G\right)
$$

On the other hand, notice that given two graphs G and H with the same number k of vertices, we have $|\operatorname{ind}(G, H)|=0$ unless G and H are isomorphic. Fix a graph F with k vertices. We have by

Proposition 4

$$
\begin{aligned}
t(F, u)= & \mathbb{E}\left[t_{0}\left(F, G_{k}(u)\right)\right]=\sum_{G \text { graph on } k \text { vertices }} \mathbb{P}\left[G_{k}(u)=G\right] t_{0}(F, G) \\
= & \sum_{\substack{F^{\prime} \mid F \subset F^{\prime} \\
G \text { graph on } k \text { vertices }}} \mathbb{P}\left[G_{k}(u)=G\right] t_{1}\left(F^{\prime}, G\right) \\
& =\sum_{\substack{F^{\prime} \mid F \subset F^{\prime} \\
G \text { isomorphic to } F^{\prime}}} \mathbb{P}\left[G_{k}(u)=G\right] \frac{\left|\operatorname{aut}\left(F^{\prime}\right)\right|}{k!} \\
& =\sum_{F^{\prime} \mid F \subset F^{\prime}} \mathbb{P}\left[G_{k}(u)=F^{\prime}\right] \frac{\left|\operatorname{aut}\left(F^{\prime}\right)\right|^{2}}{k!},
\end{aligned}
$$

where $\operatorname{aut}\left(F^{\prime}\right)$ is the group of automorphism of the graph F^{\prime}. Therefore, by inclusion-exclusion,

$$
\mathbb{P}\left[G_{k}(u)=F\right]=\frac{k!}{|\operatorname{aut}(F)|^{2}} \sum_{F^{\prime} \mid F \subset F^{\prime}}(-1)^{\left|E_{F^{\prime}}\right|-\left|E_{F}\right|} t\left(F^{\prime}, u\right),
$$

and as a consequence,

$$
\begin{aligned}
& \mid \mathbb{P}\left[G_{k}(u)\right.=F]-\mathbb{P}\left[G_{k}\left(u^{\prime}\right)=F\right] \mid \\
& \sum_{F}\left|\mathbb{P}\left[G_{k}(u)=F\right]-\mathbb{P}\left[G_{k}\left(u^{\prime}\right)=F\right]\right| \leq k!\sum_{F, F^{\prime} \mid F \subset F^{\prime}}\left|t\left(F^{\prime}, u\right)-t\left(F^{\prime}, u^{\prime}\right)\right| .
\end{aligned}
$$

Notice that the left-hand side of the last inequality is twice the total variation distance between the two random graphs $G_{k}(u)$ and $G_{k}\left(u^{\prime}\right)$. The theory of coupling ensures that there is a way to realise the two random graphs $G_{k}(u)$ and $G_{k}\left(u^{\prime}\right)$, in other words a common probability space such that $\mathbb{P}\left[G_{k}(u)=G_{k}\left(u^{\prime}\right)\right]=1-d_{\mathrm{TV}}\left(G_{k}(u), G_{k}\left(u^{\prime}\right)\right)$ (see Section 4.12 in [GS01]). Thus, if we can compute a good upper bound of the quantity $k!\sum_{F, F^{\prime} \mid F \subset F^{\prime}}\left|t(F, u)-t\left(F, u^{\prime}\right)\right|$, then with high probability we shall have $G_{k}(u)=G_{k}\left(u^{\prime}\right)$, and therefore $\delta_{\square}\left(G_{k}(u), G_{k}\left(u^{\prime}\right)\right)=0$. Since $u=\frac{1+w}{2}$, we have $t\left(F^{\prime}, u\right)=2^{-\left|E_{F^{\prime}}\right|} \sum_{F^{\prime \prime} \mid F^{\prime \prime} \subset F^{\prime}} t\left(F^{\prime \prime}, w\right)$, and therefore

$$
\left|t\left(F^{\prime}, u\right)-t\left(F^{\prime}, u^{\prime}\right)\right| \leq 2^{-\left|E_{F^{\prime}}\right|} \sum_{F^{\prime \prime} \mid F^{\prime \prime} \subset F^{\prime}} 3^{-k^{2}}=3^{-k^{2}} .
$$

So,

$$
\begin{aligned}
& 2 d_{\mathrm{TV}}\left(G_{k}(u), G_{k}\left(u^{\prime}\right)\right) \leq k!\sum_{F, F^{\prime} \mid F \subset F^{\prime}} 3^{-k^{2}}=k!3^{\frac{k(k-1)}{2}-k^{2}}=k!3^{-\frac{k(k+1)}{2}} ; \\
& \quad \mathbb{P}\left[G_{k}(u) \neq G_{k}(u)^{\prime}\right] \leq 3^{-\frac{k}{2}}
\end{aligned}
$$

by using on the last line the trivial inequality $k!\leq 3^{k^{2} / 2}$. This implies

$$
\begin{aligned}
\delta_{\square}\left(u, u^{\prime}\right) & \leq \mathbb{E}\left[\delta_{\square}\left(u, G_{k}(u)\right)\right]+\mathbb{E}\left[\delta_{\square}\left(G_{k}(u), G_{k}\left(u^{\prime}\right)\right)\right]+\mathbb{E}\left[\delta_{\square}\left(G_{k}\left(u^{\prime}\right), u^{\prime}\right)\right] \\
& \leq \frac{10}{\sqrt{\log _{2} k}}+3^{-\frac{k}{2}} \leq \frac{11}{\sqrt{\log _{2} k}} .
\end{aligned}
$$

An important corollary of the second part of Theorem 7 is:
Corollary 14. Let $\gamma \in \mathcal{G}$ be any graphon, and $\left(G_{n}(\gamma)\right)_{n \in \mathbb{N}}$ be the corresponding graphon model. In the space of graphons $\left(\mathcal{G}, \delta_{\square}\right), G_{n}(\gamma)$ converges in probability towards γ.

Proof. Indeed, we saw that there was convergence in probability of all the observables $t\left(F, G_{n}(\gamma)\right) \rightarrow$ $t(F, \gamma)$, and the convergence of observables is equivalent to the convergence for the metric.

To conclude our presentation of the theory of graphons, let us propose a characterisation of the graphon models. If $\gamma \in \mathcal{G}$, then the graphon model $\left(G_{n}(\gamma)\right)_{n \in \mathbb{N}}$ has the following properties:
(1) For any permutation $\sigma \in \mathfrak{S}(n)$, the graph $\left(G_{n}(\gamma)\right)^{\sigma}$ obtained by permutation of the n vertices of $G_{n}(\gamma)$ has the same distribution as $G_{n}(\gamma)$.
(2) If one removes from $G_{n}(\gamma)$ the vertex n and all the edges coming from n, then one obtains a random graph on $n-1$ vertices with the same distribution as $G_{n-1}(\gamma)$.
(3) For any subset $S \subset \llbracket 1, n \rrbracket$, the graphs induced by $G_{n}(\gamma)$ on S and on its complement $\llbracket 1, n \rrbracket \backslash S$ are independent.

Theorem 15 (Theorem 2.7 in [LSO6]). A model of random graphs $\left(G_{n}\right)_{n \in \mathbb{N}}$ bas the three properties above if and only if it is a graphon model.

2. Permutons and their topology

2.1. Permutations and patterns. In [Hop + 13], Hoppen, Kohayakawa, Moreira, Ráth and Sampaio developed a theory analoguous to the theory of graphons, and that allowed them to study sequences of (random) permutations, and their densities of patterns. Recall that a permutation of size n is a bijection $\sigma: \llbracket 1, n \rrbracket \rightarrow \llbracket 1, n \rrbracket$. The set of all permutations of size n is the symmetric group of order n, denoted $\mathfrak{S}(n)$, and of cardinality $n!$. If $\tau \in \mathfrak{S}(k)$ and $\sigma \in \mathfrak{S}(n)$ with $k \leq n$, we say that τ is a pattern in σ if there exists a part $\left\{a_{1}<a_{2}<\cdots<a_{k}\right\} \subset \llbracket 1, n \rrbracket$ such that $\sigma\left(a_{i}\right)<\sigma\left(a_{j}\right)$ if and only if $\tau(i)<\tau(j)$. This definition is better understood on a picture: if one draws the graph of σ, then one can isolate points $a_{1}<a_{2}<\cdots<a_{k}$ such that the restriction of the graph of σ to these points is the graph of the permutation τ; see Figure 4 hereafter.

Figure 4. The permutation 213 is a pattern in $\sigma=245361$.

As for graphs, we can define the pattern density of τ in σ by

$$
t(\tau, \sigma)=\frac{|\operatorname{patt}(\tau, \sigma)|}{\binom{n}{k}}
$$

where the numerator of this fraction is the number of parts $\left\{a_{1}<\cdots<a_{k}\right\}$ of $\llbracket 1, n \rrbracket$ that make appear τ as a pattern of σ. We then have the analogue of Definition 2:

Definition 16. Let $\left(\sigma_{n}\right)_{n \in \mathbb{N}}$ be a sequence of permutations of arbitrary order. One says that $\left(\sigma_{n}\right)_{n \in \mathbb{N}}$ converges if $\left|\sigma_{n}\right|$ goes to infinity, and if for any fixed permutation τ, the density of patterns $t\left(\tau, \sigma_{n}\right)$ admits a limit when n goes to infinity.

We also call permutation parameter a family of real numbers $(t(\tau))_{\tau \text { permutation }}$ indexed by the permutations $\tau \in \bigsqcup_{n \in \mathbb{N}} \mathfrak{S}(n)$, such that there exists a sequence of permutations $\left(\sigma_{n}\right)_{n \in \mathbb{N}}$ with $\left|\sigma_{n}\right| \rightarrow+\infty$ and

$$
\lim _{n \rightarrow \infty} t\left(\tau, \sigma_{n}\right)=t(\tau)
$$

for any τ. Again, we shall present a theory that allows one to identify all the permutation parameters.
2.2. Probability measures on the square and permutons. Denote $\mathcal{M}\left([0,1]^{2}\right)$ the set of borelian probability measures on the square $[0,1]^{2}$. It is a topological space for the topology of weak convergence of measures; and this topology is metrizable and yields a compact space, see [Bil69]. Let p_{1} and p_{2} be the two projections $[0,1]^{2} \rightarrow[0,1]$ associated to the first and second coordinates. These are continuous maps, which yield continuous maps $p_{1, *}$ and $p_{2, *}$ from $\mathcal{M}\left([0,1]^{2}\right)$ to $\mathcal{M}([0,1])$.

Definition 17. A permuton is a probability measure $\pi \in \mathcal{M}\left([0,1]^{2}\right)$, such that $p_{1, *}(\pi)=p_{2, *}(\pi)=\lambda$ is the Lebesgue measure on $[0,1]$.

Since $p_{1, *}$ and $p_{2, *}$ are continuous, the space of permutons \mathcal{P} is the reciprocal image of a point by a continuous map, hence is closed, and a compact subspace of $\mathcal{M}\left([0,1]^{2}\right)$ for the topology of weak convergence.

Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)$ be a family of points in the square $[0,1]^{2}$. We say that these points are in a general configuration if all the x_{i} 's are distinct, and if all the y_{i} 's are also distinct. To a general family of k points, we can associate a unique permutation $\tau \in \mathfrak{S}(k)$ with the following property: if $\psi_{1}:\left\{x_{1}, \ldots, x_{k}\right\} \rightarrow \llbracket 1, k \rrbracket$ and $\psi_{2}:\left\{y_{1}, \ldots, y_{k}\right\} \rightarrow \llbracket 1, k \rrbracket$ are increasing bijections, then

$$
\tau\left(\psi_{1}\left(x_{i}\right)\right)=\psi_{2}\left(y_{i}\right)
$$

for any $i \in \llbracket 1, k \rrbracket$. We then say that τ is the configuration of the set of points; and we denote $\tau=\operatorname{conf}\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right)$. This notion allows one to define the pattern density of a permuton π. If τ is a permutation of size k, we set

$$
t(\tau, \pi)=\int_{\left([0,1]^{2}\right)^{k}} 1_{\operatorname{conf}\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right)=\tau} \pi^{\otimes k}\left(d x_{1}, d y_{1}, \ldots, d x_{k}, d y_{k}\right)
$$

One can give a probabilistic interpretation to this definition. Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{k}, Y_{k}\right)$ be independent random points in $[0,1]$, all following the same law π. Since the marginal laws of π on $[0,1]$ are the uniform laws, with probability 1 , the random family of points $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{k}, Y_{k}\right)$ is in a general configuration. Then,

$$
t(\tau, \pi)=\mathbb{P}\left[\operatorname{conf}\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{k}, Y_{k}\right)\right)=\tau\right]
$$

Now, the analogue of Theorem 3 in the setting of permutations is:
Theorem 18 (Theorem 1.6 in [Hop+13]). A family $(t(\tau))_{\tau}$ is a permutation parameter if and only if there exists a permuton π such that $t(\tau, \pi)=t(\tau)$ for any permutation τ.

Again, the easy part of Theorem 18 is the construction of permutations that converge to π for any $\pi \in \mathcal{P}$. Given an integer n and a permuton π, we denote $\sigma_{n}(\pi)$ the random permutation of size n that is the configuration of independent random points $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ in the square, all chosen according to the probability measure π.

Proposition 19. If $\pi \in \mathcal{P}$ and $\tau \in \mathfrak{S}(k)$, then for any $n \geq 2 k$,

$$
\begin{aligned}
\mathbb{E}\left[t\left(\tau, \sigma_{n}(\pi)\right)\right] & =t(\tau, \pi) ; \\
\operatorname{var}\left(t\left(\tau, \sigma_{n}(\pi)\right)\right) & \leq \frac{k^{2}}{n} .
\end{aligned}
$$

Proof. Notice that if $\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right)$ follows the law $\pi^{\otimes n}$, then for any part $\left\{a_{1}<a_{2}<\right.$ $\left.\cdots<a_{k}\right\}$, the family of points $\left(\left(X_{a_{1}}, Y_{a_{1}}\right), \ldots,\left(X_{a_{k}}, Y_{a_{k}}\right)\right)$ follows the law $\pi^{\otimes k}$. Therefore,

$$
\begin{aligned}
\mathbb{E}\left[t\left(\tau, \sigma_{n}(\pi)\right)\right] & =\frac{1}{\binom{n}{k}} \sum_{\left\{a_{1}<\cdots<a_{k}\right\} \subset \llbracket 1, n \rrbracket} \mathbb{P}\left[\operatorname{conf}\left(\left(X_{a_{1}}, Y_{a_{1}}\right), \ldots,\left(X_{a_{k}}, Y_{a_{k}}\right)\right)=\tau\right] \\
& =\frac{1}{\binom{n}{k}} \sum_{\left\{a_{1}<\cdots<a_{k}\right\} \subset \llbracket 1, n \rrbracket} t(\tau, \pi) \\
& =t(\tau, \pi) .
\end{aligned}
$$

To compute the variance, we introduce the random variables $C_{A, \tau}$, defined as follows: if $A=\left\{a_{1}<\right.$ $\left.a_{2}<\cdots<a_{k}\right\}$, then

$$
C_{A, \tau}= \begin{cases}1 & \text { if } \operatorname{conf}\left(\left(X_{a_{1}}, Y_{a_{1}}\right), \ldots,\left(X_{a_{k}}, Y_{a_{k}}\right)\right)=\tau \\ 0 & \text { otherwise }\end{cases}
$$

We then have to compute

$$
\mathbb{E}\left[\left(t\left(\tau, \sigma_{n}(\pi)\right)\right)^{2}\right]=\frac{1}{\binom{n}{k}^{2}} \sum_{A, B} \mathbb{E}\left[C_{A, \tau} C_{B, \tau}\right],
$$

where the sum runs over pairs of subsets (A, B) of size k in $\llbracket 1, n \rrbracket$. Suppose first that A and B are disjoint. Then, $C_{A, \tau}$ and $C_{B, \tau}$ are independent, since they involve independent families of points. So, the part of the sum that corresponds to disjoint subsets is

$$
\frac{1}{\binom{n}{k}^{2}} \sum_{A, B \mid A \cap B=\emptyset} \mathbb{E}\left[C_{A, \tau}\right] \mathbb{E}\left[C_{B, \tau}\right]=\frac{1}{\binom{n}{k}^{2}} \sum_{A, B \mid A \cap B=\emptyset}(t(\tau, \pi))^{2}=\frac{\binom{n-k}{k}}{\binom{n}{k}}(t(\tau, \pi))^{2} .
$$

On the other hand, if A and B are not disjoint, then we can still bound $\mathbb{E}\left[C_{A, \tau} C_{B, \tau}\right]$ by 1 . Therefore,

$$
\begin{aligned}
& \mathbb{E}\left[\left(t\left(\tau, \sigma_{n}(\pi)\right)\right)^{2}\right] \leq \frac{\binom{n-k}{k}}{\binom{n}{k}}(t(\tau, \pi))^{2}+\frac{\binom{n}{k}-\binom{n-k}{k}}{\binom{n}{k}} \\
& \operatorname{var}\left(t\left(\tau, \sigma_{n}(\pi)\right)\right) \leq \frac{\binom{n}{k}-\binom{n-k}{k}}{\binom{n}{k}}\left(1-(t(\tau, \pi))^{2}\right) \leq \frac{\binom{n}{k}-\binom{n-k}{k}}{\binom{n}{k}}=1-\frac{(n-k)^{\downarrow k}}{n^{\downarrow k}} .
\end{aligned}
$$

The right-hand side of the last inequality is the probability that a random arrangement $\left(a_{1}, \ldots, a_{k}\right)$ in $\llbracket 1, n \rrbracket$ meets $\llbracket 1, k \rrbracket$. This probability is smaller than the sum of probabilities $\mathbb{P}\left[a_{i} \in \llbracket 1, k \rrbracket\right]=\frac{k}{n}$, hence it is smaller than $\frac{k^{2}}{n}$.

Corollary 20. For any permuton π, and any permutation $\tau,\left(t\left(\tau, \sigma_{n}(\pi)\right)\right)_{n \in \mathbb{N}}$ converges in probability to $t(\tau, \pi)$.

Then, the same argument as for graphons allows one to construct a sequence of random permutations whose observables $t(\tau, \cdot)$ converge almost surely to $t(\tau, \pi)$. In particular, for any $\pi \in \mathcal{P}$, $(t(\tau, \pi))_{\tau}$ is a permutation parameter.
2.3. Convergence in the space of permutons. To prove the second part of Theorem 18, we shall use the following topological result:

Theorem 21. Let $\left(\pi_{n}\right)_{n \in \mathbb{N}}$ be a sequence of permutons. The following are equivalent:
(1) The sequence $\left(\pi_{n}\right)_{n \in \mathbb{N}}$ converges weakly to π.
(2) The rectangular distance

$$
d_{\square}\left(\pi_{n}, \pi\right)=\sup _{\substack{0 \leq a b b \leq 1 \\ 0 \leq c<d \leq 1}}\left|\pi_{n}([a, b] \times[c, d])-\pi([a, b] \times[c, d])\right|
$$

goes to 0 .
(3) For any permutation $\tau, t\left(\tau, \pi_{n}\right)$ converges towards $t(\tau, \pi)$.

Let us first explain why this implies the second part of Theorem 18. If σ is a permutation of size n, then one can associate to it a canonical permuton, namely, the measure π_{σ} on $[0,1]^{2}$ with density

$$
f_{\sigma}(x, y)=n 1_{\sigma(\lceil n x\rceil)=\lceil n y\rceil} .
$$

For any x, the set of y 's such that $f_{\sigma}(x, y)=n$ has measure $\frac{1}{n}$, so

$$
\frac{d\left(p_{1, *}\left(\pi_{\sigma}\right)\right)(x)}{d x}=\int_{y=0}^{1} f_{\sigma}(x, y) d y=1
$$

hence $p_{1, *}\left(\pi_{\sigma}\right)=\lambda$. Similarly, $p_{2, *}\left(\pi_{\sigma}\right)=\lambda$, and π_{σ} is indeed a measure whose marginal laws are uniform. We refer to Figure 5 for an example.

Figure 5. The density of the permuton π_{σ} associated to the permutation $\sigma=245361$.

Consider now a permutation τ of size $k \leq n$.
Lemma 22. We have

$$
\left|t(\tau, \sigma)-t\left(\tau, \pi_{\sigma}\right)\right| \leq \frac{1}{n}\binom{k}{2}
$$

Proof. Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{k}, Y_{k}\right)$ be independent random variables with law π_{σ}; their configuration is τ with probability $t\left(\tau, \pi_{\sigma}\right)$. If $n_{i}=\left\lceil n X_{i}\right\rceil$, then $\sigma\left(n_{i}\right)=\left\lceil n Y_{i}\right\rceil$ by definition of the probability distribution π_{σ}. We introduce the two following events:

$$
\begin{aligned}
& A=\left\{\operatorname{conf}\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{k}, Y_{k}\right)\right)=\tau\right\} ; \\
& B=\left\{\forall 1 \leq i<j \leq k, n_{i} \neq n_{j}\right\} .
\end{aligned}
$$

We then have $\mathbb{P}[A \mid B]-\mathbb{P}[A]=\mathbb{P}[A \mid B](1-\mathbb{P}[B])$, hence

$$
|\mathbb{P}[A \mid B]-\mathbb{P}[A]| \leq 1-\mathbb{P}[B]=\mathbb{P}\left[B^{\mathrm{c}}\right] \leq \sum_{1 \leq i<j \leq k} \mathbb{P}\left[n_{i}=n_{j}\right]=\frac{1}{n}\binom{k}{2}
$$

since the X_{i} 's are uniformly distributed on $[0,1]$ and independent. By the previous discussion, $\mathbb{P}[A]=t\left(\tau, \pi_{\sigma}\right)$. On the other hand, conditionnally to B, the random vector $\left(n_{1}, \ldots, n_{k}\right)$ is uniformly distributed on the set of arrangements of size k in $\llbracket 1, n \rrbracket$, and then A is equivalent to the fact that this arrangement allows one to read τ as a pattern of σ. So, $\mathbb{P}[A \mid B]=t(\tau, \sigma)$, which ends the proof.

Consider now a sequence of permutations $\left(\sigma_{n}\right)_{n \in \mathbb{N}}$ such that $\left|\sigma_{n}\right| \rightarrow \infty$. Since \mathcal{P} is a compact set for the topology of weak convergence of probability measures, up to extraction, we can assume that $\pi_{\sigma_{n}} \rightarrow \pi$ in the sense of weak convergence, where π is some permuton. By Theorem 21, this is equivalent to the fact that $t\left(\tau, \pi_{\sigma_{n}}\right) \rightarrow t(\tau, \pi)$ for any τ, and by the previous lemma, we have in fact $t\left(\tau, \sigma_{n}\right) \rightarrow t(\tau, \pi)$. Hence, any permutation parameter corresponds indeed to a permuton $\pi \in \mathcal{P}$, which ends the proof of Theorem 18. Let us now attack the proof of Theorem 21. We start with:
Proof of Theorem 21: (1) $\Leftrightarrow(2)$. Suppose that $\left(\pi_{n}\right)_{n \in \mathbb{N}}$ is a sequence of permutons that converges to π with respect to the rectangular distance. We fix a continuous function f on $[0,1]^{2}$, and we want to show that $\pi_{n}(f)$ converges to $\pi(f)$. If $\varepsilon>0$, then by compacity of $[0,1]^{2}, f$ is uniformly continuous and there exists a partition of $[0,1]^{2}$ in N^{2} small squares S_{i} of size $\frac{1}{N}$, such that

$$
\forall i, \sup _{p, q \in S_{i}}|f(p)-f(q)| \leq \varepsilon
$$

Consequently, there exists an approximation f_{ε} of f that is constant on each of the squares S_{i}, and such that $\left\|f_{\varepsilon}-f\right\|_{\infty} \leq \varepsilon$ and $\left\|f_{\varepsilon}\right\|_{\infty} \leq\|f\|_{\infty}$. Then,

$$
\begin{aligned}
\left|\pi_{n}(f)-\pi(f)\right| & \leq 2 \varepsilon+\left|\pi_{n}\left(f_{\varepsilon}\right)-\pi\left(f_{\varepsilon}\right)\right| \\
& \leq 2 \varepsilon+\sum_{i=1}^{N^{2}}\left|f_{\varepsilon}\left(S_{i}\right)\right|\left|\pi_{n}\left(S_{i}\right)-\pi\left(S_{i}\right)\right| \\
& \leq 2 \varepsilon+N^{2}\|f\|_{\infty} d_{\square}\left(\pi_{n}, \pi\right),
\end{aligned}
$$

so $\lim _{n \rightarrow \infty} \pi_{n}(f)=\pi(f)$. So, the convergence with respect to d_{\square} is stronger than the weak convergence of probability measures.

Conversely, suppose that $\left(\pi_{n}\right)_{n \in \mathbb{N}}$ converges weakly towards π. Since π_{n} and π are permutons, their marginal laws are uniform, and in particular they do not have atoms; therefore, for any rectangle $R=[a, b] \times[c, d], \pi_{n}(\partial R)=\pi(\partial R)=0$. Then, by Portmanteau's theorem (cf. [Bil69, Section 2]), $\lim _{n \rightarrow \infty} \pi_{n}(R)=\pi(R)$. Introduce the bivariate cumulative generating functions $F_{n}(x, y)=\pi_{n}([0, x] \times[0, y])$ and $F(x, y)=\pi([0, x] \times[0, y])$. The sequence of functions $\left(F_{n}\right)_{n \in \mathbb{N}}$ converges pointwise to F, and on the other hand, these functions are increasing in both variables. Fix an integer N, and n_{0} such that for any point $\left(\frac{i}{N}, \frac{j}{N}\right)$ of the grid with mesh size $\frac{1}{N}$, and any $n \geq n_{0}$,

$$
\left|F_{n}\left(\frac{i}{N}, \frac{j}{N}\right)-F\left(\frac{i}{N}, \frac{j}{N}\right)\right| \leq \frac{1}{N} .
$$

Then, for any (x, y) in $[0,1]$, if $\frac{i}{N} \leq x \leq \frac{i+1}{N}$ and $\frac{j}{N} \leq y \leq \frac{j+1}{N}$, then

$$
\begin{aligned}
& F_{n}(x, y)-F(x, y) \leq F_{n}\left(\frac{i+1}{N}, \frac{j+1}{N}\right)-F\left(\frac{i}{N}, \frac{j}{N}\right) \\
& \leq \frac{1}{N}+\left(F\left(\frac{i+1}{N}, \frac{j+1}{N}\right)-F\left(\frac{i+1}{N}, \frac{j}{N}\right)\right)+\left(F\left(\frac{i+1}{N}, \frac{j}{N}\right)-F\left(\frac{i}{N}, \frac{j}{N}\right)\right) \\
& \leq \frac{1}{N}+\pi\left(\left[0, \frac{i+1}{N}\right] \times\left[\frac{j}{N}, \frac{j+1}{N}\right]\right)+\pi\left(\left[\frac{i}{N}, \frac{i+1}{N}\right] \times\left[0, \frac{j}{N}\right]\right) \\
& \leq \frac{1}{N}+\pi\left([0,1] \times\left[\frac{j}{N}, \frac{j+1}{N}\right]\right)+\pi\left(\left[\frac{i}{N}, \frac{i+1}{N}\right] \times[0,1]\right)=\frac{3}{N},
\end{aligned}
$$

by using on the last line the fact that π has uniform marginal laws. Similarly, one can show that $F_{n}(x, y)-F(x, y) \geq-\frac{3}{N}$, so for any N, one can find n_{0} such that

$$
\sup _{n \geq n_{0}} \sup _{x, y \in[0,1]}\left|F_{n}(x, y)-F(x, y)\right| \leq \frac{3}{N} .
$$

However, the rectangular distance is directly related to this quantity, because

$$
\pi_{n}([a, b] \times[c, d])=F_{n}(c, d)-F_{n}(c, b)-F_{n}(a, d)+F_{n}(a, b),
$$

and similarly for π and F. Therefore, $d_{\square}\left(\pi_{n}, \pi\right) \rightarrow 0$, and the proof of the equivalence (1) \Leftrightarrow (2) is completed.

For the other equivalences of Theorem 21, we shall use the following lemma:
Lemma 23 (Lemma 5.1 in [Hop+13]). Let π and π^{\prime} be two permutons. If $t(\tau, \pi)=t\left(\tau, \pi^{\prime}\right)$ for any permutation τ, then $\pi=\pi^{\prime}$ in \mathcal{P}.

Sketch of proof. Let $F(x, y)$ be the bivariate cumulative distribution function of π. This function determines the probabilities under π of any rectangle $[a, b] \times[c, d] \subset[0,1]^{2}$, and therefore it determines π in $\mathcal{P} \subset \mathcal{M}\left([0,1]^{2}\right)$. So, it suffices to show that one can reconstruct F from the family $(t(\tau, \pi))_{\tau}$. However, if one knows $t(\tau, \pi)$ for any τ, then one knows the distribution of the random permutation $\sigma_{n}(\pi)$ for any $n \in \mathbb{N}$. As before, F is increasing in both variables, and it has the following regularity property:

$$
\begin{aligned}
F(x+\varepsilon, y+\varepsilon) & =\pi([0, x+\varepsilon] \times[0, y+\varepsilon]) \\
& \leq \pi([0, x] \times[0, y])+\pi([x, x+\varepsilon] \times[0, y+\varepsilon])+\pi([0, x+\varepsilon] \times[y, y+\varepsilon]) \\
& \leq F(x, y)+\pi([x, x+\varepsilon] \times[0,1])+\pi([0,1] \times[y, y+\varepsilon])=F(x, y)+2 \varepsilon .
\end{aligned}
$$

Set

$$
F_{n}(x, y)=\frac{1}{n} \sum_{i=1}^{\lceil n x\rceil} 1_{\left(\sigma_{n}(\pi)\right)(i) \leq\lceil n y\rceil},
$$

which is a random permutation whose distribution is entirely determined by the observables $t(\tau, \pi)$. If $\left(X_{n}, Y_{n}\right)_{n \in \mathbb{N}}$ is a sequence of independent points of $[0,1]^{2}$ under π, denote $X_{1}^{*}<X_{2}^{*}<$ $\cdots<X_{n}^{*}$ the increasing reordering of the X_{i} 's, and $Y_{1}^{*}<Y_{2}^{*}<\cdots<Y_{n}^{*}$ the increasing reordering of the Y_{i} 's. Then, with $k=\lceil n x\rceil$ and $l=\lceil n y\rceil$,

$$
F_{n}(x, y)=\frac{1}{n} \sum_{i=1}^{n} 1_{\left(X_{i}<X_{k}^{*} \text { and } Y_{i}<Y_{l}^{*}\right)}
$$

By using the Hoeffding inequalities, one can show that

$$
\mathbb{P}\left[F_{n}(x, y)>F\left(\frac{k}{n}, \frac{l}{n}\right)+3 n^{-1 / 4}\right] \leq 3 \mathrm{e}^{-2 \sqrt{n}}
$$

For the same reasons,

$$
\mathbb{P}\left[F_{n}(x, y)<F\left(\frac{k}{n}, \frac{l}{n}\right)-3 n^{-1 / 4}\right] \leq 3 \mathrm{e}^{-2 \sqrt{n}}
$$

and by using the regularity properties of F_{n} and F, this implies that $F_{n}(x, y)$ converges in probability to $F(x, y)$, hence that F can be reconstructed from the observables $t(\tau, \pi)$. We refer to [Hop + 13, Lemma 4.2] for the proof of the concentration inequality.

Proof of Theorem 21: (1) $\Leftrightarrow(3)$. Suppose that $\left(\pi_{n}\right)_{n \in \mathbb{N}}$ is a sequence of permutons that converges weakly to π, and fix a permutation τ of size k. If $\left(\left(X_{1}^{n}, Y_{1}^{n}\right), \ldots,\left(X_{k}^{n}, Y_{k}^{n}\right)\right)$ is a family of k independent points of $[0,1]$ chosen according to $\left(\pi_{n}\right)^{\otimes k}$, then we have the convergence in distribution of this family towards the law $\pi^{\otimes k}$. Now, the set of families $\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right)$ in $\left([0,1]^{2}\right)^{k}$ with configuration τ has its boundary which has a measure 0 under $\pi^{\otimes k}$. Indeed, on the boundary of this set, $x_{i}=x_{j}$ or $y_{i}=y_{j}$ for some pair of indices (i, j), and this event has probability 0 , because under $\pi^{\otimes k}$, the vectors $\left(x_{1}, \ldots, x_{k}\right)$ and $\left(y_{1}, \ldots, y_{k}\right)$ follow the uniform law λ^{k} on $[0,1]^{k}$, hence have distinct coordinates with probability 1. So, by Portmanteau's theorem,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[\operatorname{conf}\left(\left(X_{1}^{n}, Y_{1}^{n}\right), \ldots,\left(X_{k}^{n}, Y_{k}^{n}\right)\right)=\tau\right]=\mathbb{P}\left[\operatorname{conf}\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{k}, Y_{k}\right)\right)=\tau\right]
$$

where $\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{k}, Y_{k}\right)\right)$ follows the law $\pi^{\otimes k}$. These probabilities can be rewritten as $t\left(\tau, \pi_{n}\right)$ and $t(\tau, \pi)$, so (1) $\Rightarrow(3)$.

Conversely, suppose that we have the convergence of observables $t\left(\tau, \pi_{n}\right) \rightarrow t(\tau, \pi)$ for any permutation τ. If $\left(\pi_{n_{k}}\right)_{k \in \mathbb{N}}$ is a subsequence of $\left(\pi_{n}\right)_{n \in \mathbb{N}}$ that converges weakly, then its limit π^{\prime} satisfies $t\left(\tau, \pi^{\prime}\right)=t(\tau, \pi)$ for any permutation τ, so by Lemma 23, $\pi^{\prime}=\pi$. The unicity of the limit of any convergent subsequence, and the compacity of \mathcal{P} imply now that $\pi_{n} \rightarrow \pi$ in the sense of weak convergence.

Again, an important corollary of the previous discussion is:
Corollary 24. Let $\pi \in \mathcal{P}$ be any permuton, and $\left(\sigma_{n}(\pi)\right)_{n \in \mathbb{N}}$ be the corresponding permuton model. In the space of permutons \mathcal{P}, we have the convergence in probability $\sigma_{n}(\pi) \rightarrow \pi$, where $\sigma_{n}(\pi)$ is identified with its canonical permuton as in Figure 5.

Proof. We know that in the sense of convergence of observables, the permutations $\sigma_{n}(\pi)$ converge in probability towards π. By Lemma 22, the permutons associated to the permutations $\sigma_{n}(\pi)$ also converge in the sense of observables towards π. Finally, the convergence of observables is equivalent to the weak convergence by Theorem 21.

Remark. The theory of permutons is sensibly easier than the theory of graphons, for two reasons: one does not have the problem of identifiability of graphons (one does not need to take a quotient space $\mathcal{G}=\mathcal{W} / \sim$), and the compacity of the space is immediately granted by standard results. On the other hand, a small difficulty that is specific to the theory of permutons is the following: if σ is a permutation and π_{σ} is the associated permuton, then the observables of σ are not exactly the same as the observables of π_{σ} (see Lemma 22).

References

[Bil69] P. Billingsley. Convergence of Probability Measures. John Wiley and Sons, 1969.
[Bil95] P. Billingsley. Probability and Measure. 3rd. John Wiley and Sons, 1995.
[Bor + 08] C. Borgs, J. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi. "Convergent sequences of dense graphs I. Subgraph frequencies, metric properties and testing". In: Adv. Math. 219.6 (2008), pp. 1801-1851.
[GS01] G. Grimmett and D. Stirzaker. Probability and Random Processes. 3rd. Oxford University Press, 2001.
[Hop + 13] C. Hoppen, Y. Kohayakawa, C. G. Moreira, B. Ráth, and R. M. Sampaio. "Limits of permutation sequences". In: Journal of Combinatorial Theory, Series B 103.1 (2013), pp. 93-113.
[Kom+02] J.Komlós, A. Shokoufandeh, M. Simonovits, and E. Szemerédi. "The regularity Lemma and its applications in graph theory". In: Theoretical aspects of computer science (Tehran, 2000). Vol. 2292. Lecture Notes in Computer Science. Springer-Verlag, 2002, pp. 84112.
[LSO6] L. Lovász and B. Szegedy. "Limits of dense graph sequences". In: Journal of Combinatorial Theory, Series B 96 (2006), pp. 933-957.
[LSO7] L. Lovász and B. Szegedy. "Szemerédi's lemma for the analyst". In: Geom. Func. Anal. 17 (2007), pp. 252-270.
[Sze78] E. Szemerédi. "Regular partitions of graphs". In: Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976). 1978, pp. 399-401.

