
RANDOM COMPRESSION OF AN INTEGER PARTITION

PIERRE-LOÏC MÉLIOT

Abstract. The objective of this note is to explain how to compute the asymptotics of a random
integer partition obtained by compression of a large integer partition. The procedure of random
compression is related to the operation of restriction of an irreducible representation of S(N) to
a smaller symmetric group, and the method of observables yields the limit shape of the random
compressed partition.
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1. The model of random compression

In this first section, we present the combinatorial model of random compression of an integer
partition, and we detail the link with the representation theory of the symmetric groups.

1.1. Integer partitions and standard tableaux. Given a positive integer N , recall that an integer
partition of size N is a sequence λ = (λ1 ≥ λ2 ≥ · · · ≥ λ`) of positive integers which is non-
increasing and such that |λ| =

∑`
i=1 λi = N . We shall denote ` = `(λ) the length of a partition,

which is its number of non-zero parts. A partition is usually represented by its Young diagram,
which is the array of boxes with λ1 boxes on the first row, λ2 boxes on the second row, etc.; see
Figure 1 for an example. We shall denote Y(N) the set of integer partitions with size N , and

Figure 1. The Young diagram of the integer partition λ = (10, 6, 5, 5, 3, 1) with
size |λ| = 30.

Y =
⊔
N∈NY(N). A standard tableau with shape λ ∈ Y(N) is a numbering of the cells of its

Young diagram by positive integers in [[1, N ]], in such a way that the rows and columns of the
tableau are strictly increasing; see for instance Figure 2. The set of standard tableaux with shape

11

10 17 24

6 12 18 25 30

4 9 15 23 28

3 5 8 16 20 27

1 2 7 13 14 19 21 22 26 29

Figure 2. A standard Young tableau with shape (10, 6, 5, 5, 3, 1).

λ will be denoted ST(λ), and there is a combinatorial formula for the number of Young tableaux
with shape λ:

card ST(λ) =
n!∏

@∈λ h(@)
,

where the product in the denominator runs over the cells of the Young diagram of λ, and h(@) is
the hook-length of the cell @, which is the number of cells of the hook based at @ and connecting it
horizontally and vertically to the top-right border of the Young diagram; see Figure 3. For a proof
of the hook-length formula, see for instance [GNW79]. Notice on the other hand that card ST(λ)
is the number of sequences (∅ ↗ λ(1) ↗ λ(2) ↗ · · · ↗ λ(N) = λ), where for each i the notation
λ(i) ↗ λ(i+1) means that the integer partition λ(i+1) with size i+ 1 is obtained from λ(i) by adding
one cell at the edge of this partition. Indeed, such a sequence clearly determines uniquely a standard
tableau with shape λ.



RANDOM COMPRESSION OF AN INTEGER PARTITION 3

Figure 3. Hook-length of a cell in a Young diagram: here, h(@) = 1 + 2 + 3 = 6.

1.2. Random compression and Poisson random compression. Given a standard tableau T with
size N and k ≤ N , we denote T (k) the subtableau of T which consists in the cells labeled by the
integers in [[1, k]], and λ(k) the shape of this integer partition, which has size k. For instance, if T is
the standard tableau from Figure 2, then λ(13) = (4, 3, 2, 2, 1, 1).

Definition 1.1 (Random compression). Fix an integer partition λ ∈ Y(N), and a real parameter
t ∈ (0, 1). The random compression with parameter t of λ is the random integer partition RCt(λ) with
size k = btNc which is obtained by choosing a random standard tableau T uniformly in ST(λ), and
by looking at the shape λ(k) of the subtableau T (k).

In the next paragraph, we shall give a representation-theoretic interpretation of this procedure.
For a reason which will be given in Subsection 3.3, it is also interesting to introduce a version of
the random compression where the size k is itself random.

Definition 1.2 (Poisson random compression). In the same setting as before, the Poisson random
compression with parameter t of λ is the random integer partition PRCt(λ) obtained by the following
procedure:

• One chooses as before T randomly and uniformly in ST(λ).
• One picks at random N independent uniformly distributed points x1, . . . , xN in (0, 1), and
one denotes k the number of xi’s which are smaller than t. Obviously, k follows a binomial
distribution B(N, t).
• Finally, one takes as before PRCt(λ) = λ(k) = shape(T (k)).

It is expected that the Poisson version of the random compression yields determinantal point pro-
cesses; see Theorem 3.6 for a result in this direction.

1.3. Link with the representation theory of symmetric groups. Denote S(N) the symmetric
group of order N , which has cardinality N !. The isomorphism classes of the irreducible (linear,
complex) representations of S(N) are in bijection with the integer partitions of size N , and they
can be labeled in such a way that dimV λ = card ST(λ); see [Mél17, Chapters 2 and 3] for a detailed
account of this representation theory and of the combinatorics of tableaux that is related to it. In
particular, one has the identity

N ! =
∑

λ∈Y(N)

(card ST(λ))2,

which comes from the isomorphism of algebras

CS(N) 'iso

⊕
λ∈Y(N)

End(V λ),
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itself a standard fact from the representation theory of finite groups (see [Mél17, Theorem 1.14]).
In the sequel, we shall simply write dimλ for the dimension of V λ; the uniform measure on ST(λ)
gives a weight 1

dimλ
to each standard tableau with shape λ, and dimλ is given by the hook-length

formula. The identity dimλ = card ST(λ) can be made much more precise: there exists a linear
basis (eT )T∈ST(λ) of the irreducible representation V λ of S(N) such that, for any k ≤ N and any
standard tableau T , the subspace CS(k)(eT ) ⊂ V λ is an irreducible representation of S(k) with
type λ(k) = shape(T (k)). This is the so-called Gelfand–Tsetlin basis of V λ, see [Mél17, Chapter 8].
A linear basis of CS(k)(eT ) is given by:

CS(k)(eT ) =
⊕

T ′ with the same entries
k+1,...,N as the tableau T

Ce′T .

This leads to the following:

Proposition 1.3 (Distribution of a random compression). Let λ be an integer partition with size
N , t ∈ (0, 1) be a real parameter. With k = btNc, we expand V λ as a direct sum of irreducible
CS(k)-modules:

V λ =
⊕
µ⊂λ

µ∈Y(k)

mλ
µ V

µ,

where the mλ
µ are integer multiplicities. The notation µ ⊂ λ means that the Young diagram of µ is

included in the Young diagram of λ.

(1) The multiplicity mλ
µ is the number of skew standard tableaux of shape λ \ µ, λ \ µ being the

skew partition with size N − k whose Young diagram consists in the cells of the diagram λ that
do not belong to the diagram of µ.

(2) The spectral measure

P[µ] =
mλ
µ dimµ

dimλ
is the distribution of the random compression RCt(λ).

Proof. We have just explained that any skew standard tableau of size N − k and with outer shape
λ corresponds to an irreducible CS(k)-submodule of V λ. Those that give a component with type
µ have inner shape µ, whence the first item of proposition. Now, the spectral measure of the
restriction fromS(n) toS(k) corresponds to the following procedure: pick at random an element
T ∈ ST(λ), and consider the isomorphism class of CS(k)(eT ). By the previous discussion, this
isomorphism class is shape(T (k)), so by definition we obtain the random variable RCt(λ). �

The previous proposition is a particular case of a general construction: given a representation
V of S(N), its decomposition in irreducible components V =

⊕
λ∈Y(N) mλ V

λ yields the spectral
measure

PV [λ] =
mλ dimλ

dimV
,

which is an interesting way for choosing at random an integer partition λ ∈ Y(N). The random
compression is the case where V = Res

S(N)
S(btNc)(V

λ). Let us look at some important other examples,
in relation to the procedure of random compression.

Example 1.4 (Plancherel measure). The Plancherel measures PLN are the spectral measures of the
regular representations CS(N) of the symmetric groups. They are given by

PLN [λ] =
(dimλ)2

N !
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for λ ∈ Y(N). They have a property of stability with respect to random compression: for any N
and t,

(RCt)∗ PLN = PLbtNc.

Indeed, given k ≤ N , µ ∈ Y(k) and λ ∈ Y(N), by Frobenius’ reciprocity, the multiplicity mλ
µ of

V µ in Res
S(N)
S(k) (V λ) is equal to the multiplicity of V λ in Ind

S(N)
S(k) (V µ). Therefore,∑

µ⊂λ
λ∈Y(N)

mλ
µ dimλ = dim

(
Ind

S(N)
S(k) (V µ)

)
=
N !

k!
dimµ.

As a consequence, with k = btNc, we obtain

((RCt)∗PLN) [µ] =
∑
µ⊂λ

λ∈Y(N)

mλ
µ dimµ

dimλ

(dimλ)2

N !
=

(dimµ)2

k!
= PLk[µ].

With an algebraic point of view, the stability property is related to the fact that Res
S(N)
S(k) (CS(N))

is a multiple of the representation CS(k):

Res
S(N)
S(k) (CS(N)) 'iso

N !

k!
CS(k).

Example 1.5 (Schur–Weyl measure). The Schur–Weyl measures SWM,N are the spectral measures of
the permutation representation ofS(N) on the space of tensors (CM)⊗N . The Schur–Weyl duality
(see [Mél17, Section 2.5]) ensures that the commutant of the action ofS(N) is the algebra spanned
by the diagonal action of the general linear group GL(M,C), and yields the decomposition in
GL(M,C)×S(N)-bimodules

(CM)⊗N =
⊕

λ∈Y(N)
`(λ)≤N

Uλ ⊗C V
λ,

where Uλ is the irreducible representation of GL(M,C) with highest weight λ. Again, the Schur–
Weyl measures have a property of stability with respect to random compression:

(RCt)∗ SWM,N = SWM,btNc.

Indeed, we clearly have the algebraic identity

Res
S(N)
S(k)

(
(CM)⊗N

)
'iso M

N−k (CM)⊗k.

2. Observables of Young diagrams

Our objective is to understand the behavior of a random compressed partition RCt(λ) when
λ = λN has size N and grows in such a way that the rows and columns of λ are balanced: there are
O(
√
N) non-empty rows and O(

√
N) non-empty columns in λN . In Subsection 2.1, we explain

the adequate point of view in order to deal with such partitions, and we introduce the notion of
the transition measure µλ of an integer partition λ. Then, in Subsection 2.2, we introduce the free
cumulants of a Young diagram, which play an essential role in the discussion of the asymptotics.
We shall see in Section 3 that the random compression RCt(λ) of a large balanced integer partition
has with high probability its transition measure close to the t-free compression of the transition
measure of λ.



6 PIERRE-LOÏC MÉLIOT

2.1. Young curves and transitionmeasures. Given an integer partition λwith sizeN , theRussian
convention for drawing it consists in taking the Young diagram of λ and rotating it by 45 degrees,
and then look at it as a part of the xy-plane, the origin corresponding to the first cell of the Young
diagram, and the cells being drawn as squares with area 2. One also adds the half-lines y = ±x, and
one looks at the upper boundary of this figure (in red on Figure 4). This curve ωλ : R → R+ is
affine by parts, with slopes ±1, and we have ωλ(s) = |s| for s large enough.

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12

ωλ

Figure 4. The Young curve ωλ associated to integer partition λ = (10, 6, 5, 5, 3, 1).

We call ωλ the Young curve of the partition λ. It is also convenient to consider σλ(s) = ωλ(s)−|s|
2

,
which is a compactly supported positive continuous function. We have∫

R
σλ(s) ds = |λ|.

The curves ωλ and σλ are particularly useful in order to deal with growing sequences of Young
diagrams and limit shapes thereof. The functions ωλ belong to the spaceY of continuous functions
ω : R+ → R which are equal to |s| for |s| large enough, and which are Lipschitz with constant 1.
For u > 0, this space is stable by a renormalisation

ω(·) 7→ ω(
√
u ·)√
u

,

which multiplies the areas
∫
R
ω(s)−|s|

2
ds by a factor 1

u
. On the other hand, if ω ∈ Y , then one can

define its transition measure as follows. We first introduce the generating function of ω:

Gω(z) =
1

z
exp

(
−
∫
R

σ′(s)

z − s
ds

)
,

where as before σ(s) = ω(s)−|s|
2

. The function Gω is well defined and holomorphic on the upper
half-plane C+, and it has the following properties:

(1) For any z ∈ C+, Gω(z) ∈ C− (negative imaginary part).

(2) We have limy→∞ iy Gλ(iy) = 1.

General results from the theory of complex functions ensure then thatGω is the Cauchy transform
of a probability measure: there exists a unique probability measure µω on R such that

Gω(z) =

∫
R

µω(ds)

z − s
.
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Conversely, any compactly supported probability measure µω corresponds in this way to a Young
curve in Y , and the convergence of all the moments of a sequence of compactly supported prob-
ability measures µN →N→∞ µ implies the uniform convergence ωN →N→∞ ω over R of the
corresponding Young curves; see [Mél17, Section 7.4]. In the sequel, if λ ∈ Y(N), we denote
µλ = µωλ . In this particular case, the transition measure is discrete and supported by integers.
More precisely, consider the spectral measure of Ind

S(N+1)
S(N) (V λ). The Pieri rules for induction of

irreducible representations of symmetric groups yield:

Ind
S(N+1)
S(N) (V λ) =

⊕
λ↗Λ

V Λ,

where the sum runs over integer partitions which are obtained from λ by adding exactly one cell
to the Young diagram. Therefore,

P
Ind

S(N+1)
S(N)

(V λ)
[Λ] =

dim Λ

(N + 1) dimλ
.

Let us associate to each possible integer partition Λ the abscissa xΛ of the corner at which the cell
Λ \ λ is added (by drawing the Young diagram with the Russian convention). Then, one can show
that

µλ =
∑
λ↗Λ

dim Λ

(N + 1) dimλ
δxΛ

.

This is the origin of the terminology of transition measure: µλ drives the random process of adding
randomly cells to a Young diagram λ.

Example 2.1 (Large random partitions under the Plancherel measure). The Logan–Shepp–Kerov–
Vershik curve [LS77; KV77] is the Young curve Ω ∈ Y defined by:

Ω(s) =

{
2
π

(
s arcsin

(
s
2

)
+
√

4− s2
)

if |s| < 2,

|s| if |s| ≥ 2.

It is related to the Plancherel measures of the symmetric groups by the following law of large
numbers: if λN is a random partition chosen under the Plancherel measure PLN , and if

ωN(s) =
ωλN (

√
Ns)√
N

,

then ωN converges in probability towards Ω as N goes to infinity; see Figure 5 for an illustration
of this result.

−2 −1 1 20

Figure 5. A random integer partition of size N = 400 under the Plancherel mea-
sure; the limit shape (in blue) is the Logan–Shepp–Kerov–Vershik curve.
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The LSKV curve is deeply connected to the Wigner semicircle law µsemicircle(ds) = 1|s|<2

√
4−s2
2π

ds,
which is its transition measure:

GΩ(z) =
2

z +
√
z2 − 4

=

∫
R

µsemicircle(ds)

z − s
.

2.2. Free cumulants of a Young diagram. Given a compactly supported probability measure µ
on R, its Cauchy transform Gµ(z) is equivalent to 1

z
for z ∈ C+ and |z| → +∞, and it can be

expanded in a series of powers of 1
z
:

Gµ(z) =
∞∑
k=0

Mk(µ)

zk+1
,

where Mk(µ) =
∫
R s

k µ(ds) is the k-th moment of µ. The map z 7→ Gµ(z) maps bijectively a
neighborhood of∞ in the complex plane to a neighborhood of 0, and it can be locally inverted by
a map

Kµ(w) =
1

w
+
∞∑
k=1

Rk(µ)wk−1

so that Kµ(Gµ(z)) = z for |z| large enough. The coefficients (Rk(µ))k≥1 are called the free cu-
mulants of the measure µ. For the link between these quantities and free probability theory, see
for instance [NS06] and [Mél17, Section 9.1]. The free cumulants are related to the moments
(Mk(µ))k≥1 by the combinatorics of non-crossing partitions. Consider the setN(k) of non-crossing
partitions of size k: they are the set partitions π of [[1, k]] such that one cannot find two distinct
parts πi and πj and elements a, c ∈ πi and b, d ∈ πj with a < b < c < d. If π = π1 t π2 t · · · t π`,
we denoteMπ(µ) =

∏`
i=1M|πi|(µ) and Rπ(µ) =

∏`
i=1 R|πi|(µ). Then, for any k ≥ 1,

Mk(µ) =
∑

π∈N(k)

Rπ(µ),

and this relation can be inverted by using the Möbius function of the lattice of non-crossing parti-
tions.

The free cumulants of a partition λ are defined by using the transition measure µλ:
Rk(λ) = Rk(µλ).

We can of course extend the definition to Young curves ω ∈ Y . The free cumulants are extremely
powerful observables in order to prove that a family of random partitions (λN)N∈N chosen under
a family of spectral measures of representations (PN)N∈N admits a limit shape after rescaling the
Young curves by a factor

√
N . This technique is due to Biane [Bia98; Bia01], who proved a deep

connection between the analytic properties of the Young curve ωλ (via its transition measure and
its free cumulants), and the algebraic properties of the irreducible representation V λ ofS(N). On
the analytic side, note that if scu is the scaling of Young curves which multiplies the areas by a
factor 1

u
, then

Gscu(ω)(z) =
1

z
exp

(
−
∫
R

(scu(σ))′(s)

z − s
ds

)
=

1

z
exp

(
−
∫
R

σ′(s)√
uz − s

ds

)
=
√
uGω(

√
uz),

so µscu(ω)(B) = µω(
√
uB) for any Borel subset B ⊂ R. As a consequence, for any k ≥ 1,

Mk(µscu(ω)) = u−
k
2 Mk(µω);

Rk(µscu(ω)) = u−
k
2 Rk(µω).

Therefore, if one has a sequence (λN)N∈N of random integer partitions such that

∀k ≥ 1, N−
k
2 Rk(λN)→P Rk(ω)
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for some Young curve ω, then the scaled Young diagrams sc√N(ωλN ) converge in probability to-
wards the limit shape ω. Now, the free cumulants of large integer partitions are asymptotically
equivalent to the renormalised character values, as a consequence of the following important result
(see [Bia98, Theorem 1.3], [IO02, Section 10] and [Mél17, Theorem 9.20]):

Theorem 2.2 (Biane, Ivanov–Olshanski). For λ ∈ Y(N) and k ≥ 1, we define

Σk(λ) =

{
N↓k trφλ(ck)

dimλ
if N ≥ k,

0 if N < k.
,

whereN↓k = N(N−1) · · · (N−k+1), ck is a k-cycle and φλ is the definingmorphism of the irreducible
representation V λ ofS(N). This renormalised character value can be expanded as a polynomial in the
free cumulants of λ. Moreover, if we define a gradation degRk = k, then

Σk = Rk+1 + polynomial in R2, R3, . . . , Rk of degree smaller than k.

As a consequence, the criterion of convergence after scaling for a sequence (λN)N∈N of random
integer partitions becomes:

∀k ≥ 1, N−
k+1

2 Σk(λN)→P Rk+1(ω).

A method of moments can be used in order to prove this convergence in probability of the scaled
character values. Actually, in many cases, one can even prove Gaussian fluctuations for the scaled
character values; see in particular [IO02; Śni06a; Śni06b]. Notice that when λN is chosen according
to a spectral measure PVN , the expectation of Σk(λN) is given by:

EVN [Σk] =
N↓k

dimVN

∑
λ∈Y(N)

mλN
λ trφλ(ck) = N↓k

trφVN (ck)

dimVN
.

Thus, its computation is immediate if one knows the characters of the representations VN . For the
computation of the higher moments (in particular the second one), one can use a similar technique
with observables in the algebra spanned by the functions Σk; see [Mél17, Chapter 7] for a detailed
presentation of this algebra, whose construction is due to Kerov and Olshanski [KO94].

Example 2.3 (Logan–Shepp–Kerov–Vershik law of large numbers). With this technology, the proof
of the law of large numbers for Plancherel measures is almost immediate. Indeed, if λN ∼ PLN ,
then E[Σk(λN)] = N 1k=1, so we have the convergence of the expectations

N−
k+1

2 E[Σk(λN)]→N→∞

{
1 if k = 1,

0 if k ≥ 2.

By looking at the second moments, one can prove that the convergence of the expectations is
also a convergence in probability. Therefore, the scaled random diagrams sc√N(λN) converge in
probability towards the unique Young curve Ω whose free cumulants are:

Rk(Ω) =

{
1 if k = 2,

0 otherwise.

This is the LSKV curve, since GΩ(z) = 2
z+
√
z2−4

and KΩ(w) = 1
w

+ w.
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3. Asymptotics of the random compressed partitions

In the sequel, we fix a sequence (λN)N∈N of integer partitions which can be random and which
have roughly size N (for instance, we can assume that |λN |

N
converges in probability to 1). We say

that (λN)N∈N has limit shape ω ∈ Y if we have the convergence in probability

sc√N(ωλN )→P ω,

the topology on Y being as before the topology of uniform convergence. By the previous discus-
sion, this is equivalent to the convergence in probability of the scaled random free cumulants, or
of the scaled character values. The limit shape satisfies R2(ω) =

∫
R
ω(s)−|s|

2
ds = 1. We fix such a

limit shape, and we are interested in the behavior of RCt(λN), and in the existence of a limit shape
ωt for it.

3.1. Free compression of a probability measure and the law of large numbers. Given a com-
pactly supported probability measure µ on R, its R-transform is the function Rµ(w) = Kµ(w) −
1
w

=
∑∞

k=1Rk(µ)wk−1; its coefficients are the free cumulants of µ. The free compression of µ with
parameter t ∈ (0, 1) is the unique (compactly supported) probability measure πt(µ) such that:

Rπt(µ)(w) = Rµ(tw).

Equivalently, Rk(πt(µ)) = tk−1Rk(µ) for any k ≥ 1. The t-free compression of a Young curve ω
is the Young curve πt(ω) such that µπt(ω) = πt(µω). This modifies the area R2(·) by a factor t, so if
ω is normalised to have area 1, then πt(ω) has area t.

Theorem 3.1 (Biane). Let (λN)N∈N be a sequence of random partitions which has a limit shape ω ∈ Y .
For any t ∈ (0, 1), (RCt(λN))N∈N has limit shape πt(ω):

sc√N(ωRCt(λN ))→P πt(ω).

The same result holds for the Poisson random compression:

sc√N(ωPRCt(λN ))→P πt(ω).

The proof of the theorem is almost trivial from the previous discussion if instead of the conver-
gence in probability N− k2 Rk(λN) → Rk(ω), we assume a stronger convergence in joint moments
(this hypothesis is natural in the setting of random partitions stemming from spectral measures
of representations). Indeed, let us extend the definition of the renormalised character values by
allowing products of disjoint cycles: for λ ∈ Y(N) and ρ ∈ Y(k), we set

Σρ(λ) = N↓k
trφλ(cρ)

dimλ
,

where cρ is a permutation with cycle type ρ, and the falling factorial vanishes if N < k. Given a
parameter t such that btNc ≥ k, we can assume that cρ ∈ S(btNc), and then,

E [Σρ(RCt(λN))] =
∑

λ∈Y(N)
ν∈Y(btNc)

P[λN = λ, RCt(λ) = ν] (btNc)↓k trφν(cρ)

dim ν

= (btNc)↓k
∑

λ∈Y(N)

P[λN = λ]
trφλ(cρ)

dimλ

= tk
(
1 +O(N−1)

)
E[Σρ(λN)].

Here, we have assumed that λN is exactly of size N , but this is not really important. Now, Σρ =∏`(ρ)
i=1 Rρi+1 + remainder, where the remainder is a polynomial of degree smaller than ρ+ `(ρ)− 1
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in the free cumulants. As a consequence, for any family (k1, . . . , k`) of positive integers, we have

E

[∏̀
i=1

Rki(RCt(λN))

]
= E

[∏̀
i=1

tki−1Rki(λN)

] (
1 +O(N−

1
2 )
)
.

By assumption, the right-hand side is asymptotic asN goes to infinity toN
∑`
i=1

ki
2

∏`
i=1 Rki(πt(ω));

this ends the proof.

Example 3.2 (Large random partitions under Schur–Weyl measures). For c ∈ R∗+, let us introduce
the Marcenko–Pastur distribution

µMP,c(ds) =


√

4−(s−c)2

2π(1+sc)
1s∈[c−2,c+2] ds if c ∈ [0, 1],√

4−(s−c)2

2π(1+sc)
1s∈[c−2,c+2] ds+

(
1− 1

c2

)
δ− 1

c
(ds) if c > 1.

Notice that if c = 0, then one recovers the Wigner semicircle distribution. We refer to [Mél17,
Figure 13.4] for a representation of the densities of theMarcenko–Pastur distributions. The Cauchy
transforms of these probability measures are:

GµMP,c
(z) =

2

z + c+
√

(z − c)2 − 4
,

and the inverses of these functions are

KµMP,c
(w) =

1

w
+

w

1− cw
=

1

w
+
∞∑
k=2

ck−2wk−1.

Therefore,Rk(µMP,c) = ck−2 1k≥2, and theMarcenko–Pastur distributions behave well with respect
to free compression:

Rk(πt(µMP,c))

t
k
2

= t
k
2
−1 ck−2 1k≥2 =

(√
t c
)k−2

1k≥2 = Rk(µMP,
√
t c);

(πt(µMP,c))
(√

t B
)

= µMP,
√
t c(B).

for any Borel subset B ⊂ R. Consider now a random integer partition λN under the Schur–Weyl
measure SWbc−1

√
Nc,N . For any integer partition ρ, one computes

E[Σρ(λN)] = N↓|ρ|
(
bc−1
√
Nc
)̀ (ρ)−|ρ|

' c|ρ|−`(ρ) N
|ρ|+`(ρ)

2 ,

so Rk(sc√N(ωλN )) →P c
k−2 for any k. Hence, λN has a limit shape Ωc, which is the Young curve

with transition measure µMP,c. An explicit formula for Ωc is given in [Bia01], see also [Mél17,
Figure 13.3]. In this framework, the stability of the Marcenko–Pastur distributions with respect to
free compression is the asymptotic counterpart of the stability of the Schur–Weyl measures with
respect to random compression. More generally, given any sequence of random integer partitions
such that

sc√N(ωλN )→ Ωc,

we have
sc√tN(ωRCt(λN ))→ Ω√tc

for any parameter t ∈ (0, 1).
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3.2. Random point process associated to a random partition. The result of the previous para-
graph has a global nature, since it concerns limit shapes of random integer partitions. Indeed, when
looking at the scaled shape of a partition λN of size N , we forget everything that might happen
in a region of the boundary ωλN of size o(

√
N). This makes one wonder whether it is also pos-

sible to obtain some local information on the random partitions RCt(λN), either in the bulk of
the limit shape or at the edge. By local we mean in a region of size o(

√
N), or even O(1). The

right way to think about this is to introduce the descent coordinates of a partition, and to study the
corresponding random point processes. Set Z′ = Z + 1

2
, and for λ ∈ Y, let us define

Mλ =

{
λi − i+

1

2

}
,

which is an infinite configuration of points in Z′ with the property that
card(Z′− \Mλ) = card(Z′+ ∩Mλ) < +∞.

The configurationMλ is called the set of descent coordinates of the partition λ, because it is obtained
by looking at the Young diagram of λ drawn with the Russian convention, and by projecting on
the x-axis the middles of the decreasing segments of the boundary ωλ; see Figure 6 for an example.

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12

Figure 6. The configurationMλ ⊂ Z′ associated to the integer partition λ = (10, 6, 5, 5, 3, 1).

If λ is random, then we can introduce the correlation functions
ρ(X) = P[X ⊂Mλ]

for X (finite) subset of Z′. In certain situations, these correlation functions happen to be given by
determinants: there exists a (Hermitian) kernel K : (Z′)2 → C such that

ρ(X) = det(K(x, y))x,y∈X

for any X finite subset of Z′. We then say thatMλ is a determinantal point process with kernel K;
in the sequel, we identify the configurationMλ with the discrete measure

∑
x∈Mλ

δx. In the setting
of random partitions, the following result ensures that a large class of models of random partitions
yield determinantal point processes; see [Oko01; Oko02].

Theorem 3.3 (Okounkov). Let X and Y be two specialisations of the algebra of symmetric functions
Sym which are non-negative on the basis of Schur functions. The Schur measure onY with parameters
X and Y is given by

PX,Y [λ] = exp

(
−
∞∑
k=1

pk(X) pk(Y )

k

)
sλ(X) sλ(Y ).
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If λ is chosen randomly according to PX,Y , then Mλ is determinantal, and its kernel is given by the
following generating series:

KX,Y (z, w) =
∑
x,y∈Z′

K(x, y) zxw−y =

√
zw

z − w
JX,Y (z)

JX,Y (w)
,

where

JX,Y (z) = exp

(
∞∑
k=1

pk(X)

k
zk −

∞∑
k=1

pk(Y )

k
z−k

)
.

The formula for KX,Y (z, w) provides a representation of the kernel K(x, y) as a double contour
integral:

K(x, y) =
1

(2iπ)2

∮∮
|z|>|w|

1

z − w
JX,Y (z)

JX,Y (w)

dz dw√
zw

,

and the asymptotics of the kernel in the case where x = xN , y = yN , X = XN and Y = YN can
usually be obtained by saddle point analysis.

Example 3.4 (Local asymptotics of the Plancherel measures). Consider the Poissonised Plancherel
measure PL{θ} =

∑∞
N=0

e−θ θN

N !
PLN , where θ is a positive real number. The exponential specialisa-

tion E of the algebra Sym is defined by
p1(E) = 1 ; pk≥2(E) = 0.

The Frobenius–Schur change of basis formula between Schur functions and power sums shows then
that

sλ(E) =
dimλ

|λ|!
for any integer partition λ. It follows that PL{θ} can be identified as the Schur measure with
parameters X = Y =

√
θ E. In this case,

JX,Y (z) = exp
(√

θ (z − z−1)
)

=
∑
n∈Z

Jn(2
√
θ) zn

is the generating series of the Bessel functions Jn(2
√
θ), n ∈ Z. We therefore have:

K{θ}(x, y) =
1

(2iπ)2

∮∮
|z|>|w|

1

z − w
exp

(√
θ(z − z−1 − w + w−1)

)
z−x−

1
2 wy−

1
2 dz dw.

This expression can be used in order to recover the Logan–Shepp–Kerov–Vershik law of large
numbers, and to determine the local asymptotics of the random partitions under the Poissonised
Plancherel measures. First, as θ goes to infinity, we have the following limiting result when

xθ√
θ
→ s0 ∈ (−2, 2) ;

yθ√
θ
→ s0 ∈ (−2, 2) ; xθ − yθ = x− y ∈ Z.

The kernel K{θ}(xθ, yθ) converges then towards the discrete sine kernel:

K{θ}(xθ, yθ)→θ→∞ Kdsine,φ0(x, y) =
sinφ0(x− y)

π(x− y)
,

where φ0 = arccos( s0
2

); see [BOO00, Theorem 3] and [Oko02, Section 3]. Therefore, the discrete
determinantal point process

Mλ,{θ},s0(B ∈ Z′) = Mλ,PL{θ}(bs0

√
θc+B)

converges towards a translation-invariant determinantal point process on Z′. An analogue re-
sult of convergence of determinantal point processes can be established at the edge of the region
(−2
√
θ, 2
√
θ), after an adequate renormalisation: one obtains the Airy determinantal point pro-

cess, see [BOO00, Theorem 4]. On the other hand, the local convergence of the point process of
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the descent coordinates allows one to recover the Logan–Shepp–Kerov–Vershik law of large num-
bers. Indeed, by taking xθ = yθ, one sees that the density of descending segments around s0

√
θ

tends to φ0

π
= 1

π
arccos

(
s0
2

)
. Therefore, the limiting derivative of sc√θ(ωλ) at s = s0 ∈ (−2, 2) is

1− 2

π
arccos

(s
2

)
=

2

π
arcsin

(s
2

)
.

This is precisely the derivative at s of the LSKV curve Ω.

Example 3.5 (Local asymptotics of the Schur–Weyl measures). Consider similarly the Poissonised
Schur–Weyl measure

SWc,{θ} =
∞∑
N=0

e−θ θN

N !
SWbc−1

√
θc,N ,

where c ∈ R∗+ is a fixed parameter. In the following, we denote bc−1
√
θc = (cθ)

−1
√
θ; as θ goes to

infinity, cθ converges to c. For λ ∈ Y(N), we have

SW(cθ)−1
√
θ,N [λ]

N !
=

dimλ

N !

sλ(1
(cθ)−1

√
θ)

((cθ)−1
√
θ)N

=
sλ(E) sλ(1

(cθ)−1
√
θ)

((cθ)−1
√
θ)N

,

where 1M denotes the alphabet (11, 12, . . . , 1M , 0, 0, . . .). Therefore,

SWc,{θ}[λ] = e−θ sλ(
√
θ E) sλ((cθ)

(cθ)−1
√
θ)

is the Schur measure with parameters X =
√
θ E and Y = (cθ)

(cθ)−1
√
θ. The associated function

JX,Y is given by JX,Y (z) = exp(
√
θ(z+(cθ)

−1 log(1−cθz−1))). Note that we recover the Plancherel
case by making cθ go to 0. As before, we obtain a double contour integral:

Kc,{θ}(x, y)

=
1

(2iπ)2

∮∮
|z|>|w|>cθ

exp

(√
θ

(
z +

1

cθ
log
(

1− cθ
z

)
− w − 1

cθ
log
(

1− cθ
w

))) z−x−
1
2 wy−

1
2

z − w
dz dw.

In the sequel, we drop the index θ from cθ in order to simplify the notations. Consider parameters
xθ, yθ ∈ Z′ such that
xθ√
θ
→ s0 ∈ (c− 2, c+ 2) ;

yθ√
θ
→ s0 ∈ (c− 2, c+ 2) ; xθ − yθ = x− y ∈ Z.

We have

Kc,{θ}(xθ, yθ) =
1

(2iπ)2

∮∮
1

(z − w)
√
zw

exp

(√
θ F

(
z,
xθ√
θ

)
−
√
θ F

(
w,

yθ√
θ

))
dz dw,

where F (z, t) = z + c−1 log(1− cz−1)− t log z. The two critical poins of F (·, s0) are

z = c+ e±iφ0 , with φ0 = arccos

(
t0 − c

2

)
.

By deforming the paths of integration exactly as in [Oko02, Section 3.2] and picking up the residues,
one obtains:

lim
θ→∞

Kc,{θ}(xθ, yθ) =
1

2iπ

∮
γ:c+e−iφ0→ c+eiφ0

1

zx−y+1
dz,

where the path of integration γ if the arc of circle with center c, radius 1 and connecting the two
critical points. We can deform this path and take instead the arc of circle with center 0 and radius
1 + cs0; the integral is then easy to compute, hence,

K{θ}(xθ, yθ)→θ→∞ Kdsine,ψ0(x, y)
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where ψ0 = arccos( c+s0
2
√

1+cs0
). By the same arguments as for the Plancherel measure, we see that the

limiting derivative of sc√θ(ωλ) at s ∈ (c− 2, c+ 2) is

2

π
arcsin

(
c+ s

2
√

1 + cs

)
,

which is the derivative of Ωc; hence, one recovers the law of large numbers (at least in the interval
(c− 2, c+ 2)).

3.3. Random point process associated to a random tableau. If λ is an integer partition and
T ∈ ST(λ), then by looking at the associated sequence of integer partitions (∅ = λ(0) ↗ λ(1) ↗
· · · ↗ λ(N) = λ), one obtains a family of non-intersecting paths which connects the "empty"
configurationM∅ = Z′− to the configuration of descentsMλ. Each insertion of a cell corresponds
to a move of one of the paths to the right; see Figure 7.

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12
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18

19
20

21
22

23
24

25
26

27
28

29
30

Figure 7. The set of non-intersecting paths associated to the standard tableau from
Figure 2; it is encoded by the configuration of pointsMT (in blue).

We encode this set of intersecting paths by the set MT ⊂ (Z′ × Z+) of the coordinates of the
right moves; the first coordinates is the location of the right move, whereas the second coordinate
is its time. For a tableau of sizeN , we obtain a finite configuration ofN points. We can extend the
definition to increasing sequences of partitions

∅ = λ0 ↗ λt1 ↗ λt2 ↗ · · · ↗ λtN = λ,

where the times t1 < t2 < · · · < tN are in R+; the configuration MT is then a finite subset of
Z′ × R+. In this setting, if t ∈ R+, we denote λt = λti and Tt = (λ0 ↗ · · · ↗ λti), where
ti ≤ t < ti+1. The Poisson standard tableau with shape λ is obtained by picking N independent
points in [0, 1], by reordering them so as to obtain the sequence of times t1 < · · · < tN , and by
choosing the random tableau T uniformly in ST(λ). We then denote T = PST(λ). By definition,

shape((PST(λ))t) = PRCt(λ)

for any parameter t ∈ (0, 1). The following result ensures that if T is a Poisson standard tableau,
thenMT is determinantal on Z′ × (0, 1) (see [GR17, Theorem 1.5]):
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Theorem 3.6 (Gorin–Rahman). Fix λ ∈ Y, and denoteMT the point process on Z′× [0, 1] associated
to T = PST(λ). It is determinantal with kernel

Kλ((x, t1), (y, t2)) = 1x>y, t1<t2
(t1 − t2)x−y−1

(x− y − 1)!

+
1

(2iπ)2

∮∮
Hλ(y + z)

Hλ(x− 1− w)

(
Γ(y+z+ 1

2
)

Γ(z+1)

)
(

Γ(x−w− 1
2

)

Γ(−w)

) (1− t2)z (1− t1)w

z + w + y − x+ 1
dz dw,

whereHλ is the Frobenius generating series of the diagram λ [Mél17, p. 343], defined by

Hλ(u) =
∞∏
i=1

u+ i− 1
2

u− λi + i− 1
2

=

∏
t∈M∅ u− t∏
t∈Mλ

u− t
,

and the double contour integral runs over two paths γz and γw which are drawn in Figure 8. Here, the
reference measure is the tensor product of the counting measure on Z′ by the Lebesgue measure on [0, 1].

−1 0

x+ λ′1 − 1
2

λ1 − 1
2
− y

γw

γz

Figure 8. The contours of integration for the kernel Kλ (they enclose only the
integers in [0, x+ λ′1 − 3

2
] and in [0, λ1 − 1

2
− y], and they do not cross).

Remark 3.7. The generating function Hλ is related to the generating function Gλ by:

Gλ(z) =
1

z

Hλ(z − 1
2
)

Hλ(z + 1
2
)
.
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