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When looking at a sum Sn =
∑n

i=1 Ai of centered i.i.d. random variables,
the fluctuations are universally predicted by the central limit theorem

Sn√
nVar(A1)

⇀ N (0, 1).

This is not the whole story:

▶ large deviations (Cramér, 1938): log (P[Sn ≥ nx]) ≃ −n I(x).
▶ speed of convergence (Berry, 1941; Esseen, 1945):

sup
s∈R

∣∣∣∣∣P
[

Sn√
nVar(A1)

≤ s
]
− 1√

2π

∫ s

−∞
e− t2

2 dt
∣∣∣∣∣ ≤ 3E[|A1|3]

(Var(A1))3/2
√
n
.

▶ local limit theorem (Gnedenko, 1948; Stone, 1965): if A1 is non-
lattice distributed and Var(A1) = 1, then

√
n P
[
Sn ∈ (

√
nx,

√
nx+ h)

]
≃ e− x2

2
√
2π

h.
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Many other sequences of random variables are asymptotically normal:
functionals of Markov chains, martingales, etc.

Idea: there is a renormalisation theory of random variables that al-
lows one to go beyond the central limit theorem, and to prove in one
time the CLT and the other limiting results.

Definition (Mod-Gaussian convergence)
A sequence of real random variables (Xn)n∈N is mod-Gaussian with
parameters tn → +∞ and limit ψ(z) if, locally uniformly on a domain
D ⊂ C,

E[ezXn ] e−
tnz2
2 = ψn(z) → ψ(z)

with ψ continuous on D and ψ(0) = 1.

For a sum of i.i.d. Sn, one looks at Xn = Sn
n1/3 ; tn = n1/3 Var(A1) and

ψ(z) = exp(E[(A1)3] z3
6 ).
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Example: let Xn = Re(log det(In − Mn)), with Mn ∼ Haar(U(n)). One
has the mod-Gaussian convergence

E[ezXn ] e−
(log n) z2

4 →
G(1+ z

2 )
2

G(1+ z) , G = Barnes’ function.

Later: Markov chains, random graphs, random permutations, etc.

Remark: one can replace the exponent z22 of the Gaussian distribution
by the exponent η(z) of any infinitely divisible distribution.

Objectives:

1. Explain the consequences of mod-Gaussian convergence.
2. Describe general conditions which ensure themod-Gaussian con-
vergence.

3. Prove the mod-Gaussian convergence of a large class of models
of random graphs.
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Mod-Gaussian convergence and
bounds on cumulants



Method of cumulants

If X is a random variable with convergent Laplace transform, its cumu-
lants are:

κ(r)(X) = dr
dzr

(
logE[ezX]

)∣∣∣∣
z=0

.

So, logE[ezX] =
∑∞

r=1
κ(r)(X)
r! zr. The first cumulants are

κ(1)(X) = E[X] ; κ(2)(X) = E[X2]− (E[X])2 = Var(X) ;

κ(3)(X) = E[X3]− 3E[X2]E[X] + 2 (E[X])3.

The Gaussian distribution N (m, σ2) is characterized by κ(1)(X) = m,
κ(2)(X) = σ2, κr≥3(X) = 0.

Idea: characterize similarly the mod-Gaussian convergence of a se-
quence (Xn)n∈N.
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Definition (Method of cumulants)
A sequence of random variables (Sn)n∈N satisfies the hypotheses of
the method of cumulants with parameters (Dn,Nn,A) if:

(MC1) One has Nn → +∞ and Dn
Nn → 0.

(MC2) The first cumulants satisfy

κ(1)(Sn) = 0;
κ(2)(Sn) = (σn)

2NnDn;
κ(3)(Sn) = Ln Nn(Dn)2

with limn→∞(σn)
2 = σ2 > 0 and limn→∞ Ln = L.

(MC3) All the cumulants satisfy

|κ(r)(Sn)| ≤ Nn (2Dn)r−1 rr−2 Ar.
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Mod-Gaussian convergence and its consequences

If (Sn)n∈N satisfies the hypotheses MC1-MC3, then

Xn =
Sn

(Nn)1/3(Dn)2/3

is mod-Gaussian convergent, with tn = (σn)
2
(
Nn
Dn

)1/3
andψ(z) = exp

(
Lz3
6

)
.

Consequences:
1. Central limit theorem: if Yn = Sn√

Var(Sn)
, then Yn ⇀ N (0, 1).

2. Speed of convergence:

dKol(Yn , N (0, 1)) ≤
(
3A
σn

)3√Dn
Nn
.

This inequality relies on the general estimate

dKol(µ , ν) ≤
1
π

∫ T

−T

∣∣∣∣ µ̂(ξ)− ν̂(ξ)

ξ

∣∣∣∣ dξ + 24
πT

∥∥∥∥dν(x)dx

∥∥∥∥
∞
.
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3. Normality zone and moderate deviations: if y≪
(
Nn
Dn

)1/6
, then

P[Yn ≥ y] = P[N (0, 1) ≥ y] (1+ o(1)).

If 1≪ y≪
(
Nn
Dn

)1/4
, then

P[Yn ≥ y] = e− y2
2

y
√
2π

exp

(
Ly3
6σ3

√
Dn
Nn

)
(1+ o(1)).

This estimate relies on the Berry–Esseen inequality and an argu-
ment of change of measure.

4. Local limit theorem: for any exponent ε ∈ (0, 12 ),

lim
n→∞

(
Nn
Dn

)ε
P

[
Yn − y ∈

(
Dn
Nn

)ε
(a,b)

]
=

e− y2
2

√
2π

(b− a).

Thus, Yn is normal between the two scales
(
Nn
Dn

)−1/2
and

(
Nn
Dn

)1/6
.
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Joint cumulants and dependency
graphs



Dependency graphs

Let S =
∑

v∈V Av be a sum of random variables, and G = (V, E) a de-
pendency graph for (Av)v∈V: if V1 and V2 are two disjoint subsets of V
without edge e = {v1, v2} between v1 ∈ V1 and v2 ∈ V2, then (Av)v∈V1
and (Av)v∈V2 are independent.

Example:

1

2

3
4

5

6

7

(A1,A2, . . . ,A5) ⊥ (A6,A7), but one has also (A1,A2,A3) ⊥ A5.

Parameters of the graph: D = maxv∈V(deg v+ 1),
N = card(V),
A = maxv∈V ∥Av∥∞.
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Theorem (Bound on cumulants; Féray–M.–Nikeghbali, 2013)
If S is a sum of random variables with a dependency graph of param-
eters (D,N,A), then for any r ≥ 1,

|κ(r)(S)| ≤ N (2D)r−1 rr−2 Ar.

Corollary: if Sn =
∑Nn

i=1 Ai,n with the Ai,n’s bounded by A and a sparse
dependency graph of maximal degree Dn ≪ Nn, then MC3 is satisfied.

The proof of the bound relies on the notion of joint cumulant:

κ(A1,A2, . . . ,Ar) =
dr

dz1dz2 · · ·dzr
(
logE[ez1A1+z2A2+···+zrAr ]

)∣∣∣∣
z1=···=zr=0

=
∑

π1⊔π2⊔···⊔πℓ(π)=[[1,r]]

(−1)ℓ(π)−1(ℓ(π)− 1)!
ℓ(π)∏
i=1

E

∏
j∈πi

Aj

 .
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Properties of joint cumulants

1. For any random variable X, κ(r)(X) = κ(X, X, . . . , X) (r occurrences).
2. The joint cumulants are multilinear and invariant by permutation.
3. If {A1,A2, . . . ,Ar} can be split in two independent families, then
κ({A1, . . . ,Ar}) = 0.

Consider a sum S =
∑

v∈V Av with a dependency graph G of parameters
(D,N,A).

κ(r)(S) =
∑

v1,v2,...,vr

κ(Av1 ,Av2 , . . . ,Avr)

and the sum can be restricted to families {v1, v2, . . . , vr} such that the
induced multigraph H = G[v1, v2, . . . , vr] is connected. Actually,

|κ(Av1 ,Av2 , . . . ,Avr)| ≤ Ar 2r−1 STH,

where STH is the number of spanning trees of H.
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Sketch of proof of the bound

1. In the expansion of κ(A1, . . . ,Ar), many set partitions yield the
same moment Mπ =

∏ℓ(π)
i=1 E[

∏
j∈πi Aj], so

κ(A1, . . . ,Ar) =
∑
π′

Mπ′

( ∑
π→Hπ′

µ(π)

)

|κ(A1, . . . ,Ar)| ≤ Ar
∑
π′

∣∣∣∣∣ ∑
π→Hπ′

µ(π)

∣∣∣∣∣ .
2. The functional FH/π′ =

∑
π→Hπ′ µ(π) depends only on the con-

traction H/π′ of H along π′, and one can show that is up to a sign
the bivariate Tutte polynomial

|FH/π′ | = TH/π′(1, 0) ≤ TH/π′(1, 1) = STH/π′ .
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3. A pair (π′, T ∈ STH/π′) can be associated to a bicolored spanning
tree of H, hence ∑

π′

STH/π′ ≤ 2r−1 STH.

The bound on the cumulant of the sum S follows by noticing that:

▶ given a vertex v1 and a Cayley tree T, the number of lists (v2, . . . , vr)
such that T is contained in H = G[v1, . . . , vr] is smaller than Dr−1;

▶ the number of pairs (v1 ∈ V, T Cayley tree) is N rr−2.

The proof leads to the notion of weighted dependency graph.
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Weighted dependency graphs

Definition (Weighted dependency graph; Féray, 2016)
A sum S =

∑
v∈V Av admits a weighted dependency graph G = (V, E) of

parameters (wt : E→ R+,A) if, for any family {v1, v2, . . . , vr},

|κ(Av1 ,Av2 , . . . ,Avr)| ≤ Ar
∑

T∈STG[v1,...,vr ]

 ∏
(vi,vj) edge of T

wt(vi, vj)

 .

The same proof gives:

|κ(S)| ≤ N (2D)r−1 rr−2 Ar

with N = card(V) and D = 1
2 (1+maxv∈W (

∑
w∼v wt(v,w))).
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Sums of weakly dependent random variables

Let Sn =
∑Nn

i=1 Ai,n be a sum of random variables, with |Ai,n| ≤ A a.s.
and a dependency graph of maximal degree Dn. We suppose that

Dn
Nn

→ 0 ;
Var(Sn)
NnDn

→ σ2 > 0 ;
κ(3)(Sn)
Nn(Dn)2

→ L.

Then, Sn−E[Sn] satisfies the hypotheses of the method of cumulants,
and all its consequences. Moreover, one has the concentration in-
equality:

P[|Sn − E[Sn]| ≥ ε] ≤ 2 exp
(
− ε2

9 (
∑Nn

i=1 E[|Ai|])Dn A

)

≤ 2 exp
(
− ε2

9NnDn A2

)
.
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Functionals of ergodic Markov chains

Let (Xn)n∈N be a reversible ergodicMarkov chain on a finite state space
X of size M, and f : X → R. We set Sn(f) =

∑n
i=1 f(Xi), and we denote π

the stationary distribution, P the transition matrix, and

θP = max{|z| | z ̸= 1, z eigenvalue of P}.

The sequence (Sn(f))n∈N has a weighted dependency graph and sat-
isfies the hypotheses of the method of cumulants, with parameters
Dn = 1+θP

2(1−θP) , Nn = n, and A = 2∥f∥∞
√
M.

Remarks:
1. If f = 1Xi=a, then one can take A = 2.
2. One can remove the hypothesis of reversibility if

lim
n→∞

Var(Sn(f))
n = Varπ(f) + 2

∞∑
i=1

covπ(f(X0), f(Xi)) ̸= 0.
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Magnetisation of the Ising model

Consider the Ising model on Λ ⊂ Zd, which is the probability measure
on spin configurations σ ∈ {±1}Λ proportional to exp(−HΛ

β,h(σ)), with

HΛ
β,h(σ) = −β

∑
i∼j∈Λ

σiσj − h
∑
i∈Λ

σi.

If h ̸= 0 or β < βc(d), then the Ising model has a unique limiting
probability measure µZd

β,h on Zd.

Let (Λn)n∈N be a growing sequence of boxes, and Mn =
∑

i∈λn σi be
themagnetization. Under µZd

β,h, (Mn−E[Mn])n∈N has a weighted depen-
dency graph and satisfies the hypotheses of the method of cumulants
if

▶ h ̸= 0 (non-zero ambient magnetic field);
▶ h = 0 and β < β1(d) < βc(d) (very high temperature).
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Subgraph counts in graphon
models



Subgraph counts and subgraph densities

If G = (VG, EG) is a finite graph, one says that F = (VF, EF) is a subgraph
of G if there is a map ψ : VF → VG such that

∀e = {x, y} ∈ EF, {ψ(x), ψ(y)} ∈ EG.

1

2 3

4

56

a

b

c

Density of F in G: t(F,G) = | hom(F,G)|
|VG||VF|

= 6
63 =

1
36 .

Objective: establish the mod-Gaussian convergence of t(F,Gn) for
some models (Gn)n∈N of random graphs.
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Graph functions and graphons

A graph function is a measurable function g : [0, 1]2 → [0, 1] that is
symmetric: g(x, y) = g(y, x) almost everywhere. If F is a graph on k
vertices and g is a graph function, the density of F in g is

t(F,g) =
∫
[0,1]k

 ∏
{i,j}∈EF

g(xi, xj)

dx1 dx2 · · ·dxk.

Let F be the set of graph functions, and G = F/ ∼ its quotient by
the relation:

g ∼ h ⇐⇒ ∃σ Lebesgue isomorphism of [0, 1], with h(x, y) = g(σ(x), σ(y)).

Definition (Graphon; Lovász–Szegedy, 2006)
A graphon is an element γ = [g] of the quotient space G . Endowed
with the topology of convergence of all the observables t(F, ·), G is a
compact metrisable space.
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From graphons to random graphs

To any graphon γ = [g], one can associate a random graph Gn(γ) on n
vertices:

1. One chooses n independent uniform variables X1, . . . , Xn in [0, 1].
2. One connects i to j in Gn(γ) according to a Bernoulli variable of
parameter g(Xi, Xj), independently for each pair {i, j}.

Conversely, to any graph G on n vertices, one can associate a graph
function g:

0 10

1

= 1
= 0

1

2 3

4

56
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Convergence of graphon models

Theorem (Lovász–Szegedy, 2006)
If γ is the graphon associated to a graph G, then t(F,G) = t(F, γ) for
any finite graph F. If γn(γ) is the random graphon associated to the
random graph Gn(γ), then E[t(F, γn(γ))] = t(F, γ) and

γn(γ) →P γ.

We introduce the algebra O of finite graphs F, endowed with the de-
gree deg F = card(VF) and with the product F1×F2 = F1⊔F2. One evalu-
ates an observable f ∈ O by linear extension of the rule F(γ) = t(F, γ).
The convergence of graphon models amounts to:

∀γ ∈ G , ∀f ∈ O, f(γn(γ)) →P f(γ).
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Dependency graphs for densities of subgraphs

Let γ be a graphon, F a finite graph on k vertices, Nn,k = nk and

Sn(F, γ) = nk t(F,Gn(γ))

=
∑

ψ:[[1,k]]→[[1,n]]

1ψ is a morphism from F to Gn(γ) =
∑

ψ:[[1,k]]→[[1,n]]

Aψ.

Given independent uniform random variables (Xi)1≤i≤n and (Ui,j)1≤i<j≤n,
one can write :

Aψ =
∏

{i<j}∈EF

1Uψ(i),ψ(j)≤g(Xψ(i),Xψ(j)).

If ψ and ϕ have disjoint images, then Aψ and Aϕ are independent.
Therefore, for any n ∈ N, γ ∈ G , f ∈ Ok, Sn(f, γ) is a sum of random
variables with a dependency graph of parameters

Dn,k = k2 nk−1; Nn,k = nk; A = ∥f∥Ok .
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Asymptotics of the first cumulants

The computation of the limits σ2(f, γ) and L(f, γ) involves the opera-
tion of junction of graphs. If F and G are finite graphs of size k, a ∈ VF
and b ∈ VG, we denote (F ▷◁ G)(a,b) the graph on 2k − 1 vertices
obtained by identifying a ∈ VF with b ∈ VG.

2▷◁ 31

2

3

3

2′

2 = 3′1

1

1′2

3

=

lim
n→∞

cov(Sn(F1, γ), Sn(F2, γ))
n2k−1 =

∑
1≤a,b≤k

t((F1 ▷◁ F2)(a,b), γ)−t(F1, γ) t(F2, γ).
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Mod-Gaussian convergence of the graphon models

Theorem (Féray–M.–Nikeghbali, 2016)
Fix γ ∈ G , f ∈ Ok, and define

κ2(F,G) =
1
k2

∑
1≤a,b≤k

(F ▷◁ G)(a,b)− F · G;

κ3(F,G,H) =
1
k4

∑
1≤a,b,c≤k

(F ▷◁ G ▷◁ H)(a,b, c) + 2 F · G · H− (F ▷◁ G)(a,b) · H
−(G ▷◁ H)(b, c) · F− (F ▷◁ H)(a, c) · G

+
1
k4
∑
Z/3Z

∑
1≤a,b̸=c,d≤k

(F ▷◁ G ▷◁ H)(a,b; c,d) + F · G · H
−(F ▷◁ G)(a,b) · H− (G ▷◁ H)(c,d) · F.

If κ2(f, f)(γ) ̸= 0, then Sn(f, γ) satisfiesMC1-MC3 with parametersDn,k =
k2 nk−1, Nn,k = nk and A = ∥f∥Ok . Moreover,

σ2 = κ2(f, f)(γ)
L = κ3(f, f, f)(γ).
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Numbers of triangles

So, any subgraph count of a random graph Gn(γ) stemming from any
graphon γ ∈ G is generically mod-Gaussian convergent.

Example: If K3 = and H = , then the density of triangles
t(K3,Gn(γ)) satisfies the central limit theorem:

Yn =
√
n t(K3,Gn(γ))− t(K3, γ)
3
√
t(H, γ)− t(K3, γ)2

⇀ N (0, 1),

assuming that the denominator is positive. Furthermore, one has

dKol(Yn,N (0, 1)) ≤ 81
(t(H, γ)− t(K3, γ)2)

3
2
√
n

for n large enough; the concentration inequality

P [|t(K3,Gn(γ))− t(K3, γ)| ≥ ε] ≤ 2 exp

(
−nε

2

3

)
;

as well as a moderate deviation result and a local limit theorem.
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Mod-Gaussian moduli spaces

We consider a compact metrisable space M , where convergence is
controled by a graded algebra of observables O .

M

m

×
×

××

M1

M2M4
M3

mod-Gaussian fluctuations
(in the sense of observables)

Informal definition: each parameter m ∈ M generates its own ran-
dom perturbations (Mn(m))n∈N, and for any observable f ∈ O , the se-
quence (f(Mn(m)))n∈N is mod-Gaussian convergent after appropriate
renormalisation, assuming κ2(f, f)(m) ̸= 0.
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One can prove that:
▶ the space of probability measures on a compact space;
▶ the space of permutons;
▶ the Thoma simplex

are mod-Gaussian moduli spaces for the following observables and
random variables:

▶ polynomial functionals of empirical measures of random sequences;
▶ counts of motives in random permutations;
▶ random characters values associated to random integer parti-
tions.

Informal conjecture: if one approximates a continous object by a ran-
dom discrete one, the observables of the model usually have mod-
Gaussian fluctuations (example: the Gromov–Hausdorff–Prohorov space).
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The end
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