HOMEWORK: CONVERGENCE OF RANDOM VARIABLES AND CHARACTERISTIC FUNCTIONS

1. Lévy's criterion of convergence in law

In this part, $(X_n)_{n \in \mathbb{N}}$ is a sequence of real random variables; their laws in $\mathscr{M}^1(\mathbb{R})$ are denoted μ_n , and their characteristic functions are denoted $\phi_n(t) = \mu_n(e^{itx}) = \mathbb{E}[e^{itX_n}]$.

(1) Show that for any real valued random variable X, the characteristic function $\phi(t) = \mathbb{E}[e^{itX}]$ is a continuous function $\mathbb{R} \to \mathbb{C}$.

In the following we suppose that $(\phi_n)_{n \in \mathbb{N}}$ converges pointwise to a function $\phi : \mathbb{R} \to \mathbb{C}$ which is continuous at t = 0:

$$\forall t \in \mathbb{R}, \ \lim_{n \to \infty} \phi_n(t) = \phi(t); \tag{1}$$

and
$$\lim_{t \to 0} \phi(t) = \phi(0) = 1.$$
 (2)

Questions 2. to 4. deal with the tightness of the sequence of probability measures $(\mu_n)_{n \in \mathbb{N}}$ under these hypotheses; Questions 5. to 8. deal with the unicity of a limit of a subsequence.

(2) Using Fubini's theorem, show that for any law $\mu \in \mathscr{M}^1(\mathbb{R})$ of characteristic function ϕ , and any $\varepsilon > 0$,

$$I_{\varepsilon} = \int_{-\varepsilon}^{\varepsilon} (1 - \phi(t)) \, dt = 2\varepsilon \int_{\mathbb{R}} \left(1 - \frac{\sin(\varepsilon x)}{\varepsilon x} \right) \mu(dx)$$

Show that if $|\varepsilon x| \ge 2$, then $1 - \frac{\sin(\varepsilon x)}{\varepsilon x} \ge \frac{1}{2}$. Deduce from it the inequality

$$\mu(\{x, |\varepsilon x| \ge 2\}) \le \frac{I_{\varepsilon}}{\varepsilon}.$$

(3) Fix $\eta > 0$. Under the hypotheses (1) and (2), show that there is an $\varepsilon > 0$ and an integer N such that

$$\forall n \ge N, \ \frac{I_{\varepsilon,n}}{\varepsilon} \le \eta.$$

Conclude that (1) and (2) imply the tightness of the sequence of laws $(\mu_n)_{n \in \mathbb{N}}$.

- (4) Show that ϕ is the characteristic function of a law $\mu \in \mathscr{M}^1(\mathbb{R})$ (hint: use a convergent subsequence of $(\mu_n)_{n \in \mathbb{N}}$).
- (5) Let μ and ν be two probability measures with characteristic functions ϕ_{μ} and ϕ_{ν} . Prove the Parseval identity

$$\int_{\mathbb{R}} e^{-itx} \phi_{\mu}(x) \nu(dx) = \int_{\mathbb{R}} \phi_{\nu}(y-t) \,\mu(dy).$$
(3)

Date: February 27, 2013.

(6) Take $\nu = \mathcal{N}(0, \varepsilon)$, a Gaussian law of variance ε with density and characteristic function

$$\nu(dx) = \frac{1}{\sqrt{2\pi\varepsilon}} e^{-\frac{x^2}{2\varepsilon}} dx \qquad ; \qquad \phi_{\nu}(t) = e^{-\frac{\varepsilon t^2}{2}}.$$

Denote X a random variable under the law μ , and $Y_{\varepsilon^{-1}}$ an independent random variable under the law $\mathcal{N}(0, \varepsilon^{-1})$. Prove that the quantity of Equation (3), viewed as a function $D(\varepsilon, t)$ of ε and t, is proportional to the density (in t) of the law of $X + Y_{\varepsilon^{-1}}$.

- (7) Verify that $Y_{\varepsilon^{-1}}$ converges in probability to the constant 0 as ε goes to infinity, and that $X + Y_{\varepsilon^{-1}} \rightharpoonup X$.
- (8) Show that if ϕ_{μ} is known, then so is the law μ , so that $\mu \mapsto \phi_{\mu}$ is injective.
- (9) Conclude that under the hypotheses (1) and (2), the laws μ_n converge to a law μ of a random variable (for the topology of convergence in law in $\mathscr{M}^1(\mathbb{R})$). This is Lévy's continuity theorem.
- (10) Show the converse implication: if $\mu_n \rightarrow \mu$, then (1) and (2) hold with $\phi_{\mu} = \phi$.
- (11) Application: let B_n be a sequence of independent random Bernoulli variables with $\mathbb{P}[B_n = 1] = \frac{1}{n}$ and $\mathbb{P}[B_n = 0] = 1 \frac{1}{n}$. Recall that $\sum_{k=1}^{n} \frac{1}{k} = \log n + O(1)$. We set

$$\widetilde{X}_n = \frac{\sum_{k=1}^n \left(B_k - \frac{1}{k} \right)}{\sqrt{\log n}} \qquad ; \qquad X_n = \frac{\left(\sum_{k=1}^n B_k \right) - \log n}{\sqrt{\log n}}.$$

Show that

$$\mathbb{E}[\mathrm{e}^{\mathrm{i}t\tilde{X}_n}] = \prod_{k=1}^n \left(1 - \frac{t^2}{2k\log n} + O\left(\frac{t^2}{k^2\log n} + \frac{t^3}{k\,(\log n)^{3/2}}\right) \right),$$

with a $O(\cdot)$ uniform in k. Conclude that X_n converges in law to a standard Gaussian variable.

Notice that X_n is a model for the number of disjoint cycles of a random permutation of n elements.

2. Mod-convergence and Berry-Esseen estimates

Lévy's criterion is mostly used in order to prove convergence towards a Gaussian random variable. In this second part we measure the difference between the distribution of the X_n 's and the Gaussian distribution under slightly stronger hypotheses than before. Hence, we consider a sequence of real-valued random variables $(Y_n)_{n \in \mathbb{N}}$ such that

$$\forall n \in \mathbb{N}, \ \forall t \in \mathbb{R}, \ \mathbb{E}[\mathrm{e}^{\mathrm{i}tY_n}] = \phi_n(t) = \mathrm{e}^{-\frac{\lambda_n t^2}{2}} \psi_n(t); \tag{4}$$

$$\lambda_n \ge 0, \quad \lim_{n \to \infty} \lambda_n = +\infty;$$
(5)

$$\lim_{n \to \infty} \psi_n = \psi \quad \text{at speed } o\left(\frac{1}{\sqrt{\lambda_n}}\right).$$
(6)

In Equation (4), we call the functions $\psi_n(t)$ the residues of the characteristic functions $\phi_n(t)$. We assume that they are continuously differentiable functions on the real line, and that ψ_n converge uniformly and sufficiently fast on every compact to the function ψ , which

is itself continuously differentiable (and with $\psi_n(0) = \psi(0) = 1$); this is the meaning of Equation (6). So,

$$\forall \varepsilon > 0, \ \forall T > 0, \ \exists N, \ \forall n \ge N, \sup_{t \in [-T,T]} |\psi_n(t) - \psi(t)| \le \frac{\varepsilon}{\sqrt{\lambda_n}}.$$

- (1) Set $X_n = Y_n/\sqrt{\lambda_n}$. Show that X_n converges in law to a standard Gaussian variable of mean 0 and variance 1. For this reason, Hypotheses (4)-(6) are called hypotheses of mod-Gaussian convergence.
- (2) For two probability measures μ and ν on \mathbb{R} , one defines their Kolmogorov distance as

$$d(\mu,\nu) = \sup_{x \in \mathbb{R}} |F_{\mu}(x) - F_{\nu}(x)|,$$

where $F_{\mu}(x)$ is the cumulative distribution function of μ , that is $\mu(-\infty, x)$. Prove that if μ is absolutely continuous with respect to the Lebesgue measure, then

$$\mu_n \rightharpoonup \mu \iff d(\mu_n, \mu) \to 0.$$

One can use freely Dini's theorem, which says that bounded increasing functions that converge pointwise converge in fact uniformly (optional: prove Dini's theorem).

Hence, in the following, we shall measure the convergence $X_n \to \mathcal{N}(0,1)$ by computing $d(\mu_{Y_n}, \mathcal{N}_{(0,\lambda_n)}) = d(\mu_{X_n}, \mathcal{N}_{(0,1)})$. For T > 0, we set

$$\Delta_T(x) = \frac{1 - \cos(Tx)}{\pi T x^2}.$$

Questions 3. to 5. are devoted to a proof of Berry's lemma, which relates the Kolmogorov distance to the behavior of characteristic functions. Then, in Questions 6. to 8., we apply this lemma to the situation of mod-convergence.

(3) Fix T > 0. Show that $\Delta_T(x) \ge 0$ for all $x \in \mathbb{R}$; that $\int_{\mathbb{R}} \Delta_T(x) dx = 1$; and that

$$\widehat{\Delta_T}(t) = \int_{\mathbb{R}} \Delta_T(x) e^{itx} dx = \begin{cases} 1 - \frac{|t|}{T} & \text{if } |t| \le T, \\ 0 & \text{otherwise} \end{cases}$$

Show also that the probability measure $\Delta_T(x) dx$ gives to the set $\{x, |x| \ge h\}$ a mass smaller than $\frac{4}{\pi Th}$.

(4) Let F be the cumulative distribution function of a probability measure, and G be a bounded function with

$$\lim_{x \to -\infty} G(x) = 0 \quad ; \quad \lim_{x \to \infty} G(x) = 1 \quad ; \quad |G'(x)| \le m$$

for a certain constant m. We denote

$$D(x) = F(x) - G(x) \qquad ; \qquad D_T(x) = \int_{\mathbb{R}} D(x - y) \,\Delta_T(y) \,dy;$$

$$\eta = \sup_{x \in \mathbb{R}} |D(x)| \qquad ; \qquad \eta_T = \sup_{x \in \mathbb{R}} |D_T(x)|.$$

If $\eta = 0$, show that $\eta_T = 0$. Otherwise, we fix an element x_0 such that $|D(x_0)| = \eta$; for instance we assume $D(x_0) = \eta$. Show that if $h = \frac{\eta}{2m}$ and $x = x_0 + h$, then

$$D(x-y) \ge \frac{\eta}{2} + my$$
 for all $|y| \le h$.

Prove then that

$$\eta_T \ge \frac{\eta}{2} - \frac{12m}{\pi T}$$

(distinguish the cases $\eta = 0$ and $\eta > 0$, and in this case split the integral $D_T(x)$ in two parts).

(5) Suppose that $F = F_{\mu}$ and G have characteristic functions

$$\phi_{\mu}(t) = \int_{\mathbb{R}} e^{itx} \mu(dx) \quad ; \quad \phi_{G}(t) = \int_{\mathbb{R}} e^{itx} g(x) \, dx = \widehat{g}(t) \quad \text{with } g = G'.$$

Using Fourier inversion formula $f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{f}(t) e^{-itx} dt$, prove that

$$D_T(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{\Delta_T}(t) \left(\frac{\phi_\mu(t) - \phi_G(t)}{-it} \right) e^{-itx} dt;$$

$$\eta \le \frac{1}{\pi} \int_{-T}^{T} \left| \frac{\phi_\mu(t) - \phi_G(t)}{t} \right| dt + \frac{24m}{\pi T}.$$
 (7)

This last inequality is *Berry's lemma*.

(6) Under the hypotheses (4)-(6), show that

$$\phi_{\mu_n}(t) = \mathbb{E}[\mathrm{e}^{\mathrm{i}tX_n}] = \mathrm{e}^{-\frac{t^2}{2}} \left(1 + \frac{\psi'(0)\,t}{\sqrt{\lambda_n}} + o\left(\frac{t}{\sqrt{\lambda_n}}\right) \right).$$

Prove also that $e^{-\frac{t^2}{2}} \left(1 + \frac{\psi'(0)t}{\sqrt{\lambda_n}} \right)$ is the Fourier transform of

$$g_n(x) = \frac{\mathrm{e}^{-\frac{x^2}{2}}}{\sqrt{2\pi}} \left(1 - \frac{\psi'(0)\,\mathrm{i}x}{\sqrt{\lambda_n}} \right).$$

We set $G_n(x) = \int_{-\infty}^x g_n(y) \, dy$; check that this function satisfies the previous assumptions.

(7) In the previous setting, prove that

$$\eta_n = \sup_{x \in \mathbb{R}} |F_{\mu_n}(x) - G_n(x)| = o\left(\frac{1}{\sqrt{\lambda_n}}\right)$$

(hint: take $T = K\sqrt{\lambda_n}$ with K big, and split the integral in (7) in two parts

$$t \in [-\varepsilon \sqrt{\lambda_n}, \varepsilon \sqrt{\lambda_n}];$$

$$t \in [-K\sqrt{\lambda_n}, K\sqrt{\lambda_n}] \setminus [-\varepsilon \sqrt{\lambda_n}, \varepsilon \sqrt{\lambda_n}].$$

with ε sufficiently small).

(8) Assuming $\psi'(0) \neq 0$, show that

$$d(\mu_{X_n}, \mathcal{N}_{(0,1)}) = \frac{|\mathrm{Im}(\psi'(0))| (1 + o(1))}{\sqrt{2\pi\lambda_n}}.$$

(9) Optional: apply this result to the example of 1.(11).