
HOMEWORK: CONVERGENCE OF RANDOM
VARIABLES AND CHARACTERISTIC FUNCTIONS

1. Lévy’s criterion of convergence in law

In this part, (Xn)n∈N is a sequence of real random variables; their laws in M 1(R) are
denoted µn, and their characteristic functions are denoted φn(t) = µn(eitx) = E[eitXn ].

(1) Show that for any real valued random variable X, the characteristic function
φ(t) = E[eitX ] is a continuous function R→ C.

In the following we suppose that (φn)n∈N converges pointwise to a function φ : R → C
which is continuous at t = 0:

∀t ∈ R, lim
n→∞

φn(t) = φ(t); (1)

and lim
t→0

φ(t) = φ(0) = 1. (2)

Questions 2. to 4. deal with the tightness of the sequence of probability measures (µn)n∈N
under these hypotheses; Questions 5. to 8. deal with the unicity of a limit of a subse-
quence.

(2) Using Fubini’s theorem, show that for any law µ ∈M 1(R) of characteristic func-
tion φ, and any ε > 0,

Iε =

∫ ε

−ε
(1− φ(t)) dt = 2ε

∫
R

(
1− sin(εx)

εx

)
µ(dx).

Show that if |εx| ≥ 2, then 1− sin(εx)
εx
≥ 1

2
. Deduce from it the inequality

µ({x, |εx| ≥ 2}) ≤ Iε
ε
.

(3) Fix η > 0. Under the hypotheses (1) and (2), show that there is an ε > 0 and an
integer N such that

∀n ≥ N,
Iε,n
ε
≤ η.

Conclude that (1) and (2) imply the tightness of the sequence of laws (µn)n∈N.

(4) Show that φ is the characteristic function of a law µ ∈ M 1(R) (hint: use a
convergent subsequence of (µn)n∈N).

(5) Let µ and ν be two probability measures with characteristic functions φµ and φν .
Prove the Parseval identity∫

R
e−itx φµ(x) ν(dx) =

∫
R
φν(y − t)µ(dy). (3)
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(6) Take ν = N (0, ε), a Gaussian law of variance ε with density and characteristic
function

ν(dx) =
1√
2πε

e−
x2

2ε dx ; φν(t) = e−
εt2

2 .

Denote X a random variable under the law µ, and Yε−1 an independent random
variable under the law N (0, ε−1). Prove that the quantity of Equation (3), viewed
as a function D(ε, t) of ε and t, is proportional to the density (in t) of the law of
X + Yε−1 .

(7) Verify that Yε−1 converges in probability to the constant 0 as ε goes to infinity,
and that X + Yε−1 ⇀ X.

(8) Show that if φµ is known, then so is the law µ, so that µ 7→ φµ is injective.

(9) Conclude that under the hypotheses (1) and (2), the laws µn converge to a law µ
of a random variable (for the topology of convergence in law in M 1(R)). This is
Lévy’s continuity theorem.

(10) Show the converse implication: if µn ⇀ µ, then (1) and (2) hold with φµ = φ.

(11) Application: let Bn be a sequence of independent random Bernoulli variables with
P[Bn = 1] = 1

n
and P[Bn = 0] = 1− 1

n
. Recall that

∑n
k=1

1
k

= log n+O(1). We set

X̃n =

∑n
k=1

(
Bk − 1

k

)
√

log n
; Xn =

(
∑n

k=1Bk)− log n√
log n

.

Show that

E[eitX̃n ] =
n∏
k=1

(
1− t2

2k log n
+O

(
t2

k2 log n
+

t3

k (log n)3/2

))
,

with a O(·) uniform in k. Conclude that Xn converges in law to a standard
Gaussian variable.

Notice that Xn is a model for the number of disjoint cycles of a random permutation
of n elements.

2. Mod-convergence and Berry-Esseen estimates

Lévy’s criterion is mostly used in order to prove convergence towards a Gaussian random
variable. In this second part we measure the difference between the distribution of the
Xn’s and the Gaussian distribution under slightly stronger hypotheses than before. Hence,
we consider a sequence of real-valued random variables (Yn)n∈N such that

∀n ∈ N, ∀t ∈ R, E[eitYn ] = φn(t) = e−
λnt

2

2 ψn(t); (4)
λn ≥ 0, lim

n→∞
λn = +∞; (5)

lim
n→∞

ψn = ψ at speed o
(

1√
λn

)
. (6)

In Equation (4), we call the functions ψn(t) the residues of the characteristic functions
φn(t). We assume that they are continuously differentiable functions on the real line, and
that ψn converge uniformly and sufficiently fast on every compact to the function ψ, which



is itself continuously differentiable (and with ψn(0) = ψ(0) = 1); this is the meaning of
Equation (6). So,

∀ε > 0, ∀T > 0, ∃N, ∀n ≥ N, sup
t∈[−T,T ]

|ψn(t)− ψ(t)| ≤ ε√
λn
.

(1) Set Xn = Yn/
√
λn. Show that Xn converges in law to a standard Gaussian variable

of mean 0 and variance 1. For this reason, Hypotheses (4)-(6) are called hypotheses
of mod-Gaussian convergence.

(2) For two probability measures µ and ν on R, one defines their Kolmogorov distance
as

d(µ, ν) = sup
x∈R
|Fµ(x)− Fν(x)|,

where Fµ(x) is the cumulative distribution function of µ, that is µ(−∞, x). Prove
that if µ is absolutely continuous with respect to the Lebesgue measure, then

µn ⇀ µ ⇐⇒ d(µn, µ)→ 0.

One can use freely Dini’s theorem, which says that bounded increasing functions
that converge pointwise converge in fact uniformly (optional: prove Dini’s theo-
rem).

Hence, in the following, we shall measure the convergence Xn ⇀ N (0, 1)) by computing
d(µYn ,N(0,λn)) = d(µXn ,N(0,1)). For T > 0, we set

∆T (x) =
1− cos(Tx)

π Tx2
.

Questions 3. to 5. are devoted to a proof of Berry’s lemma, which relates the Kolmogorov
distance to the behavior of characteristic functions. Then, in Questions 6. to 8., we apply
this lemma to the situation of mod-convergence.

(3) Fix T > 0. Show that ∆T (x) ≥ 0 for all x ∈ R; that
∫
R ∆T (x) dx = 1; and that

∆̂T (t) =

∫
R

∆T (x) eitx dx =

{
1− |t|

T
if |t| ≤ T,

0 otherwise.

Show also that the probability measure ∆T (x) dx gives to the set {x, |x| ≥ h} a
mass smaller than 4

πTh
.

(4) Let F be the cumulative distribution function of a probability measure, and G be
a bounded function with

lim
x→−∞

G(x) = 0 ; lim
x→∞

G(x) = 1 ; |G′(x)| ≤ m

for a certain constant m. We denote

D(x) = F (x)−G(x) ; DT (x) =

∫
R
D(x− y) ∆T (y) dy;

η = sup
x∈R
|D(x)| ; ηT = sup

x∈R
|DT (x)|.

If η = 0, show that ηT = 0. Otherwise, we fix an element x0 such that |D(x0)| = η;
for instance we assume D(x0) = η. Show that if h = η

2m
and x = x0 + h, then

D(x− y) ≥ η

2
+my for all |y| ≤ h.



Prove then that
ηT ≥

η

2
− 12m

πT
(distinguish the cases η = 0 and η > 0, and in this case split the integral DT (x)
in two parts).

(5) Suppose that F = Fµ and G have characteristic functions

φµ(t) =

∫
R

eitx µ(dx) ; φG(t) =

∫
R

eitx g(x) dx = ĝ(t) with g = G′.

Using Fourier inversion formula f(x) = 1
2π

∫
R f̂(t) e−itx dt, prove that

DT (x) =
1

2π

∫
R

∆̂T (t)

(
φµ(t)− φG(t)

−it

)
e−itx dt;

η ≤ 1

π

∫ T

−T

∣∣∣∣φµ(t)− φG(t)

t

∣∣∣∣ dt +
24m

πT
. (7)

This last inequality is Berry’s lemma.

(6) Under the hypotheses (4)-(6), show that

φµn(t) = E[eitXn ] = e−
t2

2

(
1 +

ψ′(0) t√
λn

+ o

(
t√
λn

))
.

Prove also that e−
t2

2

(
1 + ψ′(0) t√

λn

)
is the Fourier transform of

gn(x) =
e−

x2

2

√
2π

(
1− ψ′(0) ix√

λn

)
.

We set Gn(x) =
∫ x
−∞ gn(y) dy; check that this function satisfies the previous as-

sumptions.

(7) In the previous setting, prove that

ηn = sup
x∈R
|Fµn(x)−Gn(x)| = o

(
1√
λn

)
(hint: take T = K

√
λn with K big, and split the integral in (7) in two parts

t ∈ [−ε
√
λn, ε

√
λn];

t ∈ [−K
√
λn, K

√
λn] \ [−ε

√
λn, ε

√
λn].

with ε sufficiently small).

(8) Assuming ψ′(0) 6= 0, show that

d(µXn ,N(0,1)) =
|Im(ψ′(0))| (1 + o(1))√

2πλn
.

(9) Optional: apply this result to the example of 1.(11).
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