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We consider the model of Brownian motion indexed by the Brownian
tree, which has appeared in a variety of different contexts in probability,
statistical physics and combinatorics. For this model, the total occupation
measure is known to have a continuously differentiable density (`x)x∈R
and we write ( ˙̀x)x∈R for its derivative. Although the process (`x)x≥0

is not Markov, we prove that the pair (`x, ˙̀x)x≥0 is a time-homogeneous
Markov process. We also establish a similar result for the local times of one-
dimensional super-Brownian motion. Our methods rely on the excursion the-
ory for Brownian motion indexed by the Brownian tree.

1. Introduction. The Ray-Knight theorems, which give the Markov property of the pro-
cess of local times of linear Brownian motion in the space variable, at certain particular stop-
ping times, are some of the most famous and useful results about Brownian motion. The goal
of the present work is to discuss a similar Markov property of local times for the model of
branching Brownian motion which we call Brownian motion indexed by the Brownian tree.
Here the Brownian tree is conveniently described as the random continuous tree T coded by
a Brownian excursion under the Itô measure, and may also be viewed as a free version of
Aldous’ Continuum Random Tree (the word “free” means that the volume of the tree is not
fixed). The tree T is equipped with a volume measure Vol whose total mass is the duration
σ of the excursion coding T . Given the Brownian tree T , we can consider Brownian motion
indexed by T , which we denote by (Va)a∈T . We view Va as a label assigned to the “vertex” a
of the tree, in such a way that the label of the root is 0, and labels evolve like linear Brownian
motion along line segments of T . The total occupation measure of Brownian motion indexed
by T is the measure Y defined by

〈Y, g〉=
∫
g(Va) Vol(da),

for every nonnegative measurable function g on R. We write N0 for the (σ-finite) measure
under which T and (Va)a∈T are defined.

Let us emphasize that the pair (T , (Va)a∈T ) plays an important role in a number of differ-
ent areas of probability theory, combinatorics or statistical physics. In particular, this pair is
the key ingredient of the Brownian snake construction of super-Brownian motion [17]. When
conditioned on having a total volume equal to 1 (this just means that the coding Brownian ex-
cursion is normalized), T becomes Aldous’ Continuum Random Tree also known as the CRT
[2], up to an unimportant scaling factor 2, and Y then corresponds to the random measure
called ISE [3]. Both the CRT and ISE appear in a number of combinatorial asymptotics for
discrete trees possibly equipped with labels (see e.g. [6, 7, 18]). Other applications, involving
multidimensional versions of (Va)a∈T , include interacting particle systems (see e.g. [8]) and
models of statistical physics [11, 13]. More recently, the pair (T , Va)a∈T ) has been used as
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the basic building block for the construction of the models of random geometry that arise as
scaling limits of large random planar maps (see in particular [19, 27]).

The measure Y has (N0 a.e.) a continuous density denoted by (`x, x ∈ R), and we call `x

the local time of (Va)a∈T at level x. The function x 7→ `x is even continuously differentiable
on R. The latter property is proved in the recent paper [9], and a slightly weaker statement
had been obtained earlier in [7] (both [7] and [9] deal with ISE, but a straightforward scaling
argument then shows that the preceding properties also hold for Y under N0). As a matter
of fact, the existence of a continuously differentiable density for Y under N0 can also be
derived from older results of Sugitani [30], which were concerned with (one-dimensional)
super-Brownian motion (see Section 3 below). We write ˙̀x for the derivative of the function
x 7→ `x.

By analogy with the classical Ray-Knight theorems, one may ask about the Markovian
properties of the process (`x, x ∈R), or simply of (`x, x≥ 0). Informally, it seems clear that
this process cannot be Markovian: To predict the future after time x≥ 0, one should at least
know the value of the derivative ˙̀x, and not only `x. The main result of the present work
shows that the additional information provided by the derivative suffices to get a Markov
process.

THEOREM 1. The process ((`x, ˙̀x), x ≥ 0) is time-homogeneous Markov under N0.
Moreover the two processes ((`x, ˙̀x), x≥ 0) and ((`−x, ˙̀−x), x≥ 0) are independent condi-
tionally on (`0, ˙̀0).

A simple symmetry argument shows that ((`x, ˙̀x), x≥ 0) and ((`−x,− ˙̀−x), x≥ 0) have
the same distribution (in particular, the law of ˙̀0 is symmetric). One may be puzzled by the
fact that N0 is an infinite measure. However, for every ε > 0, the event where `0 ≥ ε has
finite N0-measure (the distribution of `0 under N0 has a density proportional to `−5/3, cf.
[24, Corollary 3.1]) and the statement of the theorem can be formulated as well under the
probability measure N0(· | `0 ≥ ε).

Let us now discuss an analog of Theorem 1 for super-Brownian motion. We consider a one-
dimensional super-Brownian motion (Xt)t≥0 with branching mechanism φ(u) = 2u2 and
initial value X0 = αδ0, where α > 0 is a constant. Note that the choice of the multiplicative
constant 2 in the formula for φ is only for convenience and by scaling one could as well
deal with the case φ(u) = cu2 for c > 0. By results of Sugitani [30, Theorem 4], the total
occupation measure

Y :=

∫ ∞
0

Xt dt.

has (a.s.) a continuous density (Lx)x∈R with respect to Lebesgue measure, and this density is
continuously differentiable on (0,∞) and on (−∞,0). Let L̇y stand for the derivative of the
mapping x 7→ Lx at y 6= 0. When y = 0, both the right derivative L̇0+ and the left derivative
L̇0− exist, and L̇0+ − L̇0− =−2α. By convention, we set L̇0 = L̇0+.

THEOREM 2. The process ((Lx, L̇x), x≥ 0) is time-homogeneous Markov with the same
transition kernel as the process ((`x, ˙̀x), x≥ 0) of Theorem 1. Moreover the two processes
((Lx, L̇x), x≥ 0) and ((L−x, L̇−x), x≥ 0) are independent conditionally on (L0, L̇0).

By symmetry, the two processes ((Lx, L̇x), x≥ 0) and ((L−x,−L̇(−x)−), x≥ 0) have the
same law, where L(−x)− = L−x except when x = 0. In particular, the law of L̇0 + α is
symmetric. Theorem 2 is derived by adapting the method of proof of Theorem 1, using the
fact that the process (Xt)t≥0 can be constructed from a Poisson point measure with intensity
αN0 (see [17, Chapter IV]).
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Let us explain the main ideas of the proof of Theorem 1. It is well known that the classical
Ray-Knight theorems can be proved by excursion theory, using in particular the indepen-
dence of excursions above and below a given level. Our proof of Theorem 1 follows a similar
approach, but we now rely on the excursion theory developed in the article [1] for Brownian
motion indexed by the Brownian tree. Let us fix h > 0 for definiteness. As in the classical
setting, one is interested in describing the connected components of the set {a ∈ T : Va 6= h}
together with the distribution of the Brownian labels Va assigned to each connected compo-
nent. Leaving aside the connected component containing the root of T , which is called the
root component and plays a particular role, we call any such component (equipped with its la-
bels) an excursion above or below h, depending on the fact that labels are greater or smaller
than h. For any excursion above or below h, one can make sense of a quantity called the
boundary size of the excursion, which measures how many points of the closure of the com-
ponent have a label equal to h. Moreover, the boundary sizes of the components other than
the root component are exactly the jumps of a continuous-state branching process with stable
branching mechanism ψ(λ) =

√
8/3λ3/2, which we denote by (X hr )r≥0 and whose initial

value Zh is the so-called “exit measure” from (−∞, h) (Zh corresponds to the boundary size
of the root component). Roughly speaking, the results of [1] imply that the excursions above
or below h are independent (and are also independent of the root component) conditionally
on their boundary sizes. The point in deriving Theorem 1 is now to understand the condi-
tional distribution of the boundary sizes of excursions above level h given the excursions
below h (and the root component). To this end, we first observe that the classical Lamperti
representation allows us to write (X hr )r≥0 as a time change of a stable Lévy process U with
no negative jumps started at U0 = Zh and stopped at the time T0 when it first hits 0. The
boundary sizes of excursions also correspond to the jumps of this (stopped) Lévy process.
Distinguishing excursions above and below level h amounts to assigning a label +1 or −1
to each of these jumps. One can construct two independent Lévy processes U ′ and U ′′, such
that, on one hand, U ′0 = Zh and the jumps of U ′ are the jumps of U with label −1, on the
other hand, U ′′0 = 0 and the jumps of U ′′ are the jumps of U with label +1 (in such a way
that U = U ′ + U ′′, and the Lévy measure of U ′, or of U ′′, is half the Lévy measure of U ).
Finally, one can prove that the local time `h is equal to T0 and moreover its derivative ˙̀h is
equal to 2U ′′T0

= −2U ′T0
. From these observations and some additional work, one gets that

the conditional distribution of the boundary sizes of excursions above h, knowing the excur-
sions below h and the root component, is the distribution of jumps of the Lévy process U ′′

conditioned to be equal to 1
2

˙̀h at time `h, and this conditional distribution only depends on
the pair (`h, ˙̀h). This leads to the desired Markov property.

It is interesting to compare Theorem 1 with the main result of [23], which gives the distri-
bution under N0 of the random process (Xx)x≥0 whose value at time x≥ 0 is the sequence
of boundary sizes of connected components of {a ∈ T : Va > x} in nonincreasing order
(these are the boundary sizes of excursions above level x, in the language of the preceding
paragraph). The process (Xx)x≥0 is identified as a growth-fragmentation process whose Eve
particle process is determined explicitly. Note that `x is a measurable function of Xx: By
[23, Proposition 26], `x can be written, up to a multiplicative constant, as the limit of δ3/2

times the number of components of Xx greater than δ, when δ→ 0. Similarly, Lemma 10
below shows that ˙̀x is equal to twice the suitably renormalized sum of the components of
Xx (some renormalization is needed because the sum is infinite). However, despite the fact
that (Xx)x≥0 is a Markov process with known distribution, it does not seem easy to infer
from this that the process (`x, ˙̀x)x≥0 is also Markov.

The recent paper of Chapuy and Marckert [9] deals with the random measure ISE and ad-
dresses topics closely related to the present work with very different (combinatorial) methods
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based on discrete approximations. In particular, [9] proves that the density of ISE is contin-
uously differentiable and discusses the regularity of the derivative. The study of discrete
analogs also leads [9] to conjecture that the derivative of the density satisfies a stochastic
differential equation involving the density itself and the distribution function of ISE (that is,
the integral of the density over (−∞, t]). One may observe that conditioning the total vol-
ume of T to be equal to 1 (as in the definition of ISE) makes it hopeless to get a Markov
property of the type of Theorem 1. The forthcoming work [22] will show that the process
(Lx, L̇x)x≥0 in Theorem 2, or equivalently the process (`x, ˙̀x)x≥0 in Theorem 1, satisfies an
explicit stochastic differential equation for which pathwise uniqueness holds.

The paper is organized as follows. Section 2 gives a number of preliminaries including a
precise definition and properties of the “exit measure process” (X hr )r≥0 and of the measures
N∗,zh that are used to describe the distribution of excursions above or below the level h. In
Section 3, we briefly recall the relations between super-Brownian motion and our model
of Brownian motion indexed by the Brownian tree, and we explain how Sugitani’s results in
[30] can be used to study the regularity of the process (`x)x∈R (more precise results about this
regularity are derived in [9]). Section 4 is devoted to technical estimates about the measures
N∗,zh , which play an important role in the subsequent proofs. The proof of Theorem 1 is given
in Section 5. Section 6 then explains how the same method of proof can be used to derive
Theorem 2. Finally, Section 7 gives several open questions and complements. In particular,
we explain how Theorem 1 provides information about the model of random geometry known
as the Brownian sphere, which has been studied extensively in the recent years.

2. Preliminaries.

2.1. Snake trajectories. We use the formalism of snake trajectories and we recall the
main definitions that will be needed below. We refer to [1] for more information. A (one-
dimensional) finite path w is a continuous mapping w : [0, ζ]−→ R, where the number ζ =
ζ(w) is called the lifetime of w. The space W of all finite paths is a Polish space when
equipped with the distance

dW(w,w′) = |ζ(w) − ζ(w′)|+ sup
t≥0
|w(t∧ ζ(w))−w′(t∧ ζ(w′))|.

The endpoint or tip of the path w is denoted by ŵ = w(ζ(w)). For every x ∈R, we setWx =
{w ∈W : w(0) = x}. The trivial element ofWx with zero lifetime is identified with the point
x of R.

DEFINITION 3. Let x ∈ R. A snake trajectory with initial point x is a continuous map-
ping s 7→ ωs from R+ intoWx which satisfies the following two properties:

(i) We have ω0 = x and the number σ(ω) := sup{s≥ 0 : ωs 6= x}, called the duration of the
snake trajectory ω, is finite (by convention σ(ω) = 0 if ωs = x for every s≥ 0).

(ii) For every 0≤ s≤ s′, we have ωs(t) = ωs′(t) for every t ∈ [0, min
s≤r≤s′

ζ(ωr)].

Property (ii) is called the snake property. We will write Sx for the set of all snake trajec-
tories with initial point x, and S for the union of the sets Sx for all x ∈R. If ω ∈ S , we often
write Ws(ω) = ωs and ζs(ω) = ζ(ωs) for every s≥ 0, and we omit ω in the notation. The sets
S and Sx are equipped with the distance

dS(ω,ω′) = |σ(ω)− σ(ω′)|+ sup
s≥0

dW(Ws(ω),Ws(ω
′)).
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A snake trajectory ω is completely determined by the knowledge of the lifetime function
s 7→ ζs(ω) and of the tip function s 7→ Ŵs(ω): See [1, Proposition 8]. For ω ∈ Sx and a ∈R,
we will use the obvious notation ω+ a ∈ Sx+a.

Let ω ∈ S be a snake trajectory and σ = σ(ω). The lifetime function s 7→ ζs(ω) codes a
compact R-tree, which will be denoted by T = T (ω) and called the genealogical tree of the
snake trajectory. This R-tree is the quotient space T := [0, σ]/∼ of the interval [0, σ] for the
equivalence relation

s∼ s′ if and only if ζs = ζs′ = min
s∧s′≤r≤s∨s′

ζr,

and T is equipped with the distance induced by

dζ(s, s
′) = ζs + ζs′ − 2 min

s∧s′≤r≤s∨s′
ζr.

(notice that dζ(s, s′) = 0 if and only if s∼ s′, and see e.g. [18] for more information about the
coding of R-trees by continuous functions). We let p(ω) : [0, σ]−→T stand for the canonical
projection. By convention, T is rooted at the point ρ := p(ω)(0) = p(ω)(σ), and the volume
measure Vol(ω)(·) on T is defined as the pushforward of Lebesgue measure on [0, σ] under
p(ω) — we often write Vol instead of Vol(ω). As usual, for a, b ∈ T , we say that a is an
ancestor of b, or b is a descendant of a, if a belongs to the line segment from ρ to b in T .

By property (ii) in the definition of a snake trajectory, the condition p(ω)(s) = p(ω)(s
′)

implies that Ws(ω) = Ws′(ω). So the mapping s 7→Ws(ω) can be viewed as defined on
the quotient space T . For a ∈ T , we set Va(ω) := Ŵs(ω) whenever s ∈ [0, σ] is such that
a = p(ω)(s) — by the previous observation this does not depend on the choice of s. We
interpret Va as a “label” assigned to the “vertex” a of T . Notice that the mapping a 7→ Va is
continuous on T . We will use the notation

W∗ := min{Ws(t) : s≥ 0, t ∈ [0, ζs]}= min{Va : a ∈ T },

W ∗ := max{Ws(t) : s≥ 0, t ∈ [0, ζs]}= max{Va : a ∈ T },

and we also let Y(ω) be the finite measure on R defined by setting

(1) 〈Y, g〉=
∫ σ

0
g(Ŵs) ds=

∫
T
g(Va) Vol(da),

for any bounded continuous function g : R−→R+. Trivially, Y is supported on [W∗,W
∗].

2.2. Re-rooting and truncation of snake trajectories. We now introduce two important
operations on snake trajectories. The first one is the re-rooting operation (see [1, Section 2.2]).
Let ω ∈ Sx and r ∈ [0, σ(ω)]. Then ω[r] is the snake trajectory in Sω̂r such that σ(ω[r]) = σ(ω)
and for every s ∈ [0, σ(ω)],

ζs(ω
[r]) = dζ(r, r⊕ s),

Ŵs(ω
[r]) = Ŵr⊕s(ω),

where we use the notation r ⊕ s = r + s if r + s ≤ σ, and r ⊕ s = r + s − σ otherwise.
By a remark following the definition of snake trajectories, these prescriptions completely
determine ω[r].

The genealogical tree T (ω[r]) is then interpreted as the tree T (ω) re-rooted at the vertex
p(ω)(r): More precisely, the mapping s 7→ r⊕s induces an isometry from T (ω[r]) onto T (ω),
which maps the root of T (ω[r]) to p(ω)(r). Furthermore, the vertices of T (ω[r]) receive the
same labels as in T (ω).



6

The second operation is the truncation of snake trajectories. For any w ∈Wx and y ∈ R,
we set

τy(w) := inf{t ∈ (0, ζ(w)] : w(t) = y} ,

with the usual convention inf ∅ =∞. Then if ω ∈ Sx and y ∈R, we set, for every s≥ 0,

νs(ω) := inf
{
t≥ 0 :

∫ t

0
du1{ζ(ωu)≤τy(ωu)} > s

}
(note that the condition ζ(ωu) ≤ τy(ωu) holds if and only if τy(ωu) =∞ or τy(ωu) = ζ(ωu)).
Then, setting ω′s = ωνs(ω) for every s≥ 0 defines an element ω′ of Sx, which will be denoted
by try(ω) and called the truncation of ω at y (see [1, Proposition 10]). Informally, the trun-
cated snake trajectory try(ω) behaves exactly like the snake trajectory ω when the paths ωs
do not hit y, and the effect of the time change νs(ω) is to “eliminate” those paths ωs that hit y
and survive for a positive amount of time. The genealogical tree of try(ω) is canonically and
isometrically identified with the closed subset of T (ω) consisting of all a such that Vb(ω) 6= y
for every strict ancestor b of a (different from ρ when y = x).

Finally, for ω ∈ Sx and y ∈ R\{x}, we define the excursions of ω away from y. We let
(αj , βj), j ∈ J , be the connected components of the open set

{s ∈ [0, σ] : τy(ωs)< ζ(ωs)}

(note that the indexing set J may be empty). We notice that ωαj = ωβj for every j ∈ J , by
the snake property, and ω̂αj = y. For every j ∈ J , we define a snake trajectory ωj ∈ Sy by
setting

ωjs(t) := ω(αj+s)∧βj (ζ(ωαj ) + t) , for 0≤ t≤ ζ(ωjs)
:= ζ(ω(αj+s)∧βj ) − ζ(ωαj ) and s≥ 0.

We say that ωj , j ∈ J , are the excursions of ω away from y.

2.3. The Brownian snake excursion measure. Let x ∈R. The Brownian snake excursion
measure Nx is the σ-finite measure on Sx that satisfies the following two properties: Under
Nx,

(i) the distribution of the lifetime function (ζs)s≥0 is the Itô measure of positive excursions
of linear Brownian motion, normalized so that, for every ε > 0,

Nx
(

sup
s≥0

ζs > ε
)

=
1

2ε
;

(ii) conditionally on (ζs)s≥0, the tip function (Ŵs)s≥0 is a Gaussian process with mean x
and covariance function

K(s, s′) = min
s∧s′≤r≤s∨s′

ζr.

Informally, the lifetime process (ζs)s≥0 evolves under Nx like a Brownian excursion, and
conditionally on (ζs)s≥0, each path Wr is a linear Brownian path started from x with lifetime
ζr , which is “erased” from its tip when ζr decreases, and is “extended” when ζr increases.
The measure Nx can be interpreted as the excursion measure away from x for the Markov
process inWx called the (one-dimensional) Brownian snake. Note that the preceding infor-
mal description applies as well to the Brownian snake, except that, in that case, the lifetime
process evolves like a reflecting Brownian motion in [0,∞). We refer to [17] for a detailed
study of the Brownian snake with a more general underlying spatial motion.

As usual for excursion measures, we can state a Markov property under Nx. Let u > 0
and let F and H be two nonnegative measurable functions defined respectively on the space
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of all continuous functions from [0, u] intoWx and on the space of all continuous functions
from [0,∞) intoWx. Then,

Nx
(
1{u<σ}F

(
(Wr)0≤r≤u

)
H
(
(Wu+s)s≥0

))
(2)

= Nx
(
1{u<σ}F

(
(Wr)0≤r≤u

)
E∗Wu

[
H
(
(Ws)s≥0

)])
,

where, for every w ∈ Wx, P∗w denotes the law of the Brownian snake started from w and
stopped when the lifetime process hits 0 (see [17, Section IV.4]).

For every r > 0, we have

Nx(W ∗ > x+ r) = Nx(W∗ < x− r) =
3

2r2

(see e.g. [17, Section VI.1]). In particular, Nx(y ∈ [W∗,W
∗])<∞ if y 6= x. We will use the

first-moment formula under Nx, which states that, for any nonnegative measurable function
F onWx,

(3) Nx
(∫ σ

0
F (Ws) ds

)
=

∫ ∞
0

dtEx
[
F
(
(Br)0≤r≤t

)]
,

where B denotes a linear Brownian motion that starts from x under the probability measure
Px (see [17, Chapter 4]). We also recall the re-rooting invariance property of N0 [26, Theo-
rem 2.3]. To state this property, it is convenient to modify a little the definition of a re-rooted
snake trajectory in the preceding section: if ω ∈ S0 and r ∈ [0, σ(ω)], we set ω̃[r] = ω[r]− ω̂r
(we just shift the snake trajectory ω[r] so that it belongs to S0 instead of Sω̂r ). Then, for any
nonnegative measurable function F on [0,∞)×S0, we have

(4) N0

(∫ σ

0
dr F (r, ω̃[r])

)
= N0

(∫ σ

0
dr F (r,ω)

)
.

The following scaling property is often useful. For λ > 0, for every ω ∈ Sx, we define
θλ(ω) ∈ Sx√λ by θλ(ω) = ω′, with

ω′s(t) :=
√
λ ωs/λ2(t/λ) , for s≥ 0 and 0≤ t≤ ζ ′s := λζs/λ2 .

Then θλ(Nx) = λNx√λ.
Let us now define exit measures. We argue under Nx, and fix y ∈R\{x}. Then, the idea is

to make sense of a quantity that “measures” the number of paths Ws that hit level y and are
stopped at that hitting time. Precisely, one shows [21, Proposition 34] that the limit

(5) Lyt := lim
ε→0

1

ε2

∫ t

0
ds1{ζs≤τy(Ws), |Ŵs−y|<ε}

exists for every t ∈ [0, σ], Nx a.e., and defines a continuous increasing function called the
exit local time from (y,∞) (if x > y) or from (−∞, y) (if y > x). The exit measure is then
defined by Zy := Lyσ , and we have Zy > 0 if and only if y ∈ [W∗,W

∗], Nx a.e. This definition
of the exit local time and of Zy is a particular case of the theory of exit measures, see [17,
Chapter V] where a different but equivalent approximation of Lyt is used. It follows from the
approximation (5) that Zy is Nx a.e. equal to a measurable function of the truncated snake
try(ω). We will use the following formula, for every λ > 0,

(6) Nx
(

1− exp(−λZy)
)

=
(
|x− y|

√
2/3 + λ−1/2

)−2
.

See formula (6) in [10] for a brief justification. In particular, we have Nx(Zy) = 1.
We now recall the special Markov property of the Brownian snake under N0 (see in par-

ticular the appendix of [20]).
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PROPOSITION 4 (Special Markov property). Let x ∈R and y ∈R\{x}. Under the mea-
sure Nx(dω), let ωj , j ∈ J , be the excursions of ω away from y and consider the point
measure

Ny =
∑
j∈J

δωj .

Then, under the probability measure Nx(dω |y ∈ [W∗,W
∗]) and conditionally on Zy , the

point measure Ny is Poisson with intensity ZyNy(·) and is independent of try(ω).

2.4. The exit measure process at a point. Let us fix a point x ∈ R in this section and
consider a snake trajectory ω distributed according to Nx. An important role in this work will
be played by a process (X xr )r>0, such that for every r > 0, X xr measures the “quantity” of
pathsWs(ω) that have accumulated a local time at x exactly equal to r. The precise definition
of X xr belongs to the general theory of exit measures and we refer to the introduction of [1]
for more details (roughly speaking, one needs to consider the Brownian snake whose spatial
motion is the pair consisting of a linear Brownian motion and its local time at x, and then
the exit measure from the set R× [0, r)). One proves that the process (X xr )r>0 is distributed
under Nx according to the excursion measure of the continuous-state branching process with
branching mechanism ψ(u) =

√
8/3u3/2 (in short, the ψ-CSBP, we refer to [17, Chapter II]

for basic facts about CSBPs). This means that, if N =
∑

k∈K δωk is a Poisson point measure
with intensity αNx, the process X defined by X0 = α and, for every r > 0,

Xr :=
∑
k∈K
X xr (ωk),

is a ψ-CSBP started at α (see [23, Section 2.4]). In particular, (X xr )r>0 has a càdlàg modifi-
cation under Nx, which we consider from now on. We take X x0 = 0 by convention and call
(X xr )r≥0 the exit measure process at x.

Still under Nx, we can also define the exit measure process at y for any y 6= x. We can
either rely on the general theory of exit measures, or use the point process

∑
j∈J δωj of

excursions away from y (as in Proposition 4) to define for every r > 0,

X yr :=
∑
j∈J
X yr (ωj)

(note that the quantitiesX yr (ωj) make sense by the special case y = x treated before). We also
set X y0 = Zy . It follows from Proposition 4 and the preceding considerations that, under the
probability measure Nx(· | y ∈ [W∗,W

∗]) = Nx(· | Zy > 0), conditionally on Zy , the process
(X yr )r≥0 is a ψ-CSBP started at Zy and is independent of try(ω). Again we call (X yr )r≥0 the
exit measure process at y.

2.5. The positive excursion measure. Under N0, the paths ωs, 0< s < σ, take both pos-
itive and negative values, simply because they behave like one-dimensional Brownian paths
started from 0. We will now introduce another important measure on S0, which is supported
on snake trajectories taking only nonnegative values. For δ ≥ 0, let S(δ)

0 be the set of all
ω ∈ S0 such that sups≥0(supt∈[0,ζs(ω)] |ωs(t)|)> δ. Also set

S+
0 = {ω ∈ S0 : ωs(t)≥ 0 for every s≥ 0 and t ∈ [0, ζs(ω)]} ∩ S(0)

0 .

There exists a σ-finite measure N∗0 on S0, which is supported on S+
0 , and gives finite mass to

the sets S(δ)
0 for every δ > 0, such that

N∗0(G) = lim
ε→0

1

ε
Nε(G(tr0(ω))),
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for every bounded continuous function G on S0 that vanishes on S0\S(δ)
0 for some δ > 0

(see [1, Theorem 23]). Under N∗0, each of the paths ωs, 0< s < σ, starts from 0, then stays
positive during some time interval (0, α), and is stopped immediately when it returns to 0, if
it does return to 0.

In a way analogous to the definition of exit measures, one can make sense of the “quantity”
of paths ωs that return to 0 under N∗0. To this end, one proves that the limit

(7) Z∗0 := lim
ε→0

1

ε2

∫ σ

0
ds1{0<Ŵs<ε}

exists N∗0 a.e. See [1, Proposition 30] for a slightly weaker result — the stronger form stated
above follows from the results of [21, Section 10]. Notice that replacing the limit by a liminf
in (7) allows us to make sense of Z∗0 (ω) for every ω ∈ S+

0 .
The following conditional versions of the measure N∗0 play a fundamental role in the

present work. According to [1, Proposition 33], there exists a unique collection (N∗,z0 )z>0

of probability measures on S+
0 such that:

(i) We have N∗0 =

√
3

2π

∫ ∞
0

dz z−5/2 N∗,z0 .

(ii) For every z > 0, N∗,z0 is supported on {Z∗0 = z}.
(iii) For every z, z′ > 0, N∗,z

′

0 = θz′/z(N
∗,z
0 ).

Informally, N∗,z0 = N∗0(· | Z∗0 = z). It will be convenient to write

(8) n(dz) =

√
3

2π
z−5/2 dz,

so that n(dz) is the “law” of Z∗0 under N∗0. We note that the convergence (7) also holds N∗,z0
a.s., with Z∗0 replaced by z ([21, Corollary 37]), and we record the formula

(9) N∗,z0 (σ) = z2,

for every z > 0 (see e.g. [23, Proposition 10]).
It will be convenient to write Ň∗,z0 for the pushforward of N∗,z0 under the mapping ω→−ω.

Furthermore, for every h ∈R, we write N∗,zh , resp. Ň∗,zh for the pushforward of N∗,z0 , resp. of
Ň∗,z0 , under the shift ω 7→ ω+ h.

The next theorem relates the measures Nx and N∗0 via a re-rooting transformation. Recall
that, for every ω ∈ S and every s ∈ [0, σ(ω)], ω[s] denotes the snake trajectory ω re-rooted at
s (Section 2.2).

THEOREM 5. [1, Theorem 28] Let G be a nonnegative measurable function on S . Then,

N∗0

(∫ σ

0
drG(ω[r])

)
= 2

∫ ∞
0

dbNb
(
Z0G(tr0(ω))

)
.

As a first application, we can take G(ω) = g(ω(0)) where g : R −→ R+ is measurable.
Since Nb(Z0) = 1 for every b > 0, it follows that

(10) N∗0

(∫ σ

0
dr g(Ŵr)

)
= 2

∫ ∞
0

db g(b).
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2.6. Excursion theory. We now recall the main theorem of the excursion theory devel-
oped in [1]. We fix x ∈ R and y ∈ R. We consider a random snake trajectory ω distributed
according to Nx. The goal of this excursion theory is to describe the connected components
of {v ∈ T (ω) : Vv 6= y}, and the evolution of labels on these connected components (there
is an obvious analogy with classical excursion theory for linear Brownian motion). Let C
be a connected component of {v ∈ T (ω) : Vv 6= y}, and exclude the case where C contains
the root ρ of T (ω) (this case occurs when y 6= x). If C denotes the closure of C, there is
a unique point u of C at minimal distance from the root (in such a way that all points of
C are descendants of u) and we have Vu = y. Following [1], we say that u is an excursion
debut from y. We observe that a branching point of T (ω) cannot be an excursion debut from
y: indeed, branching points of T (ω) correspond under p(ω) to times of local minimum of
(0, σ) 3 s 7→ ζs, and, if r is such a time of local minimum, the conditional distribution of
(Ŵs)s≥0 given (ζs)s≥0 shows that Ŵr 6= y a.s., which gives the desired result since there are
only countably many times of local minimum.

Let C be a connected component of {v ∈ T (ω) : Vv 6= y} and let u be the associated
excursion debut. We can code C and the labels on C via a snake trajectory which is defined
as follows. First we observe that there are exactly two times s0 < s′0 such that p(ω)(s0) =
p(ω)(s

′
0) = u, and the set p(ω)([s0, s

′
0]) is the subtree of all descendants of u (here we use the

fact that u is not a branching point). We then define a snake trajectory ω̃(u) ∈ S0 coding the
subtree p(ω)([s0, s

′
0]) (and its labels) by setting

ω̃(u)
s (t) := ω(s0+s)∧s′0(ζs0 + t) for 0≤ t≤ ζ(s0+s)∧s′0 .

We finally set ω(u) := try(ω̃
(u)) and we observe that the compact R-tree C is identified iso-

metrically to the tree T (ω(u)), and moreover this identification preserves the labels. Also, the
restriction of the volume measure Vol(ω) to C (or to C) corresponds via the latter identifica-
tion to the volume measure Vol(ω(u)) of T (ω(u)) = C. Note that Vol(ω) puts no mass on C\C
since C\C ⊂ {v ∈ T (ω) : Vv = y}.

We say that ω(u) is an excursion above y if the values of Vv for v ∈ C are greater than y
(equivalently the paths ω(u)

s take values in [y,∞)), and that ω(u) is an excursion below y if
the values of Vv for v ∈ C are smaller than y. We note that the terminology is a bit misleading,
since an excursion away from y, as considered in Proposition 4, will contain infinitely many
excursions above or below y.

Recall from Section 2.4 the definition of the exit measure process at y, which is denoted
by (X yr )r≥0. If y /∈ [W∗,W

∗] (which does not occur when y = x, and is equivalent to Zy = 0
when y 6= x), there are no excursion debuts from y. For this reason, we suppose that Zy > 0
when y 6= x in the following lines. By Proposition 3 of [1] (and an application of the special
Markov property when y 6= x), excursion debuts from y are in one-to-one correspondence
with the jump times of the process (X yr )r≥0, in such a way that, if u is an excursion debut
and s ∈ [0, σ] is such that p(ω)(s) = u, the associated jump time of the exit measure process
at y is the total local time at y accumulated by the path ωs. We can list the jump times of
(X yr )r≥0 in a sequence (ri)i∈N in decreasing order of the jumps ∆X yri = X yri − X

y
ri−. For

every i ∈N, we write ui for the excursion debut associated with ri.
The following theorem is essentially Theorem 4 of [1]. We write N(y)

x = Nx(· | Zy > 0)

when y 6= x, and N(x)
x = Nx.

THEOREM 6. Under N(y)
x , conditionally on (X yr )r≥0, the excursions ω(ui), i ∈ N, are

independent, and independent of try(ω), and the conditional distribution of ω(ui) is

1

2

(
N
∗,∆X yri
y + Ň

∗,∆X yri
y

)
,
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where ∆X yri =X yri −X
y
ri− is the jump of X y at time ri.

To be specific, Theorem 4 of [1] deals with the case y = x (in that case, try(ω) is trivial),
but then an application of the special Markov property (Proposition 4) yields the case y 6= x.

2.7. A path transformation of Lévy processes. The classical Lamperti transformation
[16] shows that the continuous-state branching process (X yr )r≥0 of the preceding section can
be obtained as a time change of a stable Lévy process with no negative jumps. In this section,
we state a path transformation of Lévy processes that will be relevant in forthcoming proofs.
Let β ∈ (1,2), and let (Us)s≥0 be a (centered) stable Lévy process with index β and with no
negative jumps, such that U0 = a > 0. Then the Laplace transform of Us − a is well defined
and given by E[exp(−λ(Us − a))] = exp(c sλβ) for every λ > 0, where c > 0 is a constant.
We say that the Laplace exponent of U is cλβ . For every t > 0, we write (Ubr,a,t

s )0≤s≤t for
the associated bridge of duration t from a to 0, that is, for the process (Us)0≤s≤t conditioned
on Ut = 0. We refer to [12] for a precise definition and construction of this bridge.

We then set

T0 := inf{s≥ 0 : Us = 0},

and we consider the following transformation of the path of U over the time interval [0, T0].
Let R be a nonnegative random variable which is uniformly distributed over [0, T0] condi-
tionally given the process U . For every s ∈ [0, T0], we set

Ũs =

{
UR+s −UR + a if 0≤ s≤ T0 −R;
UR+s−T0

−UR if T0 −R≤ s≤ T0.

LEMMA 7. The conditional distribution of (Ũs)0≤s≤T0
knowing that T0 = t is the law of

(Ubr,a,t
s )0≤s≤t.

A discrete version of the previous statement, for centered random walks with negative
jumps of size −1 only, is easy to prove from the arguments based on the cyclic lemma that
lead to the classical Kemperman lemma — see e.g. Section 6.1 of [29]. Then Lemma 7
follows by applying a suitable invariance principle. Alternatively, Corollary 8 of [5] gives
the analog of Lemma 7 when U is replaced by a linear Brownian motion, and Section 4 of
the same paper explains how this can be extended to the setting of processes with cyclically
exchangeable increments (which is more than we need here).

In order to apply Lemma 7, we note that the collection of jumps of the process Ũ over
the time interval [0, T0] is the same as the collection of jumps of U over the same interval.
Write D(R+,R) for the Skorokhod space of càdlàg real functions on R+, and D0(R+,R)
for the subset of D(R+,R) consisting of functions with compact support. Then, if g is a
nonnegative measurable function on R+, and F is a nonnegative measurable function de-
fined on D0(R+,R) such that F (w) only depends on the sequence of jumps of w ordered in
nonincreasing size, we have
(11)

E
[
g(T0)F ((Us∧T0

)s≥0)
]

= E
[
g(T0)F ((Ũs∧T0

)s≥0)
]

=

∫
πa(dt)g(t)E

[
F ((Ubr,a,t

s∧t )s≥0)
]
,

where πa stands for the law of T0. In other words, the conditional distribution of the se-
quence of jumps of (Us)0≤s≤T0

(ordered in nonincreasing size) knowing that T0 = t is the
distribution of the sequence of jumps of (Ubr,a,t

s )0≤s≤t.
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3. The connection with super-Brownian motion. In this section, we briefly recall the
connection between the Brownian snake excursion measures Nx and super-Brownian motion,
referring to [17] for more details. We fix α> 0, and consider a Poisson point measure on S ,

N =
∑
k∈K

δωk

with intensity αN0. Then one can construct a one-dimensional super-Brownian motion
(Xt)t≥0 with branching mechanism φ(u) = 2u2 and initial value X0 = αδ0, such that, for
any nonnegative measurable function g on R,

(12)
∫ ∞

0
〈Xt, g〉dt=

∑
k∈K
〈Y(ωk), g〉,

where Y(ωk) is defined in formula (1). In a more precise way, the process (Xt)t≥0 is defined
by setting, for every t > 0 and every nonnegative measurable function g on R,

〈Xt, g〉 :=
∑
k∈K

∫ σ(ωk)

0
drl

t
r(ωk)g(Ŵr(ωk)),

where ltr(ωk) denotes the local time of the process s 7→ ζs(ωk) at level t and at time r, and the
notation drl

t
r(ωk) refers to integration with respect to the nondecreasing function r 7→ ltr(ωk)

(see Chapter 4 of [17]). We are primarily interested in the total occupation measure

Y :=

∫ ∞
0

Xt dt.

It follows from the results of Sugitani [30, Theorem 4] that Y has (a.s.) a continuous density
(Lx)x∈R with respect to Lebesgue measure, and this density is continuously differentiable
on (0,∞) and on (−∞,0). On the other hand, for every ε > 0, the event A where the point
measure N has exactly one atom ω∗ such that W ∗(ω∗) ≥ ε has positive probability, and,
conditionally on this event, ω∗ is distributed according to N0(· |W ∗ ≥ ε). Furthermore, on the
event A, formula (12) entails that the restriction of Y to (ε,∞) coincides with the restriction
of Y(ω∗) to the same set. It follows that, a.s. under the probability measure N0(· |W ∗ ≥ ε),
Y has a continuously differentiable density on (ε,∞). Since ε was arbitrary, and using a
symmetry argument, we easily conclude that Y has a continuously differentiable density on
(−∞,0)∪ (0,∞), N0 a.e.

In fact, we can remove the “singularity” at 0. Indeed, we may use the re-rooting invariance
property of N0 (formula (4)) to obtain that Y has a continuously differentiable density on
R\{x}, Y(dx) a.e., N0 a.e. It follows that Y has a continuously differentiable density on
R, N0 a.e. — as already mentioned, this fact also follows from the results of [9], which are
proved via a completely different method. As in the introduction above, we write (`x, x ∈R)
for the density of Y (under N0) and call `x the local time at level x. The derivative of `x is
denoted by ˙̀x.

4. Technical estimates. The following lemma is a key ingredient of the proof of our
main result.

LEMMA 8. (i) For every z > 0 and ε > 0,

N∗,z0

(∫ σ

0
ds1{Ŵs<ε}

)
= ε4 f(

z

ε2
),

where the function f : (0,∞)−→ (0,∞) is continuous, and u−1f(u)−→ 1 as u→∞.
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(ii) There exists a constant C such that, for every α ∈ (0,1] and ε ∈ (0,
√
α ], we have

ε−4N∗0

((∫ σ

0
ds1{Ŵs<ε}

)2
1{Z∗0≤α}

)
≤C
√
α.

PROOF. (i) For every z > 0 and x > 0, set

pz(x) = 2
(3

2

)3/2√
π z3/2x−4 Υ(

3z

2x2

)
,

where the function Υ is defined on (0,∞) by

Υ(x) =
2√
π

(x1/2 + x−1/2)− 2(x+
3

2
)ex erfc(

√
x),

with the usual notation erfc(y) = 2√
π

∫∞
y e−x

2

dx. Note that Υ(x) = 2√
π
x−1/2 + O(1) as

x→ 0, and Υ(x) = 3
2
√
π
x−5/2 +O(x−7/2) as x→∞.

By [25, Proposition 3], we have for every ε > 0,

N∗,z0

(∫ σ

0
ds1{Ŵs<ε}

)
= z2

∫ ε

0
dxpz(x).

Using the preceding formula for pz(x), and the change of variable y = 3z
2x2 , we obtain

N∗,z0

(∫ σ

0
ds1{Ŵs<ε}

)
=
√
π z2

∫ ∞
(3z)/(2ε2)

dy
√
yΥ(y).

We thus get the formula of part (i) of the lemma with the function f defined by

f(u) =
√
π u2

∫ ∞
3u/2

dy
√
yΥ(y).

The properties of f stated in the lemma follow from this explicit expression and the asymp-
totics of Υ(x) as x→∞.

(ii) We use a scaling argument to write

ε−4N∗0

((∫ σ

0
ds1{Ŵs<ε}

)2
1{Z∗0≤α}

)

=

√
3

2π
ε−4

∫ α

0
dz z−5/2 N∗,z0

((∫ σ

0
ds1{Ŵs<ε}

)2
)

=

√
3

2π
ε4

∫ α

0
dz z−5/2 N∗,ε

−2z
0

((∫ σ

0
ds1{Ŵs<1}

)2
)

=

√
3

2π
ε

∫ ε−2α

0
dz z−5/2 N∗,z0

((∫ σ

0
ds1{Ŵs<1}

)2
)

= εJ(
α

ε2
),

where we have set, for every a > 0,

J(a) := N∗0

((∫ σ

0
ds1{Ŵs<1}

)2
1{Z∗0≤a}

)
.
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In order to prove (ii), we thus need to get the bound J(a)≤C
√
a when a≥ 1.

To this end, we apply Theorem 5 with

G(ω) = 1{ω(0)<1} 1{Θ(ω)≤a}

∫ σ

0
du1{Ŵu(ω)<1},

where the function Θ is defined on S by

Θ(ω) = lim inf
ε→0

1

ε2

∫ σ(ω)

0
ds1{ω̂s<ε},

in such a way that we have Z∗0 = Θ(ω[r]) for every r ∈ (0, σ), N∗0 a.e., and Z0 = Θ(tr0(ω)),
Nb a.e. for every b > 0 (use (7) and (5)). It follows that

J(a) = 2

∫ 1

0
dbNb

(
Z0 1{Z0≤a}

∫ σ

0
du1{Ŵu<1,ζu≤τ0(Wu)}

)
,

where we recall the notation τ0(w) = inf{t ∈ (0, ζ(w)] : w(t) = 0}, for w ∈W .
Let us fix b ∈ (0,1) and set

K(a, b) = Nb
(
Z0 1{Z0≤a}

∫ σ

0
du1{Ŵu<1,ζu≤τ0(Wu)}

)
.

Then K(a, b)≤ e K̃(a, b), where

K̃(a, b) = Nb
(
Z0 e

−Z0/a

∫ σ

0
du1{Ŵu<1,ζu≤τ0(Wu)}

)
.

Let (L0
s)0≤s≤σ denote the exit local time from (0,∞) as defined in formula (5), and recall

that Z0 = L0
σ . Then,

K̃(a, b) = Nb
(∫ σ

0
du1{Ŵu<1,ζu≤τ0(Wu)}L

0
u e
−L0

σ/a
)

+Nb
(∫ σ

0
du1{Ŵu<1,ζu≤τ0(Wu)}(L

0
σ −L0

u)e−L
0
σ/a
)
,

and the two terms in the right-hand side are equal, by a simple time-reversal argument. Let
us consider the second term, and bound e−L

0
σ/a by e−(L0

σ−L0
u)/a. Using the Markov property

under Nb (cf. formula (2)), we get

(13) K̃(a, b)≤ 2Nb

(∫ σ

0
du1{Ŵu<1,ζu≤τ0(Wu)}E

∗
Wu

(
L0
σ e
−L0

σ/a
))

,

where we note that the definition of the exit local time also makes sense under P∗w for any
w ∈Wb, see [17, Section V.1].

Let w ∈Wb such that ζ(w) ≤ τ0(w). For every λ > 0, we compute

E∗w[L0
σe
−λL0

σ ] =− d

dλ
E∗w[e−λL

0
σ ].

We use Lemma V.5 of [17], which says that the evolution of the Brownian snake under P∗w
is described by a Poisson measure P on [0, ζ(w)]×S with intensity 2 dtNw(t)(dω), in such a
way that

E∗w[e−λL
0
σ ] = E∗w

[
exp

(
− λ

∫
P(dtdω)Z0(ω)

)]
= exp

(
− 2

∫ ζ(w)

0
dtNw(t)(1− e−λZ0)

)
.
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Using also (6), we get

E∗w[L0
σe
−λL0

σ ] =− d

dλ

(
exp

(
− 3

∫ ζ(w)

0
dt
(

w(t) +
√

3/2λ
)−2

))
.

It follows that

E∗w[L0
σe
−λL0

σ ]

= 3
√

3/2λ−3/2

(∫ ζ(w)

0

dt

(w(t) +
√

3/2λ)3

)
exp

(
− 3

∫ ζ(w)

0
dt
(

w(t) +
√

3/2λ
)−2

))
.

We take λ= 1/a and substitute the identity of the last display in (13). From the first moment
formula (3), we get

K̃(a, b)≤ 6

√
3

2
a3/2

∫ ∞
0

dtEb

[
1{t≤κ0,Bt<1}

(∫ t

0

ds

(Bs +
√

3a/2)3

)

× exp

(
− 3

∫ t

0
du
(
Bu +

√
3a/2

)−2
)]

,

where (Bt)t≥0 is a linear Brownian motion that starts from b under the probability measure
Pb, and, for every x ∈ R, κx = inf{t ≥ 0 : Bt = x}. To simplify notation, let us set C1 :=

6
√

3/2, and write a′ =
√

3a/2. It follows that

K̃(a, b)

≤C1 a
3/2 Eb

[∫ ∞
0

ds

(Bs + a′)3

∫ ∞
s

dt1{t≤κ0,Bt<1} exp

(
− 3

∫ t

0
du (Bu + a′)−2

)]

=C1 a
3/2 Eb+a′

[∫ ∞
0

ds

(Bs)3

∫ ∞
s

dt1{t≤κa′ ,Bt<a′+1} exp

(
− 3

∫ t

0
du (Bu)−2

)]

≤C1 a
3/2

∫ ∞
0

dsEb+a′

[
(Bs)

−3 exp

(
− 3

∫ s

0
du (Bu)−2

)∫ ∞
s

dt1{t≤κa′ ,Bt<a′+1}

]

=C1 a
3/2

∫ ∞
0

dsEb+a′

[
(Bs)

−3 exp

(
− 3

∫ s

0
du (Bu)−2

)
1{s<κa′}

×EBs

[∫ ∞
0

dt1{t≤κa′ ,Bt<a′+1}

]]
where we have applied the Markov property at time s. We then observe that, for every x > a′,

(14) Ex

[∫ ∞
0

dt1{t≤κa′ ,Bt<a′+1}

]
≤ 1.

Indeed, the strong Markov property shows that it is enough to prove this when x = a′ + 1,
and then

Ea′+1

[∫ ∞
0

dt1{t≤κa′ ,Bt<a′+1}

]
= E1

[∫ κ0

0
dt1{Bt<1}

]
= E

[∫ 1

0
du (R(2)

u )2
]

= 1,

where R(2) denotes a two dimensional Bessel process started at 0, and the second equality
follows from a classical Ray-Knight theorem.
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Thanks to (14), we arrive at

(15) K̃(a, b)≤C1 a
3/2

∫ ∞
0

dsEb+a′

[
(Bs)

−3 exp

(
− 3

∫ s

0
du (Bu)−2

)
1{s<κa′}

]
.

At this stage, we use the absolute continuity relations between Brownian motion and Bessel
processes (see e.g. Section 2 of [31] or [26, Proposition 2.6]) to get, for every s > 0,

Eb+a′

[
(Bs)

−3 exp

(
− 3

∫ s

0
du (Bu)−2

)
1{s<κa′}

]

= (b+ a′)3 Eb+a′
[
(Rs)

−6 1{Ru>a′,∀u∈[0,s]}

]
,

where (Rt)t≥0 denotes a Bessel process of dimension 7 that starts at x under the probability
measure Px. Recalling that b ∈ (0,1) and a ≥ 1, the right-hand side of the last display is
bounded above by C ′Eb+a′ [(Rs)−3 1{Ru>a′,∀u∈[0,s]}], for some constant C ′ independent of
b and a. From (15), we then get

(16) K̃(a, b)≤C ′C1 a
3/2

∫ ∞
0

dsEb+a′
[
(Rs)

−3 1{Ru>a′,∀u∈[0,s]}

]
.

Set κRa′ = inf{t≥ 0 :Rt ≤ a′} ≤+∞. Then,

Eb+a′
[
(Rs)

−31{Ru>a′,∀u∈[0,s]}

]
=Eb+a′

[
(Rs)

−31{Rs>a′}

]
−Eb+a′

[
(Rs)

−31{Rs>a′, κRa′≤s}

]
.

On one hand,∫ ∞
0

dsEb+a′
[
(Rs)

−3 1{Rs>a′, κRa′≤s}

]
= Eb+a′

[∫ ∞
κR
a′

ds (Rs)
−3 1{Rs>a′}

]
= Pb+a′(κ

R
a′ <∞)×Ea′

[∫ ∞
0

ds (Rs)
−31{Rs>a′}

]
=
( a′

b+ a′

)5
×E0

[∫ ∞
0

ds (Rs)
−31{Rs>a′}

]
and, on the other hand,∫ ∞

0
dsEb+a′

[
(Rs)

−3 1{Rs>a′}

]
≤E0

[∫ ∞
0

ds (Rs)
−31{Rs>a′}

]
.

By combining the last two displays, we get∫ ∞
0

dsEb+a′
[
(Rs)

−3 1{Ru>a′,∀u∈[0,s]}

]
≤
(

1−
( a′

b+ a′

)5)
E0

[∫ ∞
0

ds (Rs)
−31{Rs>a′}

]
,

and we have

E0

[∫ ∞
0

ds (Rs)
−3 1{Rs>a′}

]
=

∫
R7

dz

|z|3
G(z)1{|z|>a′} ≤

C ′′

a′
,

where G(z) = c |z|−5 denotes the Green function of Brownian motion in R7, and C ′′ is a
constant. Finally, since

1−
( a′

b+ a′

)5
≤ 5× b

b+ a′
≤ 5

a′
,

the bound (16) gives

K̃(a, b)≤ 5C ′′C ′C1 a
3/2 (a′)−2 = (10/3)C ′′C ′C1

√
a,

since (a′)2 = 3a/2. We conclude that J(a) ≤ C
√
a, with C = (20/3)eC ′′C ′C1. This com-

pletes the proof.
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5. Proof of Theorem 1. Let us write M(R) for the space of all finite measures on R,
which is equipped with the topology of weak convergence and the associated Borel σ-field.
We define a transition kernel from (0,∞)×R intoM(R) as follows. For (t, y) ∈ (0,∞)×R,
we use the notation Ubr,t,y for the bridge of duration t from 0 to y associated with the stable
Lévy process with no negative jumps and Laplace exponent 1

2ψ(λ) =
√

2/3λ3/2 (we again
refer to [12] for the construction of this bridge). Let ηk, k ∈ N, be the sequence of jumps of
Ubr,t,y ranked in nonincreasing order. We define Q((t, y),dµ) as the probability measure on
M(R) obtained as the distribution of ∑

k∈N
Y(ωk)

where, conditionally on Ubr,t,y , the random snake trajectories ωk are independent, and, for
every k, ωk is distributed according to N∗,ηk0 . This definition makes sense because, using
formula (9),

E
[∑
k∈N
〈Y(ωk),1〉

∣∣∣Ubr,t,y
]

= E
[∑
k∈N

σ(ωk)
∣∣∣Ubr,t,y

]
=
∑
k∈N

(ηk)
2 <∞, a.s.

As usual, if F is a nonnegative measurable function onM(R), QF stands for the function
on (0,∞)×R defined by

QF (t, y) =

∫
Q((t, y),dµ)F (µ).

We extend this definition by setting QF (0, y) = F (0) for every y ∈R.
In order to prove Theorem 1, we will now argue under the measure N0. Recall the def-

inition (1) of the random measure Y and, for every h ∈ R, let Yh−, resp. Yh+, denote the
restriction of Y to (−∞, h), resp. to (h,∞). We also let Ỹh+, resp. Ỹh−, be the pushforward
of Yh+, resp. of Yh−, under the mapping x 7→ x− h. The key to the proof of Theorem 1 is the
following proposition.

PROPOSITION 9. Let h≥ 0. Let F1 and F2 be two nonnegative measurable functions on
M(R). Then,

N0

(
F1(Yh−)F2(Ỹh+)

)
= N0

(
F1(Yh−)QF2(`h,

1

2
˙̀h)
)
.

Both assertions of Theorem 1 follow from Proposition 9. Just note that (`h+x)x>0 is the
(continuous) density of the measure Ỹh+, so that Proposition 9 immediately shows that the
process (`h+x, ˙̀h+x)x≥0 is independent of (`h+x, ˙̀h+x)x≤0 conditionally on (`h, ˙̀h), and
moreover its conditional distribution does not depend on h. The second assertion of Theorem
1 follows from the case h= 0 of Proposition 9.

PROOF OF PROPOSITION 9. We will use the fact that the local time `h can be expressed
in terms of the exit measure process (X hr )r≥0 via the formula

(17) `h =

∫ ∞
0

drX hr .

See [23, Proposition 26] when h > 0, and [24, Proposition 3.1] when h= 0.
In most of the proof, we deal with the case h > 0, and, only at the end, we explain how

the desired result can be extended to the case h = 0. So, we fix h > 0, and we first note
that the event `h = 0 occurs if and only if Zh = 0 (by (17) and the fact that X h0 = Zh). On
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the event {Zh = 0}, we have Ỹh+ = 0 and QF2(`h, ˙̀h) = F2(0). Thanks to this observation,
it is enough to prove the formula of the proposition with N0 replaced by the conditional
probability measure N(h)

0 (dω) := N0(dω | Zh > 0) = N0(dω |W ∗ > h). From now on until
the end of the proof when we consider the case h= 0, we argue under the probability measure
N(h)

0 . Recall from Section 2.4 that (under N(h)
0 ) the process X h is independent of trh(ω)

conditionally on Zh.
We rely on the excursion theory presented in Section 2.6 above, and we consider the ex-

cursions above and below level h, which are denoted by ω(ui), i ∈ N, in Section 2.6. To
simplify notation, we write ω(i) instead of ω(ui) in this proof. Recall that each excursion
ω(i) corresponds to a jump time ri of the exit measure process X h. We write δi := ∆X hri for
the corresponding jump. The conditional distribution of the collection (ω(i))i∈N knowing the
process X h (and trh(ω)) is given by Theorem 6.

For every i ∈ N, let ηi = 1 if ω(i) is an excursion above h and ηi =−1 otherwise. Notice
that, conditionally on the exit measure process X h (and on trh(ω)), the random variables ηi,
i ∈ N, are independent and uniformly distributed on {−1,+1}. Set I+ := {i ∈ N : ηi = +1}
and I− := {i ∈ N : ηi = −1}. As we already observed in Section 2.6, if C is a connected
component of {v ∈ T (ω) : Vv 6= h} (other than the component containing the root), and u is
the associated excursion debut, the restriction of the volume measure Vol(ω) to C is identified
with the volume measure Vol(ω(u)) (with the notation of Section 2.6). Similarly, it is not hard
to check that the restriction of Vol(ω) to the component containing the root is identified with
the volume measure Vol(trh(ω)). It follows from these remarks that

(18) Yh− = Yh−(trh(ω)) +
∑
i∈I−

Yh−(ω(i))

and

(19) Yh+ =
∑
i∈I+

Yh+(ω(i)).

By the classical Lamperti transformation [16], we can write (X hr )r≥0 as a time change of
a Lévy process stopped upon hitting 0. More precisely, we have for every r ≥ 0,

X hr = U∫ r
0

dtXht ,

where (Ut)0≤t≤T0
is a stable Lévy process with no negative jumps and Laplace exponent ψ,

which is started at U0 = Zh and stopped at its first hitting time of 0. Note that we have in
particular ∫ ∞

0
drX hr = inf{t≥ 0 : Ut = 0}= T0.

Recalling (17), we have thus `h = T0. We observe that (Ut)0≤t≤T0
has the same jumps as X h.

Hence, for every i ∈N, δi is the jump of U occurring at a certain time si ∈ [0, T0].
The values of the process U are determined by (X hr )r≥0 only up to time T0. With a small

abuse of notation, we can assume that the Lévy process (Ut)t≥0 is defined at all times under
the underlying probability measure N(h)

0 (dω) (and is independent of trh(ω) conditionally on
Zh). Let (tj)j∈N be the jump times of U (listed according to some measurable enumeration)
and, for every j ∈ N, let γj = ∆Utj be the corresponding jump. Notice that, if j ∈ N is such
that tj ≤ T0, there exists a unique i ∈N such that tj = si and γj = δi.

We may also assume that we have assigned a random snake trajectory ωj to each jump time
tj of U , in such a way that, if tj ≤ T0, we have ωj = ω(i) where i ∈ N is the unique index
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such that tj = si, and, conditionally on U , the random variables ωj , j ∈ N, are independent
and the conditional distribution of ωj is

1

2
N∗,γjh +

1

2
Ň∗,γjh .

If j ∈N, we set εj = +1 if ωj is an excursion above h and εj =−1 otherwise. We note that
the “labels” εj , j ∈N, are independent and uniformly distributed over {−1,1} (and are also
independent of the process U ). Set J+ := {j ∈N : εj = +1} and J− := {j ∈N : εj =−1}.

Let U ′ be the (centered) Lévy process that is obtained from U by “keeping only” the
jumps with label −1. More precisely, noting that the Lévy measure of U is the measure
n(dz) defined in (8), we have for every t≥ 0,

U ′t =Zh + lim
α↓0

( ∑
j∈J−,tj≤t,γj>α

γj −
t

2

∫ ∞
α

xn(dx)

)
.

We also define U ′′t = Ut −U ′t , so that

(20) U ′′t = lim
α↓0

( ∑
j∈J+,tj≤t,γj>α

γj −
t

2

∫ ∞
α

xn(dx)

)
.

Observe that U ′ and U ′′ are two independent (centered) Lévy processes with Laplace expo-
nent 1

2ψ, such that U ′0 =Zh and U ′′0 = 0, and also note that U ′T0
+ U ′′T0

= UT0
= 0.

At this point, it will be convenient to condition on the value of Zh, and, for every z > 0,
we introduce the conditional probability measure P(z) := N(h)

0 (· | Zh = z), in such a way that
U ′0 = U0 = z, P(z) a.s. Then let g be a nonnegative measurable function on R+, and let G1

and G2 be two nonnegative measurable functions on R+ × D(R+,R), such that, for every
t ≥ 0, the mapping w 7→ G1(t,w) is a (measurable) function of the collection of jumps of
(w(s),0≤ s≤ t), and similarly for G2. If πz(dt) denotes the law of T0 under P(z), we have
then

(21) E(z)[g(T0)G1(T0,U ′)G2(T0,U ′′)] =

∫
πz(dt)g(t)E(z)[G1(t,U ′)G2(t,U ′′) | T0 = t].

By Lemma 7 and the subsequent remarks, we know that the conditional distribution of the
collection of jumps of (Ut)0≤t≤T0

knowing that T0 = t is the distribution of the collection of
jumps of the bridge of duration t from z to 0 associated with the Lévy process U . Recalling
that the signs εj are assigned independently knowing U , it follows that, for every t≥ 0,

(22) E(z)[G1(t,U ′)G2(t,U ′′) | T0 = t] = E(z)[G1(t,U ′)G2(t,U ′′) | Ut = 0].

Now note that Ut = 0 is equivalent to U ′′t =−U ′t . Using the independence of U ′ and U ′′, we
can verify that

(23) E(z)[G1(t,U ′)G2(t,U ′′) | Ut = 0] = E(z)[G1(t,U ′)Φ(t,−U ′t) | Ut = 0],

where we use the notation Φ(t, a) := E(z)[G2(t,U ′′) | U ′′t = a] for every a ∈R (this function
does not depend on z). The identity (23) may be derived from elementary manipulations.
Alternatively, we may proceed as follows. We set Ũs = U ′s if s ∈ [0, t] and Ũs = U ′t + U ′′s−t
if s ∈ [t,2t], so that, under P(z)(· | Ut = 0), (Ũs)s∈[0,2t] is a Lévy process conditioned on
Ũ2t = 0. Then (23) is nothing but the usual Markov property at time t for the Lévy process
bridge.

Thanks to (22) and (23), we get

E(z)[G1(t,U ′)G2(t,U ′′) | T0 = t] = E(z)[G1(t,U ′)Φ(t,−U ′t) | T0 = t],



20

where we also use the fact that U ′t is a measurable function of the jumps of U ′ over [0, t].
Recalling (21), we finally get that

E(z)[g(T0)G1(T0,U ′)G2(T0,U ′′)] =

∫
πz(dt)g(t)E(z)[G1(t,U ′)Φ(t,−U ′t) | T0 = t](24)

= E(z)[g(T0)G1(T0,U ′)Φ(T0,−U ′T0
)].

We now use Theorem 6. Under N(h)
0 , conditionally on (X hr )r≥0, the excursions ω(i),

i ∈N, are independent, and independent of trh(ω), and the conditional distribution of ω(i) is
1
2(N∗,δi0 + Ň∗,δi0 ). It easily follows that, conditionally on (X hr )r≥0 and on (ηi)i∈N, the excur-
sions ω(i), i ∈N, are independent (and independent of trh(ω)), and the conditional distribu-
tion of ω(i) is N∗,δih if ηi = 1 (equivalently i ∈ I+) and Ň∗,δih if ηi =−1 (equivalently i ∈ I−).
Hence, if H,A,B are nonnegative measurable functions on the space of snake trajectories,
we get

N(h)
0

(
H(trh(ω)) exp

(
−
∑
i∈I−

A(ω(i))
)

exp
(
−
∑
i∈I+

B(ω(i))
))

= N(h)
0

(
H(trh(ω))

∏
i∈I−

Ň∗,δih (e−A)
∏
i∈I+

N∗,δih (e−B)

)

= N(h)
0

(
H(trh(ω))E(Zh)

[ ∏
i∈I−

Ň∗,δih (e−A)
∏
i∈I+

N∗,δih (e−B)

])
The quantities ∏

i∈I−

Ň∗,δih (e−A),
∏
i∈I+

N∗,δih (e−B)

are functions of the jumps of U ′ and U ′′, respectively, over the time interval [0, T0]. Hence,
we can use (24) to get, for every z > 0,

E(z)

[ ∏
i∈I−

Ň∗,δih (e−A)
∏
i∈I+

N∗,δih (e−B)

]
= E(z)

[ ∏
i∈I−

Ň∗,δih (e−A) ΦB(T0,−U ′T0
)

]
,

where ΦB(t, y) is the expected value of the quantity∏
k∈N

N∗,akh (e−B)

where the numbers ak, k ∈N are the jumps of the bridge of duration t from 0 to y, for a Lévy
process with no negative jumps and Laplace exponent 1

2ψ. We finally conclude that

N(h)
0

(
H(trh(ω)) exp

(
−
∑
i∈I−

A(ω(i))
)

exp
(
−
∑
i∈I+

B(ω(i))
))

(25)

= N(h)
0

(
H(trh(ω))

∏
i∈I−

Ň∗,δih (e−A) ΦB(T0,−U ′T0
)

)

= N(h)
0

(
H(trh(ω)) exp

(
−
∑
i∈I−

A(ω(i))
)

ΦB(T0,−U ′T0
)

)
.



MARKOV PROPERTY OF LOCAL TIMES 21

LEMMA 10. N(h)
0 a.s., we have U ′T0

=−U ′′T0
=−1

2
˙̀h, where ˙̀h denotes the derivative at

h of the function x 7→ `x.

Let us postpone the proof of Lemma 10. Since we already know that T0 = `h, we
have ΦB(T0,−U ′T0

) = ΦB(`h, 1
2

˙̀h) in formula (25). Next let f1 and f2 be two bounded
measurable functions on R, and consider the functions F1 and F2 defined on M(R) by
Fi(µ) = exp−〈µ,fi〉, for i= 1,2. Recalling (18) and (19), we see that an appropriate choice
of the functions H,A,B in (25) gives

N(h)
0

(
F1(Yh−)F2(Ỹh+)

)
= N(h)

0

(
F1(Yh−) Φ(f2)(`

h,
1

2
˙̀h)
)
,

where Φ(f2)(t, y) = QF2(t, y), with the notation introduced before Proposition 9. We have
thus obtained the special case of the formula of Proposition 9 when F1 and F2 are as specified
above, and a standard monotone class argument (see e.g. Lemma II.5.2 in [28]) gives the
general case. This completes the proof in the case h > 0.

Consider now the case h= 0. It seems plausible that one could derive this case by passing
to the limit h→ 0 in the formula obtained for h > 0. However, a rigorous justification of this
passage to the limit leads to certain technical difficulties, and, for this reason, we will use
a different argument based on the re-rooting property of N0. For ω ∈ S0 and r ∈ [0, σ(ω)],
recall the notation ω̃[r] introduced before formula (4), and note that we have N0 a.e.

Y0
−(ω̃[r])= Ỹ ω̂r− (ω), Y0

+(ω̃[r])= Ỹ ω̂r+ (ω), `0(ω̃[r])= `ω̂r(ω), ˙̀0(ω̃[r])= ˙̀ω̂r(ω), ̂̃ω[r]

σ−r=−ω̂r.

Let F1 and F2 be nonnegative measurable functions on M(R). From formula (4) and the
preceding display, we get

N0

(∫ σ

0
dr1{ω̂r>0}F1(Ỹ ω̂r− (ω))F2(Ỹ ω̂r+ (ω))

)
(26)

= N0

(∫ σ

0
dr1{ω̂r>0}F1(Y0

−(ω̃[r]))F2(Y0
+(ω̃[r]))

)

= N0

(∫ σ

0
dr1{ω̂σ−r<0}F1(Y0

−(ω))F2(Y0
+(ω))

)

= N0

(
〈Y0
−,1〉F1(Y0

−)F2(Y0
+)
)
.

On the other hand, the left-hand side of (26) is also equal to

N0

(∫
Y0

+(dx)F1(Ỹx−)F2(Ỹx+)

)
= N0

(∫ ∞
0

dx`xF1(Ỹx−)F2(Ỹx+)

)
(27)

=

∫ ∞
0

dxN0

(
`xF1(Ỹx−)F2(Ỹx+)

)
=

∫ ∞
0

dxN0

(
`xF1(Ỹx−)QF2(`x,

1

2
˙̀x)
)
,

where we use the case h > 0 of Proposition 9 in the last equality. Finally, replacing the
function F1(µ) by (〈µ,1〉)−1F1(µ), we deduce from (26) and (27) that

N0

(
F1(Y0

−)F2(Y0
+)
)

=

∫ ∞
0

dxN0

(
`x (〈Ỹx−,1〉)−1F1(Ỹx−)QF2(`x,

1

2
˙̀x)
)
.
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The right-hand side of the preceding display remains the same if we take F2 = 1 and replace
F1(Y0

−) by F1(Y0
−)QF2(`0, 1

2
˙̀0): Note that the pair (`0, 1

2
˙̀0) is a measurable function of

Y0
−, such that the same function applied to the measure Ỹx− gives (`x, 1

2
˙̀x). The case h= 0

of Proposition 9 now follows.

PROOF OF LEMMA 10. To simplify notation, we write (only in this proof) P for the prob-
ability measure N(h)

0 and E for the corresponding expectation. We have already noted that
U ′T0

=−U ′′T0
, and so we only need to verify that U ′′T0

= 1
2

˙̀h. We first observe that

1

ε2

(∫ σ

0
ds1{h<Ŵs<h+ε} − ε `

h

)
=

1

ε2

(∫ h+ε

h
dx`x − ε`h

)
=

∫ 1

0
dy
(`h+εy − `h

ε

)(28)

−→
ε→0

1

2
˙̀h,

P a.s. On the other hand, we have∫ σ

0
ds1{h<Ŵs<h+ε} =

∑
i∈I+

∫ σ(ω(i))

0
ds1{h<Ŵs(ω(i))<h+ε}(29)

=
∑

j∈J+,tj≤T0

∫ σ(ωj)

0
ds1{h<Ŵs(ωj)<h+ε}.

For every j ∈ J+ and ε > 0, set

γεj =
1

ε2

∫ σ(ωj)

0
ds1{h<Ŵs(ωj)<h+ε}.

Recall that, conditionally on X h and on {j ∈ J+}, ωj is distributed according to N∗,γjh . By
(7) and the remarks following the definition of N∗,z0 , we have γεj −→ γj = ∆Utj as ε→ 0, for
every j ∈ J+, P a.s.

Let α> 0. Since the set {j ∈ J+ : γj ≥ α, tj ≤ T0} is finite, it follows that

(30)
∑

j∈J+,γj≥α,tj≤T0

γεj −→
ε→0

∑
j∈J+,γj≥α,tj≤T0

γj , P a.s.

For every ε > 0 and 0≤ u < v ≤∞, we set

Γε(u, v) = ε−2

∫ v

u
n(dz)N∗,z0

(∫ σ

0
ds1{0<Ŵs<ε}

)
= ε2

∫ v

u
f(
z

ε2
)n(dz),

with the notation of Lemma 8. We observe that

Γε(0,∞) = ε−2N∗0

(∫ σ

0
ds1{Ŵs<ε}

)
=

2

ε

by (10). Moreover,

(31) Γε(α,∞) =

∫ ∞
α

ε2 f(
z

ε2
)n(dz)−→

ε→0

∫ ∞
α

zn(dz),

by dominated convergence (justified by Lemma 8 (i)).
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By construction (and standard properties of Lévy processes), the point measure

(32)
∑
j∈J+

δ(tj ,γj ,ωj)

is Poisson with intensity dt 1
2n(dz)N∗,zh (dω). In particular, for 0≤ u < v ≤∞, we have

E

[ ∑
j∈J+,u≤γj<v,tj≤t

γεj

]
=
t

2
Γε(u, v).

Then, using a classical formula for Poisson measures (see formula (3.19) in [15]), we have

E

[( ∑
j∈J+,γj<α,tj≤t

γεj −E

[ ∑
j∈J+,γj<α,tj≤t

γεj

])2]

=
t

2

∫ α

0
n(dz)N∗,zh

((
ε−2

∫ σ

0
ds1{Ŵs≤h+ε}

)2
)
≤Ct

√
α,

where the last bound holds by Lemma 8 (ii) provided that α≥ ε2. Under the latter condition,
we can apply Doob’s inequality in L2 to the martingale

M ε
t :=

∑
j∈J+,γj<α,tj≤t

γεj −E

[ ∑
j∈J+,γj<α,tj≤t

γεj

]
=

∑
j∈J+,γj<α,tj≤t

γεj −
t

2
Γε(0, α)

and we get, for every K > 0 and ε ∈ (0,
√
α ],

(33) E

[
sup

t∈[0,K]

( ∑
j∈J+,γj<α,tj≤t

γεj −
t

2
Γε(0, α)

)2]
≤ 4CK

√
α.

Let us fix β > 0. We observe that the convergence in (20) holds uniformly when t varies
in a compact set, at least along a suitable sequence of values of α decreasing to 0 (see e.g.
the proof of Theorem 1 in Chapter 1 of [4]). So we can choose α> 0 small enough so that

(34) P

(∣∣∣∣∣
( ∑
j∈J+,γj≥α,tj≤T0

γj −
T0

2

∫ ∞
α

zn(dz)

)
−U ′′T0

∣∣∣∣∣> β

)
< β.

By choosing α even smaller if necessary, we may also assume thanks to (33) that, for every
ε ∈ (0,

√
α ],

(35) P

(∣∣∣∣∣ ∑
j∈J+,γj<α,tj≤T0

γεj −
T0

2
Γε(0, α)

∣∣∣∣∣> β

)
< β.

Once we have fixed α, we can use (30) and (31) to get that, for every small enough ε > 0, we
have

P

(∣∣∣∣∣( ∑
j∈J+,γj≥α,tj≤T0

γεj −
T0

2
Γε(α,∞)

)
(36)

−
( ∑
j∈J+,γj≥α,tj≤T0

γj −
T0

2

∫ ∞
α

zn(dz)
)∣∣∣∣∣> β

)
< β.
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By combining (34), (35) and (36), and using Γε(0,∞) = Γε(0, α) + Γε(α,∞), we obtain
that, for ε small,

P

(∣∣∣∣∣
( ∑
j∈J+,tj≤T0

γεj −
T0

2
Γε(0,∞)

)
−U ′′T0

∣∣∣∣∣> 3β

)
< 3β.

Since β was arbitrary, we have proved that∑
j∈J+,tj≤T0

γεj −
T0

2
Γε(0,∞)−→

ε→0
U ′′T0

in probability. Now recall from (29) that∑
j∈J+,tj≤T0

γεj = ε−2

∫ σ

0
ds1{h<Ŵs<h+ε}.

Since we have also Γε(0,∞) = 2/ε and T0 = `h, we conclude that

1

ε2

∫ σ

0
ds1{h<Ŵs<h+ε} −

`h

ε
−→
ε→0
U ′′T0

in probability. Comparing with (28), we obtain the desired result U ′′T0
= 1

2
˙̀h.

6. Proof of Theorem 2. This proof uses essentially the same arguments as the proof
of Theorem 1, and for this reason we will skip some details. We suppose that the super-
Brownian motion (Xt)t≥0 is constructed (under the probability measure P) from a Poisson
point measure

∑
k∈K δωk with intensity αN0 in the way explained in Section 3. As previ-

ously, we write Y =
∫∞

0 Xt dt for the total occupation measure of X. Recall that (Lx)x∈R is
the (continuous) density of Y, and that, for x 6= 0, L̇x stands for the derivative of y 7→ Ly at
x, and by convention L̇0 is the right derivative at 0.

For every h≥ 0, we let Yh
−, resp. Yh

+, be the restriction of Y to (−∞, h), resp. to (h,∞),
and we write Ỹh

+ for the pushforward of Yh
+ under the shift x 7→ x−h. The proof of Theorem

2 then reduces to checking the analog of Proposition 9, namely the identity

(37) E[F1(Yh
−)F2(Ỹh

+)] = E[F1(Yh
−)QF2(Lh,

1

2
L̇h)],

where F1 and F2 are nonnegative measurable functions onM(R), and QF2 is defined as in
the previous section.

Consider first the case h > 0. In that case, we argue conditionally on the event Eh :=
{sup{W ∗(ωk) : k ∈K} ≥ h}. We note that

Lh =
∑
k∈K

`h(ωk)

as a consequence of (12) and the fact that there are only finitely many k ∈ K such that
W ∗(ωk)≥ h. We can then consider the exit measure process (Xh

t )t≥0, which is defined by

Xh
t :=

∑
k∈K
X ht (ωk).

Note again that there are only finitely many nonzero terms in the right-hand side. Then
(Xh

t )t≥0 is (again) a ψ-CSBP, which now starts at

Xh
0 = Zh :=

∑
k∈K
Zh(ωk).
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We may write Xh as the time change of a Lévy process U = (Ut)t≥0 started at Zh, in such a
way that ∫ ∞

0
Xh
t dt= T0 := inf{t≥ 0 : Ut = 0},

and we have

Lh =
∑
k∈K

`h(ωk) =
∑
k∈K

∫ ∞
0
X ht (ωk) dt=

∫ ∞
0

Xh
t dt= T0.

There is again a one-to-one correspondence between the jump times of Xh and the ex-
cursions of ωk above and below h, for all k ∈K (such that W ∗(ωk)≥ h). We can list these
excursions in a sequence (ω(i), i ∈N) as we did in the preceding section, and we let I−, resp.
I+, be the set of all indices i such that ω(i) is an excursion below h, resp. above h. Then,
conditionally on the exit measure process (Xh

t )t≥0, the excursions (ω(i), i ∈N) are indepen-
dent (and independent of the point measure

∑
k∈K δtr(ωk)), and the conditional distribution

of ω(i) is 1
2(N∗,δih + Ň∗,δih ), where δi is the jump associated with ω(i).

We may then construct the Lévy processes U ′ and U ′′ from U in a way exactly similar as
we constructed U ′ and U ′′ from U in the previous section, and we have U ′+U ′′ = U , so that
U ′T0

=−U ′′T0
.

We can now follow the same route as in the proof of Theorem 1 to arrive at the analog of
formula (25), which reads

E

[
1EhH

(∑
k∈K

δtrh(ωk)

)
exp

(
−
∑
i∈I−

A(ω(i))
)

exp
(
−
∑
i∈I+

B(ω(i))
)]

(38)

= E

[
1EhH

(∑
k∈K

δtrh(ωk)

)
exp

(
−
∑
i∈I−

A(ω(i))
)

ΦB(T0,−U ′T0
)

]
,

with the same function ΦB as in (25). We already know that T0 = Lh, and, to complete the
proof of (37), we need to verify that U ′T0

=−1
2 L̇

h. This is done by exactly the same method
as in the proof of Lemma 8, using the approximation

(39)
1

ε2

(∫ h+ε

h
Lx dx− εLh

)
−→
ε→0

1

2
L̇h

instead of (28).
Let us consider then the case h= 0. We start by observing that

L0 =
∑
k∈K

`0(ωk).

This identity is less immediate than the corresponding one when h > 0, because the sum now
involves infinitely many nonzero terms, but it is derived in the proof of [24, Corollary 3.2].
We can define the exit measure process (X0

t )t≥0 at 0 by setting X0
0 = α and, for t > 0,

X0
t =

∑
k∈K
X 0
t (ωk).

As recalled in Section 2.4, we then know that (X0
t )t≥0 is a ψ-CSBP started at α. Moreover,

we have

L0 =
∑
k∈K

`0(ωk) =
∑
k∈K

∫ ∞
0
X 0
t (ωk) dt=

∫ ∞
0

X0
t dt,
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where the second equality follows from (17).
As in the case h > 0, there is a one-to-one correspondence between the jump times of X0

and the excursions of ωk above and below 0, for all k ∈K — now all k ∈K are relevant, but
this creates no difficulty, since X 0(ωk) and X 0(ωk′) have no common jump time if k 6= k′.
We can list these excursions in a sequence (ω(i), i ∈ N) as above. By a direct application of
[1, Theorem 4], we again get that, conditionally on (X0

t )t≥0, the excursions (ω(i), i ∈N) are
independent, and the conditional distribution of ω(i) is 1

2(N∗,δi0 + Ň∗,δi0 ), where δi is the jump
of X0 associated with ω(i). The Lamperti time change of X0 yields a Lévy process U started
from α, up to time T0 := inf{t≥ 0 : Ut = 0}, and we can again consider the Lévy processes
U ′, resp. U ′′, obtained by “keeping” the jumps of U corresponding to negative excursions,
resp. to positive excursions, and such that U ′0 = α and U ′′0 = 0. By the same arguments as in
the proof of Theorem 1, we arrive at the analog of (38) (without the term H(

∑
k∈K δtrh(ωk))

which is now irrelevant). Since we already now that T0 =
∫∞

0 X0
t dt= L0, it only remains to

verify that U ′T0
=−U ′′T0

=−1
2 L̇

0. This follows by a straightforward adaptation of the proof
of Lemma 8, using (39) with h= 0. This completes the proof of Theorem 2.

Remarks. (i) In the case h= 0, if instead of using (39), we consider the approximation

1

ε2

(∫ 0

−ε
Lx dx− εLh

)
−→
ε→0
−1

2
L̇0−,

the same method leads to the equality U ′T0
−α=−1

2 L̇
0−. Since we have also U ′T0

=−U ′′T0
=

−1
2 L̇

0, we get that L̇0 = L̇0− − 2α, which is consistent with the results of [30].

(ii) It is certainly possible to derive (37) more directly from (a stronger form of) Proposition 9.
This would still require some technicalities, and we preferred to use the preceding approach
which consists in adapting the proof of Proposition 9 to a slightly different context.

7. Remarks and complements.

7.1. The transition kernel of (`x, ˙̀x). Our proof of Theorem 1 yields a complicated ex-
pression for the transition kernel of the Markov process (`x, ˙̀x) (or of the process (Lx, L̇x)
of Theorem 2). First observe that we can use Theorem 5 to verify that Y(ω) also has a con-
tinuously differentiable density on (0,∞), N∗0 a.e. By a scaling argument, the same holds
N∗,z0 a.e. for every z > 0. In other words we can make sense of (`x, ˙̀x) for every x > 0, N∗,z0

a.e. For t > 0 and y ∈ R, recall the notation Ubr,t,y/2 for the bridge of duration t from 0 to
y/2 associated with the centered stable Lévy process with Laplace exponent 1

2ψ, and write
(ηk)k∈N for the sequence of jumps of Ubr,t,y/2 ranked in nonincreasing order.

Let x > 0. Then, under N0, the law of (`x, ˙̀x) knowing that (`0, ˙̀0) = (t, y) is the distri-
bution of (∑

k∈K
`x(ωk),

∑
k∈K

˙̀x(ωk)
)

where, conditionally on Ubr,t,y/2, the random snake trajectories ωk are independent, and, for
every k, ωk is distributed according to N∗,ηk0 . This expression readily follows from Proposi-
tion 9.

We note that there are finitely many nonzero terms in the sums of the last display. To see
this, observe that, for every z > 0,

N∗,z0 (W ∗ ≥ x) = N∗,10 (W ∗ ≥ x/
√
z)≤C z3

x6
,
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where C is a constant and the last bound follows from [23, Corollary 5]. Hence,

E
[∑
k∈K

1{`x>0}

∣∣∣Ubr,t,y/2
]
≤Cx−6

∑
k∈K

(ηk)
3 <∞, a.s.

It would be desirable to obtain a simpler description of the transition kernel of (`x, ˙̀x) !

7.2. Towards a stochastic equation. The paper [14] gives formulas for the local time of
a super-Brownian motion (Xt)t≥0 started at δ0 and its derivative, in terms of the martingale
measure M associated with (Xt)t≥0 (see [28, Section II.5] for the definition and properties
of M ). With our notation, formula (2.11) of [14] states that, for every fixed 0< x< y,

L̇y − L̇x =

∫ ∞
0

∫
(sgn(x− z)− sgn(y− z))M(dzds),

where sgn(z) = 1{z>0} − 1{z<0}.
Assuming that (L̇x)x≥0 is a semimartingale, one can infer from this representation that

the quadratic variation of its martingale part should be 16
∫ x

0 L
z dz. This suggests that

(Lx, L̇x)x≥0 should satisfy a stochastic differential equation of the form

dL̇x = 4
√
Lx dβx + h(Lx, L̇x) dx

where (βx)x≥0 denotes a linear Brownian motion, and h is a measurable function on R+×R.
This is indeed the case as the forthcoming work [22] will show.

The equation in the last display is very close to the one that is conjectured to hold for the
density of ISE in [9]. Note however that the (conjectured) drift term in [9, Conjecture 7] is
more complicated because of the conditioning involved in the definition of ISE.

As a final remark, the stochastic equation in the last display is of course reminiscent of
the equation dXx = 2

√
Xx dβx which (by the Ray-Knight theorems) holds if Xx is the local

time at level x > 0 of a positive Brownian excursion distributed according to the Itô measure.

7.3. Brownian geometry. The Brownian sphere, or Brownian map, is a random measure
metric space (m,D,vol) that arises as the scaling limit in the Gromov-Hausdorff sense of
many different classes of random planar maps (see in particular [19, 27]). The Brownian
sphere is constructed as the quotient space m = T /≈ of the Brownian tree T for an equiv-
alence relation ≈ defined in terms of the labels (Va)a∈T , and the volume measure on m is
just the pushforward of the volume measure Vol on T under the canonical projection. Under
N0(· | σ = 1), we speak of the standard Brownian sphere (with total volume equal to 1), but
it is also of interest to consider the “free” Brownian sphere defined under N0. The equiva-
lence relation ≈ is such that we have Va = Va′ whenever a and a′ are two points of T such
that a ≈ a′. Thanks of this property, one can make sense of the label Vx for any point x of
m = T /≈.

The Brownian sphere comes with two distinguished points, namely x0, which is the equiv-
alence class of the root of T , and x∗, which is the equivalence class of the point of T
with minimal label (in a sense that can be made precise, these two points are uniformly
distributed over m). Moreover, we have D(x∗,x) = Vx − Vx∗ for every x ∈m: up to a
shift, labels correspond to distances from the distinguished point x∗. The next proposition is
then a straighforward consequence of the preceding results. To simplify notation, we write
m∗ =−Vx∗ =D(x0,x∗).

PROPOSITION 11. For every r ≥ 0, let Vr be the volume of the closed ball of radius
r centered at x∗ in the Brownian sphere m. Then, N0 a.e. the function r 7→ Vr is twice
continuously differentiable on [0,∞), and we denote its first and second derivative by V ′r and
V ′′r . Moreover, the random process (Vm∗+r,V ′m∗+r,V

′′
m∗+r)r≥0 is time-homogeneous Markov

under N0.
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PROOF. By the definition of the volume measure on m, and the formula for distances
from x∗,

Vr = Vol({a ∈ T : Va ≤ r−m∗}) =

∫ r−m∗

−∞
`x dx.

From the fact that x 7→ `x is continuously differentiable, we thus get that the mapping r 7→ Vr
is twice continuously differentiable, and moreover V ′m∗+r = `r and V ′′m∗+r = ˙̀r . Then we just
have to apply Theorem 1.

Informally, V ′r represents the “area” of the sphere {x ∈m :D(x∗,x) = r}. Furthermore,
Lemma 10 allows us to interpret V ′′r as twice the (renormalized) sum of the boundary sizes
of connected components of the complement of the closed ball of radius r centered at x∗:
in the canonical projection from T onto m, these connected components correspond to the
excursions above level r−m∗ (see the beginning of [21, Section 12]).
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