
On Schrödinger operator with magnetic fields
(Old and New)

Bernard Helffer
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1. Introduction

In an open set Ω ⊂ Rn, we consider the Schrödinger operator with magnetic field:

∆h,A,V =
∑

j

(hDxj
−Aj)2 + V

where h is a possibly small > 0 parameter (semi-classical limit), ωA, called

magnetic potential (sometimes identified with a vector ~A), is the 1-form

ωA =
∑

j

Aj(x)dxj , ~A = (A1, · · · , An)

and V is a C∞ potential.

Boundary conditions:
Dirichlet Condition: u/∂Ω = 0,

Neumann Condition: (~n · (h∇− i ~A)u)/∂Ω = 0.
No condition, if Ω = Rn (essentially selfadjoint).
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Basic object: the magnetic field (2-form)

σB = dωA

When n = 2, identification with a function : σB = B dx1 ∧ dx2.
When n = 3 : σB =

∑
i<j Bijdxi ∧ dxj, can be identified with a vector (by the

Hodge map) ~B.

For the analysis, it is important to realize that

Bjk =
1
ih

[hDxj
−Aj, hDxk

−Ak] .

The “brackets” technique will play an important role.

Gauge invariance : (u, A) 7→ (u exp−iφ
h, A + dφ).

This implies same σB. Converse partially true (topology of Ω!!).
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Mathematical questions

Selfadjointness: Kato,...
Mathematical foundations: Avron-Herbst-Simon,....

Some of the questions (personal choice!!) are :

1. When Ω is unbounded, is the operator with compact resolvent ? Determination
of the essential spectrum.

2. Dependence of the ground state energy on A, on h, on the geometry of Ω
(holes, points of maximal curvature, corners).

3. Localization of the groundstate: semi-classically, at infinity.

All these questions are already interesting without magnetic potential.
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The two last questions are specific from the case with magnetic field !!

1. Multiplicity of the lowest eigenvalue

(When A = 0, we know that the lowest eigenvalue (if it exists) is simple)

2. Nodal sets.

(When A = 0, we know that the corresponding ground state (eigenvector) is
strictly positive)
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Motivations
In addition to their intrinsic interest, these mathematical questions are strongly
motivated by :

Atomic physics
See Lieb-Solovej-Yngason

Geometry
Magnetic field in correspondence with curvature,
∇− iA in correspondence with connections.
See Montgomery,...

Complex analysis
See Demailly, Fu-Straube, Christ-Fu...

Solid state physics
See Bellissard,..

Superconductivity
See Del Pino-Fellmer-Sternberg, Lu-Pan, Helffer-Morame.
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Compactness of the resolvent and essential spectrum

It is not necessary that V → +∞:

−∆ + x2
1x

2
2 is with compact resolvent.

Avron-Herbst-Simon (magnetic bottles). Helffer-Nourrigat (nilpotent techniques),
Robert, Simon, Helffer-Mohamed.... When n = 2,

h

∫
Ω

B(x)dx ≤ ||∇Au||2 , ∀u ∈ C∞
0 (Ω) .

More difficult for n ≥ 3 !!

This works for Dirichlet, not for Neumann.
One can iterate with higher order brackets along Kohn’s argument. This leads
to Helffer-Mohamed Criterion (to look at pure magnetic effect, we assume V = 0).
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Compactness criterion in the Pure Magnetic Case

mk(x) =
∑

|α|=k,j,`

|Dα
xBj`(x)|

Theorem. Suppose Ω = Rn and that there exists r ≥ 0 and C > 0 such that :

mr(x) :=
∑
k≤r

mk(x) → +∞ , mr+1(x) ≤ C(1 + mr(x)) .

Then −∆A is with compact resolvent.

Examples :
(Dx1 − x2x

2
1)

2 + (Dx2 + x1x
2
2)

2

(Easy with the above inequality)
but also

(Dx1 − x2x
2
1)

2 + (Dx2 − x1x
2
2)

2

Question : Is there a semi-classical version of this theorem (notion of magnetic
wells)? See later.
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What about Dirac and Pauli ?

Here: Ω = Rn (n=2,3).

Dirac operator :

Dh,A =
∑

j

σj(hDxj
−Aj)2

on L2(Ω, Ck) (k = 2 if n = 2, k = 4 if n = 3), where the σj’s are the Pauli
matrices:

σjσk + σkσj = 2δjk

D2
h,A := Pauli Operator

Under the same assumptions, Helffer-Nourrigat-Wang have shown that Dirac and
Pauli are not with compact resolvent!!

Conjecture
The pure magnetic Dirac operator is never with compact resolvent !!
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Decay estimates

- At infinity:
Brummelhuis, Helffer-Nourrigat, Erdös, Martinez-Sordoni, Nakamura

- In the semiclassical regime:
Helffer-Sjöstrand, Helffer-Mohamed,... cf Superconductivity

Two types of results:
Type 1: it decays at least like when A = 0 (connected to diamagnetism)

|uh(x)| ∼≤ C exp−dV (x, V (−1)(minV ))/h .

This is rather optimal (as A = 0)
Type 2: The magnetic field is itself creating the decay (for example when V = 0).

|uh(x)| ∼≤ C exp−dB(x, |B|(−1)(min |B|))/
√

Ch) .

This is NOT optimal.
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Agmon estimates.

The Agmon distance dV associated to the metric (V − E)+dx2.
Basic identity :

Re 〈exp−2
Φ
h

∆h,A,V u | u〉 = || exp
Φ
h
∇h,Au||2 +

∫
(V − |∇Φ|2) exp

2Φ
h
|u|2 .

Main idea for Dirichlet: ∆h,A+V is rather well understood by −h2∆+V +h||B||.
When V = 0, the groundstate is localized near the minima of ||σB||.

For Neumann, this is completely different !! When V = 0 and σB is constant
(not zero), the groundstate is localized at the boundary (effective potential Θ0|B|
with 0 < Θ0 < 1)!! There is a different effective potential at the boundary.
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One part of the analysis is based on spectral properties of models :

• D2
t + t2 on R

• HNeu(ρ) := D2
t + (t− ρ)2, on R+, with Neumann condition at 0.

• D2
t + D2

s + (t cos θ− s sin θ− ρ)2 on R2,+, with Neumann condition at t = 0.

• D2
u + (u2 − ρ)2 on R.

• D2
s + (Dt − s)2 in an infinite sector of angle α (Neumann).

The questions are: bottom of the spectrum, infimum over ρ (for example
Θ0 = infρ inf σ(HNeu(ρ))) , infimum over θ, dependence on α.
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Application: Localization at the boundary, localization at the points of maximal
curvature (n = 2), localization at the points where the magnetic field (seen as a
vector) is tangent at the boundary (n = 3), at the corners (Jadallah, Bonnaillie).
Below: a numerical computation by Hornberger for the maximal curvature effect.
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Diamagnetism, paramagnetism in the semi-classical regime.

We know (Kato’s inequality) that the ground state energies (=lowest eigenvalues)
satisfy

λh,A,V ≥ λh,0,V .

A simple result (Lavine-O’Caroll (heuristic), Helffer) is that :

λh,A,V = λh,0,V if and only if

{
σB = 0

1
2π

∫
γ
ωA ∈ Z,∀ path γ .

It is interesting to measure quantitatively λh,A,V − λh,0,V , especially in the case
when σB = 0. This is called the Bohm-Aharonov effect for bounded states.
Two techniques:
- Hardy inequality (Laptev-Weidl, Christ-Fu),
- semi-classical analysis: Comparison between direct effects and, in the case of
“holes” or high electric barriers on the support of B, flux effects.
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Roughly :

λh,A,V − λh,0,V ∼ (1− cos
Φ
h

)a(h) exp−S0

h
+ b(h) exp−2S1

h
,

where S0 is the Agmon length of the shortest touristical path (around the support
of σB), and S1 is the Agmon distance to the support of B. Here V is a one well
potential (having a minimum at xmin) which is “large” (possibly infinite) on the
support of σB.

xmin

the minimal geodesic around supp(B)supp(B)

the minimal geodesic to supp(B)
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For the paramagnetism.
We come back to Pauli.

Question:
Do we have λmin(D2

h,A + V ) ≤ λmin(∆h,0,V ),

with D2
h,A = ∆h,A ⊗ I + h

∑
j

σj
~Bj

Counterexamples (Avron-Simon (radial example), Helffer (by semi-classical
analysis), Christ-Fu).

In Helffer’s example S0 < 2S1, the term hσ · ~B perturbes the spectrum in
comparison with the magnetic Schrödinger operator by O(exp−2S1

h ).

Semi-classical estimates for the splitting of Dirac (with V ): B. Parisse.



Videolecture Nov. 2003 Schrödinger with magnetic fields [17]

Can we hear the zero locus...

Formulation due to R. Montgomery (in reference to M. Kac), extension by
Helffer-Mohamed.

We have already mentioned that for Dirichlet (V = 0), the ground state is
localized near the minimum of ||B||.

Asymptotics of the ground state energy (substitute for the harmonic
approximation) can be given when ||B|| has a non degenerate strictly positive
minimum, or when ||B|| vanishes at a point, along a closed curve. Typically, the
model is locally (hDt)2 + (t2− hDs)2, which is related to the spectral analysis of
D2

t + (t2 − ρ)2 in R (See also Kwek-Pan).

See above, see also questions in hypoanalyticity (Helffer, Pham The Lai-Robert,
Christ.....)
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Nodal sets and multiplicity

Let us consider the case of an annulus like symmetric domain in R2 and the
Dirichlet case with 0-magnetic field.

Θ :=
1
2π

∫
σ

ωA .

(Normalized flux in the hole = circulation along a simple path around the hole).

Theorem. • Θ 7→ λ(Θ) is 1-periodic, λ(−Θ) = λ(Θ).

• The multiplicity is 1 for Θ 6∈ Z + 1
2, ≤ 2 for Θ = Z + 1

2. [0, 1
2] 3 Θ 7→ λ(Θ) is

monotonic.

• The zero set is empty for Θ 6∈ Z + 1
2.

• For Θ = Z + 1
2, there is a basis of the groundstate eigenspace such that the

nodal set is one line joining the two components of the boundary.
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Papers by subsets of { Helffer, Maria or Thomas Hoffmann-Ostenhof, Nadirashvili,
Owen}

Extensions for many holes, Schrödinger with periodic potentials...

Below we give (after H-HO-HO-O) a qualitative picture (not computed!!)
describing the possible topological structure of the nodal lines for the groundstate
in domains with holes and with normalized flux 1/2. Note that there are very few
“quantitative” results, except by semiclassical analysis (1

2 + 1
2 = 1) (see above) or

for very symmetric situation by analyzing singular limits of domains (see below R.
Joly-G. Raugel).
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- J.P. Demailly : Champs magnétiques et inégalités de Morse pour la d′′-cohomologie. Ann. Inst.

Fourier (1985)

- B. Helffer Effet d’Aharanov-Bohm pour un état borné, CMP (1988).
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