On Schrödinger operator with magnetic fields (Old and New)

Bernard Helffer
Mathématiques - Université Paris Sud - UMR CNRS 8628

Videolecture P13-Berkeley. 6 of November 2003

Thanks to my collaborators (.............many!!),
the organizers
and
V. Bonnaillie and T . Ramond (for their help in preparing the talk)

1. Introduction

In an open set $\Omega \subset \mathbb{R}^{n}$, we consider the Schrödinger operator with magnetic field:

$$
\Delta_{h, A, V}=\sum_{j}\left(h D_{x_{j}}-A_{j}\right)^{2}+V
$$

where h is a possibly small >0 parameter (semi-classical limit), ω_{A}, called magnetic potential (sometimes identified with a vector \vec{A}), is the 1 -form

$$
\omega_{A}=\sum_{j} A_{j}(x) d x_{j}, \vec{A}=\left(A_{1}, \cdots, A_{n}\right)
$$

and V is a C^{∞} potential.

Boundary conditions:

Dirichlet Condition: $u_{/ \partial \Omega}=0$,
Neumann Condition: $(\vec{n} \cdot(h \nabla-i \vec{A}) u)_{/ \partial \Omega}=0$.
No condition, if $\Omega=\mathbb{R}^{n}$ (essentially selfadjoint).

Basic object: the magnetic field (2-form)

$$
\sigma_{B}=d \omega_{A}
$$

When $n=2$, identification with a function : $\sigma_{B}=B d x_{1} \wedge d x_{2}$.
When $n=3: \sigma_{B}=\sum_{i<j} B_{i j} d x_{i} \wedge d x_{j}$, can be identified with a vector (by the Hodge map) \vec{B}.

For the analysis, it is important to realize that

$$
B_{j k}=\frac{1}{i h}\left[h D_{x_{j}}-A_{j}, h D_{x_{k}}-A_{k}\right] .
$$

The "brackets" technique will play an important role.

Gauge invariance : $(u, A) \mapsto\left(u \exp -i \frac{\phi}{h}, A+d \phi\right)$.
This implies same σ_{B}. Converse partially true (topology of $\Omega!!$).

Mathematical questions

Selfadjointness: Kato,...
Mathematical foundations: Avron-Herbst-Simon,....
Some of the questions (personal choice!!) are :

1. When Ω is unbounded, is the operator with compact resolvent ? Determination of the essential spectrum.
2. Dependence of the ground state energy on A, on h, on the geometry of Ω (holes, points of maximal curvature, corners).
3. Localization of the groundstate: semi-classically, at infinity.

All these questions are already interesting without magnetic potential.

The two last questions are specific from the case with magnetic field !!

1. Multiplicity of the lowest eigenvalue
(When $A=0$, we know that the lowest eigenvalue (if it exists) is simple)
2. Nodal sets.
(When $A=0$, we know that the corresponding ground state (eigenvector) is strictly positive)

Motivations

In addition to their intrinsic interest, these mathematical questions are strongly motivated by :

Atomic physics

See Lieb-Solovej-Yngason

Geometry

Magnetic field in correspondence with curvature,
$\nabla-i A$ in correspondence with connections.
See Montgomery,...

Complex analysis

See Demailly, Fu-Straube, Christ-Fu...
Solid state physics
See Bellissard,..

Superconductivity

See Del Pino-Fellmer-Sternberg, Lu-Pan, Helffer-Morame.

Compactness of the resolvent and essential spectrum

It is not necessary that $V \rightarrow+\infty$:

$$
-\Delta+x_{1}^{2} x_{2}^{2} \text { is with compact resolvent. }
$$

Avron-Herbst-Simon (magnetic bottles). Helffer-Nourrigat (nilpotent techniques), Robert, Simon, Helffer-Mohamed.... When $n=2$,

$$
h \int_{\Omega} B(x) d x \leq\left\|\nabla_{A} u\right\|^{2}, \forall u \in C_{0}^{\infty}(\Omega) .
$$

More difficult for $n \geq 3$!!

This works for Dirichlet, not for Neumann.
One can iterate with higher order brackets along Kohn's argument. This leads to Helffer-Mohamed Criterion (to look at pure magnetic effect, we assume $V=0$).

Compactness criterion in the Pure Magnetic Case

$$
m_{k}(x)=\sum_{|\alpha|=k, j, \ell}\left|D_{x}^{\alpha} B_{j \ell}(x)\right|
$$

Theorem. Suppose $\Omega=\mathbb{R}^{n}$ and that there exists $r \geq 0$ and $C>0$ such that:

$$
m^{r}(x):=\sum_{k \leq r} m_{k}(x) \rightarrow+\infty, m_{r+1}(x) \leq C\left(1+m^{r}(x)\right)
$$

Then $-\Delta_{A}$ is with compact resolvent.

Examples :

$$
\left(D_{x_{1}}-x_{2} x_{1}^{2}\right)^{2}+\left(D_{x_{2}}+x_{1} x_{2}^{2}\right)^{2}
$$

(Easy with the above inequality) but also

$$
\left(D_{x_{1}}-x_{2} x_{1}^{2}\right)^{2}+\left(D_{x_{2}}-x_{1} x_{2}^{2}\right)^{2}
$$

Question : Is there a semi-classical version of this theorem (notion of magnetic wells)? See later.

What about Dirac and Pauli ?

Here: $\Omega=\mathbb{R}^{n}(\mathrm{n}=2,3)$.

Dirac operator :

$$
D_{h, A}=\sum_{j} \sigma_{j}\left(h D_{x_{j}}-A_{j}\right)^{2}
$$

on $L^{2}\left(\Omega, \mathbb{C}^{k}\right)(k=2$ if $n=2, k=4$ if $n=3)$, where the σ_{j} 's are the Pauli matrices:

$$
\begin{gathered}
\sigma_{j} \sigma_{k}+\sigma_{k} \sigma_{j}=2 \delta_{j k} \\
D_{h, A}^{2}:=\text { Pauli Operator }
\end{gathered}
$$

Under the same assumptions, Helffer-Nourrigat-Wang have shown that Dirac and Pauli are not with compact resolvent!!

Conjecture

The pure magnetic Dirac operator is never with compact resolvent !!

Decay estimates

- At infinity:

Brummelhuis, Helffer-Nourrigat, Erdös, Martinez-Sordoni, Nakamura

- In the semiclassical regime:

Helffer-Sjöstrand, Helffer-Mohamed,... of Superconductivity
Two types of results:
Type 1: it decays at least like when $A=0$ (connected to diamagnetism)

$$
\left|u_{h}(x)\right| \sim \leq C \exp -d_{V}\left(x, V^{(-1)}(\min V)\right) / h .
$$

This is rather optimal (as $A=0$)
Type 2: The magnetic field is itself creating the decay (for example when $V=0$).

$$
\left.\left|u_{h}(x)\right| \sim \leq C \exp -d_{B}\left(x,|B|^{(-1)}(\min |B|)\right) / \sqrt{C h}\right) .
$$

This is NOT optimal.

Agmon estimates.

The Agmon distance d_{V} associated to the metric $(V-E)_{+} d x^{2}$. Basic identity :

$$
\operatorname{Re}\left\langle\left.\exp -2 \frac{\Phi}{h} \Delta_{h, A, V} u \right\rvert\, u\right\rangle=\left\|\exp \frac{\Phi}{h} \nabla_{h, A} u\right\|^{2}+\int\left(V-|\nabla \Phi|^{2}\right) \exp \frac{2 \Phi}{h}|u|^{2}
$$

Main idea for Dirichlet: $\Delta_{h, A}+V$ is rather well understood by $-h^{2} \Delta+V+h\|B\|$. When $V=0$, the groundstate is localized near the minima of $\left\|\sigma_{B}\right\|$.

For Neumann, this is completely different !! When $V=0$ and σ_{B} is constant (not zero), the groundstate is localized at the boundary (effective potential $\Theta_{0}|B|$ with $0<\Theta_{0}<1$)!! There is a different effective potential at the boundary.

One part of the analysis is based on spectral properties of models :

- $D_{t}^{2}+t^{2}$ on \mathbb{R}
- $H^{\text {Neu }}(\rho):=D_{t}^{2}+(t-\rho)^{2}$, on \mathbb{R}^{+}, with Neumann condition at 0 .
- $D_{t}^{2}+D_{s}^{2}+(t \cos \theta-s \sin \theta-\rho)^{2}$ on $\mathbb{R}^{2,+}$, with Neumann condition at $t=0$.
- $D_{u}^{2}+\left(u^{2}-\rho\right)^{2}$ on \mathbb{R}.
- $D_{s}^{2}+\left(D_{t}-s\right)^{2}$ in an infinite sector of angle α (Neumann).

The questions are: bottom of the spectrum, infimum over ρ (for example $\left.\Theta_{0}=\inf _{\rho} \inf \sigma\left(H^{N e u}(\rho)\right)\right)$, infimum over θ, dependence on α.

Application: Localization at the boundary, localization at the points of maximal curvature ($n=2$), localization at the points where the magnetic field (seen as a vector) is tangent at the boundary $(n=3)$, at the corners (Jadallah, Bonnaillie). Below: a numerical computation by Hornberger for the maximal curvature effect.

Diamagnetism, paramagnetism in the semi-classical regime.

We know (Kato's inequality) that the ground state energies (=lowest eigenvalues) satisfy

$$
\lambda_{h, A, V} \geq \lambda_{h, 0, V}
$$

A simple result (Lavine-O'Caroll (heuristic), Helffer) is that :

$$
\lambda_{h, A, V}=\lambda_{h, 0, V} \text { if and only if }\left\{\begin{array}{c}
\sigma_{B}=0 \\
\frac{1}{2 \pi} \int_{\gamma} \omega_{A} \in \mathbb{Z}, \forall \text { path } \gamma .
\end{array}\right.
$$

It is interesting to measure quantitatively $\lambda_{h, A, V}-\lambda_{h, 0, V}$, especially in the case when $\sigma_{B}=0$. This is called the Bohm-Aharonov effect for bounded states.

Two techniques:

- Hardy inequality (Laptev-Weidl, Christ-Fu),
- semi-classical analysis: Comparison between direct effects and, in the case of "holes" or high electric barriers on the support of B, flux effects.

Roughly :

$$
\lambda_{h, A, V}-\lambda_{h, 0, V} \sim\left(1-\cos \frac{\Phi}{h}\right) a(h) \exp -\frac{S_{0}}{h}+b(h) \exp -\frac{2 S_{1}}{h},
$$

where S_{0} is the Agmon length of the shortest touristical path (around the support of σ_{B}), and S_{1} is the Agmon distance to the support of B. Here V is a one well potential (having a minimum at $x_{\text {min }}$) which is "large" (possibly infinite) on the support of σ_{B}.

For the paramagnetism.
We come back to Pauli.
Question:
Do we have $\lambda_{\min }\left(D_{h, A}^{2}+V\right) \leq \lambda_{\min }\left(\Delta_{h, 0, V}\right)$,

$$
\text { with } D_{h, A}^{2}=\Delta_{h, A} \otimes I+h \sum_{j} \sigma_{j} \vec{B}_{j}
$$

Counterexamples (Avron-Simon (radial example), Helffer (by semi-classical analysis), Christ-Fu).
In Helffer's example $S_{0}<2 S_{1}$, the term $h \sigma \cdot \vec{B}$ perturbes the spectrum in comparison with the magnetic Schrödinger operator by $\mathcal{O}\left(\exp -\frac{2 S_{1}}{h}\right)$.

Semi-classical estimates for the splitting of Dirac (with V): B. Parisse.

Can we hear the zero locus...

Formulation due to R. Montgomery (in reference to M. Kac), extension by Helffer-Mohamed.

We have already mentioned that for Dirichlet $(V=0)$, the ground state is localized near the minimum of $\|B\|$.

Asymptotics of the ground state energy (substitute for the harmonic approximation) can be given when $\|B\|$ has a non degenerate strictly positive minimum, or when $\|B\|$ vanishes at a point, along a closed curve. Typically, the model is locally $\left(h D_{t}\right)^{2}+\left(t^{2}-h D_{s}\right)^{2}$, which is related to the spectral analysis of $D_{t}^{2}+\left(t^{2}-\rho\right)^{2}$ in \mathbb{R} (See also Kwek-Pan).

See above, see also questions in hypoanalyticity (Helffer, Pham The Lai-Robert, Christ.....)

Nodal sets and multiplicity

Let us consider the case of an annulus like symmetric domain in \mathbb{R}^{2} and the Dirichlet case with 0-magnetic field.

$$
\Theta:=\frac{1}{2 \pi} \int_{\sigma} \omega_{A}
$$

(Normalized flux in the hole $=$ circulation along a simple path around the hole).
Theorem. - $\Theta \mapsto \lambda(\Theta)$ is 1-periodic, $\lambda(-\Theta)=\lambda(\Theta)$.

- The multiplicity is 1 for $\Theta \notin \mathbb{Z}+\frac{1}{2}$, ≤ 2 for $\Theta=\mathbb{Z}+\frac{1}{2}$. $\left[0, \frac{1}{2}\right] \ni \Theta \mapsto \lambda(\Theta)$ is monotonic.
- The zero set is empty for $\Theta \notin \mathbb{Z}+\frac{1}{2}$.
- For $\Theta=\mathbb{Z}+\frac{1}{2}$, there is a basis of the groundstate eigenspace such that the nodal set is one line joining the two components of the boundary.

Papers by subsets of $\{$ Helffer, Maria or Thomas Hoffmann-Ostenhof, Nadirashvili, Owen\}

Extensions for many holes, Schrödinger with periodic potentials...
Below we give (after $\mathrm{H}-\mathrm{HO}-\mathrm{HO}-\mathrm{O}$) a qualitative picture (not computed!!) describing the possible topological structure of the nodal lines for the groundstate in domains with holes and with normalized flux $1 / 2$. Note that there are very few "quantitative" results, except by semiclassical analysis ($\frac{1}{2}+\frac{1}{2}=1$) (see above) or for very symmetric situation by analyzing singular limits of domains (see below R. Joly-G. Raugel).

Bibliographie

- S. Agmon : Lectures on exponential decay of solutions of second order elliptic equations. Princeton University Press (1982).
- Y. Aharonov, D. Bohm. Phys Rev. (1959).
- J. Avron, B. Simon: A counterexample to the paramagnetic conjecture. Physics Letters (1979).
- J. Avron, I. Herbst, B. Simon: Schrödinger operators with magnetic fields I (and II, III). Duke Math. J. (1978).
- V. Bonnaillie: On the fundamental state for a Schrödinger operator with magnetic fields in a domain with corners. Note aux CRAS (2003).
- M. Christ- Fu: Compactnessand Aharonov-Bohm effect. Preprint (2003) (and previous videolecture)
- Del Pino-Fellmer-Sternberg: Boundary concentration for eigenvalue problems related to the onset of superconductivity. CMP (2000).
- J.P. Demailly: Champs magnétiques et inégalités de Morse pour la $d^{\prime \prime}$-cohomologie. Ann. Inst. Fourier (1985)
- B. Helffer Effet d'Aharanov-Bohm pour un état borné, CMP (1988).
- B. Helffer, T. Hoffmann-Ostenhof: Spectral theory for periodic Schrödinger operators with reflection symmetries. CMP (2003).
- B. Helffer, A. Mohamed: Sur le spectre essentiel des opérateurs de Schrödinger avec champ magnétique, Annales de I'Institut Fourier (1988)
- B. Helffer, A. Mohamed : Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, JFA (1996).
- B. Helffer, A. Morame: Magnetic bottles in connection with superconductivity. JFA (2001).
- B. Helffer, A. Morame: Magnetic bottles for the Neumann problem: curvature effect in the case of dimension 3 (General case). Preprint mp_arc 2002-145 (Annales ENS (2004)
- B. Helffer, J. Nourrigat: Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteur, Progress in Mathematics, Birkhäuser (1985).
- B. Helffer, J. Nourrigat: Décroissance à l'infini des fonctions propres de l'opérateur de Schrödinger avec champ électromagnétique polynomial, Journal d'analyse mathématique de Jérusalem (1992)
- B. Helffer, J. Sjöstrand: Multiple wells in semi-classical analysis 1-6, (1984-1986)
- B. Helffer, J. Sjöstrand: Effet tunnel pour l'équation de Schrödinger avec champ magnétique, Ann. Scuola Norm. Sup. Pisa CI. Sci. (1987).
- B. Helffer, J. Sjöstrand: Analyse semi-classique pour I'équation de Harper I,II,III (1988-1990)
- B. Helffer, J. Sjöstrand: De Haas Van Halphen, Peierls substitution, (1989-1990).
- B. Helffer, J. Nourrigat, X.P. Wang: Spectre essentiel pour l'équation de Dirac, Annales scientifiques de l'ENS (1989).
- B. Helffer, M and T. Hoffmann-Ostenhof, M. Owen: Nodal sets for the ground state of the Schrödinger operator with zero magnetic field in a non simply connected domain. CMP 202 (1999).
- B. Helffer, M and T. Hoffmann-Ostenhof, M. Owen: Nodal sets, multiplicity and super conductivity in non simply connected domains. Lecture Notes in Physics Vol. 62 (2000)
- B. Helffer, M and T. Hoffmann-Ostenhof, N. Nadirashvili: Spectral theory for the diedral group. GAFA (1999)
- B. Helffer, T. Hoffmann-Ostenhof, N. Nadirashvili: Periodic Schrödinger operators and Aharonov-Bohm hamiltonians. Moscow Mathematical Journal (2003).
- K-H. Kwek, X-P. Pan: Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains. Trans. Am. Math. Soc. (2002).
- A. Laptev, T. Weidl: Hardy inequality for magnetic Dirichlet forms. Oper. Theory, Adv. Appl. (1999).
- E. Lieb, J.P. Solovej, J. Yngason: Asymptotics of Heavy Atoms in High Magnetic Fields I, II, III ...(1994)
- K. Lu, X. Pan: Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity. (5 papers around 1999)
- R. Montgomery: Hearing the zerolocus of a magnetic field. CMP (1995).
- B. Parisse : Effet d'Aharonov-Bohm sur un état borné de l'opérateur de Dirac. Asymptotic Anal (1995)
- D. Robert: Comportement asymptotique des valeurs propres d'opérateurs du type Schrödinger à potentiel "dégénéré". J. Math. Pures Appl. no. 3, 275-300 (1983).
- B. Simon: Some quantum operators with discrete spectrum but classically continuous spectrum. Ann. Physics 146, p. 209-220 (1983).
- B. Simon: Semi-classical analysis of low lying eigenvalues I,II,III,IV (1983-1985)

