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From classical mechanics to quantum mechanics
Conclusion

The aim is to present the basic mathematical techniques in
semi-classical analysis involving the theory of h-pseudodifferential
operators and to illustrate how they permit to solve natural
questions about spectral distribution and localization of
eigenfunctions. Although semi-classical methods can be applied to
many problems, we choose to remain quite close in this short
presentation to the initial goals of the theory, that is the
verification of the correspondence principle for the Schrödinger
operator. More details are given in [20].
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From classical mechanics to quantum mechanics

The initial goal of semi-classical mechanics is to explore the
correspondence principle, due to Bohr in 1923 [4], which states
that one should recover as the Planck constant h tends to zero the
classical mechanics from the quantum mechanics. So we start with
a very short presentation of these two theories.
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Classical mechanics

We start (we present the Hamiltonian formalism) from a C∞

function on R2n : (x , ξ) 7→ p(x , ξ) which will permit to describe
the motion of the system in consideration and is called the
Hamiltonian. The variable x corresponds in the simplest case to
the position and ξ to the impulsion of one particle. The evolution
is then described, starting of a given point (y , η), by the so called
Hamiltonian equations

dxj/dt = (∂p/∂ξj)(x(t), ξ(t)) , for j = 1, · · · , n ;
dξj/dt = −(∂p/∂xj)(x(t), ξ(t)) , for j = 1, · · · , n . (1)
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The classical trajectories are then defined as the integral curves of
a vector field defined on R2n called the hamiltonian vector field
associated with p and defined by Hp = ((∂p/∂ξ),−(∂p/∂x)) . All
these definitions are more generally relevant in the framework of
symplectic geometry on a symplectic manifold M, but we choose
for simplicity to explain the theory on R2n, which can be seen the
cotangent vector bundle T ∗Rn, and is the “local” model of the
general situation. This space is equipped naturally with a
symplectic structure defined by giving at each point a non
degenerate 2-form, which is here σ :=

∑
j dξj ∧ dxj . This 2- form

permits to associate canonically to a 1-form on T ∗Rn
x a vector field

on T ∗Rn
x . In this correspondence, if p is a function on T ∗Rn

x , Hp is
associated with the differential dp.
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In this talk, we keep in mind as guiding example the example of
the Hamiltonian p(x , ξ) = ξ2 + V (x), also called the Schrödinger
Hamiltonian and more specifically the case of the harmonic
oscillator where V (x) =

∑n
j=1 µjx

2
j (with µj > 0), which is the

natural approximation of a potential near its minimum, when non
degenerate.
In the framework of the classical mechanics the main questions
could be :

I Are the trajectories bounded ?

I Are there periodic trajectories ?

I Is one trajectory dense in its energy surface ?

I Is the energy surface compact ?
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The solution of these questions could be very difficult. Let us just
mention the trivial fact that, if p−1(λ) is compact for some λ, then
the conservation of energy law

p(x(t), y(t)) = p(y , η) . (2)

leads to the property that the trajectories starting of one point
(y , η) remain in the set {p(−1)(p(y , η)) in R2n and are hence
bounded. This is in particular the case for the harmonic oscillator.
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Quantum mechanics

The quantum theory is born around 1920. It is structurally related
to the classical mechanics in a way that we shall describe very
briefly. In quantum mechanics, our basic object will be a (possibly
non-bounded) selfadjoint operator defined on a dense subspace of
an Hilbert space H. In order to simplify, we shall always take
H = L2(Rn).
This operator can be associated with p by different techniques
called quantizations. We choose here to present a procedure called
the Weyl-quantization procedure (which is already present in
1928), which under suitable assumptions on p and its derivatives
will be defined for u ∈ S(Rn) by

pw (x , hDx , h)u(x) =

(2πh)−n
∫∫

exp( i
h (x − y) · ξ) p( x+y

2 , ξ, h) u(y) dy dξ .
(3)
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The operator pw (x , hDx , h) is called an h-pseudodifferential
operator of Weyl-symbol p. One can also write Opwh (p) in order to
emphasize that it is the operator associated to p by the Weyl
quantization. Here h is a parameter which plays the role of the
Planck constant.
Of course, one has to give a sense to these integrals and this is the
object of the theory of the oscillatory integrals. If p = 1, we
observe that the associated operator is nothing else, by
Plancherel’s formula, than the identity :

u(x) = (2πh)−n ·
∫ ∫

exp(
i

h
(x − y) · ξ) u(y) dy dξ .
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A way to rewrite any h-differential operator
∑
|α|≤m aα(x)(hDx)α

as an h-pseudodifferential operator is to apply it to the Plancherel
identity. In particular, we observe that if p(x , ξ) = ξ2 + V (x), then
the h-Weyl quantization associated with p is the Schrödinger
operator : −h2∆ + V . Other interesting examples appear naturally
in solid state physics. Let us for example mention the Harper’s
operator H (see [26]) whose symbol is (x , ξ) 7→ cos ξ + cos x . and
which can also be written, for u ∈ L2(Rn), by

(Hu)(x) =
1

2
(u(x + h) + u(x − h)) + cos x u(x) .

We shall later recall how to relate the properties of p and the
properties of the associated operator. More precisely, we shall
describe under which conditions on p the operator pw (x , hDx ; h) is
semi-bounded, symmetric, essentially selfadjoint, compact, with
compact resolvent, trace class, Hilbert-Schmidt (See [Rob] for an
extensive presentation.)
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But before to look later at a more general situation, let us consider
the case of the Schrödinger operator : Sh = −h2∆ + V (x). If V is
-say continuous- bounded from below, Sh, which is a priori defined
on S(Rn) as a differential operator, admits a unique selfadjoint
extension on L2(Rn).
We are first interested in the nature of the spectrum. If V tends to
+∞ as |x | → ∞, one can show that Sh, more precisely its
selfadjoint realization, has compact resolvent and its spectrum
consists of a sequence of eigenvalues tending to ∞. We are next
interested in the asymptotic behavior of these eigenvalues.
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In the case of the harmonic operator, corresponding to

V (x) =
n∑

j=1

µjx
2
j (with µj > 0) ,

the criterion of compact resolvent is satisfied and the spectrum is
described as the set of the

λα(h) =
n∑

j=1

√
µj(2αj + 1)h ,

for α ∈ Nn.
We have also in this case a complete description of the normalized
associated eigenfunctions which are constructed recursively starting
from the first eigenfunction corresponding to λ0(h) =

∑
j
√
µj h :

φ0(x ; h) = (
n∏

j=1

µ
1
8
j )(

2

π
)
n
2 · h−

n
4 · exp(−

∑
j

√
µjx

2
j /h) . (4)
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The eigenfunction φ0 is strictly positive and decays exponentially.
Moreover, (and here we enter in the semi-classical world), the local
decay in a fixed closed set avoiding {0} (which is measured by its
L2 norm) is exponentially small as h→ 0. In particular, this says
that the eigenfunction lives asymptotically in the set V (x) ≤ λ(h)
which has to be understood as the projection by the map
(x , ξ) 7→ x of the energy surface which is classically attached to
the eigenvalue λ(h), that is p(x , ξ) = λ(h). This is a typical
semi-classical statement which will be true in full generality.
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From quantum mechanics to classical mechanics :
semi-classical mechanics

Before to describe the mathematical tools involved in the
exploration of the correspondence principle, let us describe a few
results which are typical in the semi-classical context. They
concern Weyl’s asymptotics and the localization of the
eigenfunctions.
We start with the case of the Schrödinger operator Sh, but we
emphasize however that the h-pseudodifferential techniques are not
limited to this situation.
We assume that V is a C∞ function on Rn which is semi-bounded
and satisfies inf V < lim|x |→∞V (x) . The Weyl Theorem gives
that the essential spectrum is contained in

[ lim|x |→∞V (x) , +∞ [ .
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It is also clear that the spectrum is contained in [inf V ,+∞[. In
the interval I = [inf V , lim|x |→∞V (x)[, the spectrum is discrete,
that is has only isolated eigenvalues with finite multiplicity. For
any E in I , it is consequently interesting to look at the counting
function of the eigenvalues contained in [inf V ,E ]

Nh(E ) = ]{λj(h) ; λj(h) ≤ E} . (5)
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The main semi-classical result is then

Theorem : Weyl’s asymptotics

With the previous assumptions, we have :

lim
h→0

hnNh(E ) = (2π)−n
∫
V (x)≤E

(E − V (x))
n
2 dx .
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The main term in the expansion of Nh(E ), which will be denoted
by Wh(E ) := (2πh)−n

∫
V (x)≤E (E − V (x))

n
2 dx , is called the Weyl

term. It has an analog for the analysis of the counting function for
Laplacians on compact manifolds (see [41] and references therein),
but let us emphasize that here E is fixed and that one looks at the
asymptotics as h→ 0. In the other case h is fixed and one looks1

at the asymptotics as E → +∞.

1Note that on a compact manifold and for the Laplacian, the formula
Nh(E) = N1(

E
h2 ) permits easily to go from one point of view to the other.
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Although this formula is rather old (first as folk theorem), many
efforts have been done by mathematicians for analyzing, first when
E is not a critical value of V , the remainder (see [Rob], [Iv])
Nh(E )−Wh(E ), whose behavior is again related to classical
analysis. If hn+1 (Nh(E )−Wh(E )) can be shown to be bounded, it
appears to be o(1) if the measure of the periodic points for the
flow is of measure 0 ([35], [Iv]).
Beyond the analysis of the counting function, one is also interested
(for example in questions concerning the groundstate energy of an
atom with a large number of particles N satisfying the Pauli
exclusion principle (see in [RaSi])) in other quantities like the Riesz
means, which are defined, for a given s ≥ 0, by

Ns
h(E ) =

∑
j

(E − λj)s+ .
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The case s = 0 corresponds to the counting function. It is then
natural to ask for the asymptotic behavior as h→ 0 of these
functions.
We have for example the following result (See Helffer-Robert [24],
Ivrii-Sigal [30], Ivrii [Iv]), when E is not a critical value of V in the
interval I ,

Ns
h(E ) = (2πh)−n

(∫
pE (x ,ξ)≤0

(−pE (x , ξ))s dx · dξ

)
+O(h−n+inf(1+s,2)) ,

with pE (x , ξ) = ξ2 + V (x)− E .
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Localized version (Karadzhov)

∑
j(E − λj(h))s+ψj(x ; h)2 = (2πh)−n

(∫
pE (x ,ξ)≤0(−pE (x , ξ))sdξ

)
+O(h−n+inf(1+s,2)) ,

uniformy for x ∈ K where K is compact in {V (x) < E}.∑
j(E − λj(h))s+ψj(x ; h)2 = (2πh)−nLs,n(E − V (x))

(s+n)/2
+

+O(h−n+inf(1+s,2)) .

Applications of this formula in Signal theory : B. Helffer and M.
Laleg-Kirati [19] .
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Uncertainty principle and Weyl term

The Weyl term can be heuristically understood in the following
way. According to the uncertainty principle, a “quantum” particule
should occupy at least a volume of order hn in the phase space
with the measure dx dξ (proportional to (

∑n
j=1 dξj ∧ dxj)

n). This
guess is a consequence of the inequality

h

2
||u||2 ≤

(∫
R

(x − x0)2|u|2 dx

) 1
2
(∫

R
|(h

i

d

dx
− ξ0)u|2dx

) 1
2

,

expressing the non commutation of (hi
d
dx − ξ0) and of (x − x0).
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When ||u|| = 1, and, when x0 (mean position) and ξ0 (mean
impulsion) are defined by

x0 :=

∫
R

x |u|2 dx

and

ξ0 :=
h

i

∫
R

u′(x) · ū dx ,

this inequality is expressing the impossibility for a quantum particle
to have a simultaneous small localization in position and impulsion.
Consequently the maximal number of ”quantum” particles which
can live in the the region pE (x , ξ) ≤ 0 is approximately (up to
some universal multiplicative constant) the volume of this region
divided by (2πh)n.
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Localization of the eigenfunctions

The localization property was already observed on the specific case
of the harmonic oscillator. But this was a consequence of an
explicit description of the eigenfunctions. This is quite important
to have a good description of the decay of the eigenfunctions (as
h→ 0) outside the classically permitted region without to have to
know an explicit formula.
Various approachs can be used.
The first one fits very well in the case of the Schrödinger operator
(more generally to h-pseudodifferential operators with symbols
admitting holomorphic extensions in the ξ variable) and gives
exponential decay. This is based on the so-called Agmon estimates
(see Agmon [Ag], Helffer-Sjöstrand [25] or Simon [37]). This is the
starting point of the analysis of the tunneling (see [Hel], [DiSj] and
[Mar]).
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The second one is an elementary application of the
h-pseudodifferential formalism which will be described later and
leads for example to the following statement.

Proposition: localization of the eigenfunctions

Let E in I and let (λ(hj), φ(hj )(x)) a sequence in I × L2(Rn) where
λ(hj)→ E and hj → 0 as j →∞, x 7→ φ(hj )(x) is an

L2-normalized eigenfunction associated with λ(hj) with norm 1.
Let Ω be a relatively compact set in Rn such that

V−1(]−∞,E ]) ∩ Ω̄ = ∅ .

Then,
||φ(hj )||L2(Ω) = O(h+∞

j ) .
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Short introduction to the h-pseudodifferential calculus
Basic calculus : the class S0

We shall mainly discuss the most simple called the S0 calculus. Let
us simply say here that the S0 calculus is sufficient once we have
suitably (micro)-localized the problem (for example by the
functional calculus).
This class of symbols p is simply defined by

|∂αx ∂
β
ξ p(x , ξ)| ≤ Cα,β ,

for all (α, β) ∈ Nn × Nn .
The symbols can possibly be h dependent. With this symbol, one
can associate an h-pseudodifferential operator by (3). This
operator is a continuous operator on S(Rn) but can also be
defined by duality on S ′(Rn).
The first basic analytical result is the Calderon-Vaillancourt (See
for example [Ho]) theorem establishing the L2 continuity.
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The second important property is the existence of a calculus.
If a is in S0 and b is in S0 then the composition
aw (x , hDx)◦bw (x , hDx) of the two operators is a pseudodifferential
operator associated with an h-dependent symbol c in S0:

aw (x , hDx) ◦ bw (x , hDx) = cw (x , hDx ; h) .

We immediately meet symbols admitting expansions in powers of
h, called regular symbols, i.e. admitting expansions of the type

a(x , ξ; h) ∼
∑
j

aj(x , ξ)hj , b(x , ξ; h) ∼
∑
j

bj(x , ξ)hj .
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In this case c has a similar expansion :

c(x , ξ; h)

∼ [exp
(
ih
2 (Dx · Dη − Dy · Dξ)

)
(a(x , ξ; h) · b(y , η; h))]x=y ; ξ=η .
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The symbol a0 is called the principal symbol. At the level of
principal symbols, the rule is that

c0 = a0 · b0 .

Another important property is the correspondence between
commutator of two operators and Poisson brackets. The principal
symbol of the commutator 1

h (aw ◦ bw − bw ◦ aw ) is 1
i {a0, b0},

where {f , g} is the Poisson bracket of f and g :

{f , g}(x , ξ) = Hf g =
∑
j

(
∂ξj f · ∂xj g − ∂xj f · ∂ξj g

)
.
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About global classes

The class S0 is far to be sufficient for analyzing the global spectral
problem and we refer to [3], [Ho] or [Rob] for an extensive
presentation of the theory and for the discussion of other
quantizations. Our initial operators (think of the harmonic
oscillator) have usually not this property. We are consequently
obliged to construct more general classes including these examples
and permitting to realize this localization. Similar considerations
should be done if one start of a problem on a compact manifold.
Once such class is introduced, one of the main points to analyze is
the existence of a quasi-inverse for a suitably defined elliptic
operator. The more general classes were introduced by
Beals-Feffermann (see also the most general Hörmander calculus
[Ho]), but it is sometimes better to have for a specific problem an
adapted class of pseudo-differential operators.
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Elliptic theory

Once one has a pseudo-differential calculus, the main point is to
have a class of invertible operators, such that the inverse is also in
the class. This is what we call an elliptic theory and the typical
statement is :

Theorem: construction of the inverse

Let P be an h-pseudodifferential operator associated to a symbol p
in S0. We assume that it is elliptic in the sense that 1

p belongs to
S reg . Then there exists an h-pseudodifferential operator Q with
symbol in S reg such that

Q · P = I + R ; P · Q = I + S .

The remainders R and S are operators with symbols in O(h∞).
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The proof is rather easy, once the formalism of composition and
the notion of principal symbol have been understood. One can
indeed start from the operator Q0 of symbol 1

p and observe that

Q0P = I + R1

with
R1 ∈ O(h∞)

. The operator

(I + R1)−1Q0 ∼

∑
j≥0

(−1)jR j
1

Q0

gives essentially the solution.
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Essential selfadjointness and semiboundedness
We now sketch two applications of this calculus in spectral theory.
We shall usually consider in our applications an h-
pseudodifferential operator P whose Weyl symbol p is regular

(H0) p(x , ξ; h) ∼ hjpj(x , ξ) .

(We refer to [Rob, Ho, DiSj] for a more precise formulation).
Moreover we assume that

(H1) (x , ξ) 7→ p(x , ξ; h) ∈ R .

This implies, as can be immediately seen from (3), that pw is
symmetric (= formally selfadjoint) :

〈pw u , v〉L2 = 〈u , pw v〉L2 , ∀u, v ∈ S(Rn) .
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The third assumption is that the principal symbol is bounded from
below (and there is no restriction to assume that it is positive)

(H2) p0(x , ξ) ≥ 0 .

This assumption implies that the operator itself is bounded from
below. This result belongs to the family of the so called ”Garding’s
inequality” theorems. More precisely, the assumption gives the
existence of a constant C such that for any u ∈ S(Rn)

〈Pu, u〉L2×L2 ≥ −C h||u||2 .
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Under suitable assumptions (mainly the previous ones), the main
result is that P is, for h small enough, essentially self-adjoint. This
means that the operator which was initially defined on S(Rn) by
the pseudodifferential operator with symbol p admits a unique
selfadjoint extension.
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The functional calculus

It is well known by the spectral theorem for a selfadjoint operator
P that a functional calculus exists for Borel functions. What is
important here is to find a class of functions (actually essentially
C∞0 ) such that f (P) is a nice pseudodifferential operator in the
same class as P with simple rules of computation for the principal
symbol.
We are starting from the general formula (see [DiSj])

f (P) = −π−1 lim
ε→0+

∫ ∫
|Im z|≥ε

∂ f̃

∂z̄
(x , y) (z − P)−1dx dy

which is true for any selfadjoint operator and any f in C∞0 (R).
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Here (x , y) 7→ f̃ (x , y) is a compactly supported, almost analytic
extension of f in C. This means that f̃ = f on R and that for any

N ∈ N there exists a constant CN such that |∂ f̃ (z)
∂z̄ | ≤ CN |Im z |N .

The main result due to Helffer-Robert [22] is that, for P an
h-regular pseudodifferential operator satisfying (H0)-(H3) and f in
C∞0 (R), then f (P) is a pseudodifferential operator whose Weyl’s
symbol pf (x , ξ; h) admits a formal expansion in powers of h

pf (x , ξ; h) ∼ hjpf ,j(x , ξ) ,

with

pf ,0 = f (p0)
pf ,1 = p1 · f ′(p0)

pf ,j =
∑2j−1

k=1 (−1)k(k!)−1dj ,k f (k)(p0) ∀j ≥ 2 ,

where the dj ,k are universal polynomial functions of the ∂αx ∂
β
ξ p`

with |α|+ |β|+ ` ≤ j .
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The main point in the proof is that we can construct a parametrix
(= approximate inverse) for (P − z)−1 for Im z 6= 0 with a nice
control as Im z → 0. The constants controling the estimates on
the symbols are exploding as Im z → 0 but the choice of the almost
analytic extension of f absorbs any negative power of |Im z |.
As a consequence, we get that if in some interval I

(H4) p−1
0 (I + [−ε0, ε0]) is compact ,

for some ε0 > 0, then the spectrum is, for h small enough, discrete
in I .
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In particular, we get that, if p(x , ξ)→ +∞ as |x |+ |ξ| → +∞,
then the spectrum of Ph is discrete (Ph has compact resolvent).
Under Assumption (H4), we get more precisely

Theorem: Trace formula

Let P be an h-regular pseudodifferential operator satisfying
(H0)-(H4), with I = [E1,E2], then for any g in C∞0 (]E1,E2[), we
have:

Tr [g(P(h))] = h−n
∑
j≥0

hj Tj(g) +O(h∞) as h→ 0 ,

where g 7→ Tj(g) are distributions in D′(]E1,E2[).
In particular we have

T0(g) = (2π)−n
∫∫

g(p0(x , ξ)) dx dξ ,
T1(g) = (2π)−n

∫∫
g ′(p0(x , ξ)) p1(x , ξ) dx dξ .
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This theorem is just obtained by integration of the preceding one,
because in the good cases the trace of a trace-class
pseudodifferential operator Opw(a) is given by the integral of the
symbol a over R2n = Rn

x × Rn
ξ . According to (3), the distribution

kernel is given by the oscillatory integral :

K (x , y ; h) = (2πh)−n
∫
Rn

exp(
i

h
(x − y) · ξ) a(

x + y

2
, ξ; h)dξ , (6)

and the trace of Opw(a) is the integral over Rn of the restriction
to the diagonal of : K (x , x) = (2πh)−n

∫
Rn a(x , ξ; h)dξ.

Of course, one could think of using the theorem with g ,
characteristic function of an interval, in order to get for example,
the behavior of the counting function attached to this interval.
This is of course not directly possible and this will be only obtained
through Tauberian theorems and at the price of additional errors.
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Another interest is that for suitable f (possibly h-dependent) the
operator f (P) could have better properties that the initial
operator. This idea will for example applied for the theorem
concerning the clustering. It appears in particular very powerful in
dimension 1 where we can in some interval of energy find a
function t 7→ f (t; h) admitting an expansion in powers of h such
that f (P; h) has the spectrum of the harmonic oscillator. This is a
way to get the Bohr-Sommerfeld conditions (See Helffer-Robert
[23], in connexion with Maslov [Mas] or Voros [39]) :

f (λn(h) ; h) ∼ (2n + 1)h ,

modulo O(h∞).
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We have tried in this short survey to present some of the
techniques which were the starting techniques for the development
of the ”mathematical” semi-classical analysis. Of course this is
very limited and semi-classical methods go far beyond the
verification of the correspondence principle. One can refer to
semi-classical analysis for many other problems where the same
analysis (with a small parameter h) is relevant but where h is no
more the Planck constant. This could be a flux (Harper’s
equation) or the inverse of a flux, the inverse of a mass
(Born-Oppenheimer’s approximation), of an energy or of a number
of particle. We have not developed this point of view here.
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Figure: Hofstadter’s butterfly: spectrum of cos hDx + cos x , h/2π rational
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pseudodifférentiels qui commutent,
Asymptotic Analysis 1, p. 227-261 (1988).

B. Helffer Introduction to semi-classical analysis for the Schrödinger operators



From classical mechanics to quantum mechanics
Conclusion

J. Chazarain :
Spectre d’un Hamiltonien quantique et mécanique classique,
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