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1 Introduction

Our aim is to describe in these notes some aspects of the semi-classical theory.
We focus on the Schrödinger operator with magnetic fields and the study of
the bottom of its spectrum.

The reader is supposed to have a good knowledge of the elementary spec-
tral analysis, of the Hilbertian analysis and of the theory of distributions
(Sobolev spaces). For the spectral theory, Reed-Simon is more than enough
and the reader can also look at [LB] (in french) or to the notes of an unpub-
lished course [Hel7].

We will sometimes give detailed proofs but in other cases we will just
give some hints and refer to the original references or, in the case when
semi-classical analysis is involved, to the books [Hel1] and [DiSj]. Other
references are the book [CFKS] (Chapter 11, which is oriented towards Morse
theory) and [HiSi]. When Schrödinger operators with magnetic fields are
concerned, we should also mention the surveys by [Hel3, Hel4], Mohamed-
Raikov [MoRa], [Hel5] for the relations with superconductivity and the book
by B. Thaller [Tha]. Other aspects in semi-classical analysis are presented in
the books by D. Robert [Ro2], Kolokoltsov [Ko] (in connection with results of
the Maslov’s school) and A. Martinez (in the spirit of the microlocal analysis)
[Ma2].

The course is organized as follows. After recalling some elements of per-
turbation theory concerning the links between approximate eigenvectors or
eigenvalues and exact eigenvectors or eigenvalues, we present the main prop-
erties of the Schrödinger operators with magnetic fields. We then give some
elements in semi-classical analysis : harmonic approximation, WKB con-
structions and analysis of the decay of eigenfunctions. We conclude by two
applications to the analysis of the splitting for the double well problem and
to the analysis of the bottom of the spectrum of the Neumann realization of
the Schrödinger operator with magnetic fields in connection with the super-
conductivity. After the bibliography, we have added (mainly at te attention
of the students), a few appendices on basic topics in spectral theory and
propose also typical exercises illustrating the subject.

Acknowledgements
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with me on this fascinating subject : C. Bolley, V. Bonnaillie, P. Del Castillo,
M. Dutour, S. Fournais, A. Kachmar, A. Morame, X. Pan, J. Sjöstrand and
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with the financial support of the programme SPECT of the european funda-
tion of Science and the programme HPRN-CT-2002-00277 of the European
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2 On the Schrödinger operators with mag-

netic fields

2.1 Preliminaries

Let Ω be an open set in Rn, ~A = (A1, A2, . . . , An) a C∞ vector field on Ω,
corresponding to the so called magnetic potential, and V (which may depend1

on h) a C∞(Ω) real valued function, corresponding to the so called electric
potential, and let h > 0 is a small parameter (playing the role of the Planck
constant, or in other context of the inverse of the intensity of the magnetic
field). The vector ~A corresponds more intrinsically to a 1-form

ωA =
∑

j

Ajdxj . (2.1)

One can then associate to ωA a 2-form called the magnetic field σB :

σB := dωA =
∑

j<k

Bjkdxj ∧ dxk . (2.2)

When n = 2, the unique B12 defines a function, more simply denoted by
x 7→ B(x), also called the magnetic field.

When n = 3, the magnetic field is identified to a magnetic vector ~B, by the
Hodge map :

~B = (B1, B2, B3) = (B23,−B13, B12) . (2.3)

All these objects can be defined more generally on a Riemannian manifold
(with notions like connections, curvature, ....) but it is outside the aim of
this short course.

1Typically, one can meet V (x;h) = V0(x) + hV1(x).
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We would like to discuss the spectrum of selfadjoint realizations of the
Schrödinger operator in an open set Ω in Rn :

Ph,A,V,Ω =

n
∑

j=1

(hDxj
− Aj)

2 + V (x) .

2.2 Selfadjointness

Our main interest is the analysis of the bottom of the spectrum of Ph,A,V,Ω.
The open set Ω can be bounded or the whole space Rn. Many physically
interesting situations correspond to n = 2, 3. In the case of a bounded open
set Ω, we can consider the Dirichlet realization or the Neumann condition
(other conditions appear also in the applications).

The Dirichlet realization
The Dirichlet realization corresponds to take the so called Friedrichs exten-
sion attached to the quadratic form :

C∞
0 (Ω; C) 3 u
7→ QD

h,A,V,Ω(u) :=
∫

Ω
(|∇h,Au|2 + V (x)|u(x)|2) dx , (2.4)

whose existence follows immediately from the proof of the existence of a
constant C such that :

∫

Ω

(

|∇h,Au|2 + V (x)|u(x)|2
)

dx ≥ −C||u||2 , ∀u ∈ C∞
0 (Ω) , (2.5)

with
∇h,A = h∇− i ~A .

In this case, we say that the quadratic form is semibounded (from below).
When Ω is regular and bounded, the form domain of the operator is

VD(Ω) = H1
0 (Ω) ,

and the domain of the operator, which is denoted by PD
h,A,V , is

D(PD
h,A,V ) = H1

0 (Ω) ∩H2(Ω) .
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The Neumann realization
The Neumann realization corresponds to take the so called Friedrichs exten-
sion attached to the quadratic form :

C∞(Ω; C) 3 u 7→ QN
h,A,V,Ω(u) :=

∫

Ω

(

|∇h,Au|2 + V (x)|u(x)|2
)

dx , (2.6)

whose existence follows immediately from the proof of the existence of a
constant C such that :

∫

Ω

(

|∇h,Au|2 + V (x)|u(x)|2
)

dx ≥ −C||u||2 , ∀u ∈ C∞(Ω) . (2.7)

When Ω is regular (bounded), the form domain of the operator is

VN (Ω) = H1(Ω) , (2.8)

and the domain of the operator, which is denoted by PN
h,A,V , is

D(PN
h,A,V ) = {u ∈ H2(Ω) | ~n · (h∇− iA)u = 0 on ∂Ω }. (2.9)

Here ~n is the normal derivative to ∂Ω, this condition :

~n · (h∇− iA)u = 0 on ∂Ω , (2.10)

is called the magnetic-Neumann boundary condition.

The case of Rn

In the case of Rn, it is more difficult to characterize the domain of the op-
erator. When V ≥ −C, it is easy to characterize the form domain which
is

V(Rn) = {u ∈ L2(Rn) | ∇h,Au ∈ L2(Rn) , (V + C)
1
2u ∈ L2(Rn) } . (2.11)

In the general case, if the operator is semi-bounded on C∞
0 (Rn) in the sense

of (2.5), it has been proved by Simader [Sima] (see also [Hel7]) that the
operator is essentially selfadjoint. This means that the Friedrichs extension
is the unique selfadjoint extension in L2(Rn) starting of C∞

0 (Rn) and the
domain D(Ph,A,V ) satisfies in this case :

D(Ph,A,V ) = {u ∈ L2(Rn) , Ph,A,V u ∈ L2(Rn)} . (2.12)
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2.3 Spectral theory

All the operators introduced above are selfadjoint. If one denotes by P one of
these operators, one can analyze its spectrum, defined as the complementary
in C of the resolvent set ρ(P ) corresponding to the points z ∈ C such that
(P − z)−1 exists. The spectrum σ(P ) is a closed set contained in R. The
spectrum contains in particular the set of the eigenvalues of P . We recall
that λ is an eigenvalue, if there exists a non zero vector u ∈ D(P ) such
that Pu = λu. The multiplicity of λ is the dimension of Ker (P − λ).
We call discrete spectrum σd(P ) the subset of the λ ∈ σ(P ) such that λ is
an eigenvalue of finite multiplicity. Finally we call essential spectrum of P
(which is denoted by σess(P )) the closed set :

σess(P ) = σ(P ) \ σd(P ) . (2.13)

In this course, we will be mainly interested in the analysis of the bottom of
the spectrum of P as a function of the various parameters (mainly h). De-
pending on the assumptions, this bottom could correspond to an eigenvalue
or to the bottom of the essential spectrum.
Using the MiniMax characterization (see appendix B), this bottom is deter-
mined by

inf(σ(Ph,A,V )) = inf
u∈V\0

Qh,A,V (u)/||u||2 , (2.14)

where V denotes the form domain of the quadratic form Qh,A,V .
It is consequently enough, in order to determine if the bottom corresponds
to an eigenvalue, to find a non trivial u in the form domain V, such that

Qh,A,V (u) < inf(σess(Ph,A,V )))||u||2 . (2.15)

An easy case when this is satisfied is when σess(Ph,A,V )) = ∅, corresponding
to the case when P is with compact resolvent. For verifying this last prop-
erty, it is enough to show that the injection of V in L2 is compact. This is
in particular the case (for Dirichlet and Neumann) when Ω is regular and
bounded. In the case, when Ω is unbounded, it is possible to determine the
bottom of the essential spectrum using Persson’s Lemma (see Appendix C).

Example 2.1 .
Let us consider Ph,V := −h2∆+V on Rm, where V is a C∞ potential tending
to 0 at ∞ and such that infx∈Rm V (x) < 0.
Then if h > 0 is small enough, there exists at least one eigenvalue for Ph. We
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note that the essential spectrum is [0,+∞[. The proof of the existence of this
eigenvalue is elementary. If xmin is one point such that V (xmin) = infx V (x),
it is enough to show that, with φh(x) = exp−λ

h
|x − xmin|2 and λ > 0, the

quotient <Phφh,φh>
||φh||2 tends as h→ 0 to V (xmin) < 0.

Actually, we can produce a arbitrary number N of eigenvalues below the
essential spectrum, under the condition that 0 < h ≤ hN .

2.4 Lieb-Thirring inequalities

In order to complete the picture, let us mention (confer [ReSi], p. 101) the
following theorem due to Cwickel-Lieb-Rozenbljum :

Theorem 2.2 .
There exists a constant Lm, such that, for any V such that V− ∈ L

m
2 (Rm),

and if m ≥ 3, the number N− of strictly negative eigenvalues of PV = −∆+V
is finite and bounded by

N− ≤ Lm

∫

{x |V (x)<0}
(−V (x))

m
2 dx . (2.16)

This shows that we could have, when m ≥ 3, examples of negative po-
tentials V (which are not identically zero) and such that the corresponding
Schrödinger operator PV has no eigenvalues. A sufficient condition is indeed

Lm

∫

V <0

(−V (x))
m
2 dx < 1 .

If λ ≤ inf σess(P ), it is natural to count the number of eigenvalues strictly
below λ :

N(λ) = #{λj < λ | λj ∈ σ(P )} , (2.17)

each eigenvalue being counted with multiplicity.
In this situation, it is useful to have either universal estimates (Cwickel-Lieb-
Rozenbljum) or semiclassical asymptotics (see Robert [Ro2] or Ivrii [Iv]).

More generally, we are interested in controlling the more general moments
(also called Riesz means) defined for s ≥ 0 by

N s(λ) =
∑

λj<λ

(λ− λj)
s . (2.18)
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Theorem 2.3 (see [LieTh])
There exists a universal constant C, such that, if V satisfies V− ∈ L

n
2
+s(Rn)

and n
2

+ s > 1, then the eigenvalues of P = −∆ + V satisfy

∑

λj<0

(−λj)s ≤ C

∫

V <0

(−V )
n
2
+sdx . (2.19)

The same is true with magnetic field.

This inequality (for s = 1) has played an important role in the analysis of
the stability of the matter in physics.

Remark 2.4
Note that these estimates are also true, with the same constants, with −∆
replaced by −∆A =

∑n
j=1(Dxj

− Aj)
2. But this is not a consequence of the

direct comparison of −∆ + V and −∆A + V , but it comes simply from the
fact that the proof for the case without magnetic field can be extended with
the same constants.

Remark 2.5
If we reinsert the semi-classical parameter by looking at Ph,V = −h2∆ + V
one can establish (Helffer-Robert [HeRo2]) under suitable assumptions on V
the asymptotic estimate

∑

λj<0

(−λj)s ∼ Cs,nh
−n
∫

V <0

(−V )
n
2
+sdx . (2.20)

The effect of a magnetic field is also discussed in this paper and in [LaWe].
Note that in this case the semi-classical Laplacian −h2∆ is replaced by

−∆h,A = −(h∇− iA)2 , (2.21)

and that the main term is independent of the magnetic potential.

2.5 Diamagnetism

Everything being universal in this discussion, we take h = 1. By Kato’s
inequality (cf for example [CFKS]), which says that, for all u ∈ H1

loc, for all
j,

|∂j|u|| ≤ |(∂j − iAj)u| , a.e. , (2.22)
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it can be shown that the effect of the magnetic field is to increase the bottom
of the spectrum (in the case when inf σ(PA=0) < inf σess(PA=0)). We recall
that this inequality gives, for any real potential V , the comparison :

inf σ
(

PD
A,Ω + V

)

≥ inf σ
(

−∆D
Ω + V

)

, (2.23)

and that a similar result is true in the case of Neumann :

inf σ
(

PN
A,Ω + V

)

≥ inf σ
(

−∆N
Ω + V

)

, (2.24)

This inequality admits a kind of converse, showing its optimality (Lavine-
O’Caroll-Helffer) (see [Hel1])

Proposition 2.6
Let λA be the ground state of PA, then λA = λA=0 if and only if B = 0 (when
Ω is simply connected).

When Ω is not simply connected, the condition B = 0 is NOT sufficient and
one should add a quantization condition on the circulation of ~A along any
closed path.
Let us just present an heuristic proof (see for example [Hel2] for a rigourous
proof or [Hel1] in connection with the Aharonov-Bohm effect) which permits
to understand this last point. For u ∈ H1, one can write u = ρ exp iφ. One
has :

|(∇− iA)u|2 = |∇ρ|2 + ρ2|∇φ− A|2 .
If we apply this identity to u = uA where uA is a normalized ground state,
we obtain :

λA =
∫

Ω
(|(∇− iA)uA|2 + V |uA|2) dx

=
∫

Ω
(|∇ρA|2 + V |ρA|2) dx+

∫

Ω
(ρ2
A|∇φ− A|2) dx

≥ λ0 +
∫

Ω
ρ2
A|∇φ− A|2 dx .

When λA = λ0, we get ∇φ = A, which implies the various statements. One
can indeed deduce from the last property that ωA is closed and due to the
fact that φ is defined modulo 2π, we get

1

2π

∫

γ

ωA ∈ Z (2.25)
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on any closed path γ.
Conversely, if this condition is satisfied, the multivalued function φ defined
by :

φ(x) =

∫

γ(x0 ,x)

ωA ,

where γ(x0, x) is a path in Ω joining x0 and x, permits to define the C∞

function on Ω
Ω 3 x 7→ U(x) = exp−iφ(x) . (2.26)

The associated multiplication operator U gives a the unitary equivalence with
the problem with A = 0.

Remark 2.7
It is instructive to look at the model of the circle and at the magnetic Lapla-
cian −( d

dθ
− ia)2, where a is a real constant corresponding to the magnetic

potential. So the magnetic field is zero and the spectrum can be easily found
to be described by the sequence (n−a)2 (n ∈ Z) with corresponding eigenvec-
tors θ 7→ exp inθ.
We immediately see that, confirming the general statement, the ground state
energy, which is equal to dist (a,Z)2, increases when a magnetic potential
is introduces. We also observe that the multiplicity of the groundstate is 1
except when d(a,Z) = 1

2
. We note finally that if we take λ = 1, the num-

ber of eigenvalues which is strictly less than 1, is 1 for a = 0, and 2 for
a ∈]0, 1[. This illustrates our previous comment on Cwickel-Lieb-Rozenblium
in Remark 2.4.

2.6 Very rough estimates for the Dirichlet realization

When n = 2, it is immediate to show the inequality

||∇h,Au||2 = 〈Ph,A,Ωu | u〉 ≥ h

∫

Ω

B(x)|u(x)|2dx , ∀u ∈ C∞
0 (Ω) , (2.27)

which is interesting only if assuming B ≥ 0.
Here the basic point is to observe that :

hB(x) =
1

i
[h∂x1 − iA1, h∂x2 − iA2] . (2.28)

We then write

hB(x)u(x) ū(x) =
1

i
(X1X2u)(x) ū(x) −

1

i
(X2X1u)(x) ū(x) ,
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with Xj = h∂xj
− iAj.

Integrating over Ω and performing the integration by parts :

h

∫

Ω

B(x)|u(x)|2dx = −1

i
〈X1u | X2u〉 +

1

i
〈X2u | X1u〉 .

It remains then to use Cauchy-Schwarz Inequality.
This leads for the Dirichlet realization and when B(x) ≥ 0, to the easy but
useful estimate :

inf σ(PD
h,A) ≥ h inf

x∈Ω
B(x) := hb . (2.29)

Note that the converse is asymptotically (as h → 0) true. The proof is
rather easy. In a system of coordinates, where x = 0 denotes a minimum
of B which is assumed to be inside Ω, and in a gauge where ~A(x1, x2) =
1
2
b(x2,−x1) + O(|x|2), we consider the quasimode

u(x; h) := b
1
4h−

1
2 exp−ρ

√
b
|x|2
h
χ(x) ,

where χ is a cutoff function equal to 1 in a neighborhood of 0. The optimal ρ
is computed by minimizing over ρ the energy corresponding to the constant
magnetic field b and to h = 1 :

(
∫

(|(∂y1 + i
b

2
y2)uρ(y)|2 + |(∂y2 − i

b

2
y1)uρ(y)|2 dy

)

/||uρ||2 ,

with
uρ(y) = b

1
4 exp−ρ

√
by2 . (2.30)

One easily gets that this quantity is minimized for ρ = 1
2

and that the
corresponding energy is b.
The control of the remainders is easy, and we get :

inf σ(PD
h,A) ≤ hb + O(h

3
2 ) . (2.31)

So we have proved2 (in the 2-dimensional case) :

2We leave to the reader the proof for the case when the minimum of |B(x)| is attained
at the boundary. One can for example take a sequence of Gaussians centered at a sequence
of points tending to one point of the boundary, where B takes its minimum. This affects
only the remainder term.
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Theorem 2.8 .
The smallest eigenvalue λ(1)(h) of the Dirichlet realization PD

h,A,Ω of Ph,A,Ω
satisfies :

λ(1)(h)

h
= b + o(1) . (2.32)

Exercise 2.9
Show that in the case when the magnetic field is constant, one has

λ(1)(h)

h
= b + O(exp−S

h
) , (2.33)

for some h > 0.
Hint.
Take a centered gaussian which is as far as possible of the boundary.

Let us state the theorem in the more general case (cf [Mel], [Ho] (Vol.
III, Chapter 22.3) and [HelMo2]). Let us extend at each point Bjk as an
antisymmetric matrix (more intrinsically, this is the matrix of the two-form
σB). Then the eigenvalues of iB are real and one can see that if λ is an
eigenvalue of iB, with corresponding eigenvector u, then ū is an eigenvector
relative to the eigenvalue −λ. If the λj denote the eigenvalues of iB counted
with multiplicity, then one can define

Tr +B(x) =
∑

λj(x)>0

λj(x) . (2.34)

The extension of the previous result is then :

Theorem 2.10 .
The smallest eigenvalue λ(1)(h) of the Dirichlet realization PD

h,A,Ω of Ph,A,Ω
satisfies :

λ(1)(h)

h
= inf

x∈Ω
Tr +(B(x)) + o(1) . (2.35)

The idea for the proof is to first treat the constant case, and then to make
a partition of unity. For the constant case, after a change variable, we will
get, with ∂j = ∂/∂xj , for n = 2d, the model

d
∑

j=1

[−(∂j)
2 − (∂j+d + ibjxj)

2] ,
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and for n = 2d+ 1, the model

−∂2
2d+1 +

d
∑

j=1

[−(∂j)
2 − (∂j+d + ibjxj)

2] ,

with
d
∑

j=1

|bj| = Tr +B .

2.7 Other rough lower bounds.

Let us start the analysis of the question with very rough estimates. In the
case of Dirichlet, n = 2, and if B(x) 6= 0 (say for example B(x) > 0), we
can use (2.27) which gives a comparison between selfadjoint operators in the
form (for any ρ ∈ [0, 1])

PD
h,A ≥ ρ(PD

h,A) + (1 − ρ)hB(x) . (2.36)

The operator on the right hand side of (2.36) is now a new Schrödinger
operator, which has this time an “effective” electric potential (1 − ρ)hB.
In order to find a lower bound for the smallest eigenvalue of the Dirichlet
realization, it is enough to optimize over ρ a rough lower bound for the
operator :

ρ(PD
h,A) + (1 − ρ)hB(x) .

Remark 2.11
According to the diamagnetic inequality, we will instead look for a lower bound
of the lowest eigenvalue of the Dirichlet realization of the operator

−ρh2∆ + (1 − ρ)hB(x) .

This leads to the following proposition, which improves Theorem 2.8 :

Proposition 2.12 .
Under the condition that x 7→ B(x) is ≥ 0, analytic and strictly larger that
b = infx∈ΩB(x) at the boundary, then there exists ϑ > 0 and C > 0 such
that :

λ(1)(h) − bh ≥ 1

C
h1+ 1

ϑ , (2.37)

where b = infx∈R2 B(x).
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Proof :
We use Remark 2.11 for some ρ ∈]0, 1

2
]. We observe that for any ρ, we have

λ(1)(h) ≥ ρh2λ1(ε) + (1 − ρ)hb ,

where λ1(ε) is the lowest eigenvalue of the Schrödinger operator −∆+Vε (see
(2.19) and [BeHeVe]) with Vε(x) = 1

2ε
(B(x) − b) and ε = ρh.

We now apply the Lieb-Thirring bounds for −∆ + Vε. This gives3, for any
λ > 0,

∑

λj(ε)<λ

(λ− λj(ε)) ≤ C

∫

Vε(x)<λ

(λ− Vε(x))
2dx .

where λj(ε) denotes the sequence of eigenvalues of −∆ + Vε.
Note that the fact that we consider the first moment instead of the counting
function is due to the fact that we would like to avoid the unfortunate condi-
tion on the dimension appearing in the Cwickel-Lieb-Rozenblium estimate.
.

We now take λ = 2(λ1(ε) + η) with η > 0 and get :

λ1(ε) + η ≤ 4C(λ1(ε) + η)2

(
∫

Vε<2(λ1(ε)+η)

dx

)

.

This gives
1

4C
≤ (λ1(ε) + η)

(
∫

Vε<2(λ1(ε)+η)

dx

)

,

for any η > 0. Taking the limit η → 0, we obtain first that λ1(ε) > 0 and

1

4C
≤ λ1(ε)

(
∫

Vε<2λ1(ε)

dx

)

.

We now use the analyticity assumption, the set {Vε < 2λ1(ε)} is the set
{B(x)−b < 2(ελ1(ε))}. But it is easy to show by using Gaussian quasimodes
as in Example 2.1, that (ελ1(ε)) tends to zero, as ε→ 0. But the measure of
{B(x) − b < µ} as µ→ 0+ is of order µϑ for some ϑ > 0, if B(x) is analytic
(see, for this standard result which can be shown for example via Lojaciewicz

3We actually apply the inequality with (Vε − λ) replaced by (Vε − λ)− and combine
with the minimax principle.
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inequalities, [BeHeVe]).
So we get :

ε

4C
≤ C(ελ1(ε))

1+ϑ .

Coming back to our initial problem, we finally obtain that : ∀ρ ∈]0, 1
2
],

λ(1)(h) − (1 − ρ)hb ≥ h

C
(ρh)

1
1+ϑ .

This can be rewritten in the form :

λ(1)(h) − hb ≥ 1

C
ρ

1
1+ϑh

2+ϑ
1+ϑ − bρh ,

or

λ(1)(h) − hb ≥ hρ
1

1+ϑ

(

1

C
h

1
1+ϑ − bρ

ϑ
1+ϑ

)

.

If we take ρ = γh
1
ϑ and γb small enough, we get (2.37) for h small enough.

Remark 2.13 .
The optimality of this inequality will be discussed later in particular cases.
In particular, we will discuss the case when B(x) = b and the case when
B(x) − b has a non degenerate minimum.

Remark 2.14
When b = 0, we can take ρ = 1

2
, and get, for some θ > 0 :

λ(1)(h) ≥ 1

C
h2−θ .

Results in [HelMo3], [Mon], [Ue2] or [LuPa1] show that it is optimal.
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3 Compactness criteria for the resolvent of

Schrödinger operators.

3.1 Magnetic bottles

This problematic in mathematical physics was introduced by Avron-Herbst-
Simon [AHS] and then discussed by many authors including Colin de Verdière
and Helffer-Mohamed [HelMo1](see later Kondratiev-Mazya-Shubin [KoMaSh]
and references therein). The question was to analyze the question of com-
pact resolvent when there is no electric field. In the case of dimension 2
the previous trivial inequality (2.27) shows that in the case of Ω = R2 and
if B(x) → +∞ as |x| → +∞, then the magnetic Schrödinger operator has
compact resolvent. This is indeed an easy exercise to show that its form do-
main has compact injection in L2. The 2-dimensional case is too particular
for guessing the right result in the general case. The folk theorem that the
condition |B(x)| → +∞ is sufficient is wrong when the dimension is larger
than 3. Counterexamples have been given by Dufresnoy [Duf] and Iwatsuka
[Iw]. This shows that it is in some sense necessary to control the variation
of B in suitable balls.

3.2 The case without magnetic field

It is well known that a Schrödinger operator, defined on C∞
0 (Rd) by −∆+V ,

where V is semi-bounded from below on R
d and in C∞(Rd), admits a unique

selfadjoint extension on L2(Rd), i. e. is essentially self-adjoint. It is less
known but still true that it is also the case under the weaker condition that
−∆ + V is semi-bounded from below on C∞

0 (see Simon, Simader or for
example the course of Helffer in Spectral Theory ), i.e. satisfying :

∃C > 0, ∀u ∈ C∞
0 (Rd), 〈(−∆ + V )u | u〉 ≥ −C ‖u‖2 .

If in addition the potential V (x) tends to +∞ as |x| → ∞, then the Schrödinger
operator has a compact resolvent. The form domain of the operator is indeed
given by DQ = {u ∈ H1(Rd) | √V + C1u ∈ L2(Rd)} and it is immediate to
verify, by a precompactness characterization, that the injection of DQ into
L2(Rd) is compact. Our aim here is to analyze some cases when V does not
necessarily tend to ∞.

The first well known example of such an operator which has nevertheless
a compact resolvent is the operator −∆ + x2

1x
2
2 in two dimensions. An easy

18



proof is as follow. Although the potential V = x2
1x

2
2 is 0 along {x1 = 0} or

{x2 = 0}, the estimate for the one-dimensional rescaled harmonic oscillator
gives

−∆ + x2
1x

2
2 ≥

1

2

(

−∂2
x1

+ x2
2x

2
1

)

+
1

2

(

−∂2
x2

+ x2
1x

2
2

)

≥ 1

2
(|x2| + |x1|) ,

where this comparison is the comparison between symmetric operators on
C∞

0 (R2).
This permits to show that the form domain of the Schrödinger operator is
included in the space {u ∈ H1(R2) | |x| 12u ∈ L2(R2)}, which is compactly
embedded in L2(R2). Hence, the operator −∆+x2

1x
2
2 has a compact resolvent.

This example can actually be treated by many approaches (see Robert [Ro1],
Simon [Ro1], Helffer-Nourrigat[HeNo1] and Helffer-Mohamed [HelMo1]).

3.3 Compact resolvent and magnetic bottles.

Here we follow the proof of Helffer-Mohamed, actually inspired by Kohn’s
proof on hypollipticity. We will analyze the problem for the family of oper-
ators :

PA =
n
∑

j=1

(Dxj
− Aj(x))

2 +

p
∑

`=1

V`(x)
2 . (3.1)

Here the magnetic potential A(x) = (A1(x), A2(x), · · · , An(x)) is supposed
to be C∞ and the electric potential V (x) =

∑

j Vj(x)
2 is such that Vj ∈ C∞.

Under these conditions, the operator is essentially self-adjoint on C∞
0 (Rn).

We note also that it has the form :

PA =

n+p
∑

j=1

X2
j =

n
∑

j=1

X2
j +

p
∑

`=1

Y 2
` ,

with

Xj = (Dxj
− Aj(x)) , j = 1, . . . , n , Y` = V` , ` = 1, . . . , p .

Note that with this choice X∗
j = Xj. In particular, the magnetic field is

recovered by observing that

Bjk =
1

i
[Xj, Xk] = ∂jAk − ∂kAj , for j, k = 1, . . . , n .
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We start with two trivial easy cases.
First we consider the case when V → +∞. In this case, it is well known that
the operator has a compact resolvent.(see the argument below).
On the opposite, consider the case when n = 2 and when V = 0. We
assume moreover that B(x) = B12 ≥ 0 . Then one immediately observes the
following inequality :

∫

B(x)|u(x)|2dx ≤ ||X1u||2 + ||X2u||2 = 〈PAu | u〉 . (3.2)

Under the condition that limx→∞B(x) = +∞, this implies that the operator
has a compact resolvent .

Example 3.1

A1(x1, x2) = x2x
2
1 , A2(x1, x2) = −x1x

2
2 .

Indeed it is sufficient to show that the form domain of the operator D(qA)
which is defined by :

D(qA) = {u ∈ L2(Rn) , Xju ∈ L2(Rn) , for j = 1, . . . , n+ p} . (3.3)

is contained in the weighted L2-space,

L2
ρ(R

n) = {u ∈ S ′(Rn) | ρ 1
2u ∈ L2(Rn)} , (3.4)

for some positive continuous function x 7→ ρ(x) tending to ∞ as |x| → ∞.
In order to treat more general situations, we introduce the quantities :

mq(x) =
∑

`

∑

|α|=q
|∂αxV`| +

∑

j<k

∑

|α|=q−1

|∂αxBjk(x)| . (3.5)

It is easy to reinterpret this quantity in terms of commutators of the Xj’s.
When q = 0, the convention is that

m0(x) =
∑

`

|V`(x)| . (3.6)

Let us also introduce

mr(x) = 1 +
r
∑

q=0

mq(x) . (3.7)

Then the criterion is
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Theorem 3.2
Let us assume that there exists r and a constant C such that

mr+1(x) ≤ C mr(x) , ∀x ∈ R
n , (3.8)

and
mr(x) → +∞ , as |x| → +∞ . (3.9)

Then PA(h) has a compact resolvent.

Remark 3.3
It is shown by Meftah [Mef], that one can get the same result as in Theorem
3.2 under the weaker assumption that

mr+1(x) ≤ Cmr(x)1+δ , (3.10)

where δ = 1
2r+1−3

(r ≥ 1). This result is optimal for r = 1 according to a
counterexample by A. Iwatsuka (see also Dufresnoy [Duf]). He gives indeed
an example of a Schrödinger operator which has a non compact resolvent and
such that

∑

j<k |∇Bjk(x)| has the same order as
∑

j<k |Bjk|2.
Other generalizations are given by Z. Shen ([She] Corollary 0.11) (see also
references therein and Kondratev-Shubin for a quite recent contribution in-
cluding other references).
One can for example replace

∑

j V
2
j by V and the conditions on the mj’s can

be reformulated in terms of the variation of V and B in suitable balls. In
particular A. Iwatsuka showed that a necessary condition is :

∫

B(x,1)

(

V (y) +
∑

j<k

Bjk(y)
2

)

dy → +∞ as |x| → +∞ , (3.11)

where B(x, 1) is the ball of radius 1 centered at x.

Remark 3.4
If p = n, the operator

∑n
j=1X

2
j +

∑n
j=1 Y

2
j + it

∑

[Xj, Yj] , for |t| < 1, has
also a compact resolvent under the conditions of Theorem 3.2. The problem
is that this is the case t = ±1 which appears in the analysis of the Witten
Laplacian.
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Before entering into the core of the proof, we observe that we can replace
mr(x) by an equivalent C∞ function Ψ(x) which has the property that there
exist constants Cα and C > 0 such that :

1
C

Ψ(x) ≤ mr(x) ≤ CΨ(x) ,
|Dα

xΨ(x)| ≤ CαΨ(x) .
(3.12)

Indeed, it suffices to replace quantities like
∑ |uk| by (

∑ |uk|2)1/2, in the
definition (3.5) of mq. The second condition is a consequence of (3.8).
In the same spirit as in Kohn’s proof, let us introduce for all s > 0

Definition 3.5
We denote by M s the space of C∞ functions T such that there exists Cs such
that :

||Ψ−1+sTu||2 ≤ Cs
(

〈PAu | u〉 + ||u||2
)

, ∀u ∈ C∞
0 (Rn) . (3.13)

We observe that
V` ∈M1 , (3.14)

and we will show the

Lemma 3.6
[Xj, Xk] ∈M

1
2 , ∀j, k = 1, . . . , n . (3.15)

Another claim is contained in the

Lemma 3.7
If T is in M s for some s > 0 and |∂αxT | ≤ CαΨ when |α| = 1 or |α| = 2 ,
then [Xk, T ] ∈M

s
2 .

Assuming these two lemmas, it is rather clear that

Ψ(x) ∈M2−r

.

First we observe that Lemma 3.7 and (3.14) lead to

∂αxV` ∈M2−|α|
,

and then we deduce from Lemmas 3.6 and 3.7 :

∂αxBjk ∈M2−(|α|+1)

.
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The proof of Theorem 3.2 then becomes easy.
Proof of Lemma 3.6
We start from the identity (and observing that X∗

j = Xj) :

||Ψ− 1
2 [Xj, Xk]u||2 = 〈(XjXk −XkXj)u | Ψ−1[Xj, Xk]u〉

= 〈Xku | XjΨ
−1[Xj, Xk]u〉

−〈Xju | XkΨ
−1[Xj, Xk]u〉

= 〈Xju | Ψ−1[Xk, Xj]Xku〉
−〈Xku | Ψ−1[Xk, Xj]Xku〉
+〈Xju | [Xk,Ψ

−1[Xk, Xj]]u〉
−〈Xku | [Xj,Ψ

−1[Xk, Xj]]u〉 .
If we observe that Ψ−1[Xk, Xj] and [Xk,Ψ

−1[Xk, Xj]] are bounded (look at
the definition of Ψ), we obtain :

||Ψ− 1
2 [Xj, Xk]u||2 ≤ C

(

||Xku||2 + ||Xju||2 + ||u||2
)

.

This ends the proof of Lemma 3.6.
Proof of Lemma 3.7
Let T ∈M s. For each k, we can write :

||Ψ−1+ s
2 [Xk, T ]u||2 = 〈Ψ−1+s(XkT − TXk)u | Ψ−1[Xk, T ]u〉

= 〈Ψ−1+sXkTu | Ψ−1[Xk, T ]u〉
−〈Ψ−1+sTXku | Ψ−1[Xk, T ]u〉

= 〈Ψ−1+sTu | Ψ−1[Xk, T ]Xku〉
−〈Xku | Ψ−1[Xk, T ]Ψ−1+sTu〉
+〈Tu | [Xk,Ψ

−2+s[Xk, T ]]u〉
= 〈Ψ−1+sTu | Ψ−1[Xk, T ]Xku〉
−〈Xku | Ψ−1[Xk, T ]Ψ−1+sTu〉
+〈Ψ−1+sTu | Ψ1−s[Xk,Ψ

−2+s[Xk, T ]]u〉 .
We now observe, according to the assumptions of the lemma and the prop-
erties of Ψ, that Ψ1−s[Xk,Ψ

−2+s[Xk, T ]] and Ψ−1[Xk, T ] are bounded.
So finally we get :

||Ψ− 1
2 [Xj, T ]u||2 ≤ C

(

||Ψ−1+sTu||2 + ||Xku||2 + ||u||2
)

.

This ends the proof of Lemma 3.7.

Remark 3.8
Helffer-Mohamed [HelMo1] describe also the essential spectrum when the
compactness criterion of the resolvent is not satisfied.
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3.4 Compact resolvent and Pauli operators

We mention also the negative answer to the problem of finding magnetic
bottles for the Dirac operator due to Helffer-Nourrigat-Wang [HNW1989]
(see also the book by B. Thaller [Tha] on this question and a recent survey
of L. Erdös [Er2]). It is indeed “essentially” (the proof is under additional
technical conditions) shown that, in the two dimensional case, the resolvent
of the Dirac operator

∑2
j=1 σj(Dxj

− Aj(x)) is never compact. Here the σj
are two by two self-adjoint matrices such that

σ2
1 = σ2

2 = I , σ1σ2 = −σ2σ1 .

The standard choice is

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

.

We also observe that the square of this operator is diagonal and that the
diagonal corresponds to the so called Pauli operators

P± :=

2
∑

j=1

(Dxj
− Aj(x))

2 ± B(x) .

More precisely the Theorem is proved under the assumption that there exist
C and r and an infinite sequence of disjoint balls B` of radius ≥ 1 such that

mr+1(x) ≤ C mr(x) , ∀x ∈ ∪`B` . (3.16)

The reader can rapidly convince himself that this assumption is very weak.

We cannot enter in the details of the proof here but let us recalled how
one prove usually this type of negative result. The point here is to construct
a sequence u` ∈ C∞

0 (B`; C
2) s. t. ||u`||L2 = 1 and ||DAu`|| is bounded.

Another consequence of this result is that if (3.16) is satisfied at least one
of the two operators P± is not with compact resolvent.

Motivated by questions of F. Haslinger [Has] and previous works by
Christ, Fu, Straube, we would like to add a few remarks in the case when B
has a specific (for example positive) sign.

The first remark is that in this case we have
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2PA ≥ P+ ≥ PA ≥ P− ≥ 0 .

In particular, if P− has compact resolvent it is easy to see that this implies
that P+ is with compact resolvent. So in the previous alternative and under
assumption (3.16), we see that necessary P− has non compact resolvent.

3.5 A small walk in complex analysis

Actually, in the examples coming from complex analysis the models are still
more specific4. We have indeed

ωA = −ϕydx + ϕxdy ,

so the magnetic field is (∆ϕ)(x, y)dx ∧ dy.

In this case the Pauli operator can be seen as a “complex” Laplacian in
the form D∗D with D = expϕ∂z exp−ϕ which corresponds (up to a factor
4) to P+.

Note also that P− = DD∗ and that all the L2- distributions in the form
f(z) exp−ϕ(z) where f is holomorphic belongs to the kernel of P−. If this
space is infinite dimensional, we get immediately that the kernel is infinite
dimensional and hence that P− has non compact resolvent. These last obser-
vations are related to the Aharonov-Casher theory and we refer the reader
to [CFKS], [Tha] and [Er2] (and references therein).

As particular case, when ϕ(x, y) = x2 + y2, we recover the case of the
Schrödinger operator with constant magnetic field which will be analyzed
from a different point of view in the next section.

Note that L. Erdös has also considered the Pauli operator in the case
when B ∈ L1

loc. In this case there is already a difficulty for defining the
operator. One should take the Pauli quadratic form and to be aware that
C∞

0 is not necessarily a core in the form domain.
Another remark is that if the condition (3.8) is satisfied then it is neces-

sary that the function

C 3 z 7→
∫

B(z,1)

(∆ϕ)(x, y)dxdy

4Actually not so specific. Starting of B, one could first find some ϕ such that ∆ϕ = B.
See for the maximal efficiency of this point of view [Er2] and references therein. Another
interesting reference is [Roz].
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tends to +∞ as |z| → +∞, for getting compact resolvent for PA or P+.
This results of the discussions of Z. Shen [She] together with the criterion of
Iwatsuka [Iw] should give a sufficient condition in the same spirit.

In the case of Cn, one is interested in the properties of the Laplacian
attached to ∂̄ϕ := exp−ϕ∂z̄ expϕ and to the corresponding �-Laplacians,
particularly on (0, 0)-forms and on (0, 1)-forms (

∑

ωjdz̄j).
The operator reads indeed

�
(0,1)
ϕ = �

(0,0)
ϕ ⊗ I + 2Mϕ , (3.17)

where
�

(0,0)
ϕ = (∂̄(0)∗

ϕ ) ◦ (∂̄ϕ)
(0) , (3.18)

(= DD∗ with the previous notations) and

(Mϕ)jk =
∂2ϕ

∂zj∂z̄k
. (3.19)

The case with separate variables.

When ϕ(z1, . . . , zn) =
∑n

j=1 ϕj(zj) and when all the ϕj are polynomials
of zj and z̄j, then the previous study shows that the �-Laplacian on (0, 1)
forms has never compact resolvent if n > 1.

The operator �
(0,1)
ϕ becomes indeed diagonal, each component on the

diagonal being

Sk = �
(0,0)
ϕ + 2

∂2ϕk
∂zk∂z̄k

. (3.20)

This can be rewritten in the form

Sk =
∑

j 6=k
P

(j)
− + P

(k)
+ , (3.21)

where each operator P
(`)
± is, in the variables (x`, y`), the previously analyzed

Pauli operator.
When n = 1, S1 = P+ is the unique component and we have seen that

this operator can have compact resolvent (for example if ∆ϕ tends to +∞
at ∞).
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But, when n > 1, we can always find k such that Sk has non compact resol-
vent as soon that we know that some of the P

(j)
± has non compact resolvent.

Extending a remark of [Sch], one can also see that if there exists k and a
sequence PN of holomorphic polynomials in one complex variable such that
C 3 zk 7→ PN(zk) exp−ϕk(zk) belongs to L2(R2) and form an orthonormal
system and if there exist, for j 6= k, non trivial holomorphic polynomials
Pj(zj) such that the corresponding function zj 7→ Pj(zj) exp−ϕj(zj) belong
to the form domain of ∂̄∗ϕj

), one can immediately see that, with

uN(z) = PN(zk)(Πj 6=kPj(zj)) exp−ϕ(z1. . . . , zn)

and chosing some i 6= k, the sequence

〈�(0,1)
ϕ (uNdz̄i) | (uNdz̄i)〉 ,

is bounded. So �
(0,1)
ϕ has non compact resolvent and the contradiction is

obtained with (0, 1)-forms
∑

j ωjdz̄j with coefficients in the “Fock”-space (i.
e. with expϕωj holomorphic) .

It is probably worth to discuss also the invertibility of �
(1)
ϕ because, when

invertible, this gives, by the formula (∂̄
(0)∗
φ ) ◦

(

�
(0,1)
ϕ

)−1

, of the ∂̄φ problem.

This means that we can solve, for ω ∈ L2 s.t. ∂̄
(1)
ϕ ω = 0, the equation

∂̄
(0)
ϕ u = ω with u ⊥ Ker ∂̄

(0)
ϕ .

This problem is rather easy to analyze in the pluri-subharmonic case (i.e.
when the matrix Mϕ is non negative). At least in the case when ϕ(z) =
∑

j ϕj(zj) and assuming that, for any j, P
(j)
+ has compact resolvent and a

strictly positive lowest eigenvalue5, then it is easy to see that the bottom of
thespectrum of �

(0,1)
ϕ satisfies

σ(�(0,1)
ϕ ) ≥ inf

j
inf σ (P

(j)
+ ) > 0 .

So �
(0,1)
ϕ is invertible and the operator (∂̄

(0)∗
φ ) ◦

(

�
(0,1)
ϕ

)−1

is a well defined

bounded operator. We observe indeed that
(

�
(0,1)
ϕ

)−1

is continuous from L2

into D(∂̄
(0)∗
ϕ ).

5For example this is true if ∆ϕj ≥ 0,
∫

∆ϕj > 0
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A case with compact resolvent.
We close this subsection by a criterion of compactness for the resolvent of
�

(0,1)
ϕ . Coming back to the general formula (3.17), one immediately sees that

a sufficient condition for compactness is that all the eigenvalues of Mϕ tends
to +∞ at ∞.

This is for example the case when ϕ(z) = (
∑

j |zj|2)m for some integer
m > 1. This is strongly related to examples given by Derridj for the analysis
of the regularity of �b, as discussed in the book [HeNo1] (Chap. V.2).

We indeed show immediately that

Mϕ(z) ≥ 2m

(

∑

j

|zj|2
)m−1

.
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4 Models with constant magnetic field in di-

mension 2

Before to analyze the general situation and the possible differences between
the Dirichlet problem and the Neumann problem, it is useful– and it is ac-
tually a part of the proof for the general case– to analyze what is going on
with models.

4.1 Preliminaries.

Let us consider in a regular domain Ω in R2 the Neumann realization (or the
Dirichlet realization) of the operator Ph,bA0,Ω with

A0(x1, x2) = (
1

2
x2,−

1

2
x1) . (4.1)

Note that the Neumann realization is the natural condition considered in the
theory of superconductivity. We will assume b > 0 and we observe that the
problem has a strong scaling invariance :

Ph,bA0 = h2P1,bA0/h . (4.2)

As a consequence, the semi-classical analysis (b fixed) is equivalent to the
analysis of the strong magnetic field (h being fixed) case. If the domain is
invariant by dilation, one can reduce the analysis to h = b = 1. Let us
denote by µ(1)(h, b,Ω) and by λ(1)(h, b,Ω) the bottom of the spectrum of the
Neumann and Dirichlet realizations of Ph,bA0 in Ω. Depending on Ω, this
bottom can correspond to an eigenvalue (if Ω is bounded) or to a point in
the essential spectrum (for example if Ω = R

2 or if Ω = R
2
+). The analysis

of basic examples will be crucial for the general study of the problem.

4.2 The case of R
2

We would like to analyze the spectrum of PBA0 more shortly denoted by :

SB := (Dx1 −
B

2
x2)

2 + (Dx2 +
B

2
x1)

2 . (4.3)

We first look at the selfadjoint realization in R2. Let us show briefly, how
one can analyze its spectrum. We leave as an exercise to show that the spec-
trum (or the discrete spectrum) of two selfadjoint operators S and T are the
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same if there exists a unitary operator U such that U(S±i)−1U−1 = (T±i)−1.
We note that this implies that U sends the domain of S onto the domain of
T .
In order to determine the spectrum of the operator SB, we perform a suc-
cession of unitary conjugations. The first one U1 is defined, for f ∈ L2(R2)
by

U1f = exp iB
x1x2

2
f . (4.4)

It satisfies
SBU1f = U1S

1
Bf , ∀f ∈ S(R2) , (4.5)

with
S1
B := (Dx1)

2 + (Dx2 +Bx1)
2 . (4.6)

Remark 4.1 .
U1 is a very special case of what is called a gauge transform. More generally,
as was done in the proof of Proposition 2.6 (see (2.26)), we can consider
U = exp iφ, where exp iφ is C∞.
If ∆A :=

∑

j(Dxj
−Aj)2 is a general Schrödinger operator associated with the

magnetic potential A, then U−1∆AU = ∆Ã where Ã = A + gradφ. Here we
observe that B := rot A = rot Ã. The associated magnetic field is unchanged
in a gauge transformation. We are discussing in our example the very special
case (but important!) when the magnetic potential is constant.

We have now to analyze the spectrum of S1
B. Observing that the operator

has constant coefficients with respect to the x2-variable, we perform a partial
Fourier transform with respect to the x2 variable

U2 = Fx2 7→ξ2 , (4.7)

and get by conjugation, on L2(R2
x1,ξ2

),

S2
B := (Dx1)

2 + (ξ2 +Bx1)
2 . (4.8)

We now introduce a third unitary transform U3

(U3f)(y1, ξ2) = f(x1, ξ2) , with y1 = x1 +
ξ2
B
, (4.9)

and we obtain the operator

S3
B := D2

y +B2y2 , (4.10)
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operating on L2(R2
y,ξ2

).
The operator depends only on the y variable. It is easy to find for this
operator an orthonormal basis of eigenvectors. We observe indeed that if
f ∈ L2(Rξ2) (with ||f || = 1), and if φn is the (n+ 1)-th eigenfunction of the
harmonic oscillator, then

(x, ξ2) 7→ |B| 14 f(ξ2) · φn(|B| 12 y)
is an eigenvector corresponding to the eigenvalue (2n + 1)|B|. So each
eigenspace has an infinite dimension. An orthonormal basis of this eigenspace
can be given by vectors ej(ξ2)|B| 14 φn(|B| 12 y) where ej (j ∈ N) is a basis of
L2(R).
We have consequently an empty discrete spectrum and the bottom of the
spectrum (which is also the bottom of the essential spectrum) is B. The
eigenvalues (which are of infinite mutiplicity!) are usually called Landau
levels.

4.3 Towards the analysis of R2,+ : an important model

Let us begin with the analysis of a family of ordinary differential operators,
whose study will play an important role in the analysis of various examples.
For ξ ∈ R, we consider the Neumann realization HN,ξ in L2(R+) associated
with the operator D2

x + (x − ξ)2. It is easy to see that the operator has
compact resolvent and that the lowest eigenvalue µ(ξ) of HN,ξ is simple. For
the second point, the following simple argument can be used. Suppose by
contradiction that the eigenspace is of dimension 2. Then, we can find in
this eigenspace an eigenstate such that u such that u(0) = u′(0) = 0. But
then it should be identically 0 by Cauchy uniqueness.
We denote by ϕξ the corresponding strictly positive L2-normalized eigenstate.
The minimax characterization shows that ξ 7→ µ(ξ) is a continuous function.
It is a little more work (see Kato [Ka] or the proof below) to show that
the function is C∞ (and actually analytic). It is immediate to show that
µ(ξ) → +∞ as ξ → −∞. We can indeed compare by monotonicity with
D2
x + x2 + ξ2.

The second remark is that µ(0) = 1. For this, we use the fact that the
lowest eigenvalue of the Neumann realization of D2

t + t2 in R+ is the same as
the lowest eigenvalue of D2

t + t2 in R, but restricted to the even functions,
which is also the same as the lowest eigenvalue of D2

t + t2 in R.
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Moreover the derivative of µ at 0 is strictly negative (see (4.12) or (4.18)).
It is a little more difficult to show that

lim
ξ→+∞

µ(ξ) = 1 . (4.11)

The proof can be done in the following way. For the upper bound, we
observe that µ(ξ) ≤ λ(ξ), where λ(ξ) is the eigenvalue of the Dirichlet real-
ization. By monotonicity of λ(ξ), it is easy to see that λ(ξ) is larger than one
and tend to 1 as ξ → +∞. Another way is to use the function exp− 1

2
(x−ξ)2

as a test function.
For the converse, we start from the eigenfunction x 7→ φξ(x), show some
uniform decay of φξ(x) near 0 as ξ → +∞ and use x 7→ χ(x+ ξ)φξ(x+ ξ) as
a test function for the harmonic oscillator in R.

All these remarks lead to the observation that the quantity
infξ∈R inf σ (HN,ξ) is actually a minimum [DaHe] and stricly less than 1.
Moreover one can see that µ(ξ) > 0, for any ξ, so the minimum is strictly
positive. To be more precise on the variation of µ, let us first establish
(Dauge-Helffer [DaHe] motivated by a question of C. Bolley (see [BoHe]))

µ′(ξ) = −[µ(ξ) − ξ2]ϕξ(0)2 . (4.12)

To get (4.12), we observe that, if τ > 0, then

0 =
∫

R+
[D2

tϕξ(t) + (t− ξ)2ϕξ(t) − µ(ξ)ϕξ(t)]ϕξ+τ (t+ τ)dt

= −ϕξ(0)ϕ′
ξ+τ(τ) + (µ(ξ + τ) − µ(ξ))

∫

R+
ϕξ(t)ϕξ+τ (t+ τ) dt .

Observing that
ϕ′
ξ+τ(τ) = ϕ′′

ξ(0)τ + O(τ 2)

as τ → 0, and using the equation satisfied by ϕξ, we can take the limit τ → 0
to get the formula.

Remark 4.2
In the case of the Dirichlet realization, we have a similar formula :

λ′(ξ) = −
(

(ϕDξ )′(0)
)2

,

where ϕDξ is the ground state of the Dirichlet realization and this shows im-
mediately the monotonicity. Note that (ϕDξ )′(0) 6= 0 (by Cauchy uniqueness
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theorem), so λ′ is strictly negative.
This formula is actually a particular case of a general formula (called Rel-
lich’s Formula) for the Dirichlet realization of Schrödinger operator.

From (4.12), it comes that, for any critical point ξc of µ in R
+

µ′′(ξc) = 2ξcϕ
2
ξc(0) > 0 . (4.13)

So the critical points are necessarily non degenerate local minima. It is then
easy to deduce, observing that limξ→−∞ µ(ξ) = +∞ and limξ→+∞ µ(ξ) = 1,
that there exists a unique minimum ξ0 > 0 such that

Θ0 = inf
ξ
µ(ξ) = µ(ξ0) < 1 . (4.14)

Moreover
Θ0 = ξ2

0 . (4.15)

Finally, it is easy to see that ϕξ(x) decays exponentially at ∞.

Around the Feynman-Hellmann formula.
Let us give additional remarks on the properties of ξ 7→ µ(ξ) and ϕξ(·) which
are related to the Feynman-Hellmann formula. We differentiate with respect
to ξ the identity6 :

HN(ξ)ϕ(·; ξ) = µ(ξ)ϕ(·; ξ) . (4.16)

We obtain :

(∂ξH
N(ξ) − µ′(ξ))ϕ(·; ξ) + (HN(ξ) − µ(ξ))(∂ξϕ)(·; ξ) = 0 . (4.17)

Taking the scalar product with ϕξ in L2(R+), we obtain the so called Feynman-
Hellmann Formula

µ′(ξ) = 〈 ∂ξHN(ξ)ϕξ | ϕξ〉 = −2

∫ +∞

0

(t− ξ)|ϕξ(t)|2dt . (4.18)

Taking the scalar product with (∂ξϕ)(·; ξ), we obtain the identity :

〈(∂ξHN(ξ) − µ′(ξ))ϕ(·; ξ) | (∂ξϕ)(·; ξ)〉
+〈(HN(ξ) − µ(ξ))(∂ξϕ)(·; ξ) | (∂ξϕ)(·; ξ)〉 = 0 .

(4.19)

6We change a little the notations for HN,ξ (this becomes HN (ξ) ) and ϕξ (this becomes
ϕ(·; ξ)) in order to have an easier way for the differentiation.

33



In particular, we obtain for ξ = ξ0 that :

〈(∂ξHN(ξ0)ϕ(·; ξ0) | ∂ξϕ)(·; ξ0)〉
+〈(HN(ξ0) − µ(ξ0))(∂ξϕ)(·; ξ0) | (∂ξϕ)(·; ξ0)〉 = 0 .

(4.20)

We observe that the second term is positive (and with some extra work
coming back to (4.17) strictly positive) :

〈(∂ξHN(ξ0))ϕ)(·; ξ0) | (∂ξϕ)(·; ξ0)〉 < 0 . (4.21)

Let us differentiate one more (4.17) with respect to ξ.

2(∂ξH
N(ξ) − µ′(ξ))∂ξϕ(·; ξ)

+(HN(ξ) − µ(ξ))(∂2
ξϕ)(·; ξ)

+(∂2
ξH

N(ξ) − µ′′(ξ))ϕ(·; ξ) = 0 .
(4.22)

Taking the scalar product with ϕξ and ξ = ξ0, we obtain from (4.21) that

µ′′(ξ0) = 2 + 〈 ∂ξHN(ξ0)ϕ(·; ξ0) | ∂ξϕ(·; ξ0)〉 < 2 . (4.23)

Proposition 4.3
The eigenvalue µ(ξ) and the corresponding eigenvector φξ are of class C∞

with respect to ξ.

Proof :
This result (actually the analyticity) is proved in the book of Kato [Ka].

4.4 The case of R2,+

For the analysis of the spectrum of the Neumann realization of the Schrödinger
operator with constant magnetic field SB in R

2,+, we start like in the case
of R2 till (4.8). Then we can use the preliminary study in dimension 1. The
bottom of the spectrum is effectively given by :

inf σ(SN,R
2,+

B ) = |B| inf µ(ξ) = Θ0|B| . (4.24)

Similarly, for the Dirichlet realization, we find (See Problem D.9, for
details) :

inf σ(SD,R
2,+

B ) = |B| inf
ξ∈R

λ(ξ) = |B| . (4.25)
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4.5 The case of the corner

After preliminary results devoted to the case Ω = R+ × R+ and obtained by
[Ja] and [Pan1], a more systematic analysis have been performed by V. Bon-
naillie in [Bon]. Let us mention her main results. We consider the Neu-
mann realization of the Schrödinger operator with h = 1, b = 1 in a sector
Ωα : {(x1, x2) ∈ R2 | |x2| ≤ tg α

2
x1}. One can first show, using Persson’s

Theorem (see for example [Ag]) that the bottom of the essential spectrum is
equal to Θ0. So the question is to know if there exists an eigenvalue below
the essential spectrum. One result obtained in [Bon] is that :

lim
α→0

µcorn(α)

α
=

1√
3
. (4.26)

Computing the energy of the quasimode uα (following an idea of Bonnaillie-
Fournais [Bon])

Ωα 3 (x, y) = (ρ cosφ, ρ sinφ) 7→ uα(x, y) := c exp i
ρ2β2φ

2
exp−βρ

2

4
,

with β = α√
3+α2 and c such that the L2-norm in the sector is 1, one has the

universal estimate
µcorn(α) ≤ α√

3 + α2
, (4.27)

which gives (4.26) above (the lower bound is more difficult). This also answers
to the question about the existence of an eigenvalue below Θ0 under the
condition that

α√
3 + α2

< Θ0 .

4.6 The case of the disk.

The case of Dirichlet was considered by L. Erdös in connexion with an isoperi-
metric inequality [Er1]. By using the techniques of [BoHe], one can then show
[HelMo3] the following proposition which is a small improvment of his result

Proposition 4.4 .
As R

√
b large, the following asymptotics holds :

λ(1)(b,D(0, R)) − b ∼ 2
3
2π− 1

2 b
3
2R exp(−bR

2

2
) . (4.28)
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The Neumann case is treated in the paper by Baumann-Phillips-Tang [BaPhTa]
(Theorem 6.1, p. 24) (see also [PiFeSt] and [HelMo3]) who prove the

Proposition 4.5

µ(1)(b,D(0, R)) = Θ0b− 2M3
1

R
b

1
2 + O(1) . (4.29)

Here we recall that Θ0 was introduced in (4.14), and that M3 > 0 is a
universal constant.

Remark 4.6
Another interesting case is the exterior of the disk. One first observes that
the bottom of the essential spectrum is b and one can show that as b is large,
there exists at least one eigenvalue below b. One shows also in [HelMo3] that
the above formula for the smallest eigenvalue is still valid by changing 1

R
into

− 1
R

(with a weaker control of the remainder term). This permits to verify
that it is indeed the algebraic value of the curvature which appears for all the
models.
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5 The case of R
3,+

In the analysis of the Schrödinger operator in an open set Ω, the two first
models to analyze are the model in R3 which was already done and the model
in R3,+ which will permit to understand what is going on at the boundary.

5.1 The case of R3,+: preliminary reductions

We now look at the case of R
3,+. We would proceed as in the previous case,

but our rotations have to conserve R3,+ and its boundary. Let us start from :

P (h,~b) := h2D2
x1

+ (hDx2 − b12x1)
2 + (hDx3 − b13x1 − b23x2)

2 ,

in {x1 > 0}.
After scaling, we can assume that h = 1 and b212 + b213 + b223 = 1.

After some rotation in the (x2, x3) variables, we can assume that the new
magnetic field B̃ satisfies b̃12 = 0, the new b̃13 satisfying :

b̃213 = b212 + b213 .

So we have now reduced to the problem of analyzing :

P (β1, β2) := D2
x1

+D2
x2

+ (Dx3 − β1x1 − β2x2)
2 ,

in {x1 > 0}, where :
β2

1 + β2
2 = 1 .

Here we have :
β2

1 = b223 , β
2
2 = b212 + b213 .

Changing of variables x2 7→ −x2 or x3 7→ −x3 (which respect the bound-
ary) lead to the following model :

L(ϑ,Dt) = D2
x1

+D2
x2

+ (Dt − cosϑx1 − sin ϑx2)
2 .

By Partial Fourier transform, we arrive to :

L(ϑ, τ) = D2
x1

+D2
x2

+ (τ − cosϑx1 − sin ϑx2)
2 ,

in x1 > 0 and with Neumann condition on x1 = 0. It is enough to consider
the variation with respect to ϑ ∈ [0, π

2
].
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The bottom the spectrum is given by :

ς(ϑ) := inf σ (L(ϑ,Dt)) = inf
τ

(inf σ (L(ϑ, τ))) .

We first observe the following lemma :

Lemma 5.1 .
If ϑ ∈]0, π

2
], then σ (L(ϑ, τ)) is independent of τ .

This is trivial by translation in the x2 variable.

Lemma 5.2 .
The function ϑ 7→ ς(ϑ) is continuous on ]0, π

2
[ .

After a change of variable y1 = cos ϑx1, y2 = sinϑx2 and we arrive with
a continuous family of operators with a fixed domain. Using the mini-max
principle, the lemma becomes easy to prove.

Lemma 5.3 .

ς(0) = Θ0 < 1 .

Proof
We first observe that :

L(0, Dt) = D2
x1

+D2
x2

+ (Dt − x1)
2 .

We have then to analyze the bottom of the spectrum of the family :

L(0, τ, ξ2) := D2
x1

+ ξ2
2 + (x1 − τ)2 .

This infimum is obtained as the infimum over τ ∈ R of the spectrum of the
family :

L(0, τ, 0) = D2
x1

+ (x1 − τ)2 .

This is the model which was analyzed in the previous section.

Lemma 5.4 .

ς(
π

2
) = 1 .
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Proof.
We start from

L(
π

2
, τ) = D2

x1
+D2

x2
+ (τ − x2)

2 .

The bottom of the spectrum is the same as the bottom of the Neumann
realization of :

D2
x1

+D2
x2

+ x2
2 ,

in x1 > 0.
This is easily computed as equal to 1.

5.2 Lower bounds

Let us now consider the case when ϑ ∈]0, π
2
]. According to Lemma 5.1, we

can take τ = 0 and we have to analyze :

L(ϑ) = D2
x1

+D2
x2

+ (x1 cosϑ + x2 sinϑ)2.

Let us introduce a parameter ρ ∈ [0, 1] and we then associate the following
decomposition :

L(ϑ) := D2
x1

+ ρ2(x1 cosϑ + x2 sin ϑ)2

+D2
x2

+ (1 − ρ2)(x1 cos ϑ+ x2 sinϑ)2 .

We will find a lower bound of the spectrum of L(ϑ) by considering the
sum of the lower bounds of the spectra of the two following operators :

P1(ρ, ϑ) = D2
x1

+ ρ2(x1 cos ϑ+ x2 sinϑ)2 ,

and
P2(ρ, ϑ) = D2

x2
+ (1 − ρ2)(x1 cosϑ+ x2 sinϑ)2 .

Easy computations lead to :

inf σ(P1(ρ, ϑ)) = ρΘ0 cos ϑ , (5.1)

and
inf σ(P2(ρ, ϑ)) =

√

1 − ρ2 sinϑ , (5.2)

Choosing ρ = cosϑ, we obtain :

ς(ϑ) ≥ Θ0(cosϑ)2 + (sin ϑ)2 .
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5.3 Analysis of the essential spectrum

Proposition 5.5 If ϑ ∈]0, π
2
], then the essential spectrum of L(ϑ) is con-

tained in [1,+∞[.

Proof:
Using Persson’s criterion, we have to show that if the support of u is in
{x1 > R} or {|x2| > R}, then we have

〈L(ϑ)u | u〉 ≥ (1 − ε(R))||u||22 ,

with ε(R) → 0 as R → +∞. We proceed like for the lower bound.
We treat the first case by observing that one can in this case use the Dirichlet
result or better the lower bound of the operator in R2). After a rotation, the
operator is isospectral to D2

s1
+ D2

s2
+ s2

1 whose bottom of the spectrum is
one.
This is for the second case that one uses the decomposition with ρ = cosϑ.
Under the assumption that the support of u is contained in |x2| ≥ R, we
have:

〈P1(ρ, ϑ)u | u〉 ≥ cos ϑρµ(R cot(ϑ))||u||2 ,
when supp u ⊂ {|x2| > R} and µ(τ) is the first eigenvalue of the Neumann
realization of the operator D2

t + (t− τ)2 in R+. We have also seen that :

〈P2(ρ, ϑ)u | u〉 ≥ sinϑ
√

1 − ρ2 ||u||2 .

This gives the result if one has in mind (see in the previous section) that
limτ→+∞ µ(τ) = 1 and that limτ→−∞ µ(τ) = +∞ .

5.4 The upperbound: ς(ϑ) < 1, for ϑ ∈]0, π2 [.

The case θ = 0 has been treated directly; so we assume that ϑ ∈]0, π
2
[ and

consider :

L(ϑ) = − ∂2

∂x2
1

− ∂2

∂x2
2

+ (x1 cosϑ + x2 sin ϑ)2 ,

in x1 > 0.
We use first the change of variables :

u1 = x1 cosϑ + x2 sin ϑ , u2 = −x1 sin ϑ+ x2 cosϑ ,
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whose inverse is given by :

x1 = u1 cosϑ− u2 sinϑ , x2 = u1 sin ϑ+ u2 cosϑ .

This gives :

L′ = − ∂2

∂u2
1

− ∂2

∂u2
2

+ u2
1 , (5.3)

in {u1 > tanϑ u2}.
A new change of variable :

y1 = −u1 , y2 = − tanϑ u2 ,

shows that this problem is unitary equivalent to the Neumann realization of

Lnew = − ∂2

∂y2
1

− tan2(ϑ)
∂2

∂y2
2

+ y2
1 , (5.4)

in {y2 > y1}.
We now introduce :

f(t) = exp− t
2

2
,

and

F (t) =

∫ t

−∞
exp−s2 ds .

We observe that F is strictly positive :

lim
t→+∞

F (t) =
√
π ,

and

F (t) ∼ 1

2t
exp−t2 , as t→ −∞ .

We shall apply the minimax principle with the test function :

Ψ(y1, y2) = f(y1)g(y2) ,

with g to be determined in L2(R).
Integrating Ψ2 in the domain, we first have :

||Ψ||2 =

∫ +∞

−∞
g(y2)

2F (y2)dy2 .
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Let us now compute the corresponding energy E(Ψ) associated to 〈LnewΨ |Ψ〉
of Ψ. We first get :

E(Ψ) =
∫ +∞
−∞ g(y2)

2(
∫ y2
−∞ (f ′(y1)

2 + y2
1f(y1)

2) dy1)dy2

+(tanϑ)2
∫ +∞
−∞ g′(y2)F (y2)dy2 .

After a first integration by parts, we first get

E(Ψ) = ||Ψ||2
+
∫ +∞
−∞ g(y2)

2f(y2)f
′(y2) dy2

+(tanϑ)2
∫ +∞
−∞ g′(y2)

2F (y2)dy2 ,

and then, after a second integration by parts :

E(Ψ) = ||Ψ||2
−
∫ +∞
−∞ g(y2)g

′(y2)f(y2)
2 dy2

+(tanϑ)2
∫ +∞
−∞ g′(y2)

2F (y2)dy2 .

This sum can be rewritten in the form :

E(Ψ) = ||Ψ||2 + Σ(g) ,

where

Σ(g) :=

∫ +∞

−∞
g′(y2)

(

(tanϑ)2g′(y2)F (y2) − g(y2)F
′(y2)

)

dy2 .

We observe that we are done if we find some g ∈ L2 such that Σ(g) is
strictly negative.

Let us first see what is going on if we try to get that the sum is zero. A
natural try is then to solve the equation :

(tanϑ)2g′(y2)F (y2) − g(y2)F
′(y2) = 0 ,

which leads to
g := c gα ,

where
α = (cotϑ)2

and
gα = F α .
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We can compute Σ(gα) for more general α. We get :

Σ(gα) = α(tanϑ2α− 1)

∫ +∞

−∞
f 4(y2)F

2α−1(y2) dy2 .

Let us first control that this integral is well defined. No problem at +∞
because F tends to a constant and f is exponentially decreasing. Near −∞,
F decreases like f 2 (see above), so this is OK for α > 0. Now the sign of the
expression is negative if :

0 < α < cotϑ2 .

But...... gα is not in L2 at +∞.
So we are obliged to introduce a cut-off function χn defined by :

χn(t) = χ(
t

n
) ,

where χ is equal to 1 for t ≤ 1 and equal to 0 for t ≥ 2.
We now take

g = gn,α = χn(t)gα(t) .

We observe that the corresponding ||Ψn,α||2 increases like n as n → +∞.
More precisely, we have :

−C + nπα+1 ≤ ||Ψn,α||2 ≤ (2n)πα+1 + C .

Let us compare Σ(gα,n) and Σ(gα) as n→ +∞.
We have

g′α,n(t) =
1

n
χ′(

t

n
)gα(t) + χ(

t

n
)gα(t) .

The more problematic term is :

1

n2

∫ +∞

−∞
χ′(

t

n
)2g2

α(t)F (t) dt .

But this term is less than C
n2 ||Ψn,α||2, that is of order n × O( 1

n2 ) = O( 1
n
).

The other terms appearing in the computation of Σ(gα,n)−Σ(gα) are O( 1
n
).

Now, observing that Σ(gα) < 0, we get, for n large enough, that

E(Ψα,n) ≤ Σ(gα) +
C

n
+ ||Ψα,n||2 < ||Ψα,n||2 .

This shows the property. Let us observe that

E(Ψα,n)/||Ψα,n||2 = 1 −O(
1

n
) .

So there is no hope for using this function Ψα,n as a good quasimode.
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5.5 Monotonicity

Let ς(ϑ) the lowest eigenvalue. This eigenvalue exists if we show that :

inf
u
〈L(ϑ)u , u〉/||u||2 < 1 .

We have recalled the proof of Lu-Pan in the previous subsection.
For the monotonicity, it is better7 to look at (5.4). In these coordinates

the monotonicity is immediate, via the minimax.

5.6 Another rough upperbound

This last inequality will permit to control the continuity at 0 of the function
ϑ 7→ ς(ϑ).

Lemma 5.6 .
When ϑ ∈]0, π

2
[,

inf σ (L(ϑ)) ≤ cosϑΘ0 + sin ϑ . (5.5)

Proof:
Let us write

L(ϑ) = D2
x1

+ (cos ϑx1 − z)2

+D2
x2

+ (sin ϑx2 + z)2

+2(x1 cosϑ− z)(x2 sin ϑ+ z) .

Use as quasimode the product of the eigenvector attached to the lowest
eigenvalue of D2

x1
+ (cosϑx1 − z)2 and of the eigenvector attached to the

lowest eigenvalue of D2
x2

+ (sinϑx2 + z)2. This gives, by a good choice of z

(z = −ξ0/
√

sinϑ) an upper bound by Θ0 cosϑ + sinϑ.
As a consequence, we get

Θ0 cos2 ϑ + sin2 ϑ ≤ ϑ(ς) ≤ cosϑ Θ0 + sinϑ ,

which shows in particular the continuity at ϑ = 0.

7This was not observed in the contributions of Lu-Pan and Helffer-Mohamed.
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5.7 Application.

Coming back to the initial problem, we have shown that :

inf σ(Ph,A0) ≥ h(Θ0(b
2
13 + b212) + b223)(b

2
13 + b212 + b223)

− 1
2 .

Moreover, one verifies that we have equality when b23 = 0:

inf σ(Ph,A0) = h(Θ0(b
2
13 + b212))

1
2 .

This clearly shows that when |B| is fixed the energy is minimal when the
magnetic field is parallel to the hyperplane x1 = 0.

5.8 Notes

Old results are due to Kato [Ka] and Avron-Herbst-Simon [AHS], but we have
also added more recent results of Dauge-Helffer [DaHe], Bernoff-Sternberg
[BeSt], and of Lu-Pan [LuPa2]-[LuPa5] and Helffer-Morame [HelMo3]-[HelMo5]
for the three dimensional case.
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6 Harmonic approximation

In this section we discuss one of the basic technics for analyzing the ground-
state energy (also called lowest eigenvalue or principal eigenvalue) of a Schrödinger
operator in the case the electric potential V has non degenerate minima. Ex-
cept some aspects related to magnetic fields, this part is very standard and
we refer to [CFKS, Hel1, DiSj] for a more complete description of the results.

6.1 Upper bounds

6.1.1 The case of the one dimensional Schrödinger operator

We start with the simplest one-well problem:

Ph,v := −h2d2/dx2 + v(x) , (6.1)

where v is a C∞- function tending to ∞ and admitting a unique minimum
at 0 with v(0) = 0.
Let us assume that

v′′(0) > 0 . (6.2)

In this very simple case, the harmonic approximation is an elementary exer-
cise. We first consider the harmonic oscillator attached to 0 :

−h2d2/dx2 +
1

2
v′′(0)x2 . (6.3)

This means that we replace the potential v by its quadratic approximation
at 0 1

2
v′′(0)x2 and consider the associated Schrödinger operator.

Using the dilation x = h
1
2 y, we observe that this operator is unitarily equiv-

alent to

h

[

−d2/dy2 +
1

2
v′′(0)y2

]

. (6.4)

Consequently, the eigenvalues are given by

λn(h) = h · λn(1) = (2n+ 1)h ·
√

v′′(0)

2
, (6.5)

and the corresponding eigenfunctions are

uhn(x) = h−
1
4u1

n(
x

h
1
2

) (6.6)

46



with 8

u1
n(y) = Pn(y) exp−

√

v′′(0)

2

y2

2
, (6.7)

which can be obtained recursively by

u1
n = cn(

d

dy
−
√

v′′(0)

2
y)u1

n−1 ,

where cn is a normalization constant.
We are just looking for simplicity at the first eigenvalue. We consider the
function uh,app.1

x 7→ χ(x)uh1(x) = c · χ(x)h−
1
4 exp−

√

v′′(0)

2

x2

2h
,

where χ is compactly supported in a small neighborhood of 0 and equal to 1
in a smaller neighborhood of 0. Note here that the H1-norm of this function
over the complementary of a neighborhood of 0 is exponentially small as
h→ 0.
We now get

(Ph,v − h ·
√

v′′(0)

2
)uh,app.1 = O(h

3
2 ) .

The coefficients corresponding to the commutation of Ph,v and χ give expo-
nentially small terms and the main contribution is

||(v(x) − 1

2
v′′(0)x2)χ(x)uh1(x)||L2

which is easily seen, observing that

|v(x) − 1

2
v′′(0)x2| ≤ C|x|3 , for |x| ≤ 1 ,

as O(h
3
2 ). Then the spectral theorem gives the existence for Ph,v of an eigen-

value λ(h) such that

|λ(h) − h ·
√

v′′(0)

2
| ≤ C · h 3

2

8We normalize by assuming that the L2-norm of uh
n is one. For the first eigenvalue, we

have seen that, by assuming in addition that the function is strictly positive, we determine
completely uh

1 (x).
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In particular, we get the inequality

λ1(h) ≤ h ·
√

v′′(0)

2
+ C h

3
2 . (6.8)

Combining with other techniques, one can actually prove that

|λ1(h) − h ·
√

v′′(0)

2
| ≤ C · h 3

2 (6.9)

6.1.2 Harmonic approximation in general : upper bounds

In the multidimensional case, we can proceed essentially in the same way.
The analysis of the quadratic case

H(hDx, x) := −h2∆ +
1

2
〈Ax | x〉

can be done explicitly by diagonalizing A via an orthogonal matrix U . There
is a corresponding unitary transformation on L2(Rn) defined by

(Uf)(x) = f(U−1x) ,

such that

U−1HU =
∑

j

(

−(h∂yj
)2 +

1

2
λjy

2
j

)

.

Using the Hermite functions as quasimodes we get the upper bounds by

h
∑

j

√

λj

2
+ O(h

3
2 ) as in the one-dimensional case.

6.1.3 Case with multiple minima

When there are more than one minimum, one can apply the above con-
struction near each of the minima. The upper bound for the ground state
is obtained by taking the infimum over all the minima of the upper bound
attached to each minimum.

6.2 Harmonic approximation in general: lower bounds

Here we follow Simon’s approach (See [Sim2] and also [CFKS]) (another
approach is described in [Hel1] and another variant in [DiSj]). The reader
can look at Chapter 11 of [CFKS].
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Given a covering of Rn, by balls of radius R B(xj, R) (j ∈ J ) and a
corresponding partition of unity, such that, for an R-independent constant,

∑

j∈J (φRj )2 = 1 ,
∑n

`=1

∑

j∈J |Dx`
φRj |2 ≤ C

R2 ,
(6.10)

we can write that, for all u ∈ C∞
0 ,

〈Ph,V u | u〉 =
∑

j〈Ph,V φRj u | φRj u〉 − h2
∑

j,` |||Dx`
φRj |u||2

≥∑j〈Ph,V φRj u | φRj u〉 − C h2

R2 ||u||2 .
(6.11)

We now suppose R ∈]0, 1]. We can in addition assume that either the balls
are centered at the minima of V (denoted by xjk , k ∈ K), or that the balls
are at a distance at least 1

C
R of these minima.

In the first case, we observe that :

| 〈Ph,V φRj u | φRj u〉 − 〈P k
h,V φ

R
j u | φRj u〉 | ≤ CR3||φRj u||2 ,

where P k
h,V is the quadratic approximation model at the minimum xjk (re-

place V by its quadratic approximation V k(x) = inf V + 1
2
〈V ′′(xjk)(x −

xjk | (x− xjk〉) if the ball is centered at the minimum.

In the second case, using the fact that the minimas of V are non degen-
erate, we get :

|〈Ph,V φRj u | φRj u〉 ≥
R2

C
||φRj u||2 .

The optimization between the two errors leads to the choice of

h2

R2
= R3 ,

that is R = h
2
5 , and we then observe that R2

C
= h

4
5

C
, which is dominant in

comparison with h as h→ 0. We then get the lower bound

λ1(h) ≥ inf V + h(inf
k
µ1(h, x

jk)) − Ch
6
5 , (6.12)

where the infimum is over the various minima xjk (assumed to be non degen-
erate) and µ1(h, x

jk) denotes the lowest eigenvalue of the harmonic approxi-
mation at xjk P k

h,V .
Note that in the case of a manifold there is another term which leads to a
small change in the argument (see Simon [Sim2]). The Laplacian has indeed

the form
∑

ij g
− 1

2∂xi
ggij∂xj

g−
1
2 after a change of function in order to come

back to the selfadjoint case.
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6.3 The case with magnetic field

Let us consider two situations.

6.3.1 V has a non degenerate minimum.

The first case is the case when V has a non degenerate minimum at 0. In
this case the model which gives the approximation is

n
∑

j=1

(hDxj
− A0

j)
2 +

1

2
〈V ′′(0)x | x〉 ,

where A0
j is a linear magnetic potential attached to the constant magnetic

field Bjk = Bjk(0),

A0
j(x) =

1

2

(

∑

k

Bjkxk

)

,

so that in a suitable gauge (note that by a linear gauge, one can first reduce
to the case when A(0) = 0) is such that A(x) − A0(x) = O(|x|2).

After the dilation x = h
1
2 y, we get

h

(

n
∑

j=1

(Dyj
− A0

j)
2 +

1

2
〈V ′′(0)y | y〉

)

,

whose spectrum can be determined explicitely (see [Mel], [Ho] (Vol III) and
more specifically for this case [Mat]). One then get easily the upper bound.

2-dimensional harmonic oscillator.
Let us treat the 2-dimensional case as an exercice. We start from

D2
x1

+ (Dx2 +Bx1)
2 +

λ1

2
x2

1 +
λ2

2
x2

2 .

A partial Fourier transform, leads to

D2
x1

+ (ξ2 +Bx1)
2 +

λ1

2
x2

1 +
λ2

2
D2
ξ2 .
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A dilation leads to the standard Schrödinger operator

D2
t +D2

s + (

√

λ2

2
s+Bt)2 +

λ1

2
t2 .

So we have proved the isospectrality of the initial operator to a standard
Schrödinger operator, with potential

V new(s, t) = (

√

λ2

2
s +Bt)2 +

λ1

2
t2

Its groundstate is immediately computed as

λ(B) =
√

λ(0)2 +B2 with λ(0) =
(

√

λ1 +
√

λ2

)

/
√

2 .

On this explicit formula, one immediately sees the diamagnetic effect an-
nounced in Subsection 2.5 and also that

λ(B) − |B| ≤ λ(0) ,

which is more specific of the quadratic case.

Lower bounds.
The lower bound is obtained similarly once we have observed that

Re 〈Ph,A,V u | u〉
=
∑

j〈Ph,A,V φRj u | φRj u〉 − h2
∑

j,` |||Dx`
φRj |u||2 .

(6.13)

We have then, for the balls containing the minima, to replace the magnetic
potential by its affine approximation at the momentum and to control the
remainder. Note that there is a “small” additional difficulty (of the same
type as for the manifold case) for controling the term corresponding to the
approximation of the magnetic potential.
Let us more precisely describe what is going on. A new control is only
necessary for the balls centered at one of the minima. The idea is that the
harmonic approximation at the minimum (we choose one of the minima, take
coordinates such that 0 is the minimum of V , so V (0) = ∇V (0) = 0) has to
be replaced by

P app,0
h :=

∑

`

(hDx`
− Alin` (x))2 +

1

2
Hess V (0)x · x .
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We recall from the previous paragraph that this spectrum is known and equal
to h times the spectrum computed for h = 1, as immediately seen by the
dilation x =

√
hy.

After a gauge transformation, we can assume that

A(x) − Alin(x) = O(|x|2)

and note that the magnetic field attached to Alin(x) is the value of the
magnetic field attached to A at 0.

We now take R = h
2
5 and write

〈Ph,A,V φRj u | φRj u〉 ≥
〈Papp,0φRj u | φRj u〉 − Ch

6
5 ||φju||2 − |

∫

|(A(x) − Alin(x))φju| · |(h∇− iAlin(x))φRj udx .

This leads first (omitting the reference to R which is now chosen) to

〈Ph,A,V φRj u | φRj u〉 ≥
〈Papp,0φRj u | φRj u〉 − Ch

6
5 ||φju||2 − Ch

4
5 ||φju|| · ||(h∇− iAlin(x))φRj u||dx .

Using then Cauchy-Schwarz with some (to be determined) weight ρ(h), we
obtain

〈Ph,A,V φRj u | φRj u〉 ≥ 〈Papp,0φRj u | φRj u〉 − Ch
6
5 ||φju||2

−Ch 4
5

(

1
ρ(h)2

||φju||2 + ρ(h)2||(h∇− iAlin(x))φRj u||2
)

≥ (1 − h
4
5 ρ(h)2) 〈Papp,0φRj u | φRj u〉 − Ch

6
5 ||φju||2 − C h

4
5

1
ρ(h)2

||φju||2 .

The choice of ρ(h) = h−
1
5 leads to

〈Ph,A,V φRj u | φRj u〉 ≥ (1 − h
2
5 ) 〈Papp,0φRj u | φRj u〉 − Ch

6
5 ||φju||2 .

We are now essentially in the same situation as in the case without magnetic
field.

6.3.2 Magnetic wells

We would like to describe a case where no electric potential is present. We
consider the rather generic case when B(z) ∈ C∞(Ω) satisfies, for some
z0 ∈ Ω :

B(z) > b := B(z0) > 0, ∀ z ∈ Ω \ {z0}, (6.14)
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and we assume that the minimum is non degenerate :

HessB(z0) > 0 . (6.15)

We introduce in this case the notation :

a = Tr

(

1

2
HessB(z0)

)1/2

. (6.16)

Theorem 6.1 .
If A ∈ C∞(Ω; R2), and if the hypotheses (6.14) and (6.15) are satisfied,
then

µ(h) = [b+
a2

2b
h]h + o(h2) . (6.17)

The detailed proof can be found in [HelMo3]. It is based on the analysis
of the simpler model where near 0

B(z) = b + αx2 + βy2. (6.18)

In this case, we can also choose a gauge A(z) such that

A1(z) = 0 and A2(z) = bx +
α

3
x3 + βxy2 . (6.19)

When the assumptions are not satisfied, and that B vanishes. Other
models should be consider. An interesting case is the case when B vanishes
along a line. This model was proposed by Montgomery [Mon] in connexion
with subriemannian geometry.

6.4 Higher order expansion

After a dilation x =
√
hy, we can look at

−∆y +
1

h
V0(

√
hy) + V1(

√
hy) ,

that we can rewrite, using the Taylor expansion at 0 of V0 and V1 by formal
expansions :

∑

j

h
j
2Hj(y,Dy) .
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This approach was developed by B. Simon [Sim2] and variants have been also
described by Helffer-Mohamed [HelMo2].
We can then find a complete expansion by recursion. One can look for a

formal quasimode in the form h−
n
4

(

∑

j∈N
h

j
2φj(x/

√
h)
)

associated to an ap-

proximate eigenvalue
∑

j∈N
αjh

j and determine the αj’s and φj’s by recursion.

Another idea will be to introduce a Grushin’s problem. A third idea is
to construct WKB expansions. This will not be detailed in this course.
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7 Decay of the eigenfunctions and applica-

tions

7.1 Introduction

As we have already seen when comparing the spectrum of the harmonic
oscillator and of the Schrödinger operator, it could be quite important to
know a priori how the eigenfunction attached to an eigenvalue λ(h) decays
in the classically forbidden region (that is the set of the x’s such that V (x) >
λ(h)). The Agmon [Ag] estimates give a very efficient way to control such
a decay. We refer to [Hel1] or to the original papers of Helffer-Sjöstrand
[HelSj1] or Simon [Sim2] for details and complements.

Let us start with very weak notions of localization. For a family h 7→ ψh
of L2-normalized functions defined in Ω, we will say that the family ψh lives
(resp. fully lives) in a closed set U of Ω if for any neighborhood V(U) of U ,

lim
h→0

∫

V(U)∩Ω

|ψh|2dx > 0 ,

respectively

lim
h→0

∫

V(U)∩Ω

|ψh|2dx = 1 .

For example one expects that the groundstate of the Schrödinger opera-
tor −h2∆ + V (x) fully lives in V −1(inf V ). Similarly, one expects that, if9

limh→0λ(h) ≤ E < inf σess(Ph,V ) − ε0 (for some ε0 > 0) and ψh is an eigen-
vector associated to λ(h), then ψh will fully live in V −1(] − ∞, E]). This
is the way one can understand that in the semi-classical limit the quantum
mechanics should recover the classical mechanics.
Of course the above is very heuristic but there are more accurate mathemat-
ical notions like the frequency set (see [Ro2]) permitting to give a mathemat-
ical formulation to the above vague statements.

Once we have determined a closed set U , where ψh fully lives (and hope-
fully the smallest), it is interesting to discuss the behavior of ψh outside U ,
and to measure how small ψh decays in this region.

To illustrate the discussion, one can start with the very explicit example of
the harmonic oscillator. The ground state x 7→ ch− 1

4 exp−x2

h
of −h2 d2

dx2 + x2

9This is in particular the case when lim inf |x|→+∞ V (x) > inf V .
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lives at 0 and is exponentially decaying in any interval [a, b] such that 0 6∈
[a, b]. This is this type of result that we will recover but WITHOUT having
an explicit expression for ψh.

7.2 Energy inequalities

The main but basic tool is a very simple identity attached to the Schrödinger
operator Ph,A,V .

Proposition 7.1 :
Let Ω be a bounded open domain in Rm with C2 boundary. Let V ∈ C0(Ω̄; R),
A ∈ C0(Ω̄; Rm) and φ a real valued lipschitzian function on Ω̄. Then, for any
u ∈ C2(Ω̄; C) with u/∂Ω = 0, we have

∫

Ω
|∇h,A(exp φ

h
u)|2 dx+

∫

Ω
(V − |∇φ|2) exp 2φ

h
|u|2 dx =

Re
(

∫

Ω
exp 2φ

h
(Ph,A,V u)(x) · u(x) dx

)

.
(7.1)

Proof :
In the case when φ is a C2(Ω)- function and A = 0, this is an immediate
consequence of the Green-Riemann formula :

∫

Ω

∇v · ∇w dx = −
∫

Ω

∆v · w dx−
∫

∂Ω

(∂v/∂n)w dσ∂Ω . (7.2)

This gives in particular :

∫

Ω

∇v · ∇w dx = −
∫

Ω

∆v · w dx , (7.3)

for all v, w ∈ C2(Ω) such that w/∂Ω = 0 or (∂v/∂n)/∂Ω = 0.
This can actually be extended to v, w ∈ H1

0 (Ω).
To treat the general case, we just write φ as a limit as ε → 0 of φε = χε ? φ
where χε(x) = χ(x

ε
) ε−m is the standard mollifier and we remark that, by

Rademacher’s Theorem, ∇φ is almost everywhere the limit of ∇φε = ∇χε?φ.
In the case when A is not zero, we have in addition to use

∫

Ω

∇h,Av · ∇h,Aw dx = −
∫

Ω

∆h,Av · w dx− h

∫

∂Ω

(h∂v/∂n − i ~A · ~nv)w dσ∂Ω .

(7.4)
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7.3 The Agmon distance

The Agmon metric attached to an energy E and a potential V is defined
as (V − E)+dx

2 where dx2 is the standard metric on Rm. This metric is
degenerate and is identically 0 at points living in the ”classical” region:
{x | V (x) ≤ E}. Associated to the Agmon metric, we define a natural
distance

(x, y) 7→ d(V−E)+(x, y)

by taking the infimum :

d(V−E)+(x, y) = inf
γ∈C1,pw([0,1];x,y)

∫ 1

0

[(V (γ(t)) − E)+]
1
2 |γ′(t)|dt , (7.5)

where C1,pw([0, 1]; x, y) is the set of the piecewise (pw) C1 paths in Rm con-
necting x and y

C1,pw([0, 1]; x, y) = {γ ∈ C1,pw([0, 1]; Rm) , γ(0) = x , γ(1) = y} . (7.6)

When there is no ambiguity, we shall write more simply d(V−E)+ = d.
Similarly to the Euclidean case, we obtain the following properties

• Triangular inequality

|d(x′, y) − d(x, y)| ≤ d(x′, x) , ∀x, x′, y ∈ R
m . (7.7)

•
|∇xd(x, y)|2 ≤ (V − E)+(x) , (7.8)

almost everywhere.

We observe that the second inequality is satisfied for any derived distance
like

d(x, U) = inf
y∈U

d(x, y) .

The most useful case will be the case when U is the set {x | V (x) ≤ E}.
In this case d(x, U) measures the distance to the classical region. All these
notions being expressed in terms of metrics, they can be easily extended on
manifolds.
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7.4 Decay of eigenfunctions for the Schrödinger oper-
ator.

When uh is a normalized eigenfunction of the Dirichlet realization in Ω sat-
isfying Ph,A,V uh = λhuh then the identity (7.1) gives roughly that exp φ

h
uh

is well controlled (in L2) in a region

Ω1(ε1, h) = {x | V (x) − |∇φ(x)|2 − λh > ε1 > 0} ,

by exp
(

supΩ\Ω1

φ(x)
h

)

. The choice of a suitable φ (possibly depending on h)

is related to the Agmon metric (V − E)+ dx2, when λh → E as h→ 0. The
typical choice is φ(x) = (1− ε)d(x) where d(x) is the Agmon distance to the
”classical” region {x | V (x) ≤ E} . In this case we get that the eigenfunction
is localized inside a small neighborhood of the classical region and we can
measure the decay of the eigenfunction outside the classical region by

exp(1 − ε)
d(x)

h
uh = O(exp

ε

h
) , (7.9)

for any ε > 0.
More precisely we get for example the following theorem

Theorem 7.2 :
Let us assume that V is C∞, semibounded and satisfies

lim inf
|x|→∞

V > inf V = 0 (7.10)

and
V (x) > 0 for |x| 6= 0 . (7.11)

Let uh be a (family of L2-) normalized eigenfunctions such that

Ph,A,V uh = λhuh , (7.12)

with λh → 0 as h→ 0. Then for all ε and all compact K ⊂ Rm, there exists
a constant Cε,K such that for h small enough

||∇h,A(exp
d

h
· uh)||L2(K) + || exp

d

h
· uh||L2(K) ≤ Cε,K exp

ε

h
, (7.13)

where x→ d(x) is the Agmon distance between x and 0 attached to the Agmon
metric V · dx2.
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Useful improvements in the case when E = minV and when the minima are
non degenerate can be obtained by controlling more carefully with respect
to h, what is going on near the minima. It is also possible to control the
eigenfunction at ∞. This was actually the initial goal of S. Agmon [Ag].

Proof:
Let us choose some ε > 0. We shall use the identity (7.1) with

• V replaced by V − λh,

• φ = (1 − δ)d(x), with δ small enough possibly depending on ε,

• u = uh, and

• Ph,A,V replaced by −∆h,A + V − λh.

Let
Ω+
δ = {x ∈ Ω , V (x) > δ} , Ω−

δ = {x ∈ Ω , V (x) ≤ δ} .
We deduce from (7.1)

∫

Ω
|∇h,A(exp φ

h
uh)|2dx +

∫

Ω+
δ

(V − λh − |∇φ|2) exp 2φ
h
|uh|2 dx

≤ supx∈Ω−
δ
|V (x) − λh − |∇φ|2|

(

∫

Ω−
δ

exp 2φ
h
|uh|2 dx

)

.

Then, for some constant C independent of h ∈]0, h0] and δ ∈]0, 1], we get

∫

Ω
|∇h,A(exp φ

h
uh)|2dx+

∫

Ω+
δ

(V − λh − |∇φ|2) exp 2φ
h
u2
h dx

≤ C ·
(

∫

Ω−
δ

exp 2φ
h
|uh|2 dx

)

.

Let us observe now that on Ω+
δ we have (with φ = (1 − δ)d(·, U))

V − λh − |∇φ|2 ≥ (2 − δ)δ2 + o(1) .

Choosing h(δ) small enough, we then get for any h ∈]0, h(δ)]

V − λh − |∇φ|2 ≥ δ2 .

This permits to get the estimate
∫

Ω
|∇h,A(exp φ

h
uh)|2dx + δ2

∫

Ω+
δ

exp 2φ
h
|uh|2 dx

≤ C ·
(

∫

Ω−
δ

exp 2φ
h
|uh|2 dx

)

,
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and finally

∫

Ω
|∇h,A(exp φ

h
uh)|2dx+ δ2

∫

Ω
exp 2φ

h
|uh|2 dx

≤ C̃ · exp a(δ)
h
,

where a(δ) = 2 supx∈Ω−
δ
φ(x). We now observe that limδ→0 a(δ) = 0 and the

end of the proof is then easy.

Remark 7.3
When V has a unique non degenerate minimum the estimate can be improved
when λh ∈ [0, C0h], by taking δ = Ch, for some C ≥ 1 and φ = d −
Ch inf(log( d

h
), logC). We observe indeed that V , d and |∇d|2 are equivalent

in the neighborhood of the well.

Application :
As an example of application, we can compare different Dirichlet problems
corresponding to different open sets Ω1 and Ω2 containing a unique well
U attached to an energy E. If for example Ω1 ⊂ Ω2, one can prove the
existence of a bijection b between the spectrum of S(h,Ω1) in an interval I(h)
tending (as h→ 0) to E and the corresponding spectrum of S(h,Ω2) such that
|b(λ) − λ| = O(exp−S/h) (under a weak assumption on the spectrum at
∂I(h)). S is here any constant such that

0 < S < d(V−E)+(∂Ω1, U) .

This can actually be improved (using more sophisticated perturbation the-
ory) as O(exp−2S/h).

Let us just give a hint about the proof. If (u
(2)
h , λ

(2)
h ) is a family of spectral

pairs of the Dirichlet realization of the Schrödinger in Ω2. Then if χ is a cutoff
function with compact support in Ω1, which is equal to 1 on a neighborhood
of U , then we can use χu

(2)
h as a quasimode. We observe indeed that

(−∆h,A + V − λ
(2)
h )(χu

(2)
h ) = −2(∇χ) · (∇h,Au

(2)
h ) − h2(∆χ)u

(2)
h .

Then the choice of χ and the Agmon estimates on u
(2)
h permit to show that

the right hand side is exponentially small as stated.
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7.5 The case with magnetic fields but without electric
potential

In this case, there is no hope to use the result for V , which does not create any
localization. The idea is that the role previously played by V (x) is replaced by
the potential h|B(x)| (or more generally by x 7→ hTr +(B(x)). This is due to
(2.27) in the case n = 2 (B(x) of constant sign) and to their extensions. The
Agmon distance will be attached to h

[

Tr +(B(x)) − infx Tr +(B(x))
]

dx2.
The proof is in two steps :

• treatment of the case with constant magnetic field,

• then partition of unity for controlling the comparison with this case.

This explains, due to the presence of h before |B|, that the decay is measured
through a weight in the form exp− φ√

h
, where φ should satisfy :

|∇φ|2 ≤ Tr +(B(x)) − inf
x

Tr +(B(x)) ,

outside a neighborhood of the magnetic well, that is the set of points where
Tr +(B(x)) = infx Tr +(B(x). We will come back to this in Section 9.
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8 On some questions coming from the super-

conductivity

8.1 Introduction to the problem in superconductivity

This problem is physically described in all the basic books in physics (see for
example Saint-James-De Gennes [SdG]). A lot of articles appear which are
devoted to this question. For mentioning some, let us cite the contributions
by Bernoff-Sternberg [BeSt], which remain at a formal level, the nice paper
by Bauman-Phillips-Tang [BaPhTa] treating in detail the case of the disk
and the papers by Giorgi-Phillips [GioPh], Lu-Pan [LuPa1, LuPa2, LuPa3,
LuPa4, LuPa5] and Del Pino-Fellmer-Sternberg [PiFeSt] for a mathemati-
cally rigorous analysis in general domains, and more recent contributions
by Helffer-Morame [HelMo3, HelMo4, HelMo5], Fournais-Helffer [FoHel1,
FoHel2, FoHel3], Bonnaillie [Bon] ....

Let us describe the mathematical problem. It is naturally posed for do-
mains in R

3, but for cylindrical domains in R
3, it is natural (but not com-

pletely justified mathematically) to consider a functional which is defined
in a domain Ω ∈ R2, where Ω is the section of the cylinder. This explains
why we consider models in R2. The behavior of the sample can be read
on the properties of the minimizers (ψ,A) in H1(Ω; C) ×H1(R2; R2) of the
Ginzburg-Landau functional G :

Ĝ(ψ , A) =

∫

Ω

{|(∇− iκA)ψ|2 +
κ2

2
(|ψ|2 − 1)2} dx+κ2

∫

R2

|curlA−H|2 dx .
(8.1)

Here Ω is a regular bounded set, ψ is called the order parameter and A is a
magnetic potential defined on Rn. H is a magnetic vector field when n = 3
and is called the external magnetic field or the applied magnetic field. In
the case n = 2, we identify this magnetic field to a function (thinking that
it is the intensity of a magnetic field vector, which is parallel to the axis of
the cylinder). It is initially defined on Rn but in the case when Ω is simply
connected, one can reduce everything to Ω and consider the functional

G(ψ , A) =

∫

Ω

{|(∇− iκA)ψ|2 +
κ2

2
(|ψ|2 − 1)2} dx+ κ2

∫

Ω

|curlA−H|2 dx .
(8.2)

Here we will always assume that Ω is connected and simply connected.
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The parameter κ is a characteristic of the sample. Traditionnally one
makes the distinction between the type 1 materials corresponding to κ small
and the type 2 materials corresponding to κ large. Mathematically, this leads
to analyze various asymptotic regimes like κ → 0 or κ → +∞. This is this
last case which will be analyzed here. In order to measure the dependence
on the size of the external magnetic field, we write H = σHe.

As Ω is bounded, the existence of a minimizer is rather standard. The
minimizer should satisfy the Euler-Lagrange equation, which is called in this
context the Ginzburg-Landau system [SdG]).

This equation reads

(∇− iκA)2ψ = −κ2(1 − |ψ|2)ψ
curl 2A = − i

2κ
(ψ∇ψ − ψ∇ψ) − |ψ|2A

}

in Ω ; (8.3a)

(∇κAψ) · ν = 0
curlA − H = 0

}

on ∂Ω . (8.3b)

Here, for A = (A1, A2), curlA = ∂x1A2 − ∂x2A1, and

curl 2A = (∂x2(curlA),−∂x1(curlA)) .

Due to the gauge invariance of the functional, it is better to restrict (without
loss of generality) to the smaller set H1(Ω,C) ×H1

div(Ω), where

H1
div(Ω) = {V = (V1, V2) ∈ H1(Ω)2 | divV = 0 in Ω , V · ν = 0 on ∂Ω} .

(8.4)
The analysis of the system can be performed by PDE techniques. We note
that this system is (weakly) non linear, that H1(Ω) is compactly imbedded
in L6(Ω) and that, if divA = 0, curl 2A = (−∆A1,−∆A2). One can show in
particular that the solution of this “elliptic” system is in H1(Ω,C)×H1

div(Ω)
is actually, when Ω is regular, in C∞(Ω). It is well known that there exists
a unique vector field F in H1

div(Ω) such that

curlF = He and div F = 0 , in Ω, F · ν = 0 on ∂Ω.

We observe that (0, σF) is a trivial critical point of the functional G, i.e. a
trivial solution of the Ginzburg-Landau system. It is therefore natural to dis-
cuss in function of σ, if this pair is a local or a global minimizer. As σ is large,
one can show [GioPh] (see Subsection 8.2) that this solution is effectively the
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unique global minimizer. One says that in this case the superconductivity is
destroyed. In other words, the order parameter is identically zero in Ω. It is
then natural to try to follow the property of the minimizers when decreasing
σ starting from +∞ and to determine when the trivial solution (also called
the normal solution) is no more a global minimum or a local minimum.

8.2 The result of Giorgi-Phillips

Let us give a rather simple proof of this result (under additional assumption
of regularities).

The first important property is

Proposition 8.1
If (ψ,A) is a minimizer of G, then

|ψ(x)| ≤ 1 . (8.5)

Sketch of the Proof.
Asuming the regularity of the minimizer (till the boundary), we can apply
the Maximum principle to the function u(x) = |ψ(x)|2. We observe that u
satisfies10

1

2
∆u+ κ2u(1 − u) = |∇κAψ|2 . (8.6)

This equation is a direct consequence of the first Ginzburg-Landau equation.
We multiply it by ψ̄ and take the real part. The formula is then a consequence
of the identity

Re
(

∆κAψ · ψ̄
)

=
1

2
∆(|ψ|2) − |(∇− iκA)ψ|2 ,

with ∆κA = (∇− iκA)2 .
This in particular implies :

1

2
∆u+ κ2u(1 − u) > 0 . (8.7)

Now if u admits a maximum which is > 1 then we get a contradiction as fol-
lows. If this maximum is attained at one point of Ω, we have indeed ∆u ≤ 0

10Here we cheat a little because not controling in detail a possible problem near the
zeroes of ψ. But this is not a deep problem because we have to show here that u can not
be too large so the zero set of u cannot be a problem.
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and κ2u(1−u) < 0 in contradiction with (8.7). If the maximum was attained
at the boundary, we should use in addition the fact that u satisfies the usual
Neumann boundary condition.

We now assume that we have a non normal minimizer for G. This means
that

G(ψ,A) ≤ κ2

2
|Ω| (8.8)

and
∫

Ω

|ψ|2dx > 0 . (8.9)

Condition (8.8) implies the following inequality :
∫

Ω

|(∇− iκA)ψ|2 dx + κ2

∫

Ω

|curlA−H|2 dx ≤ κ2

∫

Ω

|ψ(x)|2 dx . (8.10)

We will now show that this last inequality will permit the control of
∫

Ω
|(∇− iκσF)ψ|2 dx.
Without loss of generality, we can assume that A satisfies the additional

condition
divA = 0 in Ω , A · ν = 0 on ∂Ω . (8.11)

But a standard result (see for example [Tem]) on the curl-div system says

Proposition 8.2
If Ω is bounded, regular and simply connected, then curl defines an isomor-
phism from H1

div(Ω) onto L2(Ω).

In particular, there exists a constant CΩ such that

‖V‖2
L2 ≤ CΩ ‖curlV‖2

L2(Ω) , ∀V ∈ H1
div(Ω) . (8.12)

We now compare
∫

Ω
|(∇ − iκσF)ψ|2 and

∫

Ω
|(∇ − iA))ψ|2. A trivial

estimate is
∫

Ω

|(∇− iκσF)ψ|2 ≤ 2‖(∇− iκA)ψ‖2 + 2κ2‖(A− σF)|ψ| ‖2 . (8.13)

Implementing (8.5) and (8.12) gives
∫

Ω

|(∇− iκσF)ψ|2 ≤ 2

∫

Ω

|(∇− iκA)ψ|2 + 2CΩκ
2‖curl (A− σF)‖2 . (8.14)
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This leads to
∫

Ω

|(∇− iκσF)ψ|2 ≤ (2 + 2CΩ)κ2

∫

Ω

|ψ|2dx . (8.15)

But ψ satisfies (8.9), so we finally obtain

µ(1)(σκF) ≤ (2 + 2CΩ)κ2 . (8.16)

But we will see in the next section, by semi-classical techniques that there
exists C0(Ω) > 0 and h0(Ω) > 0 such that if

σκ ≥ 1

h0
, (8.17)

then

µ(1)(σκF) ≥ 1

C0(Ω)
σκ . (8.18)

So we have shown that if, for some pair (κ, σ) satisfying (8.17), a non normal
minimizer exists then

σ < (2 + 2CΩ)C0(Ω)κ .

This can be reformulated in the following way

Theorem 8.3 (Giorgi-Phillips)
If Ω is simply connected, there exists a constant C(Ω) > 0 such that if

σ > C(Ω) max(κ,
1

κ
) ,

then G has as unique minimizer (up to gauge transform) the normal solution
(0, σF).

Remark 8.4
We emphasize that the result is true for any κ > 0. But as t = κσ tends to
0, µ(1)(tF) is O(t2). As observed in [GioPh], one can improve the theorem,
assuming κ ≤ 1 by saying that there exists C(Ω) such that if σ > C(Ω),
then G has as unique minimizer (up to gauge transform) the normal solution
(0, σF).

Remark 8.5
The fact that curlF is constant does not play an important role. A weaker
assumption of non vanishing of curlF will be enough for showing that as
σ → +∞ the unique minimizer is the normal solution. See Remark 2.14.
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8.3 Critical fields and Schrödinger with magnetic field

This leads (assuming that He is constant and of intensity one) to the
definition

HC3(κ) = inf{σ > 0 : (0, σF) is the unique global minimizer of G}. (8.19)

So HC3(κ) is the bottom of the set

N (κ) := {σ > 0 : (0, σF) is the unique global minimizer of G} . (8.20)

The first result that we would like to mention is essentially due to Lu-Pan
(cf also Bauman-Phillips-Tang [BaPhTa] for the case of the disk). These
theorems are related to the analysis of the Neuman realization of −(∇−iA)2.
It is useful to observe the strong connexions between the critical field HC3(κ)
and the smallest eigenvalue µ(1)(A) of this realization. One first observes the
following elementary lemma (cf [LuPa1]) :

Lemma 8.6 .

• If µ(1)(κσF) < κ2, then G has a non trivial minimizer.

• If G has a non trivial minimizer (ψκ,σ,Aκ,σ) then µ(1)(κAκ,σ) < κ2.

Let us give the proof which is easy and enlightning. For the first statement,
it is easy to see that if u1 is a normalized eigenfunction associated with
µ(1)(κσF) and if we consider the pair (λu1, σF) has for 0 < |λ| small enough
an energy which is strictly less than the energy of the normal solution (0,F).
We have indeed

G(λu1, σF) − G(0, σF) = |λ|2(µ(1)(κσF) − κ2) + |λ|4
∫

Ω

|u1(x)|4 dx .

For the second statement, we observe that

µ(1)(κAκ,σ)||ψκ,σ||2 = ||(∇κAκ,σ
ψκ,σ||2 ≤ κ2||ψκ,σ||2+G(ψκ,σ,Aκ,σ)−G(0, σF) .

This gives the inequality with ≤ instead of <. A finer analysis, observing
that

∫

|ψκ,σ|4 dx > 0 if ψκ,σ is not trivial, gives the stronger result. The
lemma is proved.
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Remark 8.7
The previous proof gives also an upper bound for the infimum of the Ginzburg-
Landau functional (ψ,A) 7→ G(ψ,A). Optimizing with respect to λ in the
proof of the previous lemma gives indeed :

inf
ψ,A

G(ψ,A) ≤ κ2|Ω|
2

− 1

4

(µ(1)(κσF) − κ2)2

∫

|u1(x)|4 dx
.

Remark 8.8
The second important remark is that ψκ,σ is, using the first Ginzburg-Landau
equation, a solution of :

−(h∇− i
Aκ,σ

σ
)2ψκ,σ + Vκ,σψκ,σ −

1

σ2
ψκ,σ = 0 , (8.21)

where
h = 1/(κ · σ) , Vκ,σ = σ−2|ψκ,σ|2 .

If one shows by a priori estimates that Aκ,σ

σ
is near F and that ψκ,σ is small in

L∞ in the asymptotic regime considered here (properties established mainly
in [LuPa4] and improved in [HePa]), it is not too surprising to think that
the analysis which will be presented in the next section of the ground state of
−(h∇−iF)2 as h→ 0 will still be valid for the order parameter corresponding
to the minimizer.

Remark 8.9
All these questions are still the object of active researches. Natural questions
are :

• Has, for κ large enough, the equation in σ

µ(1)(κσF) = κ2 ,

a unique solution ?

• Is this unique solution the critical field HC3(κ) ?

We refer to [FoHel2, FoHel3] for the most recent results around the analysis
of this third critical field.
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9 Main results on semi-classical bottles and

proofs

9.1 Introduction

If one can naturally refer to Kato and, at the end of the seventie’s to Avron-
Herbst-Simon [AHS] or Combes-Schrader-Seiler [CSS] for the mathematical
analysis of the problem, the implementation of semi-classical techniques for
the analysis of the ground state appears first in [HelSj7] and then in [HelMo2].
Very roughly, it is shown in [HelMo2] that, if Ω = Rn, h|curlA(x)| plays the
role of an effective electric potential. By this we mean that the anlysis of the
operator : −h2∆ + h|B(x)|, can give a good information for the localization
of the ground state. The boundary case was less analyzed. Of course the
case of the Dirichlet realization does not lead to really new phenomena in
comparison with the case Ω = Rn, at least if the condition

b < b′ , (9.1)

is satisfied, where we used the notations :

inf
x∈Ω

|B(x)| = b , inf
x∈∂Ω

|B(x)| = b′ . (9.2)

9.2 Main results

We recall that we have given a rough asymptotic estimate for the Dirichlet
realization in dimension 2 (see Theorem 2.8) and that by the minimax this
gives an upper bound in the case of Neumann. The first “rough” theorem
for Neumann is the following :

Theorem 9.1

lim
h→0

1

h
inf σ(PN

h,A,Ω) = min(b,Θ0b
′) . (9.3)

The points where the minima of |B| are sometimes called magnetic wells
for the energy b. The decay of the ground state outside the wells can be
estimated (cf [Br], [HeNo2]) as a function of the Agmon distance associated
to the so called Agmon metric (|B| − b)dx2, where dx2 denotes the euclidean
metric. Note that this metric is degenerate.
We recall that this estimate is very easy to get from (2.27) in the special case
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when n = 2 and when the magnetic field has a constant sign. Here 〈· | ·〉
denotes the scalar product in L2(Ω) and || · || the corresponding norm.
In the general case. one can get a similar result but with a remainder in
O(h

5
4 )||u||2 (cf [HelMo3], Theorem 3.1).

As in the case when A = 0 but an electric potential V is added, it is
possible to discuss the various asymptotics in function of the properties of B
near the minima (cf [HelMo2, HelMo3, Mon, Shi, Ue1, Ue2] or more recently
[KwPa]). As we shall see later, this property is no more true in the case of
the Neumann realization. The infimum b of |B(x)| on Ω is not necessarily the
right quantity for analyzing the bottom of the spectrum as (9.1) is satisfied.
Of course, by direct comparison of the variational spaces corresponding to
Dirichlet and Neumann, one knows that the smallest eigenvalue µ(1)(h) of
the Neumann realization PN

h,A,Ω of Ph,A,Ω is bounded from above by λ(1)(h)
(but the lower bound (2.32) is not correct in general).

One important theorem that we would like to present is

Theorem 9.2 .
If the magnetic field is constant and not zero, then any ground state corre-
sponding to the Neumann realization is localized as h→ 0 near the boundary
of Ω.

This theorem is general and does not depend on the dimension.
These two theorems are not satisfactory in the sense that they are not

necessarily optimal. In the case n = 2, we can state [HelMo3]

Theorem 9.3 .
Let us assume that n = 2. If the magnetic field is constant and not zero,
then any ground state corresponding to the Neumann realization is localized
as h→ 0 near the boundary of Ω at the points of maximal curvature.

This gives the general answer for the case of dimension 2. The case of dimen-
sion 3 was more difficult and only solved quite recently [HelMo4, HelMo5].

Although the methods of proof can also lead to localization results for
the ground state (see [HelMo3], [HelMo4], [HelMo5]) or more generally for
minimizers of the Ginzburg-Landau functional (see [LuPa1]-[LuPa5], [HePa]),
but this will not be discussed here. This is actually explored in [Pan3].
In the Dirichlet case, the inequality (2.27) was (at least when the condition
B(x) > 0 is satisfied) the starting point of the analysis of the decay. This is
no more the case when Neumann boundary conditions are assumed, but we
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can keep the general strategy as developed in [HelMo3].
We assume that Ω is a bounded, regular open set and that

B(x) > 0 . (9.4)

9.3 Upper bounds

The upper bounds are based on the construction of suitable quasimodes.
Gaussians can be used in the case when b < Θ0b

′. In the case when Θ0b
′ < b

one should use trial functions obtained by multiplying a boundary tangen-
tial Gaussian by a “normal” solution constructed with the help of the first
eigenfunction of the model on R+ (see Subsection 4.3). More precisely, we
can take near one point x0 of the boundary, where |B(x)| = b′, a system of
coordinates x 7→ (s, t) such that t(x) denotes the distance to the boundary
and s(x) is a parametrization of the boundary with s(x0) = 0. In these
coordinates, the “principal part” will look like

h2D2
t + (hDs − b′t)2

on the half plane t > 0. (It is better to think that we should consider
S1×]0, t0] with Neumann at t = 0 and Dirichlet at t = t0).
The first guess in order to have a lower energy is to look for

(t, s) 7→ h−
1
4 e
iρ0

s√
hu0(h

− 1
2βt)

where R+ 3 v 7→ u0(v) is the eigenvalue for the half-line model with ξ = ξ0
and magnetic field equal to 1 (β and ρ0 being suitably chosen) in order to
get the minimal energy (for the moment it is an L∞-eigenfunction).

This leads to

β2D2
v + (ρ0 −

b′

β
v)2u0 = Θ0b

′v .

So we should take the pair (β, ρ0) with β =
√
b′ and ρ0 = ξ0β.

It then remains to localize the candidate in the s variable closely to s = 0
and to localize in the t direction with a cut-off function t 7→ χ(t) with compact
support in [0, t0) and to localize in the s direction with a function s 7→ χ0(s)
with support in a neighborhood of 0. So the trial function that we choose
(for an h independent constant and for α > 0 arbitrary) is

φ0(t, s; h) = C h−
5
16 χ(t)χ0(s) exp−α s

2

h
1
4

exp

(

iξ0
√
b′
s√
h

)

u0

(

(b′/h)
1
2 t
)

.
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Computing the energy of this trial function, this leads to :

µ(1)(h) ≤ min(b,Θ0b
′) h+ o(h) , (9.5)

which is enough for the analysis of the decay. Note also that the upper bound
involving b = inf B can also be obtained by using [HelMo3].

9.4 Lower bounds

Let 0 ≤ ρ ≤ 1. We first claim that there exists C such that, for any ε0 > 0,
we can, by scaling a standard partition of unity of R2, and by restricting it
to Ω, find a partition of unity χhj satisfying in Ω,

∑

j

|χhj |2 = 1 , (9.6)

∑

j

|∇χhj |2 ≤ C ε−2
0 h−2ρ , (9.7)

and
supp(χhj ) ⊂ Qj = B(zj, ε0 h

ρ) , (9.8)

where B(c, r) denotes the open disc in R2 of center c and radius r. Moreover,
we can add the property that :

either suppχj ∩ ∂Ω = ∅ , either zj ∈ ∂Ω . (9.9)

According to the two alternatives in (9.9), we can decompose the sum in
(9.6) in the form :

∑

=
∑

int

+
∑

bnd

,

where “int” is in reference to the j’s such that zj ∈ Ω and “bnd” is in refer-
ence to the j’s such that zj ∈ ∂Ω.

The second point is to implement this partition of unity in the following
way :

qNh (u) =
∑

j

qh(χ
h
ju) − h2

∑

j

|| |∇χhj | u ||2 , ∀u ∈ H1(Ω) . (9.10)
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Here qNh (or qNh,A, if we want to keep the reference to the magnetic potential)
denotes the quadratic form :

qNh,A(u) =

∫

Ω

|h∇u− iAu|2 dx , (9.11)

and we recall that || · || denotes the L2-norm in Ω.
This formula is usually called IMS formula (see [CFKS]) but is actually much
older (see [Mel], [Ho]).
If aNh,A is the associated sesquilinear form, (9.10) is the consequence of the

identity, for any function χ ∈ C∞(Ω) and any u ∈ H1(Ω) :

qNh,A(χu) = Re aNh,A(u, χ2u) + h2|| |∇χ|u ||2L2(Ω) . (9.12)

We will also use later the property that, for any function χ ∈ C∞(Ω) and any
u in the domain of PN

h,A,Ω, that is for any u in the space
D(PN

h,A,Ω) := {v ∈ H2(Ω) | ν · (h∂ − iA)u/∂Ω = 0} :

qNh,A(χu) = Re 〈PN
h,A,Ω u | χ2u〉L2(Ω) + h2|| |∇χ| u ||2L2(Ω) . (9.13)

We can rewrite the right hand side of (9.10) as the sum of three (types
of) terms.

qh(u) =
∑

int

qh(χ
h
ju) +

∑

bnd

qh(χ
h
ju) − h2

∑

j

|| |∇χhj | u ||2 , ∀u ∈ H1(Ω) .

(9.14)
For the last term in the right hand side of (9.14), we get using (9.7) :

h2
∑

j

|| |∇χhj | u ||2 ≤ C h2−2ρ ε−2
0 ||u||2 . (9.15)

This measures the price to pay when using a fine partition of unity : If ρ is
large, the error is big as h2−2ρ. We shall see later what could be the best
choice of ρ or of ε0 for our various problems (note that the play with ε0 large
will be only interesting when ρ = 1

2
).

The first term in the right hand side of (9.14) can be estimated from
below by using (2.27). The support of χhju is indeed contained in Ω. So we
have :

∑

int

qh(χ
h
ju) ≥ h

∑

int

∫

B(x)|χhju|2 dx . (9.16)
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The second term in the right hand side of (9.14) is the more delicate and
corresponds to the specificity of the Neumann problem. We have to find a
lower bound for qh(χ

h
ju) for some j such that zj ∈ ∂Ω. We emphasize that

zj depends on h, so we have to be careful in the control of the uniformity.
Let z be a point in ∂Ω. The boundary being regular, we can, by a change of
coordinates in a small neighborhood of this point, rewrite the form qh,A for
u’s with support in this neighborhood of z :

qh,A(u) =

∫

x̃2>0

∑

gk,`(x̃)(ih∂x̃k
ũ+Ak(x̃)ũ)·(ih∂x̃`

ũ+ A`(x̃)ũ) det(g(x̃)) dx̃ .

Here we can assume that the new cordinates of z are (0, 0) and we can
also assume that the matrix g is the identity at z :

gk,`(0) = δk,` .

Of course g depends on z, but all the estimates we could need on the deriva-
tives of g will be uniform in z.
The game is now to compare for u’s with support in a ball of the type
B(z, 2Cε0h

ρ) qh,A(u) with the quadratic form :

qh,Ã(ũ) =

∫

x2>0

|(ih∂x1 −
1

2
B(z)x2)u|2 + |(ih∂x2 +

1

2
B(z)x1)u|2 dx .

We have omitted for simplicity the tilde’s in the right hand side. The com-
parison is not direct but as an intermediate step, we have to use a gauge
transformation (multiplication by exp−iφj

h
) associated to a C∞ function φj

such that :
ωA = ωAnew,j

− dφj ,

with
Anew,j(zj) = 0 ,

|Anew,j(x) −
1

2
(B(zj)(−x2, x1))| ≤ C|x|2 .

In this formula, ωA is the one-form attached to the vector field A (cf (2.1)).
Let us emphasize that C is independent of j. Let us also introduce for the
next formula : Alin

j := 1
2
(B(zj)(−x2, x1)).

By comparison in each ball with the constant magnetic field case, we get, for
any ε > 0,

qh,A(χhju) ≥ (1 − Ch2θε2 − Cε0h
ρ)qh[Alinj ](exp− i

h
φjχ

h
ju) − Ch−2θε−2|||x|2χhju||2

≥ (1 − Ch2θε2 − Cε0h
ρ)qh[Alinj ](exp− i

h
φjχ

h
ju) − Ch4ρ−2θε−2||χhju||2 .

74



We can now use the result concerning the half -plane in order to get :

qh,A(χhju) ≥ (1 − Ch2θ − Cε0h
ρ)hΘ0

∫

B(zj)|χhju|2 dx− Ch4ρ−2θ||χhju||2 .
(9.17)

We now put together all the estimates and obtain :

qh,A(u) ≥ h
∑

int

∫

B(x)|χhju|2dx
+(1 − Ch2θ − Cε0h

ρ)hΘ0

∑

bnd

∫

B(zj)|χhju|2 dx
−Ch4ρ−2θ

∑

bnd ||χhju||2
−Cε−2

0 h2−2ρ||u||2 .
(9.18)

We have now to optimize our choices of ρ, θ and ε, ε0. If we just want to
get a lower bound of the spectrum, we can first write :

qh,A(u) ≥ hmin (b,Θ0b
′) ||u||2

−
(

Ch2θ+1 + Cε0h
ρ+1 + Ch4ρ−2θ + Cε−2

0 h2−2ρ
)

||u||2 .

Taking ρ = 3
8
, θ = 1

8
, ε0 = 1, we get :

qh,A(u) ≥
(

min(b,Θ0b
′)h− Ch

5
4

)

||u||2 . (9.19)

So, taking u = u1
h, where u1

h is a groundstate, we obtain from (9.19) :

Proposition 9.4 .
There exist constants C > 0 and h0 > 0 such that, for all h ∈]0, h0] :

µ(1)(h) ≥ (min(b,Θ0b
′) )h− Ch

5
4 . (9.20)

But for the control of the decay, we need also to take in (9.18) ρ = 1
2
,

θ = 1
8
, and ε0 large. This gives an estimate which may look weaker but will

be more efficient.

Proposition 9.5 .
There exists C and h0 and, for all ε0 > 0, there exists C(ε0) such that, for
h ∈]0, h0], the following inequality :

qh,A(u) ≥ h
∑

int

∫

B(x)|χhju|2dx
−C(ε0)h

∑

bnd

∫

|χhju|2 dx
−Ch

ε20

∑

int

∫

|χhju|2dx .
(9.21)

is satisfied, for all u ∈ H1(Ω).
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9.5 Agmon’s estimates

We first observe that if Φ is a real and uniformly Lipschitzian function and
if u is in the domain of the Neumann realization of Ph,A, then we have by a

simple integration by part (see (7.1) and replace φ/h by φ/
√
h) :

Re 〈Ph,Au | exp 2Φ

h
1
2
u〉

= Re 〈(h
i
∇− A)u | (h

i
∇− A) exp 2Φ

h
1
2
u〉

= 〈(h
i
∇− A) exp Φ

h
1
2
u | (h

i
∇− A) exp Φ

h
1
2
u〉 − h|||∇Φ| exp Φ

h
1
2
u||2

= qh,A(exp Φ

h
1
2
u) − h|||∇Φ| exp Φ

h
1
2
u||2 .

(9.22)

We now take u = uh an eigenfunction attached to the lowest eigenvalue
µ(1)(h). This gives :

µ(1)(h)|| exp
Φ

h
1
2

u||2 = qh,A(exp
Φ

h
1
2

u) − h|||∇Φ| exp
Φ

h
1
2

u||2 . (9.23)

It remains to reimplement the previous inequality in this new one and to
use the upper bound (9.5).

Let us take Φ(x) = αmax(d(x, ∂Ω), h
1
2 ), where α > 0 has to be deter-

mined. Let us use Proposition 9.5. We first write :

qh,A(exp Φ

h
1
2
u) ≥ h

∑

int

∫

B(x)| exp Φ

h
1
2
χhju|2dx

−C(ε0)h
∑

bnd

∫

|χhj exp Φ

h
1
2
u|2 dx

−Ch
ε20

∑

int

∫

| exp Φ

h
1
2
χhju|2dx .

(9.24)

Let us consider the case when

Θ0b
′ < b . (9.25)

The inequality (9.5) becomes :

µ(1)(h) ≤ Θ0 b
′ h + o(h) . (9.26)

Using (9.22), we now obtain :

(

(b− Θ0b
′) − o(1) − C

ε20
− α2

)

∑

int

∫

| exp
Φ

h
1
2

χhju|2dx ≤ C(ε0)
∑

bnd

∫

|χhju|2 dx .

(9.27)
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Taking ε0 large enough,, h0 small enough and α <
√
b− Θ0b′, we finally get

the existence of C such that, for h ∈]0, h0], the estimate :

|| exp
α d(x, ∂Ω)

h
1
2

uh|| ≤ C||uh|| , (9.28)

is satisfied.
This gives the elements of the proof for the following theorem ([LuPa2,
HelMo3] and [PiFeSt]) :

Theorem 9.6 .
Undre condition (9.25), there exists C > 0, α > 0, such that if uh is the
ground state of PN

A,h,Ω, then :

|| exp
α d(x, ∂Ω)

h
1
2

uh(x)||H1(Ω) ≤ C||uh||L2 . (9.29)

Note that the condition (9.25) is always satisfied when B is constant because
b = b′ and Θ0 < 1.

Remark 9.7 .
On the contrary, when b < Θ0b

′ the ground state decays exponentially out-
side neighborhoods of points where B(x) = b. Note that in this case the
boundary condition does not affect the localization of the ground state or
the asymptotics of the ground state energy (exponentially small effect). The

decay is then estimated by the weight exp−α0dB−b(x)√
h

, where dB−b is the Ag-

mon distance to the minima of B(x) for the potential B(x) − b.
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p. 263-275 (1992).

[HNW1989] B. Helffer, J. Nourrigat, and X.P. Wang. Sur le spectre de
l’équation de Dirac (dans R2 ou R3) avec champ magnétique. Annales
scientifiques de l’E.N.S. 22 (4), p. 515-533 (1989).

81



[HePa] B. Helffer and X-B. Pan. Upper critical field and location of surface
nucleation of superconductivity. Annales de l’Institut Henri Poincaré
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A Variations around the spectral theorem

We just come back to the way one can deduce from the existence of quasi-
modes information on the spectrum of a selfadjoint operators.

A.1 Spectral Theorem

We refer for this part to any standard book in Spectral Theory (for example
Reed-Simon [ReSi] or Lévy-Bruhl [LB]). We recall only that if λ 6∈ σ (A),
then

||(A− λ)−1|| ≤ 1

d(λ, σ (A))
. (A.1)

This implies immediately that if there exists ψ ∈ D(A) and η ∈ R such
that ||ψ|| = 1 and ||(A − η)ψ|| ≤ ε, then there exists λ ∈ σ (A) such that
d(λ, η) ≤ ε. We emphasize here that there is no assumption of discreteness
of the spectrum.

A.2 Temple’s Inequality

Let A be a selfadjoint operator on an Hilbert space and ψ ∈ D(A). Suppose
that λ is the unique eigenvalue of A in some interval ]α, β[. Suppose in
addition that

η = 〈ψ | Aψ〉 ∈]α, β[

and let
ε = ||(A− η)ψ|| .

Then it is easy to show that :

η − ε2

β − η
≤ λ ≤ η +

ε2

η − α
. (A.2)

For the proof we can reduce to the case when η = 0 and simply observe that
(A−α)(A−λ) and (A−β)(A−λ) are positive operators. We can then apply
this positivity property for the vector ψ. Note that this gives an additional
information, only if ε is small enough, more precisely

ε2 ≤ (β − η)(η − α) . (A.3)
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A.3 Distance between true and approximate eigenspaces

There is a need to generalize this lemma to more general situations and have
an information on the corresponding eigenspaces. We follow here the presen-
tation of [DiSj].

Let E and F be closed subspaces in a Hilbert space H. Let ΠE and ΠF

be the orthogonal projections on E and F respectively. We can then define
the non-symmetric distance ~d(E, F ) as

~d(E, F ) = sup
x∈E , ||x||=1

d(x, F ) . (A.4)

This can be recognized as

~d(E, F ) = sup
x∈E , ||x||=1

||x− ΠFx|| = ||(I − ΠF )| E|| = ||ΠE − ΠFΠE|| . (A.5)

Observing that ||A|| = ||A∗|| in L(H) we finally get :

~d(E, F ) = ||ΠE − ΠFΠE|| = ||ΠE − ΠEΠF || . (A.6)

It is easy from the first definition11 to verify that :

~d(E,G) ≤ ~d(E, F ) + ~d(F,G) . (A.7)

Note that ~d(E, F ) = 0 if and only if E ⊂ F .
We then have the following lemmas

Lemma A.1
If ~d(E, F ) < 1, then (ΠF )|E : E 7→ F is injective and (ΠE)|F has a bounded
right inverse.

The injectivity is easy. If x ∈ E and ΠFx = 0, we get

||x|| = ||x− ΠFx|| ≤ ~d(E, F )||x|| ,
11First observe that

d(x,G) ≤ d(x, F ) + ~d(F,G)||ΠF x|| .
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which implies x = 0.
On the other hand, if x ∈ E, we look for y = ΠF z, z ∈ E, such that
x = ΠEy = ΠEΠF z. Writing this as :

x = (I − (ΠEΠF − I))z = (I − (ΠEΠF − ΠE))z ,

we get that if ~d(E, F ) < 1 then

z = (I − (ΠEΠF − ΠE))−1x .

So the right inverse is given by :

(ΠE)−1,r
|F = ΠF (I − (ΠEΠF − ΠE))−1 . (A.8)

Lemma A.2
If ~d(E, F ) < 1 and ~d(F,E) < 1, then (ΠF )|E and (ΠE)|F are bijective and
~d(E, F ) = ~d(F,E).

Proof.
We have

~d(E, F )2 = sup
x∈E , ||x||E=1

(1 − ||(ΠF )|Ex||2) .

This implies
inf

x∈E , ||x||E=1
||(ΠF )|Ex||2 = 1 − ~d(E, F )2 .

This implies that (ΠF )|E is injective with bounded left inverse. Similarly, its
adjoint is (ΠE)|F and has the same property. It follows that they are bijective
and have the same norm. The same property is true for their inverse. But
the last identity can be written as

||(ΠF )−1
|E ||−2 = 1 − ~d(E, F )2 ,

and we have similarly

||(ΠE)−1
|F ||−2 = 1 − ~d(F,E)2 ,

This achieves the proof of the lemma.
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Proposition A.3
Let A be a selfadjoint operator in a Hilbert space H. Let I ⊂ R be a compact
interval and let ψj (j = 1, . . . , N) N linearly independent vectors in H and
µj (j = 1, . . . , N) in I such that :

Aψj = µjψj + rj , with . (A.9)

Let a > 0 and assume that σ (A) ∩ [(I +B(0, 2a)) \ I] = ∅. Then if E is the
space spanned by the ψj’s and if F is the eigenspace associated to σ (A) ∩ I,
we have

~d(E, F ) ≤ (
∑

j

||rj||2)
1
2 /(a(λminS )

1
2 ) , (A.10)

where λminS is the smallest eigenvalue of the N×N matrix : S := (〈ψi | ψj〉)ij.

Proof.
Let λ ∈ C \ ({µ1, . . . , µN} ∪ σ (A)). Let I = [α, β]. Then by assumption :

(A− λ)ψj = (µj − λ)ψj + rj ,

which can be written as :

(A− λ)−1ψj = (µj − λ)−1ψj − (A− λ)−1(µj − λ)−1rj . (A.11)

If γR is the oriented boundary of (I +B(0, a)) × i[−R,+R], we have :

ΠFψj =
1

2iπ

∫

γR

(µj − λ)−1ψjdλ− 1

2iπ

∫

γR

(A− λ)−1(µj − λ)−1rjdλ .

The first integral of the right hand side is equal to ψj and the second one
tends as R → +∞ to

1

2iπ

∫ β+a+i∞

β+a−i∞
(A−λ)−1(µj−λ)−1rjdλ−

1

2iπ

∫ α−a+i∞

α−a−i∞
(A−λ)−1(µj−λ)−1rjdλ .

With λ = β + a+ it or λ = α− a+ it, we have

||(A− λ)−1(µj − λ)−1rj|| ≤
||rj||
a2 + t2

.

Hence

||ΠFψj − ψj|| ≤
ε

π

∫ +∞

−∞

1

a2 + t2
dt =

||rj||
a

.
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Now if u =
∑

j αjψj ∈ E, then

||u||2 = 〈Sα | α〉 ≥ λminS ||α||2 .

So

||ΠFu− u|| ≤
∑

j

|αj|||ΠFψj − ψj|| ≤ ||α||
(
∑

j ||rj||2)
1
2

a
≤

(
∑

j ||rj||2)
1
2

a(λminS )
1
2

||u|| .

The proposition follows.

Remark A.4
If σ (A) ∩ I is discrete of finite multiplicity and if the right hand side above
is strictly less than 1, then we conclude that A has at least N eigenvalues in
I.

A.4 Another improvment for the localization of the

eigenvalue

We only consider the case when N = 1 (and in this case this is essentially
a variant of Temple’s inequality, see for more general situations the book
[Hel1] p. 38-39) and suppose that we have shown that for some normalized
ψ generating the one dimensional vector space E, we have

(A− µ)ψ = r ,

with ||r|| ≤ ε.
We assume that we have applied the previous proposition and that we have
also proven that, for ε small enough, ~d(E, F ) = ~d(F,E) < 1.

Of course we get by the spectral theorem that for the unique eigenvalue
λ in I, we have |λ − µ| ≤ Cε, but what we would like to show is that the
approximation is actually much better, i.e. of order O(ε2).

If λ is the eigenvalue and if v := πFψ, we start from the identity :

λ = 〈Av | v〉/〈v | v〉 .

So we now write

λ− µ = 〈(A− µ)v | v〉/〈v | v〉 ,
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that we would like to compare with the quantity 〈(A − µ)ψ | ψ〉 which will
be in many examples explicitely computable. Let us estimate the difference.
Using the projection πF , we obtain :

||v||2 = ||ψ||2 − ||v − ψ||2

which leads to the estimate :

| ||v||2 − 1 | ≤ d(E, F )2 .

In the same way, we observe that :

〈(A− µ)v | v〉 = 〈(A− µ)ψ | ψ〉 − 〈(A− µ)(v − ψ) | (v − ψ)〉

which leads to the estimate :

〈(A− µ)v | v〉 = 〈(A− µ)ψ | ψ〉 − 〈r | (v − ψ)〉

and finally to

|〈(A− µ)v | v〉 − 〈(A− µ)ψ | ψ〉| ≤ εd(E, F ) .

This leads to

|λ− µ| ≤ 1

1 − d(E, F )2
εd(E, F ) , (A.12)

B Variational characterization of the spec-

trum

B.1 Introduction

The max-min principle is an alternative way for describing the lowest part
of the spectrum when it is discrete. It gives also an efficient way to localize
these eigenvalues or to follow their dependence on various parameters.

B.2 On positivity

We first recall the following definition
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Definition B.1 .
Let A be a symmetric operator. We say that A is positive (and we write
A ≥ 0), if

〈Au | u〉 ≥ 0 , ∀u ∈ D(A) . (B.1)

The following proposition relates the positivity with the spectrum

Proposition B.2 .
Let A be a selfadjoint operator. Then A ≥ 0 if and only if σ(A) ⊂ [0,+∞[.

Example B.3 .
Let us consider the Schrödinger operator P := −∆ + V , with V ∈ C∞ and
semi-bounded, then

σ(P ) ⊂ [inf V,+∞[ . (B.2)

B.3 Variational characterization of the discrete spec-
trum

Theorem B.4 .
Let A be a selfadjoint semibounded operator. Let Σ := inf σess(A) and let
us consider σ(A)∩] − ∞,Σ[, described as a sequence (finite or infinite) of
eigenvalues that we write in the form

λ1 < λ2 < · · · < λn · · · .

Then we have
λ1 = inf

φ∈D(A),φ6=0
||φ||−2〈Aφ | φ〉 , (B.3)

λ2 = inf
φ∈D(A)∩K⊥

1 ,φ6=0
||φ||−2〈Aφ | φ〉 , (B.4)

and, for n ≥ 2,

λn = inf
φ∈D(A)∩K⊥

n−1,φ6=0
||φ||−2〈Aφ | φ〉 , (B.5)

where
Kj = ⊕i≤j Ker (A− λi) .

One can prove actually that, if the right hand side of (B.3) is strictly
below Σ, then, the spectrum below Σ is not empty, and the lowest eigenvalue
is given by (B.3).
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B.4 Max-min principle

We now give a more flexible criterion for the determination of the bottom of
the spectrum and for the bottom of the essential spectrum. This flexibility
comes from the fact that we do not need an explicit knowledge of the various
eigenspaces.

Theorem B.5 .
Let A be a selfadjoint semibounded operator of domain D(A) ⊂ H. Let us
introduce

µn(A) = sup
ψ1,ψ2,...,ψn−1

inf
8

<

:

φ ∈ [span (ψ1, . . . , ψn−1)]
⊥;

φ ∈ D(A) and ||φ|| = 1

9

=

;

〈Aφ | φ〉H . (B.6)

Then either
(a) µn(A) is the n-th eigenvalue when ordering the eigenvalues in increas-
ing order (and counting the multiplicity) and A has a discrete spectrum in
] −∞, µn(A)]
or
(b) µn(A) corresponds to the bottom of the essential spectrum. In this case,
we have µj(A) = µn(A) for all j ≥ n.

Remark B.6 .
In the case when the operator has compact resolvent, case (b) does not
occur and the supremum in (B.6) is a maximum. Similarly the infimum is a
minimum. This explains the traditional terminology “ Max-Min principle”
for this theorem.

Note that the proof gives also the following proposition

Proposition B.7 .
Suppose that there exists a and an n-dimensional subspace V ⊂ D(A) such
that

〈Aφ | φ〉 ≤ a||φ||2 , ∀φ ∈ V , (B.7)

is satisfied. Then we have the inequality :

µn(A) ≤ a . (B.8)
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Corollary B.8 .
Under the same assumption as in Proposition B.7, if a is below the bottom of
the essential spectrum of A, then A has at least n eigenvalues (counted with
multiplicity).

Exercise B.9 .
In continuation of Example 2.1, show that for any ε > 0 and any N , there
exists h0 > 0 such that for h ∈]0, h0], Ph,V has at least N eigenvalues in
[inf V, inf V + ε]. One can treat first the case when V has a unique non
degenerate minimum at 0.

A first natural extension of Theorem B.5 is obtained by

Theorem B.10 .
Let A be a selfadjoint semibounded operator and Q(A) its form domain 12 .
Then

µn(A) = sup
ψ1,ψ2,...,ψn−1

inf
8

<

:

φ ∈ [span (ψ1, . . . , ψn−1)]
⊥;

φ ∈ Q(A) and ||φ|| = 1

9

=

;

〈Aφ | φ〉H . (B.9)

Applications

• It is very often useful to apply the max-min principle by taking the
minimum over a dense set in Q(A).

• The max-min principle permits to control the continuity of the eigen-
values with respect to parameters. For example the lowest eigenvalue
λ1(ε) of − d2

dx2 +x2+εx4 increases with respect to ε. Show that ε 7→ λ1(ε)
is right continuous on [0,+∞[. (The reader can admit that the corre-
sponding eigenfunction is in S(R) for ε ≥ 0).

• The max-min principle permits to give an upperbound on the bottom
of the spectrum and the comparison between the spectrum of two op-
erators. If A ≤ B in the sense that, Q(B) ⊂ Q(A) and13

〈Au | u >≤ 〈Bu | u〉 , ∀u ∈ Q(B) ,

12associated by completion with the form u 7→ 〈u | Au〉H initially defined on D(A).
13It is enough to verify the inequality on a dense set in Q(B).
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then
µn(A) ≤ µn(B) .

Similar conclusions occur if we have D(B) ⊂ D(A).

Example B.11 (Comparison between Dirichlet and Neumann).
Let Ω be a bounded regular connected open set in Rm. Then the N -th
eigenvalue of the Neumann realization of PA,V = −∆A + V is less or equal
to the N -th eigenvalue of the Dirichlet realization. The proof is immediate
if we observe the inclusion of the form domains.

Example B.12 (Monotonicity with respect to the domain).
Let Ω1 ⊂ Ω2 ⊂ Rm two bounded regular open sets. Then the n−th eigenvalue
of the Dirichlet realization of the Schrödinger operator in Ω2 is less or equal
to the n-th eigenvalue of the Dirichlet realization of the Schrödinger operator
in Ω1. We observe that we can indeed identify H1

0(Ω1) with a subspace of
H1

0 (Ω2) by just an extension by 0 in Ω2 \ Ω1.
Other applications appear in Problems D.6 and D.9 (questions 3 and 4).
Note that this monotonicity result is wrong for the Neumann problem.

C Essential spectrum and Persson’s Theorem

We refer to [Ag] for proofs and generalizations.

Theorem C.1 .
Let V be a real-valued potential such that there exist a ∈]0, 1[ and C with :

||V u||2 ≤ a||∆u||2 + C||u||2 , ∀u ∈ C∞
0 (Rm) . (C.1)

Let H = −∆+V be the corresponding self-adjoint, semibounded Schrödinger
operator with domain H2(Rm). Then, the bottom of the essential spectrum
is given by

inf σess(H) = Σ(H) , (C.2)

where

Σ(H) := sup
K⊂Rm

[

inf
||φ||=1

{< φ,Hφ > | φ ∈ C∞
0 (Rm \ K)}

]

, (C.3)

where the supremum is over all compact subsets K ⊂ Rm.
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Essentially this is a corollary of Weyl’s Theorem and the property that

σess(H) = σess(H +W ) , (C.4)

for any regular potential W with compact support. There are other exten-
sions in case with boundary (see [Bon]).

D Exercises in Spectral Theory

Exercise D.1 (Magnetic bottles).
Show that the selfadjoint extension in L2(R2) of

T := −(
d

dx1
− ix2x

2
1)

2 − d2

dx2
2

+ x2
2 ,

has compact resolvent.

Exercise D.2 (Witten laplacians).
Let φ be a C2- function on Rm such that |∇φ(x)| → +∞ as |x| → +∞
and with uniformly bounded second derivatives. Let us consider the differ-
ential operator on C∞

0 (Rm) −∆ + 2∇φ · ∇. We consider this operator as
an unbounded operator on H = L2(Rm, exp−2φ dx). Show that it admits a
selfadjoint extension and that its spectrum is discrete.
We assume in addition that :

∫

Rm exp−2φ(x) dx < +∞. Show that its lowest
eigenvalue is simple and determine a corresponding eigenvector.

Exercise D.3 (Quasimodes).
Let us consider in R+, the Neumann realization in R+ of
P0(ξ) := D2

t +(t−ξ)2, where ξ is a parameter in R. We would like to find an
uppr bound for Θ0 = infξ µ(ξ) where µ(ξ) is the smallest eigenvalue of P0(ξ).
Following the book of the physicist Kittel, one can proceed by minimizing
〈P0(ξ)φ(·; ρ) | φ(·; ρ)〉 over the normalized functions φ(t; ρ) := cρ exp−ρt2
(ρ > 0). For which value of ξ is this quantity minimal? Deduce the inequal-
ity :

Θ0 <

√

1 − 2

π
.

98



Problem D.4 14

Let V be in C∞
0 (Rm) (m = 1, 2). Show that the essential spectrum of PV =

−∆ + V is [0,+∞[.
Let us assume in addition that

∫

Rm

V (x) dx < 0 . (D.1)

Find ψ ∈ D(PV ) such that

〈PV ψ | ψ >L2(Rm)< 0 .

When m = 1, consider the family ψa = exp−a|x|, a > 0, and, when m = 2,
ψa(x) = exp−1

2
|x|a, a > 0.

Deduce that PV = −∆ + V has a negative eigenvalue.

Problem D.5 .
Let us consider in R2 the disk Ω := D(0, R) and the Dirichlet realization in
Ω of the Schrödinger operator

S(h) := −∆ +
1

h2
V (x) , (D.2)

where V is a C∞ potential on Ω satisfying :

V (x) ≥ 0 . (D.3)

Here h > 0 is a parameter.
a) Show that this operator has compact resolvent.
b) Let λ1(h) be the lowest eigenvalue of S(h). We would like to analyze
the behavior of λ1(h) as h → 0. Show that h → λ1(h) is monotonically
increasing.
c) Let us assume that V > 0 on Ω; show that there exists ε > 0 such that

h2λ1(h) ≥ ε . (D.4)

d) We assume now that V = 0 in an open set ω in Ω. Show that there exists
a constant C > 0 such that, for any h > 0,

λ1(h) ≤ C . (D.5)

14These counterexamples come back (when m = 1 to Avron-Herbst-Simon [AHS] and
when m = 2 to Blanchard-Stubbe [BS]).
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One can use the study of the Dirichlet realization of −∆ in ω.
e) Let us assume that :

V > 0 almost everywhere in Ω . (D.6)

Show that, under this assumption :

lim
h→0

λ1(h) = +∞ . (D.7)

One could proceed by contradiction supposing that there exists C such that

λ1(h) ≤ C , ∀h such that 1 ≥ h > 0 . (D.8)

and establishing the following properties.

• For h > 0, let us denote by x 7→ u1(x ; h) an L2-normalized eigenfunc-
tion associated with λ1(h). Show that the family u1(· ; h) (0 < h ≤ 1)
is bounded in H1(Ω).

• Show the existence of a sequence hn (n ∈ N) tending to 0 as n→ +∞
and u∞ ∈ L2(Ω) such that

lim
n→+∞

u1(· ; hn) = u∞

in L2(Ω).

• Deduce that :
∫

Ω

V (x) u∞(x)2 dx = 0 .

• Deduce that u∞ = 0 and make explicit the contradiction.

f) Let us assume that V (0) = 0; show that there exists a constant C, such
that :

λ1(h) ≤
C

h
.

g) Let us assume that V (x) = O(|x|4) près de 0. Show that in this case :

λ1(h) ≤
C

h
2
3

.
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h) We assume that V (x) ∼ |x|2 near 0; discuss if one can hope a lower
bound in the form

λ1(h) ≥
1

C h
.

Justify the answer by illustrating the arguments by examples and counterex-
amples.

Problem D.6 (Harmonic oscillator in a symmetric interval).
Let Ha be the Dirichlet realization of −d2/dx2 + x2 in ] − a,+a[.
(a) Briefly recall the results concerning the case a = +∞.
(b) Show that the lowest eigenvalue λ1(a) of Ha is decreasing for a ∈]0,+∞[
and larger than 1.
(c) Show that λ1(a) tends exponentially fast to 1 as a → +∞. One can use
a suitable construction of approximate eigenvectors.
(d) What is the behavior of λ1(a) as a → 0. One can use the change of
variable x = ay and analyze the limit lima→0 a

2λ1(a).
(e) Let µ1(a) be the smallest eigenvalue of the Neumann realization in
] − a,+a[. Show that µ1(a) ≤ λ1(a).
(f) Show that, if ua is a normalized eigenfunction associated with µ1(a), then
there exists a constant C such that, for all a ≥ 1, we have :

||xua||L2(]−a,+a[) ≤ C .

(g) Show that, for u in C2([−a,+a]) and χ in C2
0(] − a,+a[), we have :

−
∫ +a

−a
χ2u′′(t)u(t)dt =

∫ +a

−a
|(χu)′(t)|2dt−

∫ +a

−a
χ′(t)2u(t)2dt .

(h) Using this identity with u = ua, a suitable χ which should be equal to 1
on [−a + 1, a− 1] , the estimate obtained in (f) and the minimax principle,
show that there exists C such that, for a ≥ 1, we have :

λ1(a) ≤ µ1(a) + Ca−2 .

Deduce the limit of µ1(a) as a→ +∞.
(i) Improve c). In order to get finer results, one can try to find a formal
solution at ±∞ in the form exp x2

2
|x|ρ∑j≥0 cj|x|−j.
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Problem D.7 (Avron-Herbst [CFKS])
The aim of this problem is to analyze the spectra of the operators

H± := − d2

dx2
+ q(x)2 ± q′(x) ,

where q(x) is a polynomial :

q(x) = xm +
m−1
∑

j=0

ajx
j .

a) Show that these operators are with compact resolvent if and only if m ≥ 1.
b) Observing that

H± = (
d

dx
± q(x))(− d

dx
± q(x)) ,

discuss the kernel of H± in function of m.
c) Observing that

H±(
d

dx
± q(x)) = (

d

dx
± q(x))H∓ ,

show that H+ and H− have the same spectrum except possibly 0.
d) Treat completely the case m = 1.
e) We assume now that q(x) = x + gx2 with g 6= 0. Show that the corre-
sponding operators are unitary equivalent (up to a multiplicative factor) to
semiclassical Schrödinger operator.
f) Show that in this case H+ and H− are unitary equivalent.
g) Show that there exists a unique eigenvalue λ(g) which is o(1) as g → 0.
h) Show that this eigenvalue is actually exponentially small.
i) (More difficult) Find an equivalent of λ(g) in the form

λ(g) ∼ α|g|k exp− S

g2
,

for suitable α > 0, k ∈ R and S > 0.

Problem D.8 (semi-classical analysis and Airy operator)
One would like to understand the problem on R

+ given by the Dirichlet real-
ization PD(h) of

P (h) := −h2 d
2

dx2
+ v(x) ,
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with v′(x) ≥ c > 0 on R+.
a) Show that the operator has compact resolvent.
b) We first analyze the case v(x) = x, h = 1 (In this case the operator is
called the Airy operator A(x,Dx)). Show that, for the Dirichlet realization
AD of A in R+, there exists a sequence (µj)j∈N∗ of eigenvalues tending to ∞.
Show that the lowest one µ1 is strictly positive. What is the form domain
Q(AD) of the Airy operator?
c) Show that the corresponding eigenfunctions uj are in C∞(R+).
d) Show that the eigenvalues are of multiplicity 1.
e) We admit that

D(AD) = {u ∈ H1
0 (R+) ∩H2(R+); xu ∈ L2(R+)}

= {u ∈ H1
0 (R+) , x

1
2u ∈ L2(R+) , A(x,Dx)u ∈ L2(R+)} .

Show that the eigenvectors are in S(R+).
Another approach could be to analyze the Fourier transform of χuj where χ
is equal to 1 for x large and is equal to 0 in a neighborhood of 0.
f) Describe the spectrum of AD(x, hDx) for any h > 0.
g) We come back to the general case. Transpose for PD(h) what was done for
the one-well problem via the harmonic approximation, the harmonic oscilla-
tor being replaced by the Airy operator. The student can use if needed that
(AD(x,Dx)−µ1) is a bijection from S0(R+)∩{Ru1}⊥ onto S(R+)∩{Ru1}⊥
where

S0(R+) = {u ∈ S(R+) s. t. u(0) = 0} .

Problem D.9 (Schrödinger operator in R2
+ with Dirichlet conditions).

The aim of this problem is to analyze the spectrum ΣD(P ) of the Dirichlet
realization of the operator P := (Dx1 − 1

2
x2)

2 + (Dx2 + 1
2
x1)

2 in R+ × R.

1. Show that one can a priori compare the infimum of the spectrum of P
in R2and the infimum of ΣD(P ).

2. Compare ΣD(P ) with the spectrum ΣD(Q) of the Dirichlet realization
of Q := D2

y1 + (y1 − y2)
2 in R

+ × R.

3. We first consider the following family of Dirichlet problems associated
with the family of differential operators : α 7→ H(α) defined on ]0,+∞[
by :

H(α) = D2
t + (t− α)2 .
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Compare with the Dirichlet realization of the harmonic oscillator in
] − α,+∞[.

4. Show that the lowest eigenvalue λ(α) of H(α) is a monotonic function
of α ∈ R.

5. Show that α 7→ λ(α) is a continuous function on R.

6. Analyze the limit of λ(α) as α→ −∞.

7. Analyze the limit of λ(α) as α→ +∞.

8. Compute λ(0). For this, compare the spectrum of H(0) with the spec-
trum of the harmonic oscillator restricted to the odd functions.

9. Let t 7→ u(t;α) the positive L2-normalized eigenfunction associated
with λ(α). Let us admit that this is the restriction to R+ of a function
in S(R). Let, for α ∈ R, Tα be the distribution in D′(R+ × R) défined
by

φ 7→ Tα(φ) =

∫ +∞

0

φ(y1, α)uα(y1)dy1 .

Compute QTα.

10. By constructing starting from Tα a suitable sequence of L2-functions
tending to Tα, show that λ(α) ∈ ΣD(Q).

11. Determine ΣD(P ).
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