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Main goals

When analyzing the properties of the minimizers
(ψ,A) of a superconductor submitted to an external
field, it is important to establish estimates on ‘how
far’ the induced magnetic vector potential A is
allowed to be from the external magnetic potential
F corresponding to the external field.

It is in particular proved that when the intensity
of the external field is between HC2 and HC3,
A − F = o(1), in suitable norms.

Such estimates are very useful and can be found
in various publications (c.f. Lu-Pan, Pan, Helffer-
Pan, Almog, Fournais-Helffer, ...), we give here a
simplified proof and present some improvments.



These estimates come in two types.

The first set of estimates is deduced from the
ellipticity of the Ginzburg-Landau system. In this
way one obtains the desired estimates in (Sobolev)
norms, W s,p, for p < +∞ (by imbedding theorems

also estimates in Hölder norms, Cs′,α, α < 1, are
obtained).

The challenge here is to get inequalities with
the right dependence on the magnetic field strength
(independently of the vector potential generating the
field).

This part of the analysis is valid in a large
parameter regime and is essentially functional
analytical.



The second set of estimates corresponds to
the cases p = ∞ above and uses the first set of
estimates as input.

One proves that it is possible to go to
these limiting cases essentially without loss in the
parameter measuring the magnetic field strength—
actually, in some cases one gets an improved

behavior!

These inequalities are asymptotic in the sense
that they depend on a certain parameter to be
sufficiently large and are valid in a much smaller
parameter regime (‘above HC2’).

The proof of these estimates uses the fact that a
natural limiting equation has no non-trivial solutions
and the proof is therefore much more intrinsically
PDE in spirit. This technique is often called a
‘blow-up argument’ in the literature.



In this talk, we only discuss the 2-dimensional
case.

This work was partially motivated by discussions
with X-B. Pan and questions of S. Serfaty and we
thank them for the encouragement.



Ginzburg-Landau functional

The Ginzburg-Landau functional is given by

Eκ,σ[ψ,A] =∫
Ω

{
|∇κσAψ|2 − κ2|ψ|2 + κ2

2 |ψ|4

+κ2σ2| curl A − 1|2
}
dx ,

with Ω simply connected in R
2, (ψ,A) ∈

W 1,2(Ω; C) ×W 1,2(Ω; R2) and ∇A = (∇ + iA).

κ is the Ginzburg-Landau parameter and σ
denotes the strength of the external magnetic field,
which for simplicity is assumed to be constant.

We fix the choice of gauge by imposing that

div A = 0 in Ω , A · ν = 0 on ∂Ω .



Minimizers (ψ,A) of the functional satisfy the
Ginzburg-Landau equations,

−∇2
κσA

ψ = κ2(1 − |ψ|2)ψ
curl 2

A = − i
2κσ

(ψ∇ψ − ψ∇ψ) − |ψ|2A

}
in Ω ;

(1a)

(∇κσAψ) · ν = 0
curl A − 1 = 0

}
on ∂Ω .

(1b)

Here curl (A1, A2) = ∂x1A2 − ∂x2A1,

curl 2 ~A = (∂x2( curl ~A),−∂x1( curl ~A)) .



Integration by parts

The starting point is a formula expressing the
L2-norm of mixed second derivatives of a function
in terms of the L2-norm of magnetic Laplacian on
the function and lower order terms involving the
magnetic field itself. For convenience, we will use
the following notation for the magnetic derivatives

D = (D1, D2) = (−i∇ +BA). (2)

Our B will be later κσ.

The magnetic Laplacian is now the operator

H := D
2 = D2

1 +D2
2 .



Proposition 1 (Int. by Parts)
Let Ω ⊂ R2 be a regular bounded domain. Suppose
ψ ∈ W 2,2(Ω) satisfies magnetic Neumann bdry
conditions

ν ·Dψ
∣∣
∂Ω

= 0. (3)

Then

∑
j,k ‖DjDkψ‖2

L2(Ω)

= B2
∫
Ω
( curl A)2|ψ|2 dx+

∫
Ω
|Hψ|2 dx

+2B
∫
Ω
( curl A)ℑ(D1ψD2ψ) dx.

(4)

Remark
This formula appears in [LuPa2] with an additional
bndry term, which actually vanishes in the case of
the magnetic Neumann-condition.

A similar formula exists in dimension 3 but the
bndry term did not vanish anymore.

The proof consists of a tedious but elementary
calculation.



Applying Hölder’s inequality to the result of
Proposition 1 yields an interesting elliptic inequality
for 2D magnetic problems with Neumann bndry
conditions.

Proposition 2
Let Ω ⊂ R2 be a regular domain and β ∈ L∞(Ω).
If ψ ∈ C∞(Ω) satisfies magnetic Neumann bndry
conditions, then ∀p1, p2 ∈ [1,+∞] we have

∑

j,k

‖DjDkψ‖2
L2(Ω) ≤ 3B2‖β‖2

∞‖ψ‖2
2 + 2‖Hψ‖2

2

+ 2B2‖ curl A − β‖2
2p1

‖ψ‖2
2q1

+ 2B‖ curl A − β‖p2‖Dψ‖2
2q2
,

(5)

where p−1
j + q−1

j = 1.

The proof is direct using the identity in
Proposition 1—replacing curl A by ( curl A − β) +
β—and Hölder’s inequality.



Regularity for the solutions of the

Ginzburg-Landau system

We define F as the solution of

curl F = 1 , div F = 0 , F · ν = 0 on ∂Ω , (6)

Let us recall that a solution (ψ,A) of the G-L system
satisfies

‖ψ‖∞ ≤ 1 . (7)

Also recall that, as for F above, without loss
of generality, we can, by a gauge transformation,
assume that the vector potentials A belong to the
space H1

div(Ω), i.e.

A ∈ H1(Ω,R2) , div A = 0 in Ω and A · ν = 0 on ∂Ω .
(8)



Theorem 3
Let β ∈ C∞(Ω). Then there exists C, and, ∀α ∈
(0, 1) , ∀p ∈ (1,+∞), ∃Ĉα and ∃C̃p, such that,
∀(ψ,A) ∈ H1(Ω) × H1

div(Ω) solution of the G-L
system (1) with parameters κ, σ > 0,

∑

j,k

‖DjDkψ‖L2(Ω) ≤ C(1 + κσ + κ2)‖ψ‖2,

(9)

‖ curl A − 1‖C0,α(Ω) ≤ Ĉα

1 + κσ + κ2

κσ
‖ψ‖2‖ψ‖∞,

(10)

and

‖ curl A − 1‖W 1,p(Ω) ≤ C̃p

1 + κσ + κ2

κσ
‖ψ‖2‖ψ‖∞ .

(11)



Remarks

• Using the W k,p-regularity of the Curl-Div system
(see Agmon-Douglis-Nirenberg, and Temam for
the case p = 2), we obtain from (11) the estimate

‖A − F‖W 2,p(Ω) ≤ D̃p

1 + κσ + κ2

κσ
‖ψ‖2‖ψ‖∞ .

(12)
Hence, using the Sobolev injection Theorem,

‖A − F‖C1,α(Ω) ≤ D̂α

1 + κσ + κ2

κσ
‖ψ‖2‖ψ‖∞,

(13)
for all α ∈ [0, 1).

• In the applications, σ is of the same order as κ,
so (13) gives that (A − F) is uniformly bounded
in C1,α(Ω) in this regime, for any α < 1.



• We have in particular obtained a complete proof of
the basic Proposition 3.1 in [LuPa1] with actually
an improvement of the right hand side and an
extension of the regime of parameters (κ, σ) for
which the estimate is true.

• When in addition, κ
σ

≥ 1 + b (with b > 0),
V. Bonnaillie-Noël and S. Fournais [BonFo] have
given recently a very simple proof (in comparison
with Helf-Pan or Fou-Helf) showing that for
a minimizer (ψ,A) of the Ginzburg-Landau
functional, one has for some constants Cb, κb > 0,

‖ψ‖2 ≤ Cb κ
−1

2 ‖ψ‖∞ ≤ Cb κ
−1

2 , (14)

for all κ ≥ κb.

The proof in [BonFo] does not use the elliptic
estimates that we discuss here.



Proof of Theorem 3

Using (7), we can get a number of a priori

estimates on solutions to the Ginzburg-Landau
equations (1).

Lemma 4
∀p ≥ 2, ∃C = C(p) > 0 s.t. ∀(ψ,A) ∈ H1(Ω) ×
H1

div(Ω) satisfying (1), we have

‖p2
κσA

ψ‖p ≤ κ2 ‖ψ‖p, (15)

‖pκσAψ‖2 ≤ κ ‖ψ‖2, (16)

‖ curl A − 1‖W 1,p(Ω) ≤
C

κσ
‖ψ‖∞‖pκσAψ‖p. (17)

Combining (16) and (17) (with p = 2) yields

‖ curl A − 1‖2 ≤ C

σ
‖ψ‖∞‖ψ‖2. (18)



We use Proposition 2 with p1 = 1, p2 = ∞ and
B = κσ. After inserting (1a), (18), and the result
of Lemma 4, this yields

∑

j,k

‖DjDkψ‖2
2

≤ C
{(

1+κ4+(κσ)2
)
‖ψ‖2

2+κ
3σ‖ψ‖2

2 ‖ curl A−1‖∞
}
.

(19)

Using that ‖ψ‖2 ≤ |Ω| and a Sobolev inequality for
controlling ‖ curl A − 1‖∞ , this becomes, with a
new C and for any ǫ > 0,

∑

j,k

‖DjDkψ‖2
2

≤ C
{

(1 + ǫ−1)
(
1 + κ4 + (κσ)2

)
‖ψ‖2

2

+ ǫ(κσ)2‖ curl A − 1‖2
W 1,p

}
. (20)



We now apply a Sobolev inequality and
the (pointwise) diamagnetic inequality —for each
function (−i∂xk

+κσAk)ψ—to (17), in order to get,
for a suitable C ′,

‖ curl A − 1‖2
W 1,p(Ω)

≤ C′

(κσ)2
‖ψ‖2

∞

(∑
j,k ‖DjDkψ‖2

2 + ‖pκσAψ‖2
2

)

≤ C′

(κσ)2
‖ψ‖2

∞

∑
j,k ‖DjDkψ‖2

2 + C′

σ2‖ψ‖2
∞‖ψ‖2

2,

(21)
where the last inequality follows from (16).

Inserting (21) in (20) and choosing ǫ sufficiently
small, yields (9).

Once (9) is established, we get (11) from (21).
Finally, (10) follows from (11) and a Sobolev
inequality. This finishes the proof of Theorem 3.



Asymptotic estimates

As explained in the introduction, we would like
to treat the limiting case p = +∞ and we start by
proving the Nonexistence of solutions to certain
partial differential equations

We will use the notation F̃ for any vector
potential on

• either R2

• or the half-space R
2
+ := {(x1, x2) ∈ R

2
∣∣x1 > 0}

satisfying curl F̃ = 1.

We know that (−i∇ + F̃)2 on L2(R2) has
spectrum

Spec (−i∇ + F̃)2L2(R2) =
{
2j + 1, j ∈ N ∪ {0}

}
.



We also consider the Neumann-realization H of the
same operator but restricted to the half-space R

2
+.

Here we define

inf Spec H = Θ0 ∈]0, 1[ . (22)

We will consider the following PDEs.

(−i∇ + F̃)2ψ = λψ on R
2, with λ < 1, (23a)

(−i∇ + F̃)2ψ = λ(1 − S2|ψ|2)ψ on R
2, with 0 ≤ λ ≤ 1,

(23b)

(−i∇ + F̃)2ψ = λψ on R
2
+,with λ < Θ0, (23c)

(−i∇ + F̃)2ψ = λ(1 − S2|ψ|2)ψ on R
2
+, with 0 ≤ λ ≤ Θ0.

(23d)

The last two equations are considered with Neumann
bndry condition. So, in order for this bndry condition
to be well-defined, we assume that ψ ∈ H2

loc(R
2
+).



Also, we assume that the parameter S ≥ 0 in
(23b) verifies S 6= 0 when λ = 1, and similarly,
the parameter S ≥ 0 in (23d) satisfies S 6= 0 when
λ = Θ0.

The linear problems (23a), (23c), have no non
zero solutions in L2. That follows directly from
the definition of the spectrum. One can prove that
they do not have any non trivial bounded solutions
either. In the case of Schrödinger operators without
magnetic fields, there is a strong relation between the
spectrum and generalized eigenfunction (Sch’nol’s
Theorem, see [CFKS]).

Proposition 5
Let (ψ, λ) be a solution to one of the equations
(23a), (23b), (23c) or (23d) with λ in the indicated
interval and ψ being globally bounded. Then ψ = 0.

The proof is reminiscent of Sch’nol’s Theorem
but we have now a magnetic potential and a non
linear term.



We now explain a technique that we can initially
find in the context of superconductivity in Lu-Pan
and which was used in Helffer-Pan, Pan, Almog...
The technique is based on a blowing up argument
and on argument of subsequences.

First, we have tried to formalize what appears
in many proofs as the Extraction of convergent
subsequences
The non-existence result of Proposition 5 will then
be combined with a compactness result which states
that under certain circumstances we can construct
bounded solutions to the equations (23).



Proposition 6
Let {(Pn, κn, σn)}n∈N ⊂ Ω×R+×R+ be a sequence
and let (ψn,An)κn,σn ∈ H1(Ω) × H1

div(Ω) be an
associated sequence of solutions to (1)
(with (κ, σ) = (κn, σn) in the equation)
with ψn 6= 0.
Define Sn := ‖ψn‖∞. Assume that κn → ∞ and
that κn/σn → Λ ∈ R+.

Then there exist P ∈ Ω, S ∈ [0, 1], f ∈ C

and β0 ∈ R such that—after possibly extracting
a subsequence—we have

Pn → P, Sn → S, (24)

ψn(Pn) → f, curl An(Pn) → β0, (25)

as n→ ∞.



Furthermore:
Case 1.
If

√
κnσn dist (Pn, ∂Ω) → ∞. (26)

Then there exists a function ϕ ∈ C2,α(R2), for

all α < 1, satisfying ‖ϕ‖∞ ≤ 1 and |ϕ(0)| = |f |
S

and a (linear) vector potential F̃ ∈ Cα(R2) with

curl F̃ = β0, and such that

(−i∇ + F̃)2ϕ = Λ(1 − S2|ϕ|2)ϕ in R
2. (27)



Case 2.
If there exists C > 0 such that

dist (Pn, ∂Ω) ≤ C/
√
κnσn. (28)

Then there exists ϕ ∈ ∩α<1C
2,α(R2

+), satisfying

‖ϕ‖∞ ≤ 1 and |ϕ(0)| = |f |
S

and a (linear) vector potential F̃ ∈ Cα(R2
+) with

curl F̃ = β0, and such that

(−i∇ + F̃)2ϕ = Λ(1 − S2|ϕ|2)ϕ in R
2
+. (29)

Notice that, up to extraction of a subsequence, we
can always assure that Case 1 or Case 2 occurs.The
proof is based, in Case 1, on the change of variables :

x− Pn = y/
√
κnσn .



Asymptotic estimates
We now combine the non-existence result
Proposition 5 with Proposition 6 to obtain strong
estimates on solutions to the Ginzburg-Landau
equations.

Our first result only uses the extraction of
convergent subsequences as in Prop. 6. Proposition 7
is a slightly improved version of results of Helffer-Pan
and Pan.

Proposition 7 Let 0 < λmin ≤ λmax. There
exist constants C0, C1 s. t. if

κ ≥ C0, λmin ≤ κ/σ ≤ λmax,

then any solution (ψ,A) of (1) satisfies

‖pκσAψ‖C(Ω) ≤ C1

√
κσ‖ψ‖∞, (30)

‖ curl A − 1‖C1(Ω) ≤
C1√
κσ

‖ψ‖2
∞, (31)

‖ curl A − 1‖C2(Ω) ≤ C1‖ψ‖2
∞. (32)



Remarks

What is weak in the assumption is the condition
0 < λmin ≤ κ

σ
≤ λmax.

When λmax < 1, one can improve the
estimates by taking into account the localization
(in the limit κ → +∞) at the boundary (surface
superconductivity) of ψ and of curl A − 1 (Agmon
estimates). This will not be discussed in this talk.

When λmax = 1, one can under a weaker
assumption that κ

σ
≤ 1− C

κ
give interesting improved

estimates, for example for curl A − 1 in L∞ (See
also Almog or Almog-Helffer).



Proof of Proposition 7

Proof of (30).
Suppose (30) is wrong. Then there exists a
sequence (ψn,An)κn,σn of solutions to (1), and a
corresponding sequence of points {Pn} ⊂ Ω such
that

|pκnσnAnψn(Pn)|√
κnσn‖ψn‖∞

→ ∞.

After extracting subsequences as in the proof of
Proposition 6 we find

lim
n→∞

|pκnσnAnψn(Pn)|√
κnσn‖ψn‖∞

= |(−i∇− F̃)ϕ(z)| <∞,

where
z = 0 in Case 1
and
z = limn→∞

√
κnσnΦ−1

n (Pn) in Case 2
(with Φn a suitable diffeomorphism).

This yields a contradiction; so (30) is correct.



Proof of (31).
This inequality is a consequence of (30). Remember
that

curl 2
A := (∂x2 curl A,−∂x1 curl A).

Thus, by the Ginzburg-Landau equation (1a) and
(30)

‖∇( curl A − 1)‖∞ = ‖ curl ( curl A − 1)‖∞

=
1

κσ
‖ℜ{ψ pκσAψ}‖∞ ≤ C√

κσ
‖ψ‖2

∞. (33)

This is (31) for the derivatives.

Furthermore, since curl A−1 = 0 on ∂Ω and Ω is
bounded, we can integrate (33) ‘from the boundary’
and find C > 0 such that

‖ curl A − 1‖∞ ≤ C√
κσ

‖ψ‖2
∞. (34)

This finishes the proof of (31).



Proposition 8
Let ǫ0, ǫ1 > 0 be such that 0 < Θ0 − ǫ1 < 1 − ǫ0.
Then there exist κ0, C > 0 such that if (ψ,A)κ,σ is
a solution to (1) with ψ 6= 0,

κ > κ0, Θ0 − ǫ1 ≤ κ/σ ≤ 1 − ǫ0,

and P ∈ Ω is such that |ψ(P )| = ‖ψ‖∞,

then dist (P, ∂Ω) ≤ C√
κσ

.

Proof
Suppose Proposition 8 is false. Then there exists a
sequence (Pn, κn, σn, ψn,An) such that

κn → ∞ ,

Θ0 − ǫ1 ≤ κn/σn ≤ 1 − ǫ0 ,

|ψn(Pn)| = ‖ψn‖∞ ,
√
κnσn dist (Pn, ∂Ω) → ∞ . (35)



By Case 1 in Proposition 6, we find a continuous
solution ϕ ∈ L∞(R2) to (27), that is to

(−i∇ + F̃)2ϕ = Λ(1 − S2|ϕ|2)ϕ in R
2.

with |ϕ(0)| = 1, Λ ∈ [Θ0 − ǫ1, 1 − ǫ0] and S ≤ 1.

By Proposition 5, we have ϕ ≡ 0.

This is in contradiction to |ϕ(0)| = 1.

Thus no such sequence can exist and
Proposition 8 is true.



The next and last result is in the same spirit.

It gives a weak control of the ||ψ||L∞ when σ is
closed to HC3(κ).

Proposition 9
Let g : R+ → R+ satisfy that g(κ) → 0 as κ → ∞.
Then there exists a function g̃ with g̃(κ) → 0 as
κ→ ∞, such that if

κ(Θ−1
0 − g(κ)) ≤ σ ≤ κ(Θ−1

0 + g(κ)),

then any solution (ψ,A)κ,σ of (1) satisfies

‖ψ‖∞ ≤ g̃(κ).
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