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Abstract :

Given an open set Ω and a partition of Ω by k open sets ωj , we
can consider the quantity maxj λ(ωj) where λ(ωj) is the ground
state energy of the Dirichlet realization of the Laplacian in ωj .If we
denote by Lk(Ω) the infimum over all the k-partitions of
maxj λ(ωj), a minimal k-partition is then a partition which realizes
the infimum. Although the analysis is rather standard when k = 2
(we find the nodal domains of a second eigenfunction), the analysis
of higher k’s becomes non trivial and quite interesting. In this talk,
we would like to discuss the properties of minimal spectral
partitions, illustrate the difficulties by considering simple cases like
the disc or the square (k = 3) and will also exhibit the possible role
of the hexagone in the asymptotic behavior as k → +∞ of Lk(Ω).
This work has started in collaboration with T. Hoffmann-Ostenhof
and has been continued (published or in progress) in collaboration
with (by alphabetic order) V. Bonnaillie-Noël,
T. Hoffmann-Ostenhof, S. Terracini, G. Verzini, and G. Vial.



Main goal :

We only consider Laplacians operators in 2D bounded domains Ω.
We would like to analyze the relations between the nodal domains
of the eigenfunctions of the Dirichlet realization and the partitions
of Ω by k open sets Di which are minimal in the sense that the
maximum over the k Di ’s of the ground state energy of the
Dirichlet realization of the Laplacian in Di is minimal inside the
class of all the partitions of Ω.
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2 be a regular bounded domain (C (1,+) i.e. C (1,α) for

some α > 0).
Consider the Laplacian H(Ω) with Dirichlet boundary condition.
We denote by λj(Ω) the increasing sequence of its eigenvalues and
by uj some associated orthonormal basis of eigenfunctions.
We define for any function u ∈ C 0

0 (Ω)

N(u) = {x ∈ Ω
∣

∣ u(x) = 0} (1)

and call the components of Ω \ N(u) the nodal domains of u.
The number of nodal domains of such a function will be called
µ(u).
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We now introduce the notions of partition and minimal partition.

Definition 1

Let 1 ≤ k ∈ N.
We call k-partition of Ω a family D = {Di}

k
i=1 of mutually

disjoint sets such that

∪k
i=1 Di ⊂ Ω . (2)

We call it

◮ open if the Di are open sets of Ω,

◮ connected if the Di are connected.

We denote by Ok the set of open connected partitions.

Sometimes (at least for some proofs) we have to relax this
definition by considering measurable sets for the partitions.
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Definition 2 : Spectral minimal partition sequence.

For any integer k ≥ 1, and for D in Ok , we introduce

Λ(D) = max
i

λ(Di ). (3)

Then we define
Lk(Ω) = inf

D∈Ok

Λ(D). (4)

and say that

D ∈ Ok minimal if Lk(Ω) = Λ(D).

If k = 2, it is rather well known (see [HeHO1] or [CTV3]) that

L2(Ω) = λ2(Ω) .
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We discuss roughly the notion of regular and strong partition.

Definition 3 : Strong partition.

A partition D = {Di}
k
i=1 of Ω in Ok is called strong if

Int (∪iDi) \ ∂Ω = Ω . (5)

Attached to a strong partition, we associate a closed set in Ω :

Definition 4 : Boundary set of a partition.

N(D) = ∪i (∂Di ∩ Ω) . (6)



The collection of the nodal domains of an eigenfunction gives a
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The collection of the nodal domains of an eigenfunction gives a
partition.

Definition 5: Nodal partition

We call nodal partition such a partition.

In the case of a nodal partition the boundary set of the partition
N(D) is the nodal set.



This leads us to introduce the set R(Ω) of the regular partitions
through the properties of the associated boundary set.

Definition 6 : Regular boundary set.

(i) There are finitely many distinct xi ∈ Ω ∩ N and associated
positive integers νi with νi ≥ 2 s. t. near each of the xi , N is the
union of νi (xi) smooth curves with one end at xi and s. t. in the
complement of these points in Ω, N is locally diffeomorphic to a
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This leads us to introduce the set R(Ω) of the regular partitions
through the properties of the associated boundary set.

Definition 6 : Regular boundary set.

(i) There are finitely many distinct xi ∈ Ω ∩ N and associated
positive integers νi with νi ≥ 2 s. t. near each of the xi , N is the
union of νi (xi) smooth curves with one end at xi and s. t. in the
complement of these points in Ω, N is locally diffeomorphic to a
regular curve.
(ii) ∂Ω ∩ N consists of a (possibly empty) finite set of points zi ,
s.t. at each zi , ρi , with ρi ≥ 1 lines hit the boundary. Moreover,
∀zi ∈ ∂Ω, then N is near zi the union of ρi distinct smooth
half-curves which hit zi .
(iii) N has the equal angle meeting property.

By equal angle meeting property, we mean that the half curves
cross with equal angle at each critical point of N and also at the
boundary together with the boundary.
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To better describe the situation, we need some additional
definitions.

◮ We say that Di ,Dj are neighbors or Di ∼ Dj , if
Di ,j := Int (Di ∪ Dj) \ ∂Ω is connected.

◮ We associate to each D a graph G (D) by associating to each
Di a vertex and to each pair Di ∼ Dj an edge.

◮ We will say that the graph is bipartite if it can be colored by
two colors (two neighbours having two different colors).

Note that the graph of a nodal partition is always bipartite.

Let us give two examples of regular strong partitions.



Figure 1: An example of regular strong bipartite partition
with associated graph.
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Figure 2: An example of regular strong non bipartite partition
with associated graph.
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It has been proved by Conti-Terracini-Verzini
[CTV1, CTV2, CTV3] that

Theorem 7

For any k, there exists a minimal k-partition which is regular.

Other proofs of somewhat weaker version of this statement have
been given by Bucur, Henrot [Henrot], F. H. Lin- Caffarelli.

This result is completed by (see
Helffer–Hoffmann-Ostenhof–Terracini [HeHOTe]) :

Theorem 8

Any minimal k-partition has a regular representative.

A natural question is whether a minimal partition is the nodal
partition. Next theorem will give a simple criterion.
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Theorem 9

A minimal partition whose graph is bipartite is a nodal partition.

Hint : If Di and Dj are neighbours, then, with Dij := Int (Di ∪ Dj),

λ2(Dij) = Lk(Ω) .

In other words, (Di ,Dj) is a minimal 2-partition in Dij .

Similar properties hold for k ′-subpartitions k ′ < k.

A natural question is now to determine how general is the previous
situation.



Surprisingly this only occurs in the so called Courant-sharp
situation.
First recall that the Courant theorem says :

Theorem 10

Let k ≥ 1, λk be the k-th eigenvalue and E (λk) the eigenspace of
H(Ω) associated to λk . Then, ∀u ∈ E (λk) \ {0} , µ(u) ≤ k .

Then we say that

Definition 11

u is Courant-sharp if

u ∈ E (λk) \ {0} and µ(u) = k .



For any integer k ≥ 1, we denote by Lk the smallest eigenvalue
whose eigenspace contains an eigenfunction with k nodal domains.
We set Lk = ∞, if there are no eigenfunctions with k nodal
domains.
In general, one can show, that

λk ≤ Lk ≤ Lk . (7)

The last goal consists in giving the full picture of the equality
cases :

Theorem 12

Suppose Ω ⊂ R
2 is regular.

If Lk = Lk or Lk = λk then

λk = Lk = Lk .

In addition, one can find in E (λk) a Courant-sharp eigenfunction.



Except the Courant-sharp situation it is not easy to determine if a
k-partition is minimal.

Proposition 13 : A nice property

Let D = (Di)i a minimal k-partition of Ω.
Let Ω′ a connected open set such that

∪k
i=1Di ⊂ Ω′ ⊂ Ω .

If G (D) is bipartite in Ω′ then Lk(Ω) = λk(Ω′).

This gives a good test for controlling if a given partition is a good
candidate for being a minimal partition.



Example
Take k = 7, Di isometric to a given regular hexagon,
Ω = Int (∪iDi), then, for any Ω′ as above, it is evident that
λ1(Hexa) = λℓ(Ω

′) for some ℓ ≥ 7, but one can verify numerically

Λ(D) = λ1(Hexa) = λ7(Ω
′) .

Figure Hexa : 7 hexagons together minus 4 segments.



We conjecture [BHV] that this property is true for any k.



We conjecture [BHV] that this property is true for any k.

This property is no more true for k large in the case of an
equilateral triangle.
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Using Theorem 12, it is now easier to analyze the situation for the
disk or for rectangles (at least in the irrational case), since we have
just to check for which eigenvalues one can find associated
Courant-sharp eigenfunctions.

For a rectangle of sizes a and b (a ≤ b), the spectrum is given by
π2(m2/a2 + n2/b2) ((m, n) ∈ (N∗)2).

The first remark is that all the eigenvalues are simple if a2/b2 is
irrational. Assuming a2/b2 irrational, we can associate to each
eigenvalue λm,n, an (essentially) unique eigenfunction um,n such
that µ(um,n) = nm.
Given k ∈ N

∗, the lowest eigenvalue corresponding to k nodal
domains is given by

Lk = π2 inf
mn=k

(m2/a2 + n2/b2) .
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We concentrate onto the case k = 3. Then it is easy to see that
the third eigenvalue is Courant-sharp iff

b

a
≥

√

8

3
. (8)

So when this condition is satisfied the 3-minimal partition is
obtained as the three nodal domains of the third eigenfunction
which corresponds to a simple eigenvalue except in the case of
equality in (8).

When 1 ≤ b
a

<
√

8
3 , in particular, in the case of the square, it is

not to difficult to see that L3 is strictly less than L3.
Restricting to the half-rectangle and assuming that there is a
minimal partition which is symmetric with the horizontal or vertical
symmetry axes of the square, it is natural to analyze the second
eigenvalue (and corresponding nodal partition) of a family of
Dirichlet-Neumann problems defined on an half-square.



Numerical computations by Bonnaillie-Noël–Vial give :

Figure 4 : Trace on the half-square of the candidate for the
3-partition of the square.

The complete structure is obtained from the half square by
symmetry with respect to the horizontal axis.
http://www.bretagne.ens-
cachan.fr/math/Simulations/MinimalPartitions/



Here we describe some unpublished results [HeHO4] on the
possible “topological” types of 3-partitions.

Proposition 14

Let Ω be simply-connected and consider a minimal 3-partition
D = (D1,D2,D3) associated to L3 and suppose that λ3 < L3. Let
X (D) the singular points of N(D) ∩ Ω and Y (D) = N(D) ∩ ∂Ω.
Then there are three cases.



(a)

X (D) consists of one point x with a meeting of three half-lines
(ν(x) = 3) and Y (D) consists of

◮ either three y1, y2, y3 points with ρ(y1) = ρ(y2) = ρ(y3) = 1,

◮ or two points y1, y2 with
ρ(y1) = 2, ρ(y2) = 1,

◮ or one point y with ρ(y) = 3.

Here, for y ∈ ∂Ω, ρ(y) is the number of half-lines ending at y .

Type (a)



(b)

X (D) consists of two distinct points x1, x2 so that
ν(x1) = ν(x2) = 3.
Y (D) consists
either of two points y1, y2 such that

ρ(y1) + ρ(y2) = 2

or of one point y with
ρ(y) = 2 .

Type (b)



(c)

X (D) consists again of two distinct points x1, x2 with
ν(x1) = ν(x2) = 3,
but Y (D) = ∅.

Type (c)

The proof of Proposition 14 relies essentially on Euler formula.



This leads (with some success) to analyze the minimal partition
with some topological type. If in addition, we introduce some
symmetries, this leads to guess some candidates for minimal
partitions.



In the case of the disk, we have no proof that the minimal partition
is the “Mercedes star”. But if we assume that the minimal
3-partition is of type (a), then a double covering argument shows
that it is indeed the Mercedes star.

Figure 5 : The logo Mercedes and associated graph
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In the case of the square, we have no proof that the candidate
described by Figure 4 is the minimal partition.



In the case of the square, we have no proof that the candidate
described by Figure 4 is the minimal partition.

But if we assume that the minimal partition is of type (a) and has
the symmetry, then numerical computations lead to the Figure 4.
Numerics suggest more : the center of the square is the critical
point of the partition.

Once this property is accepted, a double covering argument shows
that this is the projection of a nodal partition on the covering



One can also try to look for a minimal partition having the
symmetry with respect to the diagonal.

Figure 6 : Another candidate

THIS LEADS TO THE SAME VALUE OF Λ(D).

So this strongly suggests that there is a continuous family of
minimal 3-partitions of the square.
This can be explained by a double covering argument, which is
analogous to the argument of isospectrality of
Jakobson-Levitin-Nadirashvili-Polterovich [JLNP] and
Levitin-Parnovski-Polterovich [LPP].



This is an alternative approach to the double covering approach.

One considers the Aharonov-Bohm Laplacian in the square minus
its center Ω̇ = Ω \ {0}, with the singularity of the potential at the
center and normalized flux 1
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The magnetic potential takes the form
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This is an alternative approach to the double covering approach.

One considers the Aharonov-Bohm Laplacian in the square minus
its center Ω̇ = Ω \ {0}, with the singularity of the potential at the
center and normalized flux 1

2 .
The magnetic potential takes the form

A(x , y) = (A1,A2) = α
(

−
y

r2
,

x

r2

)

. (9)

We know that the magnetic field vanishes and in any cutted
domain (such that it becomes simply connected) one has

A(x , y) = α dθ , (10)

where
z = x + iy = r exp iθ . (11)

Then the flux condition reads

α =
1

2
. (12)



So the Aharonov-Bohm operator in any open set Ω ⊂ R
2 \ {0} is

the Friedrichs extension starting from C∞
0 (Ω) and the associated

differential operator is

−∆A := (Dx − A1)
2 + (Dy − A2)

2 . (13)
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So the Aharonov-Bohm operator in any open set Ω ⊂ R
2 \ {0} is

the Friedrichs extension starting from C∞
0 (Ω) and the associated

differential operator is

−∆A := (Dx − A1)
2 + (Dy − A2)

2 . (13)

In the case of the square, the operator commutes with the π
2

rotation.
In the case of rectangles, it commutes with the symmetries with
respect to the main axis but these symmetries should be quantized
by antilinear operators,

Σ1u(x , y) = u(−x , y) .

and
Σ2u(x , y) = u(x ,−y) .



This operator is preserving “real” functions in the following sense.
Following [HOOO], we will say that a function u is K -real, if it
satisfies

Ku = u , (14)

where K is an anti-linear operator in the form

K = exp iθ Γ , (15)

where
Γu = ū . (16)



This operator is preserving “real” functions in the following sense.
Following [HOOO], we will say that a function u is K -real, if it
satisfies

Ku = u , (14)

where K is an anti-linear operator in the form

K = exp iθ Γ , (15)

where
Γu = ū . (16)

The fact that (−∆A) preserves K -real eigenfunctions is an
immediate consequence of

K ◦ (−∆A) = (−∆A) ◦ K . (17)



As observed in [HOOO], it is easy to find a basis of K -real
eigenfunctions. These eigenfunctions (which can be identified to
real antisymmetric eigenfunctions of the Laplacian on a suitable
double covering of the square) have a nice nodal structure

◮ which is locally the same inside the pointed square as the real
eigenfunctions of the Laplacian,

◮ with the specific property that the number of lines arriving at
the origine should be odd.

More generally a path of index one around the origine should
always meet an odd number of nodal lines.



Lemma 15

The multiplicity of any eigenvalue is at least 2.

Proposition 16

The following problems have the same eigenvalues :

◮ The Dirichlet problem for the Bohm-Aharonov operator on the
pointed square.

◮ The Dirichlet-Neumann problem on the upper-half square.

◮ The Dirichlet-Neumann problem on the left-half square.

◮ The Dirichlet-Neumann problem on the upper diagonal-half
square.



Remarks

◮ The guess is that any nodal partition of a third K -real
eigenfunction gives a minimal 3-partition.

◮ In the case of the general rectangle, Proposition 16 holds true
except the last item but this is no more related to the
3-partition problem.

All the results or observations around the square and the rectangle
arise from discussions, preliminary manuscripts written by or in
collaboration with V. Bonnaillie-N, T. Hoffmann-Ostenhof,
S. Terracini, G. Verzini or G. Vial.



We mention two conjectures. The first one is that

Conjecture 1

The limit of Lk(Ω)/k as k → +∞ exists.

The second one is that this limit is more explicitly given by

Conjecture 2

|Ω| lim
k→+∞

Lk(Ω)

k
= λ1(Hexa1) .

This last conjecture says in particular that the limit is independent
of Ω if Ω is a regular domain.



It is easy to show the upper bound in Conjecture 2 and
Faber-Krahn gives a weaker lower bound

|Ω|Lk(Ω)/k ≥ λ1(D1) ,

where D1 is the disk of area 1.

Of course the optimality of the regular hexagonal tiling appears in
various contexts in Physics. But we have at the moment no idea of
any approach for proving this in our context.

As mentioned after Proposition 13, we have explored in [BHV]
numerically why this conjecture looks numerically reasonable.
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