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Main goals

Using recent results by the authors on the
spectral asymptotics of the Neumann Laplacian
with magnetic field, we give precise estimates on
the critical field, HC3, describing the appearance
of superconductivity in superconductors of type II.
Furthermore, we prove that the local and global
definitions of this field coincide. Near HC3 only
a small part, near the boundary points where
the curvature is maximal, of the sample carries
superconductivity. We give precise estimates on
the size of this zone and decay estimates in both the
normal (to the boundary) and parallel variables.



Ginzburg-Landau functional

The Ginzburg-Landau functional is given by

Eκ,H[ψ, ~A] =∫
Ω

{
|pκH ~Aψ|

2 − κ2|ψ|2 + κ2

2 |ψ|
4

+κ2H2| curl ~A− 1|2
}
dx ,

with (ψ, ~A) ∈W 1,2(Ω; C)×W 1,2(Ω; R2) and where

p ~A = (−i∇− ~A).

We fix the choice of gauge by imposing that

Div ~A = 0 in Ω , ~A · ν = 0 on ∂Ω .



Minimizers (ψ, ~A) of the functional satisfy the
Ginzburg-Landau equations,

p2
κH ~A

ψ = κ2(1− |ψ|2)ψ
curl 2 ~A = − i

2κH(ψ∇ψ − ψ∇ψ)− |ψ|2 ~A

}
in Ω ;

(1a)

(pκH ~Aψ) · ν = 0
curl ~A− 1 = 0

}
on ∂Ω .

(1b)

Here curl (A1, A2) = ∂x1A2 − ∂x2A1,

curl 2 ~A = (∂x2( curl ~A),−∂x1( curl ~A)) .

Let ~F denote the vector potential generating the
constant exterior magnetic field

Div ~F = 0
curl ~F = 1

}
in Ω , ~F · ν = 0 on ∂Ω .



The pair (0, ~F ) is called the Normal State.

A minimizer (ψ,A) for which ψ never vanishes will
be called SuperConducting State.

In the other cases, one will speak about Mixed State.

The general question is to determine the topology
of the sets of (κ,H) corresponding to minimizers
belonging to each of these three situations.



Existence of the third critical field HC3(κ)

It is known that, for given values of the parameters
κ,H, the functional E has minimizers.

However, after some analysis of the functional, one
finds (see [GiPh]) that given κ there exists H(κ) such

that if H > H(κ) then (0, ~F ) is the only minimizer
of Eκ,H (up to change of gauge).

Following Lu and Pan [LuPa1], we define

HC3
(κ) = inf{H > 0 : (0, ~F ) minimizer of Eκ,H} .

A central question in the mathematical treatment of
Type II superconductors is to establish the asymptotic
behavior of HC3

(κ) for large κ.

We will also discuss the relevance of this definition
and describe how HC3

(κ) can be determined by the
study of a linear problem.



Our first result is the following strengthening of a
result in [HePa].

Theorem A
Suppose Ω is a bounded simply-connected domain in
R2 with smooth boundary. Let kmax be the maximal
curvature of ∂Ω. Then

HC3
(κ) =

κ

Θ0
+
C1

Θ
3
2
0

kmax +O(κ−
1
2) , (2)

where C1,Θ0 are universal constants.

Remark
The constants Θ0, C1 are defined in terms of auxiliary
spectral problems.



Localization at the boundary
From the work of Helffer-Morame [HeMo2]
(improving Del Pino-Fellmer-Sternberg and Lu-
Pan) (see also Helffer-Pan [HePa] for the non-
linear case) we know that, when H is sufficiently
close to HC3(κ), minimizers of the Ginzburg-
Landau functional are exponentially localized to a
region near the boundary. This is called Surface
Superconductivity.

Note that this localization leads to the proof of :

||ψ||L2(Ω) ≤ Cκ−
1
4||ψ||L4(Ω) , (3)

which is true for κ large enough.



Localization at the points of maximal curvature

The statement is that, when H is rather close to the
third critical field, the minimizers are also localized
in the tangential variable to a small zone around the
points of maximal curvature.

This leads in particular to the better

||ψ||L2(Ω) ≤ Cκ−
3
8||ψ||L4(Ω) , (4)



Discussion of critical fields
Actually, we should define more than one critical
field, instead of just HC3

. We define an upper third
critical field, by

HC3(κ)
= inf{H > 0 : ∀H ′ > H , (0, ~F )

unique minimizer of Eκ,H′} ,

Of course we have

HC3
(κ) ≤ HC3(κ) .

Note that one can prove that the asymptotics given
before is valid for both fields.



The Schrödinger operator with magnetic field

Let, for B ∈ R+, the magnetic Neumann Laplacian
H(B) be the self-adjoint operator (with Neumann
boundary conditions) associated to the quadratic
form

W 1,2(Ω) 3 u 7→
∫

Ω

|(−i∇−B ~F )u|2 dx ,

We define λ1(B) as the lowest eigenvalue of H(B).



The local upper critical fields can now be defined :

H
loc

C3
(κ) = inf{H > 0 : ∀H ′ > H,λ1(κH ′) ≥ κ2} ,

and

H loc
C3

(κ) = inf{H > 0 : λ1(κH) ≥ κ2} .

The coincidence between H
loc

C3
(κ) and H loc

C3
(κ) is

immediately related to lack of strict monotonicity of
λ1.

These critical fields appear when analyzing the (local)
stability of the normal solution.



Comparison Theorem C
Let Ω be a bounded simply-connected domain in
R2 with smooth boundary and let κ > 0, then the
following general relations hold

HC3(κ) ≥ H
loc

C3
(κ) ,

and

HC3
(κ) ≥ H loc

C3
(κ) .

EASY and GENERAL.



Next theorem is new and more delicate !

Theorem D
Let Ω be a bounded simply-connected domain in R2

with smooth boundary. Then ∃ κ0 > 0 such that,
for κ > κ0, we have

HC3(κ) = H
loc

C3
(κ) ,

and

HC3
(κ) = H loc

C3
(κ) ,



So the monotonicity of λ1(B) for B large
immediately give the coincidence of the four fields !!

The second identity is a remark of R. Frank (but the
proof is essentially analogous to the first one due to
Fournais-Helffer)

This monotonicity has been shown in great generality
under generic assumptions by Fournais-Helffer, who
get in addition a complete asymptotic expansion.



Around the proof of Theorem D

The crucial point leads in the following argument.

If for some H there is a non trivial minimizer (ψ,A)
so

E(ψ, ~A) ≤ 0 .

then

0 < ∆ := κ2||ψ||22 −QκH ~A[ψ] = κ2||ψ||44 ,

where QκH ~A[ψ] is the energy of ψ.

The last equality is a consequence of the first G-L
equation.



Combining with (3), this gives

||ψ||2 ≤ Cκ−
3
4∆

1
4 .

By comparison of the quadratic forms Q respectively
associated with ~A et ~F , we get, with ~a = ~A− ~F :

∆ ≤
[
κ2 − (1− ρ)λ1(κH ~F )

]
‖ψ‖2

2 + ρ−1(κH)2
∫

Ω

|~aψ|2 dx ,

(5)

for all 0 < ρ < 1.

Note that by the regularity of the system Curl-Div,
combined with the Sobolev’s injection theorem, we
get

‖~a‖4 ≤ C1‖~a‖W 1,2 ≤ C2‖ curl ~a‖2 .



Now ∆ is also controlling ‖ curl ~a‖2
2, so we get :

(κH)2‖~a‖2
4 ≤ C∆ .

Combining all these inequalities leads to :

0 < ∆ ≤
≤

[
κ2 − (1− ρ)λ1(κH ~F )

]
‖ψ‖2

2 + ρ−1(κH)2‖~a‖2
4‖ψ‖2

4

≤
[
κ2 − λ1(κH ~F )

]
‖ψ‖2

2

+Cρλ1(κH)∆
1
2κ−

3
2 + Cρ−1∆

3
2κ−1 .

Chosing ρ =
√

∆κ−
3
4, and using the rough upper

bound λ1(κH ~F ) < Cκ2, we find

0 < ∆ ≤
[
κ2 − λ1(κH)

]
‖ψ‖2

2 + C∆κ−
1
4 .



This shows finally, for κ large enough independently
of H sufficiently close to “any” third critical field
(they have the same asymptoics)

0 < ∆ ≤ C̃
[
κ2 − λ1(κH)

]
‖ψ‖2

2 ,

so in particular

κ2 − λ1(κH) > 0 .

Coming back to the definitions this leads to the
statement.



Perspectives

This is far to be the end of the story. Here are some
additional questions :

1. One can instead consider the more physical
functional :

Eκ,H[ψ, ~A] =∫
Ω

{
|pκH ~Aψ|

2 − κ2|ψ|2 + κ2

2 |ψ|
4

+κ2H2
∫

R2 | curl ~A− 1|2
}
dx ,

The difference is that the last integration is over
R2 ! This is particularly important if Ω is not
simply connected !

2. What is going on in Dimension 3 ?
Results by Pan, Helffer-Morame, Fournais-Helffer.

3. Note also that other conditions than Neumann
could be interesting.
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