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Abstract:
If the first mathematical results were obtained more than 30 years
ago with the interpretation of the celebrated Hofstadter butterfly,
more recent experiments in Bose-Einstein theory suggest new
questions. I will start with a partial survey on old results of
Helffer-Sjöstrand and Kerdelhué and then discuss more recent
questions related to generalized butterflies (Dalibard and coauthors,
Hou, Kerdelhué–Royo-Letelier). These new questions are strongly
related to Harper on triangular or hexagonal lattices (in connection
with the now very popular graphene). Our main focus will be on
new semi-classical questions appearing in the analysis of the final
model arising in the analysis of the Kagome model.



Introduction

The spectral properties of a charged particle in a two-dimensional
system submitted to a periodic electric potential and a uniform
magnetic field crucially depend on the arithmetic properties of the
number γ representing the magnetic flux quanta through the
elementary cell of periods, see e.g. Bellissard [Bel] for a description
of various models.
The more popular model was proposed by Hofstadter. This is a
model acting on `2(Z). For each (2π × rational) value of γ,
Hofstader writes the spectrum of the operator on an horizontal line.
Since the works by Azbel [Az] and Hofstadter [Hof] it is generally
believed that for irrational α = γ/2π the spectrum is a Cantor set,
that is a nowhere dense (the interior of the closure is empty) and
perfect set (closed + no isolated point), and the graphical
presentation of the dependence of the spectrum on γ shows a
fractal behavior known as the Hofstadter butterfly.



The gaps in the spectrum.
This is the ”colored” butterfly realized in 2003 by Y. Avron and his
team.

	
  



After intensive efforts this was rigorously proved six years ago (Ten
Martinis conjecture) for all irrational values of α for the discrete
Hofstadter model, i.e. the discrete magnetic Laplacian admitting a
reduction to the almost Mathieu equation, see Avila-Jitomirskaya
[AvJi] and references therein and the talk of Svetlana Jitomirskaya
in this conference.



Only few results are available for other models. Traditionally,
various semiclassical methods play an important role in the analysis
of the two-dimensional magnetic Schrödinger operators with
periodic potentials, see e.g. Brüning-Dobrokhotov-Pankrashkin
[BDP] for a review or Buslaev-Fedotov. In particular, the bottom
part of the spectrum for strong magnetic fields can be described up
to some extent using the tunnelling asymptotics, Wannier
functions and this leads to simpler models like Harper.
Usually physicists have no problems to use these results without to
come back to their proof and analyze directly the effective models.



A more detailed analysis (Bellissard, Helffer and Sjöstrand
[HS1, HS2, HS3]) shows that the study of some parts of the
spectrum for the Schrödinger operator with a magnetic field and a
periodic electric potentials reduces to the spectral problem for a
family of one-dimensional quasiperiodic pseudodifferential
operators.

Under some symmetry conditions for the electric potentials, the
analysis is reduced to the study of small perturbations of the
continuous analog of the almost-Mathieu (=Harper) operator,
which allowed one to carry out a rather detailed iterative analysis
for special values of α.
In particular, in several asymptotic regimes a Cantor structure of
the spectrum was proved.
This involved a pseudo-differential calculus, whose relevance in this
context was predicted by the british physicist Wilkinson.



Pseudo-differential operators

In [HS1, HS2, HS3] (1988-1990) a machinery was developed for an
iterative semiclassical analysis of a special class of
pseudodifferential operators. One was concerned with the
non-linear spectral problem (or, in other words, with the spectral
problem for an operator pencil). Namely, for a family of
self-adjoint operators A(µ) depending µ ∈ R the µ-spectrum of
A(µ) denotes the set of all µ such that 0 ∈ SpecA(µ).
The simplest case being the family A− µ. This is what we do from
now on.



Quantization

Let L : R2 → R be a periodic smooth function,
L(x , ξ + 2π; h) = L(x + 2π, ξ; h) = L(x , ξ; h). Here h is a real
parameter. By the Weyl quantization procedure one can assign to
L an operator L̂h in L2(R) by

L̂hf (x) =
1

2πh

∫
R

∫
R
e iξ(x−y)/hL

(x + y

2
, ξ; h

)
f (y)dξ dy . (1)



The operator L̂h obtained is referred to as the Weyl h-quantization
of L, and quantum Hamiltonians resulting from periodic symbols
are often called Harper-like operators.

In particular, the symbol L(x , ξ) := cos x + cos ξ produces the
Harper operator on the real line,

f 7→ L̂hf (x) =
f (x + h) + f (x − h)

2
+ cos x f (x). (2)



In [HS3], in order to treat the Harper operator and perturbations
of it occurring in a renormalization procedure, the following notion
was introduced.

Definition: perturbation of Harper

A symbol L(x , ξ; h) will be called an admissible perturbation of
Harper’s symbol if the following conditions are satisfied for some
h0 > 0:

(a) There exists ε > 0 such that, for all h ∈ (0, h0),

(a1) L(x , ξ; h) is holomorphic in

Dε =
{

(x , ξ) ∈ C× C : |=x | < 1

ε
, |=ξ| < 1

ε
,
}
,

(a2) for (x , ξ) ∈ Dε, there holds∣∣L(x , ξ; h)− (cos x + cos ξ)
∣∣ ≤ ε.



Continuation of the definition

(b) The following symmetry conditions hold:

L(x , ξ; h) = L(ξ, x ; h) = L(x ,−ξ; h)
L(x , ξ; h) = L(x + 2π, ξ; h) = L(x , ξ + 2π; h).

By ε(L) we will denote the minimal value of ε for which the above
conditions hold.



In [HS1, HS2, HS3] a detailed analysis was performed for
pseudodifferential operators associated with these symbols. One of
the results was

Theorem 1

Let L(h) be an admissible perturbation of Harper’s symbol. There
exist ε0 , C s. t. if ε(L) ≤ ε0 and if (2π)−1h is an irrational
admitting a representation as a continuous fraction

h

2π
=

1

n1 +
1

n2 +
1

n3 + . . .

with nj ≥ C , then the spectrum of the associated operators L̂h is
a zero measure Cantor set.



In particular, this applies to the spectrum of the Harper’s model,
for which one gets the Cantor structure, BUT with a very
restrictive notion of irrationality.
But the theorem says also that this property is stable by
perturbations respecting all the symmetries and gives a very
accurate description of the spectrum.



Schrödinger operators with magnetic potentials

For operators

H =
2∑

j=1

(~Dxj − Aj)
2 + V

with periodic potentials V ,

V (x1 + 2π, x2) ≡ V (x1, x2 + 2π) ≡ V (x1, x2) ,

(square lattice case) and constant (or periodic) magnetic fields

Curl ~A = B ,

it was shown in several asymptotic regimes that the study of some
parts of the spectrum reduces to a non-linear spectral problem of
the type above.
We will consider later other symmetries.



This is for example the case for

I B−1-pseudodifferential operators with symbols close to
V (x , ξ) (see for example [HS4] which treats the strong
magnetic case)

I B-pseudodifferential operators with symbols close to the first
Floquet eigenvalue of the Schrödinger operator without
magnetic field (Peierls substitution) (corresponding to the
case of the weak magnetic field, see [HS1], [HS3] and [HS4]
and earlier contributions by mathematicians and physicists
(see the surveys by J. Bellissard in [Bel], G. Nenciu in [Ne2],
J. Sjöstrand [Sj] and references therein).



Hence, in the first case perturbations of Harper appear for strong
magnetic field when considering potentials V close to
cos x1 + cos x2.
Moreover in the semi-classical limit ~→ 0 or in the tight binding
situation, it can be shown (case of a square lattice) that—up to
the multiplication by an exponentially small term corresponding to
the tunneling—– the lowest Floquet eigenvalue is close to
(cos θ1 + cos θ2).
Here it is important to assume the symmetry for V the additional
symmetry

V (−x2, x1) = V (x1, x2) ,

an assumption of non degenerate minima for V (one for each cell)
and a geometric assumption on the geodesics for neighboring wells
(the geometry is the Agmon metric (V −minV )dx2).



Symbols associated with some discrete operators

It has been established in [HS1] that the spectrum of the operator
(2) as a set coincides with the spectrum of the discrete magnetic
Laplacian acting on `2(Z2), see e.g. [HS1],

Chf (m, n) = e ihnf (m+1, n)+e−ihnf (m−1, n)+f (m, n−1)+f (m, n+1).

More generaly consider a bounded linear operator Ch acting on
`2(Z2) given by an infinite matrix

(
C (p, q)

)
, p, q ∈ Z2, satisfying

C (p + k , q + k) = e−ihk2(p1−q1)C (p, q), p, q, k ∈ Z2, (3)

with some h > 0.



Proposition A

Let Ch be a bounded self-adjoint operator in `2(Z2) with the
property (3) and satisfying |C (p, q)| ≤ ae−b|p−q| for some a, b > 0
and all p, q ∈ Z2. Then the spectrum of Ch coincides with the
spectrum of the Weyl h-quantization of the symbol T given by

T (x , ξ) =
∑

m,n∈Z
c(m, n)e−imnh/2e i(mx+nξ), (4)

where c(m, n) = C
(
(0, 0), (m, n)

)
, m, n ∈ Z.



Other examples of lattices

We first mention the triangular case

Figure: Picture by J. E. Avron, O. Kenneth and G. Yeshoshua (2013).



One should add the graphene case (or hexagonal case).

Figure: The colored Hofstadter butterfly for the Honeycomb lattice by A.
Agazzi, J.-P. Eckmann, and G.M. Graf (2014) .



In her thesis J. Royo-Letelier has started (see [Hou] ) to analyze
rigorously the case of a Kagome lattice. This was extended in a
paper in collaboration with P. Kerdelhué (Rev. Math. Physics
2014). Questions around the Chambers’s formula have been
analyzed by Helffer–Kerdelhué–Royo-Letelier. This involves new
semi-classical problems related to ”flat” bands.



Kagome lattice

The kagome lattice is not a Bravais lattice, but is a discrete subset
of R2 invariant under translations along a triangular lattice and
containing three points per fundamental domain of this lattice.
Each point of the lattice has four nearest neighbours for the
Euclidean distance. The word kagome means a bamboo-basket
(kago) woven pattern (me) and it seems that the lattice was
named by the Japanese physicist K. Husimi .



Let Γ4 be the triangular lattice spanned by B = {2ν1, 2ν2}, where

ν` = r `−1(1, 0)

and r is the rotation of angle π
3 and center the origin.

The kagome lattice can be seen as the union of three suitably
translated copies of Γ4 :

Γ =
{
mα,` = 2α1ν1 + 2α2ν2 + ν` ; (α1, α2) ∈ Z2 , ` = 1, 3, 5

}
.





Coming from a Schrödinger operator
As in the Harper model, it is possible to construct an electric
potential whose minima are on a Kagome lattice. Moreover there
are examples obtained with trigonometric polynomials. This means
that they can be obtained by a combination of lasers.
Remembering the definitions of the vectors νj , we denote by ν⊥

the vector deduced from ν by a rotation of π
2 and for j ∈ {1, 3, 5}

we define
µj =

√
3 ν⊥j .

For j = 1, 3, 5 we set φj = 3π/2 and define the potentials
Vj : R2 → R as

Vj(x) =

[
cos (πx · µj + φj) + 2 cos

(
πx · µj + φj

3

)]2
,

and
V = −V1 − V3 − V5 .

V has local minima at the points of the kagome lattice.





The minima appear on the center of the black zone around an
hexagon. The maximum at the center of the hexagon. Each
minimum has four nearest neighbors (for the Agmon distance).
These minima are living on a kagome lattice (subset of an
hexagonal lattice). The figure is invariant by the double triangular
lattice.



Analysis of the rational case and Chambers formula

Once a semi-classical (or tight-binding) approximation is done,
involving a tunneling analysis and a construction of Wannier
functions we arrive (modulo a controlled smaller error) in the case
of a square lattice to the so-called Harper model, which is defined
on `2(Z2,C) by

(Hu)m,n :=
1

2
(um+1,n + um−1,n) +

1

2
e iγmum,n+1 +

1

2
e−iγmum,n−1 ,

where γ denotes the flux of the constant magnetic field through
the fundamental cell of the lattice.
When γ

2π is a rational, a Floquet theory permits to reduce the
analysis to the analysis of the eigenvalues of a family of q × q
matrices depending on a parameter θ = (θ1, θ2) ∈ R2.



More precisely, when
γ = 2πp/q , (5)

where p ∈ Z and q ∈ N∗ are relatively prime, the two following
matrices play an important role:

Jp,q = diag(e i(j−1)γ) , (6)

and
(Kq)jk = 1 if k ≡ j + 1[q] , 0 else. (7)



In the case of Harper, the family of matrices is

MH(θ1, θ2) = e iθ1Jp,q + e−iθ1J∗p,q + e iθ2Kq + e−iθ2K ∗q . (8)

The Hofstadter butterfly is then obtained as a picture in the
rectangle (−2,+2)× [0, 1]. A point (λ, γ/2π) is in the picture if
there exists θ1, θ2 such that
det(MH(θ1, θ2)− λ) = 0 for some p

q with p/q ∈ [0, 1] (q ≤ 50).
The Chambers formula gives a very elegant formula for this
determinant:

det(MH(θ1, θ2)− λ) = f Hp,q(λ) + (−1)q (cos qθ1 + cos qθ2) , (9)

where f Hp,q is a polynomial of degree q.



Many other models have been considered. In the case of a
triangular lattice, the second model is, according to [Ke] (see also
[Avetal]),

MT (θ1, θ2, φ) = e iθ1Jp,q + e−iθ1J∗p,q + e iθ2Kq + e−iθ2K ∗q
+e iφe i(θ1−θ2)Jp,qK

∗
q + e−iφe i(θ2−θ1)KqJ

∗
p,q

(10)
with φ = −γ/2.
The Chambers formula in this case takes the form

det(MT (θ1, θ2, φ)− λ)
= f Tp,q(λ) + (−1)q+1 (cos qθ1 + cos qθ2 + cos q(θ2 − θ1 − φ)) .

(11)



In the case of the hexagonal lattice, which appears also in the
analysis of the graphene, we have to analyze

MG (θ1, θ2) :=

(
0 Iq + e iθ1Jp,q + e iθ2Kq

Iq + e−iθ1J∗p,q + e−iθ2K ∗q 0

)
(12)

We denote by PG the characteristic polynomial of MG . The
resulting spectrum is given in Figure 3.



Finally, inspired by the physicist Hou, Kerdelhué and Royo-Letellier
[KR] have shown that for the kagome lattice, the following
approximating model is relevant. We consider the matrix:

MK (θ1, θ2, ω, γ) =

 0 A(θ1, θ2, ω) B(θ1, θ2, ω)
A∗(θ1, θ2, ω) 0 C (θ1, θ2, ω)
B∗(θ1, θ2, ω) C ∗(θ1, θ2, ω) 0

 ,

(13)
with

A(θ1, θ2, ω) = e i(ω+
γ
8
)(e−iθ1J∗p,q + e−i

γ
2 e−i(θ1−θ2)J∗p,qKq)

B(θ1, θ2, ω) = e−i(ω+
γ
8
)(e−iθ1J∗p,q + e−iθ2K ∗q )

C (θ1, θ2, ω) = e i(ω+
γ
8
)(e−i

γ
2 e i(θ1−θ2)Jp,qK

∗
q + e−iθ2K ∗q ) .

(14)
Here ω is a parameter appearing in the model (most of the
physicists consider without justification the case ω = 0). We refer
to [KR] for a discussion of this point.



The trigonometric polynomial

(x , ξ) 7→ p4(x , ξ) = cos x + cos ξ + cos(x − ξ) (15)

which was playing an important role in the analysis of the
triangular Harper model (see Claro-Wannier [CW] and Kerdelhué
[Ke]) will also appear in our analysis.
We denote by PK (θ1, θ2, λ) the characteristic polynomial
det(λ I3q −M(θ1, θ2)).
We prove that for the model considered by Hou [Hou], there exists
a formula which is similar to the one obtained by Chambers [Ch]
for the Harper model. (see also Helffer-Sjöstrand [HS1], [HS2],
Bellissard-Simon [BelSim], C. Kreft [Kr], I. Avron (and coauthors)
[Avetal]).



The first statement is probably well known in the physical
literature.

Theorem [Graphene]

PG (θ1, θ2, λ) = (−1)q det(MT (θ1, θ2, 0) + 3− λ2) . (16)



The second statement was to our knowledge unobserved.

Theorem [Kagome]

There exists a polynomial Qω of degree 3q, with real coefficients,
depending on γ and ω, but not on (θ1, θ2), such that

PK (θ1, θ2, ω, λ)
= Qω(λ) + 2p4(q(θ1 + pπ), q(θ2 + pπ))

(
λ+ 2 cos(3ω − γ

8 )
)q
.

(17)

Corollary

A flat band exists if and only if

Qω(−2 cos(3ω − γ

8
)) = 0 .



Let us illustrate by some examples mainly extracted of [KR].
In the case when q = 1 and p = 0, one finds, for the Hou’s model:

P(θ1, θ2, λ) = −λ3 +6λ+4 cos(3ω)+2 (λ+ 2 cos(3ω)) p4(θ1, θ2) .

Hence, we have in this case:

Qω(λ) = −λ3 + 6λ+ 4 cos(3ω) .

The condition for a flat band reads:

Qω(−2 cos(3ω) ) = 0 ,

which takes the simple form: (cos 3ω)3 − cos 3ω = 0 .
Hence cos 3ω = 0 or cos 3ω = ±1. So the ”flat bands” appear only
for discrete value of ω, including the particular case ω = 0, mostly
considered in the physical literature. Note that in [KR], it is proved
only that ω → 0 as a function of the initial semi-classical
parameter.



We now consider other examples:

I For the triangular model, for p/q = 1/6, the spectrum is
given by :

λ6−18λ4−12
√

3λ3 + 45λ2 + 36
√

3λ+ 6−2p4(6θ1, 6θ2) = 0 .

Q(λ) satisfies Q(−
√

3) = Q ′(−
√

3) = 0. The second gap is
closed.

I For the graphene model, for p/q = 1/2, the spectrum is given
by

λ4 − 6λ2 + 3− 2(cos(2θ1) + cos(2θ2)− cos(2(θ1 − θ2)))

The bands are [−
√

6,−
√

3], [−
√

3, 0], [0,
√

3] and [
√

3,
√

6].

I For the Hou-model, as shown in [KR] for ω = π/8 and
p/q = 3/2, the bands are {−2} (with multiplicity 2),
[1−
√

6, 1−
√

3], [1−
√

3, 1], [1, 1 +
√

3] and [1 +
√

3, 1 +
√

6].



The Kagome butterfly



Semi-classical analysis for Hou’s butterfly near a flat band

The general study of Hou’s butterfly near its flat bands seems
difficult, but we can obtain an explicit reduction for the simplest
one, corresponding to the flat band {0} in the case when ω = 0,
γ = 4π. As shown in [KR], the spectrum of Hou’s operator for
ω = 0, γ = 4π + h is the spectrum of the Weyl h-quantization of
the matrix symbol MK (x , ξ, ω, γ)



In our case, the principal symbol M0 is given by 0 i(e−ix + e−i(x−ξ)) −i(e−ix + e−iξ)

−i(e ix + e i(x−ξ)) 0 i(e i(x−ξ) + e−iξ)

i(e ix + e iξ) −i(e−i(x−ξ) + e iξ) 0


(18)



We first prove :

Proposition (at the level of the principal symbol)

There exists a familly U0(x , ξ) of unitary 3× 3 matrices, depending
smoothly on (x , ξ), 2π-periodic in each variable, and a familly
A(x , ξ) of selfadjoint 2× 2 matrices such that

U∗0 (x , ξ)M0(x , ξ)U0(x , ξ) =

 0 0 0
0
0

A(x , ξ)

 . (19)

Moreover, for any (x , ξ) ∈ R2, the spectrum of A(x , ξ) is contained
in [−2

√
3,−
√

3] ∪ [
√

3, 2
√

3].

Remark
The triviality of the fiber bundle whose fiber at (x , ξ) is the
eigenspace of M(x , ξ) associated with the two non vanishing
eigenvalues can be proven directly. As observed by G. Panati
[Pan], this is also the consequence of a general statement.



Using [HS2], we get:

Proposition (at the level of the operator)

There exist a unitary 3× 3 pseudodifferential operator U with
principal symbol U0(x , ξ), a selfadjoint scalar operator µ with
principal symbol 0, and a selfadjoint 2× 2 operator Ã with
principal symbol A(x , ξ) such that

U∗OpWh (M(x, ξ,h))U ∼

 µ 0 0
0
0

Ã

 (20)

Moreover, the part of the spectrum of OpWh (M(x, ξ,h)) in any
compact subset of ]−

√
3,
√

3[ is that one of µ for |h| small enough.



The main result is then the computation of the subprincipal
symbol of µ.

Proposition (Reduction near the flat band)

σW (µ)(x , ξ, h) = −h 3− p4(x , ξ)

4(3 + p4(x , ξ))
+O(h2) . (21)

Hence the analysis of the spectrum near the flat band 0 is given by
a triangular like Harper model, suggesting a renormalization
situation if we want to attack the possibly Cantor spectrum of the
spectrum. But it would be probably extremely technical. This has
not been done for the triangular or Hexagonal Harpers models (see
however the work of Kerdelhué in the 90’s.
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Analyse semi-classique pour l’équation de Harper (avec
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