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Introduction

Given a bounded open set Ω in Rn (or in a Riemannian manifold)
and a partition D of Ω by k open sets Dj , we can consider the
quantity Λ(D) := maxjλ(Dj) where λ(Dj) is the ground state
energy of the Dirichlet realization of the Laplacian in Dj . If we
denote by Lk(Ω) the infimum over all the k-partitions of Λ(D) a
minimal k-partition is then a partition which realizes the infimum.
Although the analysis is rather standard when k = 2 (we find the
nodal domains of a second eigenfunction), the analysis of higher
k ’s becomes non trivial and quite interesting.



We recall that the Courant nodal domain theorem (1923) says
that, for k ≥ 1, and if λk denotes the k-th eigenvalue and E (λk)
the eigenspace of H(Ω) associated with λk , then, for all
real-valued u ∈ E (λk) \ {0} , µ(u) ≤ k .

A theorem due to Pleijel [31] (1956) says that this cannot be true
when the dimension (here we consider the 2D-case) is larger than
one.



Together with T. Hoffmann-Ostenhof and S. Terracini [23], we
have proved that the only minimal partitions which are nodal
correspond to the Courant sharp case. It is consequently
interesting to determine when we are in this case.

If we look at the square, it is immediate that the first, second and
fourth eigenvalues are Courant sharp. We will analyze the
statement by Pleijel saying that there are no other cases. The
completion of the proof was done in collaboration with P. Bérard
(2013).



There are other cases which have been analyzed (I put in blue
when the results are complete):

1. the disk. Helffer–Hoffmann-Ostenhof–Terracini (2006)

2. the irrational rectangle. Helffer–Hoffmann-Ostenhof–Terracini
(2006)

3. the square (Neumann). Helffer–Persson-Sundqvist (2014)

4. the annulus (Neumann). Helffer–Hoffmann-Ostenhof (2011)

5. the sphere. Leydold (1992) ,
Helffer-Hoffmann-Ostenhof–Terracini (2010)

6. the irrational torus. Helffer–Hoffmann-Ostenhof (2011).

7. the square torus. Léna (2014)

8. the hexagonal torus. Bérard (2014)

9. the triangle. Bérard-Helffer (2015)

10. the isotropic harmonic oscillator. Leydold (1989) ,
Bérard-Helffer (2014), Charron (2014).



The techniques are related to another question considered by
Antonie Stern in 1925: the construction of family of eigenfunctions
(corresponding to a family of eigenvalues tending to +∞) with
only two nodal domains. Her contribution seems to have been
forgotten (except one reference in footnote in Courant-Hilbert).

The guess for the answer can also be deduced from the analysis of
the problem of minimal partitions. Hence numerics can give good
indications for the result. See contributions of V. Bonnaillie-Noël,
B. Helffer, C. Léna, G. Vial starting form 2007.



Minimal spectral partitions

We now introduce for k ∈ N (k ≥ 1), the notion of k-partition.
We will call k-partition of Ω a family D = {Di}ki=1 of mutually
disjoint open connected sets in Ω. We denote by Ok(Ω) this set.
A spectral minimal partition sequence is defined by

Definition

For any integer k ≥ 1, and for D in Ok(Ω), we set

Λ(D) = max
i
λ(Di ). (1)

Lk(Ω) = inf
D∈Ok

Λ(D). (2)

and call D ∈ Ok a minimal k-partition if Lk = Λ(D).



One can show (Conti-Terracini-Verzini [13, 14, 15] and
Helffer–Hoffmann-Ostenhof–Terracini [23] ) that minimal spectral
partitions always exist, are actually as regular1 as the nodal sets of
an eigenfunction.
In particular, minimal partitions have the equal angle property.
For any integer k ≥ 1, we denote by Lk(Ω) the smallest eigenvalue
whose eigenspace contains an eigenfunction of H(Ω) with k nodal
domains. We set Lk(Ω) =∞, if there are no eigenfunctions with k
nodal domains.

1up to set of capacity 0



Characterization of nodal minimal partitions

In general, one can show, that

λk(Ω) ≤ Lk(Ω) ≤ Lk(Ω) . (3)

Theorem 3

Suppose Ω ⊂ R2 is regular.
If Lk = Lk or Lk = λk then

λk = Lk = Lk .

In addition, one can find a Courant-sharp pair (u, λk).

This is therefore interesting to determine for a given open set all
the Courant sharp cases. This is what we will discuss in this talk.



Sharp Pleijel’s theorem

Pleijel’s theorem as stated in the introduction is the consequence
of a more precise theorem which gives a link between Pleijel’s
theorem and minimal partitions. The classical proof is indeed going
through the proposition

Proposition Pleijel 1

lim sup
n→+∞

µ(φn)

n
≤ 4π

A(Ω) lim infk→+∞
Lk (Ω)

k

, (4)

where µ(φn) is the cardinal of the nodal components of Ω \ N(φn)

and then to establishing a lower bound for A(Ω) lim infk→+∞
Lk (Ω)

k .
This proposition is a consequence of Weyl’s theorem on the
counting function of eigenvalues.



Hint

Having in mind Weyl’s formula

N(λ) ∼ A(Ω)

4π
λ ,

the first step in Pleijel’s formula can also be written in the form:

lim inf
λ→+∞

N(λ)

λ
lim sup
n→+∞

µ(φn)

n
lim inf
k→+∞

Lk(Ω)

k
≤ 1 . (5)



Faber-Krahn

Hence any progress relative to the lower bound of
lim infk→+∞

Lk (Ω)
k leads to an improvement for the sharp Pleijel

theorem.
Faber-Krahn says:

Faber-Krahn’s inequality

A(ω)λ(ω) ≥ πj2
0 .

Here πj2
0 is the ground state energy of the Dirichlet Laplacian in

the disk of area 1.



Applying to each element of an equicontinuous partition and
summing we get as the second step for sharp Pleijel’s theorem:

Proposition Pleijel 2

A(Ω)
Lk(Ω)

k
≥ πj2

0 .

Recent improvments (with application to Pleijel’s theorem) have
been obtained by J. Bourgain and Steinerberger.



In any case, we get Pleijel’s refined theorem

Pleijel’s Theorem

lim sup
n→+∞

µ(φn)

n
≤ 4

j2
0

< 1 . (6)



How to determine Courant sharpness

1. Explicit computations in the case of one dimensional
eigenspaces.

2. Twisting trick.

3. Courant sharp with symmetries

4. Pleijel with control of the constants together with
Faber-Krahn.

5. Direct analysis of the nodal domains of one parameter families
of eigenfunctions.



The case of the irrational rectangle

Consider the rectangle R(a, b) =]0, aπ[×]0, bπ[. The eigenvalues
are given by

λ̂m,n = (
m2

a2
+

n2

b2
) , m, n ≥ 1,

with a corresponding basis of eigenfunctions given by

φm,n(x , y) = sin
mx

a
sin

ny

b
.

It is easy to determine the Courant sharp eigenvalues when b2/a2

is irrational, because each eigenspace is one dimensional and one
can explicitly compute the number of nodal domains mn. One has
then to proceed to the ordering of the eigenvalues.

In the long rectangle ]0, a[×]0, 1[ the eigenfunction
sin(kπx/a) sinπy is Courant-sharp for a ≥

√
(k2 − 1)/3.



The case of the disk

Although the spectrum is explicitly computable, we are mainly
interested in the ordering of the eigenvalues corresponding to
different angular momenta.

Consider the Dirichlet realization in the unit disk B1 ⊂ R2. We
have in polar coordinates :

−∆ = − ∂2

∂r2
− 1

r

∂

∂r
− 1

r2

∂2

∂θ2
,

and the Dirichlet boundary conditions require that any
eigenfunction u satisfies u(r , θ) = 0 for r = 1.



We analyze for any ` ∈ N the eigenvalues λ`,j of

(− d2

dr2
− 1

r

d

dr
+
`2

r2
)f`,j = λ`,j f`,j , in (0, 1) .

We observe that the operator is self adjoint for the scalar product
in L2((0, 1), r dr).



The corresponding eigenfunctions of the eigenvalue problem take
the form

u(r , θ) = f`,j(r) (a cos `θ + b sin `θ ) , with a2 + b2 > 0 , (7)

where the f`,j(r) are suitable Bessel functions. For the
corresponding λ`,j ’s, we find the following ordering.

λ1 = λ0,1 < λ2 = λ3 = λ1,1 < λ4 = λ5

= λ2,1 < λ6 = λ0,2 < λ7 = λ8 = λ3,1 < . . .
· · · < λ9 = λ10 = λ1,2 < λ11 = λ12 = λ4,1 < . . .

(8)



We recall that the zeros of the Bessel functions are related to the
eigenvalues by the relation

λ`,k = (j`,k)2 . (9)

Moreover all the j`,k are distinct (Watson).
The multiplicity is either 1 (if ` = 0) or 2 if ` > 0.
We hence have

µ(u1) = 1,
µ(u) = 2, for any eigenfunction u associated to λ2 = λ3,
µ(u) = 4, for any eigenfunction u associated to λ4 = λ5,
µ(u6) = 2,
µ(u) = 6, for any eigenfunction u associated to λ7 = λ8,
µ(u) = 4, for any eigenfunction u associated to λ9 = λ10,

(10)



Hence
L1 = λ1 , L2 = λ2 , L3 = λ15 , L4 = λ4 . (11)

In the case of the disk, we have

Proposition

Except the cases k = 1, 2 and 4, minimal partitions never
correspond to nodal domains.



Proof

One can use the twisting trick (Helffer–Hoffmann-Ostenhof) for
eliminating all the eigenvalues λ`,m, for which m ≥ 2 and ` > 0.
This trick goes roughly as follows. When ` > 0, we can divide the
disk as the union of a smaller disk and of its complementary, each
of these sets being the union of at least two nodal domains. Then
by small rotation of the small disk, we get a new partition which
has the same energy. If the initial one was minimal, the new one
should be also minimal, but it is easy to show that the new one
has not the “equal angle meeting” property of a regular partition.
This gives the contradiction.



So we have finally to analyze the eigenvalues λ0,k and the family
λ`,1.

For the first family, we observe that λ0,k can neither be the k-th
eigenvalue as soon as k ≥ 2.

For the second family, which occurs only for k = 2` even,
inspection of the tables leads to the condition k ≤ 4, we observe
indeed that λ0,2 < λ3,1.

We also observe that when k is odd, we get that necessarily
Lk = λ0,k .



The case of the sphere

Here we can use the argument of Courant sharpness with
symmetry. The argument first appears in the PHD of J. Leydold
(see also Helffer–Hoffmann-Ostenhof–Terracini).
The involved symmetry is the antipodal map σ and its
representation Σ on L2(S2) defined by

(Σu)(x) = u ◦ σ(x) .

Associated with Σ, we can decompose L2(S2) as the direct sum

L2(S2) = L2,sym(S2)⊕ L2,asym(S2) .

A particular feature is then that for each eigenvalue of the
Laplacian on the sphere, the corresponding eigenspace is either in
L2,sym(S2) or in L2,asym(S2).



We can then apply separately a Courant theorem for the
”symmetric” eigenvalues and the ”antisymmetric” eigenvalues and
obtain

µ(u`) ≤ `(`− 1) + 2 ,

where u` denotes a spherical harmonic of degree `.
Note that the usual Courant theorem gives only

µ(u`) ≤ `2 + 1 .

Note also that the twisting trick can be used to eliminate many
cases.



Leydold stated the following conjecture on the maximal cardinal of
nodal sets of a spherical harmonic.

Conjecture

max
u∈H`

µ(u) =

{
1
2 (`+ 1)2 if ` is odd,
1
2`(`+ 2) if ` is even.

This conjecture is proved by Leydold (1993) for ` ≤ 6. Leydold’s
Conjecture implies

Theorem

In the case of the Laplacian on the sphere, the unique Courant
sharp situation correspond to the first and second eigenvalues.



This last statement is true as a consequence of Courant sharp with
symmetry or by using the following estimate by Karpushkin (1989).

max
u∈H`

µ(u) ≤
{
`(`− 2) + 5 if ` is odd,
`(`− 2) + 4 if ` is even.

Remark

This idea is also used for the isotropic harmonic oscillator (Leydold
(1989)) and in the analysis of the Neumann problem for the square
(Helffer–Persson-Sundqvist (2014)).



Pleijel’s analysis in the case of the square

In [31], Pleijel claims that in the case of the square, the Dirichlet
eigenvalue λk is Courant sharp if and only if k = 1, 2, 4. His proof
involves the reduction to the analysis of the cases k = 5, 7, 9, and
does not seem well justified for this last point (see below).



Let us consider the general question of analyzing the zero set of
the Dirichlet eigenfunctions for the square S. We have:

φm,n(x , y) = φm(x)φn(y) , with φm(t) = sin(mπt) .

Due to multiplicities, we have (at least) to consider the family of
eigenfunctions,

(x , y) 7→ Φm,n(x , y , θ) := cos θ φm,n(x , y) + sin θ φn,m(x , y) ,

with m, n ≥ 1, and θ ∈ [0, π[.

In Pleijel’s analysis [31] of the Courant sharp property for S, it is
shown that it is enough to consider the eigenvalues λ5, λ7 and λ9

with correspond respectively to the pairs (m, n) = (1, 3),
(m, n) = (2, 3) and (m, n) = (1, 4).



Figure: Nodal sets, Dirichlet eigenvalues λ2 and λ5 (Pockels, [32]).



Pleijel’s reduction argument

Let us briefly recall Pleijel’s argument. Let
N(λ) := # {n | λn < λ} be the counting function. Using a
covering of R2 by the squares ]k, k + 1[×]`, `+ 1[, he first
establishes the estimate

N(λ) >
π

4
λ− 2

√
λ− 1 . (12)

For any n such that λn−1 < λn, we have N(λn) = n − 1, and

n >
π

4
λn − 2

√
λn . (13)



On the other hand, if λn is Courant sharp, the Faber-Krahn
inequality gives the necessary condition

λn
n
≥ j2

π

or
n

λn
≤ πj−2 ∼ 0.545 . (14)

Recall that πj2 is the ground state energy of the disk of area 1.

Combining (13) and (14), leads to the inequality

λn < 68 . (15)



After re-ordering the values m2 + n2, we get the spectral sequence
for λn ≤ 68,

It remains to analyze, among the eigenvalues which are less than
68, the ones which could be Courant sharp, and hence satisfy (14).
Computing the quotients n

λn
in the list, this leaves us with the

eigenvalues λ5, λ7 and λ9.
For these last three cases, Pleijel refers to pictures in
Courant-Hilbert [17], actually reproduced from Pockel [32], see
above. Although the choice of pictures suggests that some
theoretical analysis is involved, one cannot see any systematic
analysis, the difficulty being that we have to analyze the nodal sets
of eigenfunctions living in two-dimentional eigenspaces. Hence one
has to give a detailed proof that eigenvalues λ5, λ7 and λ9 are not
Courant sharp.



Of course we know that Φm,n has mn nodal components (this
corresponds to the “product” situation with θ = 0 or θ = π

2 ).
However, we have already mentioned that the number of nodal
domains for a linear combination of two given independent
eigenfunctions can be smaller or larger than the number of nodal
domains of the given eigenfunctions.



The three cases left by Pleijel

Behind all the computations we have the property that, for
x ∈]0, π[,

sinmx =
√

1− u2 Um−1(u) , (16)

where Um−1 is the Chebyshev polynomial of second type and
u = cos x .



First case : eigenvalue λ5 ((m, n) = (1, 3)).

We look at the zeroes of Φ1,3(x , y , θ). Let,

cos x = u , cos y = v . (17)

This is a C∞ change of variables from the square ]0, π[×]0, π[ onto
]− 1,+1[×]− 1,+1[. In these coordinates, the zero set of
Φ1,3(x , y , θ) inside the square is given by

cos θ (4v2 − 1) + sin θ (4u2 − 1) = 0 . (18)



Except the two easy cases when cos θ = 0 or sin θ = 0, which can
be analyzed directly (product situation), we immediately get that
the only possible critical point is (u, v) = (0, 0), i.e.
(x , y) = (π2 ,

π
2 ), and that this can only occur for cos θ + sin θ = 0,

i.e. for θ = π
4 .

This analysis shows rigorously that the number of nodal domains is
2, 3 or 4 as claimed in [31]. As a matter of fact, we have a
complete description of the situation.



Two other cases: eigenvalue λ7 ((m, n) = (2, 3)) and λ9

((m, n) = (1, 4)) .

As observed by Mikael Persson Sundqvist, we can use an argument
à la Leydold.
We observe that

φm,n(π − x , π − y , θ) = (−1)m+n(x , y , θ) .

Hence, when m + n is odd, any eigenfunction corresponding to
m2 + n2 has necessarily an even number of nodal domains. Hence
λ7 and λ9 cannot be Courant sharp.
This achieves the analysis of the Courant sharp cases for the
square (Dirichlet).



On Stern’s Thesis in 1925

One can actually observe that for some values of θ the function
Φ1,4(x , y , θ), has exactly two nodal domains. This phenomenon
was studied by Antonie Stern who claims that for all k ≥ 2, there
are eigenfunctions associated with the Dirichlet eigenvalue 1 + 4k2

of the square [0, π]2, with exactly two nodal domains. This has
been proved rigorously by Bérard-Helffer (2014).



Although not necessary for the analysis of the case (1, 3), we
mention a few arguments which have to be used for more general
cases.

Property P1= Checkerboard argument

Let φ and ψ be two linearly independent eigenfunctions associated
with the same eigenvalue for the square S. Let µ be a real
parameter, and consider the family of eigenfunctions φµ = ψ + µφ.
Let N(φ) denote the nodal set of the eigenfunction φ.

1. Consider the domains in S \ N(φ) ∪ N(ψ) in which µφψ > 0
and hatch them (‘schraffieren’). Then the nodal set N(φµ)
avoids the hatched domains,

2. The points in N(φ) ∩ N(ψ) belong to the nodal set N(φµ) for
all µ,



These properties are trivial but very powerful (see for the sphere,
the Neumann case, the triangle case).
A. Stern also mentions the following.

Property P2

The nodal set N(φµ) depends continuously on µ.

which is rather clear near regular point, but not so clear near
multiple points (see however Leydold in 1989).



All in all, the arguments given by A. Stern seem very sketchy and
it is necessary to write the details in the same spirit as for Pleijel’s
statement. The complete proof for the case (1, 2k) is based on:

1. Complete determination of the multiple points of N(Φ
π
4 ) ;

2. Absence of multiple points in N(Φθ), when θ is different from
π
4 , and close to π

4 ;

3. Connectedness of the nodal set N(Φθ), or why there are no
other components, e.g. closed inner components, in the nodal
set.

4. Separation lemmas.



About Neumann

In the case of Neumann, one difficulty is that we cannot apply
Faber-Krahn for the nodal domains touching the boundary along
segments. Hence, we should estimate the cardinal of these nodal
domains.
A first rough estimate was performed for the square by Pleijel,
leading to Pleijel’s theorem for the square.

Pleijel’s theorem for Neumann was proved by I. Polterovich for
domains with piecewise analytic domains, using a result by
Toth-Zelditch.
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Pictures of nodal domains for the square with Dirichlet
boundary conditions. Available here

B. Bourdin, D. Bucur, and E. Oudet.
Optimal partitions for eigenvalues.
SIAM J.Sci. Comp. 31(6) 4100-4114, (2009).

J. Bourgain.
On Pleijel’s nodal domain theorem.
arXiv:1308.4422v1 [math.SP] 20 Aug 2013.
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