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Abstract

Inspired by a recent paper∗ by Charles Fefferman, Jakob Shapiro
and Michael Weinstein, we investigate quantum tunneling for a
Hamiltonian with a symmetric double well and a uniform magnetic
field. In the simultaneous limit of strong magnetic field and deep
potential wells with disjoint supports, tunneling occurs and we
derive accurate estimates of its magnitude.

∗ [Lower bound on quantum tunneling for strong magnetic fields.
SIAM J. Math. Anal. 54(1), 1105-1130 (2022).]



Presentation

We briefly present what we are looking for.



The Hamiltonian

We start from v0 ∈ C∞c (R2) such that
v0(x) = v0(|x |) is radial & vmin

0 := min
r≥0

v0(r) < 0 ,

supp v0 ⊂ D(0, a) := {x ∈ R2 : |x | ≤ a} ,
U0 := {v0(x) = vmin

0 } = {0} & v ′′0 (0) > 0 .

(1)

We suppose that D(0, a) is the smallest disc containing supp v0,
i.e.

a = a(v0) := inf{r > 0 : supp v0 ⊂ D(0, r)} . (2)



We introduce the double well potential

V (x) = v0(x − z`) + v0(x − z r ) , (3)

where

z` =
(
− L

2
, 0
)
, zr =

(L
2
, 0
)
. (4)

and
L > 2a(v0) .

The potential wells of V associated with the energy vmin
0 are z`

and zr .



Consider a constant magnetic field b > 0, so

b = curl (bA)

where A is defined in polar coordinates (r , θ) as follows,

A(r , θ) =
r

2

[
− sin θ

cos θ

]
. (5)



Deep symmetric wells in a strong magnetic field

We consider the Hamiltonian

Hb,λ := (D − bA)2 + λ2V , D :=
1

i
∇ , (6)

with a double well electric potential λ2V and a magnetic potential
bA. Here, we suppose that b = λ and λ� 1 is large.

Regimes where b does not scale like the coupling parameter λ have
been considered a long time ago.
For instance, when b � λ, accurate estimates of the tunnel effect
where obtained in Helffer-Sjöstrand [HelSjPise1987], while when
b � λ, the effect of the potential well becomes weak and the
magnetic effect is dominant (see Bellissard [Bel1988] and
Helffer-Sjöstrand [HelSjSond1989]).



The potential function considered in (6) is not analytic, thereby
making our setting significantly different from the one of
[HelSjPise1987]. This will induce difficulties in deriving accurate
bounds on the magnitude of the tunnel effect and highlights
another interesting new phenomenon related to tunneling under a
magnetic field compared to recent results:

I by Bonnaillie-Hérau-Raymond [BonHerRay2022] (tunneling
inside the boundary Γ for the Neumann realization of the
Schrödinger operator with constant magnetic field in an open
set Ω)

I by Fournais-Helffer-Kachmar [FoHelKa2022] (tunneling along
the discontinuity Γ of a magnetic step).

I see also a recent work (in progress) by Khaled Abou Alfa
[AbAl2022] who is considering a case where the magnetic field
vanishes along a curve Γ.

Of course, in these questions an assumption of symmetry should be
done leading to the existence of symmetric (mini)-wells in Γ.



In order to exploit the connection with semi-classical analysis we
consider instead

Lh := (hD − A)2 + V , (7)

where h = λ−1 � 1.
With (ev0j (h))j≥1 the sequence of eigenvalues of Lh, we will
investigate the semi-classical asymptotics of

ev02 (h)− ev01 (h) , (8)

and prove that, if v0 does not vanish in D
(
0, a
)
, an asymptotics of

the form

ev02 (h)− ev01 (h) =
h→0

exp

(
−S(v0) + o(1)

h

)
Our proof will be based on a mixing between what we get from the
semi-classical analysis initiated in Helffer-Sjöstrand and Simon in
the eighties with the approach of Fefferman-Shapiro-Weinstein.



Analysis of the Single well operator

Our investigation relies first on expanding the ground state esw(h)
of the single well Hamiltonian

Lswh := (hD − A)2 + v0 , (9)

under the additional assumption that v0 is radial.



We show that:

Theorem OW: Existence of radial ground states and precise
expansions

1. The ground state energy esw(h) of Lswh , is a simple eigenvalue
and

esw(h) = vmin
0 + h

√
1 + 2v ′′0 (0) +O(h3/2) . (10)

2. There exists a unique positive ground state uh, with the
properties

I uh(x) = uh(|x |) is a radial function ;
I
∫
R2 |uh(x)|2dx = 1 .



Theorem continued

3. There exists a positive radial function a0 on R2 satisfying

a0(0) =
1

2

√
1 + 2v ′′0 (0)

π
, (11)

and s. t. ∀R > 0, the ground state uh satisfies, unif. in B(0,R),∣∣∣ed(x)/huh(x)− h−1/2a0(x)
∣∣∣ = O(h1/2) , (12)

where

d(x) = d(|x |) =

∫ |x |
0

√
ρ2

4
+ v0(ρ)− vmin

0 dρ . (13)



Proof of Theorem OW

Except the ”radial” statement, this is rather standard in
semi-classical analysis since the works of [HelSj1984] and
[Sim1983]. Let us recall the main tools.



The magnetic harmonic approximation

Consider the case where v0(x) = µ|x |2, where µ is a positive
constant. This means that we have replaced v0 by its quadratic
approximation at 0. The single well operator Lswh becomes
approximated by

Lswaph = (hD − A)2 + µ|x |2 .

After rescaling1 we get

σ(Lswaph ) = hσ(Lmag
µ )

where
Lmag
µ = (D − A)2 + µ|x |2 .

1We do the change of variable y = h−1/2x .



We decompose the operator Lmag
µ via the orthogonal projections on

the Fourier modes as follows

Lmag
µ '

⊕
m∈Z

Hm,µ

where

Hm,µ := πmL
mag
µ π∗m = − ∂2

∂r2
− 1

r

∂

∂r
+
(1

4
+ µ

)
r2 +

m2

r2
−m .



The min-max principle yields for m < 0

λ1(Hm,µ) > inf
u 6=0

〈
(−∆ +

(
1
4 + µ

)
|x |2)u, u

〉
L2(R2)

‖u‖L2(R2)
= 2

√
1

4
+ µ .

Moreover, the rescaling r 7→ (1 + 4µ)1/4r yields the reduction to
the unitary equivalent Landau Hamiltonian,

Ĥm,µ =
√

1 + 4µHm,0 +
(√

1 + 4µ− 1
)
m .

Consequently, we get

inf
m∈Z

λ1(Hm) = λ1(H0) =
√

1 + 4µ , inf
m∈Z
m 6=0

λ1(Hm) >
√

1 + 4µ .



This implies that
λ1(Lmag

µ ) =
√

1 + 4µ

is a simple eigenvalue and that its (normalized) associated
eigenfunction is radial:

φmag
µ (x) = π−1/2(1 + 4µ)1/4 exp

(
−
√

1 + 4µ

2
|x |2
)
.



Eigenvalue asymptotics and radial ground states

We now have an accurate description of the spectrum of the
operator Lswh

Proposition

For every fixed j ∈ N, the j ’th eigenvalue of Lswh satisfies,

λj(Lswh ) = vmin
0 + h λj(L

mag
µ ) +O(h3/2) (h→ 0+) ,

with µ =
v ′′0 (0)

2 .
Moreover, the lowest eigenvalue of Lswh is simple with a radial
ground state.



Agmon estimates

If f is a radial function, then

Lswh f = −h2∆f + wf (14)

with

w(ρ) = v0(ρ) +
1

4
ρ2 .

Therefore, when restricting the action of Lswh to radial functions,
we consider w as the effective potential.
Hence, we can apply the semi-classical analysis relative to the
Schrödinger operator without magnetic potential as considered in
[HelSj1984] or [Sim1983] (see [Hel1988] or [DimSj1999] for a more
pedagogical presentation).



Energy identity

The identity above and an integration by parts yield the following
result

Proposition

For all R > 0, if φ ∈ C 0(DR ;R) and u ∈ C 2(DR ;R) are radial
functions such that φ is Lipschitz and u = 0 on ∂DR , then∫
DR

(
h2|∇(eφ/hu)|2+(w−|∇φ|2|eφ/hu|2

)
dx =

∫
DR

e2φ/hu Lswh u dx .



Application to the decay

We have the following standard application of this proposition on
the decay.

Proposition D

For all δ ∈ (0, 1), there exist a(δ),Cδ, h0 > 0 such that
lim
δ→0+

a(δ) = 0 and, if uh is a ground state of Lswh and h ∈ (0, h0],

then we have,∥∥∥∇(e(1−δ)d(x)/huh)∥∥∥2 +
∥∥∥e(1−δ)d(x)/huh∥∥∥2 ≤ Cδ e

a(δ)/h ‖uh‖2 ,

where d is the Agmon distance associated with w− vmin
0 .



WKB approximation
For all S > 0, we introduce the set
Bd(S) = {x ∈ R2 : d(x) < S} , where d is the Agmon distance to
0. We can then perform the WKB construction:

Proposition WKB1

There exist N0 ≥ 1 and two sequences (Ek)k≥0 ⊂ R and
(ak)k≥0 ⊂ C∞(R2) s. t. , for all N ≥ 1 and S > 0,

ed(x)/h
(
Lswh − EN(h)

)
ϑN = O(hN−N0) on Bd(S) ,

where

EN(h) =
N∑

k=0

Ekh
k , E0 = vmin

0 , E1 =
√

1 + 2v ′′0 (0)

ϑN(x) = h−1/2

(
N∑

k=0

ak(x)hk

)
e−d(x)/h, a0(0) =

1

2

√
1 + 2v ′′0 (0)

π
.

Moreover a0(x) > 0 and for every k , the function ak is radial.



The function a0 satisfies the transport equation

2∇d · ∇a0 + (∆d− E1)a0 = 0 .

Since d and a0 are radial, we get

a0(x) = a0(|x |) :=
1

2

√
1 + 2v ′′0 (0)

π
exp

(
−
∫ |x |
0

f (ρ)dρ

)
,

where

f (ρ) =
1

4

u′(ρ)

u(ρ)
+

1

2ρ
− E1

2
√
u(ρ)

,

and

u(ρ) =
ρ2

4
+ v0(ρ)− vmin

0 .



Proposition WKB2

There exists N0 ≥ 1, and for all h ∈ (0, h0], there exists a
normalized ground state uh of Lswh s. t. for any N and any R > 0
the following holds∥∥∥ed(x)/h(uh − ϑN)

∥∥∥
H2(D(0,R))

= O(hN−N0) .

This ends the sketch of the proof of Theorem OW.



Coming back to the main theorem

Our ”one well” theorem OW in particular clarifies the hypotheses
imposed in Fefferman-Shapiro-Weinstein which states then that
when

v0 ≤ 0 and L > 4

(√
|vmin

0 |+ a(v0)

)
, (15)

then

exp

−L2 + 4
√
|vmin

0 |L + γ(v0)

4h

 ≤ ev02 (h)− ev01 (h) (16)

where γ(v0) is a positive constant, and

ev02 (h)− ev01 (h) ≤ Ch−5/2 exp

(
−(L− a(v0))2 − a(v0)2

4h

)
. (17)

The most important was here to give a lower bound but we will see
that these estimates are far from optimal.



Interaction matrix or hopping coefficient

The bounds above follow from the asymptotics [FeShWe2022]

ev02 (h)− ev01 (h) ∼
h→0

∣∣∣2 ∫
D(0,a)

v0(x)uh(x)uh(x1 + L, x2)e
iLx2
2h dx

∣∣∣
(18)

where uh is the radial ground state of Lswh .
The integral in the right hand side is called in Solid State Physics
the hopping coefficient. Under different conditions, it can be
derived through a reduction to the restriction of Lh on a two
dimensional space, yielding an interaction matrix like in [Hel1988]
or [DimSj1999]. The hopping parameter corresponds with the off
diagonal term in the 2× 2 interaction matrix.



Using the improved expansion of the ground state uh, we improve
the bounds on the hopping coefficient and thereby on
ev02 (h)− ev01 (h) provided v0 satisfies the conditions in (1).

Besides its role in capturing the tunneling asymptotics, precise
estimates of the hopping coefficient (or the so-called interaction
matrix) are key ingredients in the understanding of tight binding
reductions in Solid State Physics (see [ShWe2022] and earlier
[Out1987, Dau1994, DimSj1999] for mathematical contributions).



Our main result, on the eigenvalue splitting, is

[HK]-Theorem: Sharp asymptotics of the eigenvalue splitting

Under the previous assumptions, if v0 < 0 in D
(
0, a)

)
, then we

have
h ln

(
ev02 (h)− ev01 (h)

)
∼

h→0
−S(v0) ,

where S(v0) is a positive explicit constant.



The formula for S(v0)

S(v0) = −F (v0) + inf
r∈[0,a]

t∈(0,+∞)

Ψ(r , t) ,

where

Ψ(r , t) := d(r)+
r2 + L2

4
(2t+1)+

|vmin
0 |
2

ln

(
1 +

1

t

)
−Lr

√
t(t + 1)

(19)
and

F (v0) =
a

4

√
a2 + 4|vmin

0 |+ |vmin
0 | ln

(√
a2 + 4|vmin

0 |+ a
)2

4|vmin
0 |

− d(a)

(20)



Analyzing the infimum of Ψ

If L > 2a, then

min
(r ,t)∈[0,a]×R+

Ψ(r , t) = Ψ(a, ta) ,

where

ta =

√
1

4
+ s+(a, L, vmin

0 )− 1

2

and

s+(a, L, vmin
0 ) :=

2|vmin
0 |(L2 + a2) + L2a2

2(L2 − a2)2

+
1

L2 − a2

√
(2|vmin

0 |(L2 + a2) + L2a2)2

4(L2 − a2)2
− |vmin

0 |2 .

Moreover, (a, ta) is the unique minimum of Ψ.



An important representation formula

Representation formula

The radial ground state uh has the following representation for
ρ ≥ a,

uh(ρ) = Ch exp

(
−ρ

2

4h

)∫ +∞

0
exp

(
−ρ

2t

2h

)
tα−1(1 + t)−αdt ,

where

α =
1

2h
|vmin

0 | − 1

2

(√
1 + 2v ′′0 (0)− 1

)
+O(h1/2) ∼

h→0

1

2h
|vmin

0 | ,

and

Ch ∼
h→0

C asy
h := m(v0)h−1 exp

(
F (v0)

h

)
.



Here a = a(v0) and

F (v0) =
a

4

√
a2 + 4|vmin

0 |+ |vmin
0 | ln

(√
a2 + 4|vmin

0 |+ a
)2

4|vmin
0 |

− d(a)

m(v0) =
a0(0)

4|vmin
0 |
√

2πa

(
a2 + 4|vmin

0 |
)1/4 (√

a2 + 4|vmin
0 |+ a

)2
.

α =
1

2
− 1

2h
esw(h) .



Second representation formula

We start by expressing the hopping coefficient in polar coordinates

w`,r =

∫ a

0
r v0(r)uh(r)

(∫ 2π

0
Kh(r , θ)dθ

)
dr , (21)

where
Kh(r , θ) := uh(r2 + L2 + 2Lr cos θ)e

iLr sin θ
h .



The integral of Kh with respect to θ is computed in [FeShWe2022,
Prop. 5.1] as follows∫ 2π

0
Kh(r , θ)dθ = Ch exp

(
− r2 + L2

4h

)∫ +∞

0
Gh(r , t)dt , (22)

where

Gh(r , t) = exp

(
−(r2 + L2)t

2h

)
tα−1(1 + t)−αI0

(
Lr
√

t(t + 1)

h

)
(23)

and

z 7→ I0(z) =
1

2π

∫ π

0
ez cos θdθ .



The advantage of the second representation formula is the absence
of the oscillatory complex term and moreover, the integrand Gh is
a positive function. The function I0(z) has the following
asymptotic for large z > 0,

I0(z) ∼
z→+∞

ez√
2πz

.

In addition we have the universal upper bound

I0(z) ≤ ez .



Merci. Thanks.
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S. Fournais, B. Helffer, A. Kachmar.
Tunneling effect induced by a curved magnetic edge.
R.L. Frank (ed.) et al., The physics and mathematics of Elliott
Lieb. The 90th anniversary. Volume I. Berlin: European
Mathematical Society (EMS). 315-350 (2022).

B. Helffer.
Semi-classical analysis for the Schrödinger operator and
applications.
Lecture Notes in Mathematics, Vol. 1336, Berlin :
Springer-Verlag (1988).

B.Helffer and A. Kachmar.
Quantum tunneling in deep potential wells and strong
magnetic field revisited.
ArXiv 2022 (v1 and v2).

B. Helffer and J. Sjöstrand.
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de Harper, Partie I Champ magnétique fort, Partie II Champ
magnétique faible, l’approximation de Peierls.
Lecture notes in Physics, No 345 (éditeurs A. Jensen et H.
Holden), 118-198 (1989).

A. Outassourt.
Comportement semi-classique pour l’opérateur de Schrödinger
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