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Département de Mathématiques,
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Résumé et Abstract

Résumé:

Dans ce cours nous voudrions aborder quelques questions spectrales appa-
raissant dans l’étude de l’équation de Ginzburg-Landau dépendant du temps
(due à Gorkov-Eliashberg) et plus spécialement la question de la stabilité glob-
ale des solutions stationnaires normales. Dans ce sujet encore en friche nous
chercherons montrer le rôle du courant électrique en comparaison avec le rôle du
champ magnétique extérieur pour le problème indépendant du temps (théorème
de Giorgi-Phillips).
les théorèmes récents ont été obtenus en collaboration avec Y. Almog, X. Pan,
R. Henry, K. Beauchard et L. Robbiano. Pour la fin de ce cours, voir l’exposé
sur mon site web.

Abstract

In this course we would like to discuss spectral properties of non self-adjoint
operators appearing in the analysis of the long time behavior of the solutions of
the time dependent Ginzburg Landau system (due to Eliashberg-Gorkov) and
to consider in particular the global stability of the stationary normal solutions.

In this subject where only preliminary results have been obtained, we will
focus on the role of the electric current in comparison with the role of the exterior
magnetic field for the time independent problem (Giorgii-Phillips theorem).

The recent theorems have been obtained in collaboration with Y. Almog, X.
Pan, R. Henry, K. Beauchard and L. Robbiano. For the end of this course, see
the talk on my website.
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Chapter 1

The Ginzburg-Landau
Functional

For details the reader is sent to the books of Fournais-Helffer and Sandier-Serfaty
appearing in the series Progress in Non-Linear Analysis (Birkhäuser).

1.1 The problem in superconductivity

Let us describe the mathematical problem. It is naturally posed for domains
in R3 , but for cylindrical domains in R3 , it is natural (though not completely
justified mathematically) to consider a functional defined in a domain Ω ⊂ R2 ,
where Ω is the cross-section of the cylinder. This explains why we also consider
models in R2 . The behavior of a sample of material can be read off from the
properties of the minimizers (ψ,A) of the Ginzburg-Landau functional (free
energy) G to be defined below.

1.1.1 The functional

Let us consider a domain Ω ⊂ R2. In this course, we will always consider
the cases where Ω is connected and simply connected. The Ginzburg-Landau
functional is defined by

GΩ,κ,σ(ψ,A) =

∫
Ω

|∇κσAψ|2 − κ2|ψ|2 +
κ2

2
|ψ|4 dx

+ (κσ)2

∫
Ω

|rot A− β|2 dx . (1.1.1)

Here the function ψ is called the order parameter (or sometimes the wave func-
tion) and A is a magnetic potential. The symbol β denotes a magnetic vector
field and is called the external magnetic field or the applied magnetic field. In
the case d = 2 which is the only one considered here, β is just a function in, say,
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L2
loc . The parameter κ > 0 (the Ginzburg-Landau parameter) depends on the

material, and σ > 0 (or rather the product κσ) is a measure of the strength of
the external magnetic field. In this course , we are concerned with the analysis
of the asymptotic regime κ→ +∞.

1.1.2 The two-dimensional functional

It will be convenient to subtract the constant κ2

2 |Ω| from the initial functional,
and when Ω is simply connected, to consider

G(ψ,A) =

∫
Ω

|∇κσAψ|2 − κ2|ψ|2 +
κ2

2
|ψ|4 dx

+ (κσ)2

∫
Ω

|curl A− β|2 dx . (1.1.2)

We will sometime write G = Gκ,σ or even G = Gκ,σ,β , if we want to emphasize
the choice of parameters involved in the definition of the functional. Note that
if ψ ≡ 0 and A is such that curl A = β , then G(ψ,A) = 0 . The above change
of zero for the energy is motivated by the fact that we will, in particular, study
the behavior of minimizers of G near such a state (called the normal state in
physics).

The natural domain of the functional is H1(Ω,C) × H1(Ω,R2) . However,
due to the gauge invariance of G, it is better to restrict the functional to the
smaller set H1(Ω,C)×H1

div(Ω) , where

H1
div(Ω) =

{
V = (V1, V2) ∈ H1(Ω,R)2

∣∣ divV = 0 in Ω , V · ν = 0 on ∂Ω
}
.

(1.1.3)

The space H1
div(Ω) inherits the topology (norm) from H1(Ω,R2) . We will gen-

erally consider the functional on this space if not specified otherwise.

We define the Ginzburg-Landau ground state energy to be the infimum of
the functional, i.e.

E(κ, σ) := inf
(ψ,A)∈H1(Ω)×H1

div(Ω)
Gκ,σ(ψ,A) , (1.1.4)

and we observe, using the previously mentioned gauge invariance, that

E(κ, σ) := inf
(ψ,A)∈H1(Ω)×H1(Ω)

Gκ,σ(ψ,A) . (1.1.5)

As Ω is bounded, the existence of a minimizer is rather standard, so the
infimum is actually a minimum. We will prove this existence in the next section.
However, in general, one does not expect uniqueness of minimizers. A minimizer
should satisfy the Euler-Lagrange equation, which is called in this context the
Ginzburg-Landau system.
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Using (1.1.5), this equation reads

∇2
κσAψ = κ2(1− |ψ|2)ψ ,

curl
(
curl A− β

)
= − 1

κσ Re
(
ψ∇κσAψ

) }
in Ω , (1.1.6a)

ν · ∇κσAψ = 0 ,
curl A − β = 0

}
on ∂Ω . (1.1.6b)

Here, for A = (A1, A2) , curl A = ∂x1
A2 − ∂x2

A1 , and

curl 2A = (∂x2(curl A),−∂x1(curl A)) .

Notice that the weak formulation of (1.1.6) is

Re

∫
Ω

(
∇κσAφ · ∇κσAψ − κ2(1− |ψ|2)φψ

)
dx = 0 , (1.1.7a)∫

Ω

(curl α)(curl A− β) dx = − 1

κσ

∫
Ω

Re
(
ψ∇κσAψ

)
αdx , (1.1.7b)

for all (φ, α) ∈ H1(Ω)×H1(Ω,R2) .
The analysis of the system (1.1.6) can be performed by PDE techniques.

We note that this system is nonlinear, that H1(Ω) is, when Ω is bounded and
regular in R2 , compactly embedded in Lp(Ω) for all p ∈ [1,+∞[ , and that, if
div A = 0 , curl 2A = (−∆A1,−∆A2) .

Actually, the nonlinearity is weak in the sense that the principal part is a
linear elliptic system. One can show in particular that the solution in H1(Ω,C)×
H1

div(Ω) of the elliptic system (1.1.6) is actually, when Ω is regular, in C∞
(
Ω
)
.

1.2 The existence of a minimizer

Using the discussion in the previous section, we can impose without loss of
generality the condition that A ∈ H1

div(Ω).

Theorem 1.1.
Suppose that Ω ⊂ R2 is bounded, smooth, and simply connected. For all κ, σ ∈
R+ and β ∈ L2(Ω) , the functional G on H1(Ω)×H1

div(Ω) has a minimizer.
Furthermore, minimizers satisfy the Ginzburg-Landau systems in (1.1.6).

Proof.
Let (ψn,An) ∈ H1(Ω)×H1

div(Ω) be a minimizing sequence, i.e.,

lim
n→∞

G(ψn,An) = inf
(ψ,A)∈H1(Ω)×H1

div(Ω)
G(ψ,A) . (1.2.1)

Step 1. {(ψn,An)} is bounded in H1(Ω)×H1(Ω) .

By using that G̃ is the sum of three positive terms, we get the existence of a
constant E0 > 0 such that

Tn ≤ E0 , (1.2.2)
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where Tn is any of the three terms∫
Ω

|(∇+ iκσAn)ψn|2 dx,
∫

Ω

(|ψn|2 − 1)2 dx ,

∫
Ω

|curl An − β|2 dx .

Since β is a fixed function in L2(Ω) and div An = 0 , we get that {An} is
uniformly bounded in H1(Ω) .

Using the Cauchy-Schwarz inequality and the inequality

2ab ≤ εa2 + ε−1b2 for any ε > 0 ,

notice that∫
Ω

(|ψn|2 − 1)2 dx =

∫
Ω

(
|ψn|4 − 2|ψn|2 + 1

)
dx

≥ ‖ψn‖44 − 2‖ψn‖24
√
|Ω| ≥ 1

2
‖ψn‖44 − 2|Ω| .

Therefore, {ψn} is uniformly bounded in L4(Ω) , and therefore—again using the
Cauchy-Schwarz inequality—in L2(Ω) .

The boundedness of {An} in H1(Ω) implies, by the Sobolev embedding
theorem, that {An} is uniformly bounded in L4(Ω) . Combined with the L4-
bound on ψn , this gives the uniform boundedness of {Anψn} in L2(Ω) . So,
considering the uniform bound,∫

Ω

|∇ψn + iκσAnψn|2 dx ≤ E0 ,

this implies that {ψn}n is uniformly bounded in H1(Ω) .
Step 2. A weak limit is a minimizer.
We now extract a subsequence, again denoted by {(ψn,An)} , converging weakly
in H1(Ω)×H1(Ω) to some (ψ,A) ∈ H1(Ω)×H1(Ω) .
Of course, by taking the limit, we obtain

div A = 0 in Ω , (1.2.3)

in the sense of distributions.
Furthermore, since the inclusion of H1(Ω) in Hs(Ω) is compact for all s < 1
and the restriction Hs(Ω) ↪→ L2(∂Ω) is continuous for all s > 1/2 , we also get

A · ν = 0 on ∂Ω .

Thus, A ∈ H1
div(Ω) . We can estimate:∫

Ω

|curl A− β|2 dx = lim
n→+∞

〈curl A− β | curl An − β〉L2×L2

≤ ‖curl A− β‖2 lim inf
n→+∞

‖curl An − β‖2 .
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Therefore, ∫
Ω

|curl A− β|2 dx ≤ lim inf
n→+∞

∫
Ω

|curl An − β|2 dx . (1.2.4)

The same type of calculation gives∫
Ω

|(∇+ iκσA)ψ|2 dx ≤ lim inf
n→+∞

∫
Ω

|(∇+ iκσAn)ψn|2 dx . (1.2.5)

The compactness of the Sobolev embedding

H1(Ω) ↪→ Lp(Ω) for
1

p
>

1

2
− 1

d

(if d is the dimension, here d = 2), hence for p = 2, 4 , implies that∫
Ω

(|ψ|2 − 1)2 dx = lim
n→+∞

∫
Ω

(|ψn|2 − 1)2 dx . (1.2.6)

Combining (1.2.1) with (1.2.3)-(1.2.6) shows that (ψ,A) is a minimizer. This
finishes the proof in the two-dimensional case.

1.3 Basic properties for solutions of the Ginzburg-
Landau equations

As we have seen, minimizers are solutions of the Ginzburg-Landau equations,
but many properties are true for general solutions of these equations. The first
important property which is based on the maximum principle is

Proposition 1.2.
If (ψ,A) ∈ H1(Ω)×H1(Ω,R2) is a (weak) solution to (1.1.6), then

‖ψ‖L∞(Ω) ≤ 1 . (1.3.1)

Using Proposition 1.2, we can get various a priori estimates on solutions to
the Ginzburg-Landau equations (1.1.6).

Lemma 1.3.
Let Ω ⊂ R2 be bounded and smooth, and let β ∈ L2(Ω) be given. Then for
all p ≥ 2 , there exists a constant C = C(p) > 0 such that for all solutions
(ψ,A) ∈ H1(Ω)×H1

div(Ω) to (1.1.6), we have

‖∇2
κσAψ‖p ≤ κ2‖ψ‖p , (1.3.2)

‖∇κσAψ‖2 ≤ κ‖ψ‖2 , (1.3.3)

‖curl A− β‖W 1,p(Ω) ≤
C

κσ
‖ψ‖∞ ‖∇κσAψ‖p . (1.3.4)

Furthermore, there exists a constant C2 > 0 such that

‖curl A− β‖2 ≤
C2

σ
‖ψ‖2‖ψ‖4 . (1.3.5)
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Proof.
Since, by Proposition 1.2,

0 ≤ 1− |ψ|2 ≤ 1 , (1.3.6)

the inequality (1.3.2) is immediate from (1.1.6a). Multiplying the equation for ψ
in (1.1.6a) by ψ and integrating over Ω, one obtains (1.3.3), again using (1.3.6).

Since, by definition,

curl (curl A− β) = (∂x2
(curl A− β),−∂x1

(curl A− β)) ,

it follows immediately from the equation for A in (1.1.6a) that

‖∇(curl A− β)‖p ≤
1

κσ
‖ψ‖∞‖∇κσAψ‖p . (1.3.7)

Since curl A − β vanishes on ∂Ω , (1.3.4) follows from (1.3.7) by the Poincaré
inequality.

Finally, we prove (1.3.5). For this we use (1.1.7b) with α := A−F . Here F
is the unique vector field in H1

div(Ω) such that

rot F = β and div F = 0 in Ω , (1.3.8)

F · ν = 0 on ∂Ω . (1.3.9)

Applying Hölder’s inequality yields

‖curl A− β‖22 ≤
1

κσ
‖ψ‖4 ‖∇κσAψ‖2 ‖A− F‖4 .

Thus, using a Sobolev inequality and

||(A− F )||H1(Ω) ≤ C||curl A− β||2 , (1.3.10)

we get for another constant C

‖curl A− β‖2 ≤
C

κσ
‖ψ‖4 ‖∇κσAψ‖2 . (1.3.11)

The estimate (1.3.5) follows upon inserting (1.3.3) in (1.3.11).

1.4 The result of Giorgi-Phillips

We observe that (0,F) is a trivial critical point of the functional G , i.e., a trivial
solution of the Ginzburg-Landau system (1.1.6). The pair (0,F) is often called
the normal state or normal solution. It is natural to discuss—as a function of
σ—whether this pair is a local or global minimizer. When σ is large, one will
show that this solution is effectively the unique global minimizer. One says
that in this case the superconductivity is destroyed. In other words, the order
parameter is identically zero in Ω .
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Let us give a rather simple proof of this result that roughly says (see The-
orem 1.4 for the precise statement) that (0,F) is the unique minimizer of the
functional when the strength of the exterior magnetic field is sufficiently large.
We will actually show this result for the solutions of the associated Ginzburg-
Landau system.

So we assume that we have a nonnormal stationary point (ψ,A) for G .
This means that (ψ,A) ∈ H1(Ω)×H1

div(Ω) is a solution of (1.1.6) and∫
Ω

|ψ(x)|2 dx > 0 . (1.4.1)

By (1.3.3), (1.3.4), and (1.3.1), and using (1.3.10) for controlling ‖A − F‖2 in
Ω by ‖curl A− β‖2 , we get

‖∇κσAψ‖22 + (κσ)2‖A− F‖22 ≤ CΩκ
2‖ψ‖22 . (1.4.2)

We now compare
∫

Ω
|(∇ + iκσF)ψ|2 dx and

∫
Ω
|(∇ + iκσA)ψ|2 dx . A trivial

estimate is∫
Ω

|(∇+ iκσF)ψ|2 dx ≤ 2 ‖(∇+ iκσA)ψ‖2 + 2(κσ)2‖(A− F)|ψ| ‖2 . (1.4.3)

Implementing (1.3.1) and (1.4.2) gives∫
Ω

|(∇+ iκσF)ψ|2 dx ≤ 2CΩκ
2

∫
Ω

|ψ(x)|2 dx . (1.4.4)

Since ψ satisfies (5.4.1), we obtain

λN1 (σκF) ≤ 2CΩκ
2 . (1.4.5)

We observe that λN1 (σκF) > 0 . So by combining an analysis in the small B
regime (perturbation theory) and for large B (see below) [and the continuity of
B 7→ λN1 (BF)], we get the existence of a constant C0 > 0 such that

λN1 (σκF) ≥ 1

C0
min(σκ, (σκ)2) . (1.4.6)

Thus, we find that if a nontrivial stationary point (ψ,A) exists, then

σ ≤ C(1 + κ) .

This can be reformulated as the following theorem.

Theorem 1.4 (Giorgi-Phillips).
Let Ω ⊂ R2 be smooth, bounded, and simply connected, and let the function β
in (1.1.6) be continuous and satisfy

β(x) ≥ c > 0 , ∀x ∈ Ω .

Then there exists a constant C = C(Ω, c) such that if

σ ≥ C max{κ, 1} ,

then the pair (0,F) is the unique solution to (1.1.6) in H1(Ω)×H1
div(Ω) .
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We emphasize that the result is true for any κ > 0 .

We have indeed when the magnetic field is positive:

Proposition 1.5.

λ1(BF ) = Bmin(b,Θ0b
′) + o(B) ,

where Θ0 ∈ (0, 1), b = infx∈Ω β(x) and b′ = infx∈∂Ω β(x).

Two models are indeed involved in the proof by localization: the model with
constant magnetic fields

(Dx −
B

2
β(xj , yj)y)2 + (Dy +

B

2
β(xj , yj)x)2 ,

in R2 and the Neumann realization of the same operator in R2
+.

The bottom of the spectrum of the fist one is B|β(xj , yj)| and the bottom of
the spectrum of the second one is Θ0B|β(xj , yj)|.

Remark 1.6. More accurate estimates (Helffer, Morame, Kordyukov, N. Ray-
mond, S.Vu-Ngoc,...).
Possible generalizations when the magnetic field vanishes (Pan-Kwek), Corners
(Bonnaillie, Dauge, Fournais,...), dimension 3 (Helffer, Morame, Pan,...)



Chapter 2

TGDL 1 : first models

2.1 The model in superconductivity

2.1.1 General context

The physical problem is posed in a domain Ω with specific boundary conditions.
We will only analyze here limiting situations where the domain possibly after a
blowing argument becomes the whole space (or the half-space). We will work
in dimension 2 for simplification (corresponding to a cylindrical 3D problem).
We assume that a magnetic field of magnitude He is applied perpendicularly
to the sample and identified (via its intensity) with a function. We denote the
Ginzburg-Landau parameter of the superconductor by κ (κ > 0) and the normal
conductivity of the sample by σ. Then the time-dependent Ginzburg-Landau
system (also known as the Gorkov-Eliashberg equations) is in ]0, T [×Ω :{

∂tψ + iκΦψ = ∆κAψ + κ2(1− |ψ|2)ψ ,

κ2curl 2A + σ(∂tA +∇Φ) = κ Im (ψ̄∇κAψ) + κ2curl He ,
(2.1.1)

where ψ is the order parameter, A the magnetic potential, Φ the electric po-
tential, ∇κA = ∇ + iκA and ∆κA = (∇ + iκA)2 is the magnetic Laplacian
associated with magnetic potential κA. In addition (ψ,A,Φ) satisfies an initial
condition at t = 0. Note that many physicists are assuming that curl He = 0.

In order to solve this equation, one should also define a gauge (Coulomb,
Lorentz,...). The orbit of (ψ,A,Φ) by the gauge group is

{(exp(iκq)ψ,A +∇q,Φ− ∂tq) | q ∈ Q} ,

where Q is a suitable space of regular functions of (t, x, y). We refer to Bauman-
Jadallah-Phillips [7] (Paragraph B in the introduction) for a discussion of this
point. We will choose the Coulomb gauge which reads div A = 0 for any t.
Another possibility could be to take div A +σΦ = 0 but this will not be further
discussed. As in the analysis of the surface superconductivity, the ”normal”
solutions will play an important role. We recall that a solution (ψ,A,Φ) is
called a normal state solution if ψ = 0 in the whole sample.

13
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2.2 From Ginzburg-Landau to TDGL

Let us try to make the parallel between the standard GL case and TDGL at
the level of the models.

Schrödinger with constant magnetic field in R2 and in R2
+ are the basic

models for analyzing (hDx −A)2 in Ω.
For TDGL, the models are

D2
x +D2

y + icy ,

in R2

D2
x +D2

y + ic(x cos θ + y sin θ)

in R2
+ (affine case),

D2
x + (Dy − αx2)2 + icy

in R2 analyzed in [3] and in R2
+ in [4, 5]

D2
x + (Dy − α(x sin θ − y cos θ)2)2 + ic(x cos θ + y sin θ)

(for θ = π
2 ).

The results obtained in these three papers corresponds in some sense to
the results which can be obtained for the Schrödinger operator with constant
magnetic field.

In the TDGL case, we are facing many new difficulties:

• Treat the spectral analysis of non self-adjoint problems. Already in the lin-
ear case, the decay of the associated semi-group does not depend uniquely
of the knowledge of the spectrum, but also of resolvent estimates in the
complex planes.

• The notion of stationary solutions has to be defined.

• The global existence of solutions has to be verified.

• The notion of stability has to be defined. Roughly speaking we hope to find
conditions on the initial data and on the current implying the convergence
of the solution to the stationary one and to measure the decay.

• The technical problems relative to the existence of corners has to be con-
trolled...

2.2.1 Stationary normal solutions: first analysis

We now determine the stationary (i. e. time independent) normal solutions of
the system. From (4.1.1), we see that if (0,A,Φ) is such a solution, then (A,Φ)
satisfies the the system

κ2curl (curl A) + σ∇Φ = κ2curl He , div A = 0 in Ω . (2.2.1)
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Note that, identifying He with a function h, curl He = (−∂yh , ∂xh). Interpret-
ing these two equations as the Cauchy-Riemann equations, this can be rewritten
(in addition to the divergence free condition) as the property that

κ2(curl A−He) + i σΦ ,

is an holomorphic function in Ω. In particular, if σ 6= 0, Φ and curl A−He are
harmonic.
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Chapter 3

Special situation: Φ affine

Here we follow the material of a paper published at Colloquia Mathematicae
[30]. The reader can also look at the last chapters of the book [31], which I
published in Cambridge University Press in 2013

3.1 Introduction

As simple natural example, we observe that, if Ω = R2, (2.1.1) has the following
stationary normal state solution

A =
1

2J
(Jx+ h)2 ı̂y, Φ =

κ2J

σ
y . (3.1.1)

Note that
curl A = (Jx+ h) ı̂z,

that is, the induced magnetic field equals the sum of the applied magnetic field
ĥız and the magnetic field produced by the electric current Jx ı̂z.

For this normal state solution, the linearization of (4.1.1) with respect to
the order parameter is

∂tψ +
iκ3Jy

σ
ψ = ∆ψ +

iκ

J
(Jx+ h)2∂yψ − (

κ

2J
)2(Jx+ h)4ψ + κ2ψ . (3.1.2)

Applying the transformation x → x− h/J and taking for simplification κ = 1,
the time-dependent linearized Ginzburg-Landau equation takes the form

∂ψ

∂t
+ i

J

σ
yψ = ∆ψ + iJx2 ∂ψ

∂y
−
(1

4
J2x4 − 1

)
ψ . (3.1.3)

Rescaling x and t by applying

t→ J2/3t ; (x, y)→ J1/3(x, y) , (3.1.4)

17
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yields
∂tu = −(A0,c − λ)u , (3.1.5)

where, with Dx = −i∂x , Dy = −i∂y ,

A0,c := D2
x + (Dy +

1

2
x2)2 + i c y , (3.1.6)

and

c = 1/σ ; λ =
1

J2/3
; u(x, y, t) = ψ(J−1/3x, J−1/3y, J−2/3t) .

Our main problem will be to analyze the long time property of the attached
semi-group.
We now apply the transformation

u→ u eicyt

to obtain

∂tu = −
(
D2
xu+ (Dy +

1

2
x2 − ct)2u− λu

)
. (3.1.7)

Note that considering the partial Fourier transform with respect to the y vari-
able, we obtain for the Fourier transform û of u:

∂tû = −D2
xû−

[(1

2
x2 + (−ct+ ω)

)2

− λ
]
û . (3.1.8)

This can be rewritten as the analysis of a family (depending on ω ∈ R) of
time-dependent problems on the line

∂tû = −Mβ(t,ω)û+ λû , (3.1.9)

with Mβ being the well-known anharmonic oscillator (also called the Mont-
gomery operator in other contexts):

Mβ = D2
x + (

1

2
x2 + β)2 , (3.1.10)

and
β(t, ω) = −ct+ ω .

3.2 The results by Almog-Helffer-Pan [3]

The main point concerning the previously defined operator A0,c is to obtain an
optimal control of the decay of the associated semi-group as t→ +∞.

Theorem 3.1.
If c 6= 0, A = A0,c has compact resolvent, empty spectrum, and there exists
C > 0 such that

‖ exp(−tA)‖ ≤ exp
(
−2
√

2c

3
t3/2 + Ct3/4

)
, (3.2.1)
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for any t ≥ 1 and

‖(A− λ)−1‖ ≤ exp
( 1

6c
( Reλ)3 + C ( Reλ)3/2

)
, (3.2.2)

for all λ such that Reλ ≥ 1.

Here a semi-classical analysis of the operatorMβ as |β| → ±∞ plays an im-
portant role. We refer to [3] for details and to [29] for the involved semi-classical
analysis.

If we consider instead the Dirichlet realization ADc of A0,c in {y > 0}, it is
easily proven that ADc has compact resolvent if c 6= 0. We prove in [4] that if
the spectrum of ADc is not empty then the decay of the semi-group exp−tADc is
exponential with a rate corresponding to infz∈σ(ADc ) Re z. We will explain the
argument in the case of a simpler model : the complex Airy operator. We also
conjecture in [4] that σ(ADc ) is not empty and give a proof of the statement for
|c| large enough and in [5] for |c| small enough.

3.3 A simplified model : no magnetic field

We assume, following Almog [1], that a current of constant magnitude J is
being flown through the sample in the x axis direction, and that there is no
applied magnetic field: h = 0. Then (2.1.1) has (in some asymptotic regime)
the following stationary normal state solution

A = 0 , Φ = Jx . (3.3.1)

For this normal state solution, the linearization of (2.1.1) gives

∂tψ + iJxψ = ∆x,yψ + ψ , (3.3.2)

whose analysis is (see ahead) strongly related to the Airy equation.

3.3.1 The complex Airy operator in R
This operator can be defined as the closed extension A of the differential opera-
tor on C∞0 (R) A+

0 := D2
x+i x . We observe that A = (A−0 )∗ with A−0 := D2

x−i x
and that its domain is

D(A) = {u ∈ H2(R) , x u ∈ L2(R)} .

In particular A has compact resolvent.
It is also easy to see that

Re 〈Au |u〉 ≥ 0 . (3.3.3)

Hence −A is the generator of a semi-group St of contraction,

St = exp−tA . (3.3.4)
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Hence all the results of this theory can be applied.
In particular, we have, for Reλ < 0

||(A− λ)−1|| ≤ 1

|Reλ|
. (3.3.5)

A very special property of this operator is that, for any a ∈ R,

TaA = (A− ia)Ta , (3.3.6)

where Ta is the translation operator (Tau)(x) = u(x− a) .
As immediate consequence, we obtain that the spectrum is empty and that the
resolvent of A, which is defined for any λ ∈ C satisfies

||(A− λ)−1|| = ||(A− Reλ)−1|| . (3.3.7)

One can also look at the semi-classical question, i.e. consider the operator

Ah = h2D2
x + i x , (3.3.8)

and observe that it is the toy model for some results of Dencker-Sjöstrand-
Zworski [16]. The symbol is (x, ξ) 7→ p(x, ξ) = ξ2 + ix and microlocally at (0, 0),
we have {Re p, Im p}(0, 0) = 0 and { Im p, {Re p, Im p}}(0, 0) 6= 0.
Of course in such an homogeneous situation one can go from one point of view
to the other but it is sometimes good to look at what each theory gives on this
very particular model. We refer for example to the lectures by J. Sjöstrand [?].

The most interesting property is the control of the resolvent for Reλ ≥ 0.

Proposition 3.2 (W. Bordeaux-Montrieux[9]).
As Reλ→ +∞, we have

||(A− λ)−1|| ∼
√
π

2
( Reλ)−

1
4 exp

4

3
( Reλ)

3
2 , (3.3.9)

This improves a previous result by J. Martinet (see in [31]). The proof of the
(rather standard) upper bound is based on the direct analysis of the semi-group
in the Fourier representation. We note indeed that

F(D2
x + i x)F−1 = ξ2 − d

dξ
. (3.3.10)

Then we have

FStF−1v = exp(−ξ2t− ξt2 − t3

3
)v(ξ + t) , (3.3.11)

and this implies immediately

||St|| = exp max
ξ

(−ξ2t− ξt2 − t3

3
) = exp(− t

3

12
) . (3.3.12)
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Then one can get an estimate of the resolvent by using, for λ ∈ C, the formula

(A− λ)−1 =

∫ +∞

0

exp−t(A− λ) dt . (3.3.13)

The right hand side can be estimated using (3.3.12) and the Laplace method.
For a closed accretive operator, (3.3.13) is standard when Reλ < 0, but estimate
(3.3.12) on St gives immediately an holomorphic extension of the right hand
side to the whole space, showing independently that the spectrum is empty (see
Davies [15]) and giving for λ > 0 the estimate

||(A− λ)−1|| ≤
∫ +∞

0

exp(λt− t3

12
) dt . (3.3.14)

The asymptotic behavior as λ → +∞ of this integral is immediately obtained
by using the Laplace method and the dilation t = λ

1
2 s in the integral.

The proof by J. Martinet (see in [31]) of the lower bound is obtained by
constructing quasimodes for the operator (A− λ) in its Fourier representation.
We observe (assuming λ > 0), that

ξ 7→ u(ξ;λ) := exp

(
−ξ

3

3
+ λξ − 2

3
λ

3
2

)
(3.3.15)

is a solution of

(− d

dξ
+ ξ2 − λ)u(ξ;λ) = 0 . (3.3.16)

Multiplying u(·;λ) by a cut-off function χλ with support in ] −
√
λ,+∞[ and

χλ = 1 on ]−
√
λ+ 1,+∞[, we obtain a very good quasimode, concentrated as

λ → +∞, around
√
λ, with an error term giving almost the announced lower

bound for the resolvent. The proof by W. Bordeaux-Montrieux is by introducing
a Grushin’s problem.
Of course this is a very special case of a result on the pseudo-spectra but this
leads to an almost optimal result.

3.4 Pseudo-spectra and semi-groups.

We arrive now to the analysis of the properties of a contraction semi-group
exp−tA, with A maximally accretive. As before, we have, for Reλ < 0,

||(A− λ)−1|| ≤ 1

|Reλ|
, (3.4.1)

If we add the assumption that Im < Au, u >≥ 0 for all u in the domain of
A and if Imλ < 0 one gets also a similar inequality, so the main remaining
question is the analysis of the resolvent in the set Reλ ≥ 0 , Imλ ≥ 0, which
corresponds to the numerical range of the operator.
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We recall that for any ε > 0, we define the ε-pseudospectra by

Σε(A) = {λ ∈ C | ||(A− λ)−1|| > 1

ε
} , (3.4.2)

with the convention that ||(A− λ)−1|| = +∞ if λ ∈ σ(A).
We have

∩ε>0Σε(A) = σ(A) . (3.4.3)

We define, for any ε > 0, the ε-pseudospectral abcissa by

α̂ε(A) = inf
z∈Σε(A)

Re z , (3.4.4)

and the growth bound of A by

ω̂0(A) = lim
t→+∞

1

t
log || exp−tA|| . (3.4.5)

Of course, we have
lim

ε→+∞
α̂ε(A) ≤ inf

z∈σ(A)
Re z , (3.4.6)

but the equality is wrong in general. The right behavior is given by:

Theorem 3.3 (Gearhart-Prüss).
Let A be a densely defined closed operator in an Hilbert space X such that −A
generates a contraction semi-group, then

lim
ε→0

α̂ε(A) = −ω̂0(A) . (3.4.7)

We refer to [19] for a proof and to [32] for a more quantitative version of this
theorem particularly useful when parameters are involved.

3.5 The complex Airy operator in R+

3.5.1 Spectral analysis

Here we mainly describe some results presented in [1], who refers to [38]. We
consider the Dirichlet realization AD of the complex Airy operator D2

x + ix on
the half-line, whose domain is

D(AD) = {u ∈ H1
0 (R+), x

1
2u ∈ L2(R+) , (D2

x + i x)u ∈ L2(R+)} , (3.5.1)

and which is defined (in the sense of distributions) by

ADu = (D2
x + i x)u . (3.5.2)

Moreover, by construction, we have

Re 〈ADu |u〉 ≥ 0 , ∀u ∈ D(AD) . (3.5.3)
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Again we have an operator, which is the generator of a semi-group of contraction,
whose adjoint is described by replacing in the previous description (D2

x+ i x) by
(D2

x − i x), the operator is injective and as its spectrum contained in Reλ > 0.
Moreover, the operator has compact inverse, hence the spectrum (if any) is
discrete.

Using what is known on the usual Airy operator, Sibuya’s theory and a
complex rotation, we obtain ([1]) that the spectrum of AD is given by

σ(AD) = ∪+∞
j=1{λj} (3.5.4)

with

λj = −(exp i
π

3
)µj , (3.5.5)

the µj ’s being real zeroes of the Airy function satisfying

0 > µ1 > · · · > µj > µj+1 > · · · . (3.5.6)

As can be recovered by Weyl’s formula, there exists a constant c 6= 0 such that
µj ∼ cj

2
3 . It is also in [1] that the vector space generated by the corresponding

eigenfunctions is dense in L2(R+). But there is no way to normalize these
eigenfunctions for getting a good basis of L2(R+). See Almog [1], Davies [13]
and Henry [?] who shows that the norm of the spectral projector πn associated
with the n-th eigenvalue increases exponentially like expαn for some α > 0.
Following E.B. Davies [13], we say in this case that AD is spectrally wild.

3.5.2 Decay of the semi-group

We now apply Gearhardt-Pruss theorem to our operator AD and our main
theorem is

Theorem 3.4.

ω̂0(AD) = −Reλ1 . (3.5.7)

This statement was established by Almog [1] in a much weaker form. Using
the first eigenfunction it is easy to see that

|| exp−tAD|| ≥ exp−Reλ1 t . (3.5.8)

Hence we have immediately

0 ≥ ω̂0(AD) ≥ −Reλ1 . (3.5.9)

To prove that −Reλ1 ≥ ω̂0(AD), it is enough to show the following lemma.

Lemma 3.5.
For any α < Reλ1 , there exists a constant C such that, for all λ s.t. Reλ ≤ α

||(AD − λ)−1|| ≤ C . (3.5.10)
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Proof : We know that λ is not in the spectrum. Hence the problem is
just a control of the resolvent as | Imλ| → +∞. The case, when Imλ < 0 has
already be considered. Hence it remains to control the norm of the resolvent as
Imλ→ +∞ and Reλ ∈ [−α,+α].

This is indeed a semi-classical result1.The main idea is that when Imλ →
+∞, we have to inverse the operator

D2
x + i(x− Imλ)− Reλ .

If we consider the Dirichlet realization in the interval ]0, Imλ
2 [ of

D2
x + i(x − Imλ) − Reλ, it is easy to see that the operator is invertible by

considering the imaginary part of this operator and that this inverse R1(λ)
satisfies

||R1(λ)|| ≤ 2

Imλ
.

Far from the boundary, we can use the resolvent of the problem on the line for
which we have a uniform control of the norm for Reλ ∈ [−α,+α].

3.5.3 Physical interpretation

Coming back to the application in superconductivity (with κ = 1), one is looking
at the semi-group associated with AJ := D2

x + iJx − 1 (where J ≥ 0 is a
parameter). The stability analysis leads to a critical value

Jc = ( Reλ1)−
3
2 , (3.5.11)

such that :

• For J ∈ [0, Jc[, || exp−tAJ || → +∞ as t→ +∞.

• For J > Jc, || exp−tAJ || → 0 as t→ +∞.

This improves Lemma 2.4 in Almog [1], who gets only this decay for || exp−tAJψ||,
with ψ in a specific dense space.

3.6 Higher dimension problems relative to Airy

Here we follow (and extend) [1] (see also [33]).

3.6.1 The model in R2

We consider the operator

A2 := −∆x,y + i x . (3.6.1)

1After a dilation the operator becomes Imλ
(
h2D2

x + i(x− 1)− Reλ
Imλ

)
with h =

| Imλ|−
3
2 .
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Proposition 3.6.

σ(A2) = ∅ . (3.6.2)

Proof : After a Fourier transform in the y variable, it is enough to show
that

(Â2 − λ)

is invertible with
Â2 = D2

x + i x+ η2 . (3.6.3)

We have just to control for a given λ ∈ C, (D2
x+ i x+η2−λ)−1 (whose existence

is given by the 1D result) uniformly in L(L2(R)) uniformly with respect to η.

3.6.2 The model in R2
+ : perpendicular current.

Here it is useful to reintroduce the parameter J , which is assumed to be positive.
Hence we consider the Dirichlet realization

AD,⊥2 := −∆x,y + i Jx , (3.6.4)

in R2
+ = {x > 0} .

Proposition 3.7.

σ(AD,⊥2 ) = ∪r≥0,j∈N∗(λj + r) . (3.6.5)

Proof : For the inclusion

∪r≥0,j∈N∗(λj + r) ⊂ σ(AD,⊥2 ) ,

we can use L∞ eigenfunctions in the form

(x, y) 7→ uj(x) exp iyη ,

where uj is the eigenfunction associated to λj . We have then to use the fact
that L∞-eigenvalues belong to the spectrum. This can be formulated in the
following proposition.

Proposition 3.8.
Let Ψ ∈ L∞(R2

+) ∩H1
loc(R2

+) satisfying, for some λ ∈ C,

−∆x,yΨ + iJxΨ = λΨ (3.6.6)

in R2
+ and

Ψx=0 = 0 . (3.6.7)

Then either Ψ = 0 or λ ∈ σ(AD,⊥3 ).

For the opposite inclusion, we observe that we have to control uniformly

(AD − λ+ η2)−1

with respect to η under the condition that

λ 6∈ ∪r≥0,j∈N∗(λj + r) .

It is enough to observe the uniform control as η2 → +∞ which results of (3.4.1).
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3.6.3 The model in R+
2 : parallel current

Here the models are the Dirichlet realization in R2
+ :

AD,‖2 = −∆x,y + i J y , (3.6.8)

or the Neumann realization

AN,‖2 = −∆x,y + i J y . (3.6.9)

Using the reflexion (or antireflexion) trick we can see the problem as a problem
on R2 restricted to odd (resp. even) functions with respect to (x, y) 7→ (−x, y).
It is clear from Proposition 3.6 that in this case the spectrum is empty.

Remark 3.9.
The case when the current is neither parallel nor perpendicular has been treated
by R. Henry [33, ?]. The spectrum is actually empty..

3.7 Almog’s result and generalization by R. Henry

The analysis of the previous models permits actually the semi-classical analysis
of the spectrum and of the resolvent for the Dirichlet realization of

−h2∆ + iV (x)

in L2(Ω).
Here V is a C∞ potential such that ∇V 6= 0 in Ω̄.

Then using the results for the models, we can get a lower bound for

lim inf
h→0

h−
2
3 (inf Reσ(Ah)) .

Although not motivated by superconductivity but by control’s theory, we
can also attack the case when V is a Morse function.

One can also measure the decay of the associated semi-group.



Chapter 4

Time Dependent
Ginzburg-Landau equation
II

The starting point on the mathematical side is a paper of Yaniv Almog at Siam
J. Math. Appl. [1] . This work was continued in collaboration with Y. Almog
and X. Pan [3, 4, 5] by the analysis of specific toy models. In [2] (in collaboration
with Y. Almog) a rather general situation is considered showing how the toy
models are involved in the question.

4.1 Introduction to the boundary conditions.

Consider a superconductor placed at a temperature lower than the critical one.
It is well-understood from numerous experimental observations, that a suffi-
ciently strong current, applied through the sample, will force the superconductor
to arrive at the normal state. To explain this phenomenon mathematically, we
use the time-dependent Ginzburg-Landau model which is defined by the follow-
ing system of equations, and will be referred to as (TDGL1) (Time Dependent

27
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Ginzburg-Landau equation). (TDGL1)

∂ψ

∂t
+ iφψ = (∇− iA)

2
ψ + ψ

(
1− |ψ|2

)
, in R+ × Ω ,

(4.1.1a)

κ2curl 2A+ σ

(
∂A

∂t
+∇φ

)
= Im (ψ̄ · (∇− iA)ψ) , in R+ × Ω ,

(4.1.1b)

ψ = 0 , on R+ × ∂Ωc ,
(4.1.1c)

(∇− iA)ψ · ν = 0 , on R+ × ∂Ωi ,
(4.1.1d)

σ

(
∂A

∂t
+∇φ

)
· ν = J , on R+ × ∂Ωc ,

(4.1.1e)

σ

(
∂A

∂t
+∇φ

)
· ν = 0 , on R+ × ∂Ωi

(4.1.1f)

1

|∂Ω|

∫
∂Ω

curl A(t, x) ds = hex , on R+ , (1g)

(4.1.1g)

ψ(0, x) = ψ0(x) , in Ω , (1h)
(4.1.1h)

A(0, x) = A0(x) , in Ω , (1i) .
(4.1.1i)

In the above ψ denotes the order parameter, A is the magnetic potential,
φ is the electric potential, κ denotes the Ginzburg-Landau parameter, which is
a material property, and the normal conductivity of the sample is denoted by
σ. ds denotes the induced measure on ∂Ω. The domain Ω ⊂⊂ R2, occupied by
the superconducting sample, has a smooth interface, denoted by ∂Ωc, with a
conducting metal which is at the normal state.

We require that ψ would vanish on ∂Ωc in (4.1.1c), and allow for a smooth
current J = hJr satisfying

(J1) Jr ∈ C2(∂Ωc), (4.1.2)

to enter the sample in (4.1.1e).
We further require that

(J2)

∫
∂Ωc

Jr ds = 0 , (4.1.3)

and

(J3) the sign of Jr is constant on each connected component of ∂Ωc .
(4.1.4)
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We allow for J 6= 0 at the corners. (By convention, J = 0 on ∂Ω \ ∂Ωc).
The rest of the boundary, denoted by ∂Ωi is adjacent to an insulator. To sim-

plify some of our arguments (or simply have a proof) we introduce the following
geometrical assumption on ∂Ω:

(R1)

 (a) ∂Ωi and ∂Ωc are of class C3 ;
(b) Near each edge, ∂Ωi and ∂Ωc are flat

and meet with an angle of π
2 .

(4.1.5)

We also require:

(R2) Both ∂Ωc and ∂Ωi have two components. (4.1.6)

Figure 1 presents a typical sample with properties (R1) and (R2). Most
wires would fall into the above class of domains.

We assume, for the initial conditions (4.1.1h,i), that

ψ0 ∈ H1(Ω,C) and A0 ∈ H1(Ω,R2) , (4.1.7)

and:
‖ψ0‖∞ ≤ 1 . (4.1.8)

We mainly consider Coulomb gauge solutions of (4.1.1):

divA = 0 in Ω, A · ν = 0 on ∂Ω . (4.1.9)

Note that for the proof of existence of solutions it is better to consider first
solutions in the Lorentz gauge:

φ = ω divA ,

keeping the condition A · ν = 0 on ∂Ω.
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Equivalent boundary conditions.
Instead of considering the boundary conditions (4.1.1e,f,g), it is possible to use
an equivalent boundary condition where we prescribe instead the magnetic field.
By (4.1.1b,e,f), on each point on ∂Ω, except for the corners, we have

∂

∂τ
curl A(t, ·) =

1

κ2
J(·) , (4.1.10)

where ∂/∂τ denotes the tangential derivative along ∂Ω in the positive direction.
For convenience we set

Jr(x) ≡ 0 on ∂Ωi . (4.1.11)

Thus, if we introduce on the boundary the function B by

curl A(t, x) = hBr(t, x) on ∂Ω , (4.1.12)

where h denotes a parameter measuring the intensity of the magnetic field.

One can recover the magnetic field B(t, ·)

Br(t, x) = hr −
1

κ2 |∂Ω|

∫
∂Ω

|Γ(x̃, x)| Jr(x̃)ds(x̃) for x ∈ ∂Ω . (4.1.13)

where hr = hex/h and |Γ(x̃, x)| is the length inside the boundary between x and
x̃.
In [2], it appears useful in order to get a κ-independent model to take Jr = κ2J̃r.
This shows that

Br(t, x) = Br(x)

on the boundary, hence is time independent.
Note also that the condition (4.1.10) gives:

The magnetic field B is constant along each component of ∂Ωi . (4.1.14)

Hence the system (TGDL1) is equivalent to the system (TGDL2) (same
equations except (1e-1g) replaced by)

curl A(t, x) = hBr(x) , on R+ × ∂Ω , (4.1.15)

where B is given by (4.1.13).

Of course functional spaces should be introduced to give a precise mathe-
matical sense to this statement of equivalence.

Conversely, a solution of (TGDL2) must satisfy (TGDL1) with

Jr = κ2 ∂Br
∂τ

on ∂Ω ,

and

hr =
1

|∂Ω|

∫
∂Ω

Br(x)ds .
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4.2 Stationary normal solutions.

If we assume time independence and a solution of (TDGL1) (0, An, φn), we get
for the magnetic and electric normal potentials An and φn. These equations are
obtained by setting ψ ≡ 0 in (4.1.1b), yielding

−c curl 2An +∇φn = 0 in Ω ,

−σ ∂φn∂ν = Jr on ∂Ω ,
1
|∂Ω|

∫
∂Ω

curl An ds = hr ,

in which c = κ2/σ and Jr = J/h and hr = hex/h respectively denote some
reference electric current and magnetic field, where h is a positive parameter
representing the applied fields intensity. For convenience we set Jr ≡ 0 on ∂Ωi.

If we fix the Coulomb gauge for An, we can prove the existence, uniqueness,
and regularity of solutions to the above problem.

Note that φn is a solution of

∆φn = 0∫
Ω

φndx = 0 ,

and

−σ∂φn
∂ν

= Jr .

This is Neumann but for a problem with corners ! H2-regularity is OK when
the angles are π

2 .
See Kondratev, Grisvard, Dauge for these questions of regularity.

The next assumption (which can be expressed in term of J and hex), is

(B) Bn 6= 0 at the corners , (4.2.1)

where Bn = curl An.
For some of the results, we assume for technical reasons

(C) ∇φn ⊥ ∂Ω on B−1
n (0) ∩ ∂Ω . (4.2.2)

To recover An we first determine Bn = curl An modulo a constant. The constant
is fixed by the mean value. We recover An uniquely by chosing the Coulomb
gauge.

4.3 The strong solution in the Coulomb gauge

We fix the Coulomb gauge, i.e., we look for global solutions in L2
loc([0,+∞), H1(Ω,R2))

of (4.1.1) satisfying

divA(t, ·) = 0 in L2
loc([0,+∞), L2(Ω)) , A(t, ·)·ν|∂Ω = 0 in L2

loc([0,+∞), H
1
2 (∂Ω)) ,

(4.3.1)
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and we also assume: ∫
Ω

φ(t, x) dx = 0 in L2
loc([0,+∞)) . (4.3.2)

Suppose first that the initial condition A0 satisfies

divA0 = 0 in Ω , A0 · ν = 0 on ∂Ω , (4.3.3)

where
A0 ∈ H2(Ω,R2). (4.3.4)

We further assume that
ψ0 ∈ H2(Ω,C) , (4.3.5)

and (4.1.8).

We show that the solution (ψd, Ad, φd) with Â0 = A0 and ψ̂0 = ψ0 is gauge-
equivalent to the solution of (4.1.1) and (4.3.1).
To this end we define the gauge function ω as the solution of

−∆ω = divAd in (0,+∞)× Ω ,
∂ω
∂ν = 0 on (0,+∞)× ∂Ω ,∫
Ω
ω(t, x) dx = 0 in (0,+∞) .

(4.3.6)

As Ad ∈ C([0,+∞);W 1+α,2(Ω,R2)) for any 0 < α < 1, it follows by Sobolev
embeddings and using the regularity results for problem with corners that ω ∈
C([0,+∞);W 2,p(Ω)) for all p ≥ 2. Furthermore, since divAd ∈ L2

loc([0,+∞), H1(Ω))
we get also by regularity

ω ∈ L2
loc([0,+∞), H3(Ω)) . (4.3.7)

Next, we observe that the projector π1 (projecting a vector field on is component
inH1

dvi) extends (by tensor product) to a projector Π1 inH1
loc([0,+∞);L2(Ω,R2))

and that by the uniqueness of the decomposition established in the proposition
and (4.3.6):

−∇ω = Π1Ad , (4.3.8)

in D′(0,+∞;L2(Ω,R2)), where D′(0,+∞;L2(Ω;R2)) denotes the space of dis-
tributions on (0,+∞) with value in L2(Ω,R2).
Note that (4.3.8) simply reads

−∇(

∫
ω(t, ·)φ(t)dt) = π1(

∫
Ad(t, ·)φ(t)dt) , (4.3.9)

for all φ ∈ C∞0 (0,+∞).
The right hand side of (4.3.8) being in H1

loc([0,+∞);L2(Ω,R2), this implies that
∇ω ∈ H1

loc([0,+∞);L2(Ω,R2)), and hence

∂tω ∈ L2
loc([0,+∞);H1(Ω,R2)) . (4.3.10)
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It can now be readily verified from (4.3.7) and (4.3.10) that the Coulomb gauge
solution (ψc, Ac, φc) = Gω(ψd, Ad, φd) satisfies:

ψc ∈ C([0,+∞);W 1+α,2(Ω,C)) ∩H1
loc([0,+∞);L2(Ω,C)) , ∀α < 1 , (4.3.11)

Ac ∈ C([0,+∞);W 1,p(Ω,R2)) ∩H1
loc([0,+∞);L2(Ω,R2)) ,∀p ≥ 1 , (4.3.12)

which follows from the fact that by (4.3.8) ∇ω ∈ C([0,+∞);W 1,p(Ω,R2)), and

φc ∈ L2
loc([0,+∞);H1(Ω)) . (4.3.13)

We can now state:

Theorem 4.1. Suppose that Ω satisfies condition (R1) and that B is in H
1
2 (∂Ω)

(on each regular component of ∂Ω). Suppose further that (ψ0, A0) satisfies
(4.3.4), (4.3.3), (4.3.5) and (4.1.8).
Then, there exists a unique weak solution (ψc, Ac, φc) of (TGDL2) in the Coulomb
gauge. Moreover, this solution is strong in the sense that it satisfies (4.3.11)-
(4.3.13) and

‖ψc(t, ·)‖∞ ≤ 1 , ∀t > 0 . (4.3.14)

Finally, let A1 = Ac − hAn where An is the previously constructed normal
solution. Then

A1 ∈ L2
loc([0,+∞);H2(Ω,R2)) . (4.3.15)

We can now return to the solution of (TGDL1).

Theorem 4.2. Under the assumptions of the previous theorem, assuming that
j is given by (4.1.2)-(4.1.3), and B by (4.1.13), the solution of (TDGL2) has
the additional property that φc ∈ C([0,+∞);W 1,p(Ω)) for all finite p, and is a
solution of (TDGL1).

Proof. Let (ψc, Ac, φc) denote a solution of (TDGL2) and (4.3.1). One has to
clarify first the sense in which the trace condition (4.1.1e)-(4.1.1f) is satisfied.
By Theorem 4.1 we have that ∂tAc +∇φc belongs to L2

loc([0,+∞), L2(Ω,R2)).
Hence, we can use the fact (see for example Theorem 2.2 in [26]) that for a
vector field V in L2

loc(0,+∞;L2(Ω;R2))
with divV ∈ L2

loc([0,∞);L2(Ω)), the normal component of its trace, V · ν|∂Ω,

belongs to L2
loc([0,+∞);H−

1
2 (∂Ω)).

Consider then V = ∂tAc +∇φc. By (4.1.15b) and (4.3.1) we obtain:

σdivV = σdiv∇φc = Im div (ψ̄c · ∇Acψc) . (4.3.16)

It is easy to show that the left hand side is in L2
loc([0,+∞);L2(Ω)). As ∆Acψc ∈

L2
loc([0,+∞);L2(Ω)) we can use (4.3.14) to conclude that ψc∆Acψc ∈ L2

loc([0,+∞);L2(Ω)).
Furthermore, ∇ψc ∈ C([0,+∞);L4(Ω,R2)) and Ac ∈ C([0,+∞)×Ω) in view of
(4.3.11) and (4.3.12) , hence ∇ψc ·∇Acψc ∈ L2

loc([0,+∞);L2(Ω)). Consequently,
V · ν is well defined in L2

loc([0,∞);H−1/2(∂Ω)), and we can discern that

V · ν|∂Ω = ∂νφ ,
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due to the fact that ∂tAc · ν = 0 in D′(0,+∞;H
1
2 (∂Ω)) by (4.3.1).

Consider again (4.1.15b). Each term of the equality have a meaningful normal
component for its trace and hence, as the right hand side has a zero ”normal”
trace,

V · ν = κ2∂τcurl Ac = κ2h ∂τB = J , (4.3.17)

in L2
loc([0,+∞);H−

1
2 (∂Ω)), as expected.

4.4 The question of stability

One possible mechanism which contributes to the breakdown of superconduc-
tivity by a strong current is the magnetic field induced by the current. In the
absence of electric current, it was proved by Giorgi-Phillips in [24] that, when a
sufficiently strong magnetic field is applied on the sample’s boundary (or when
hex is sufficiently large), the normal state, for which ψ ≡ 0, becomes the unique
solution for the steady-state version of (4.1.1) (cf. also Fournais-Helffer [23] and
the references therein).

For the time-dependent Ginzburg-Landau equations it was proved in Feireisl-
Takac [21] that every solution must reach an equilibrium in the long-time limit.
When combined with the results in [24] it follows that when the applied magnetic
field is sufficiently large the normal state becomes globally stable.

No such result was available in the presence of electric currents. The results
in [21] are based on the fact that, in the absence of currents, the Ginzburg-
Landau energy functional serves as a Lyapunov functional. In the presence of a
current one has to take account of the work it produces, which does not neces-
sarily decrease the energy (cf. [45] for instance).

Moreover, the magnetic field is not the only mechanism which forces the
sample into the normal state when the electric current is sufficiently large.

Consider the reduced model where one neglects the induced magnetic field
and set A ≡ 0 in (2.1.1). It has been proved in [38, 46, 1] that the normal
state is at least locally stable when the current is sufficiently strong. In a recent
contribution [4], together with Almog and Pan, we show that the critical current
where the normal state looses its local stability tends to the critical value for
the reduced model [38] in the small conductivity limit, or when c → ∞. This
result suggests that stability is being forced not only by the magnetic field that
the current induces, but also by the potential term in (4.1.1a).

In [2] we prove global stability of the normal state, as a solution of (4.1.1), for
sufficiently large currents. We begin by proving global existence and uniqueness
of solutions for (4.1.1) and obtain their regularity. While these questions have
previously addressed (cf. [10], [22], and [17] to name just a few references) the
fact that the boundary is not smooth at the corners requires some additional
attention.
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4.5 A non self-adjoint operator.

Let

Lh = −∇2
hAn + i hφn ,

be defined over the domain

D(Lh) = {u ∈ H2(Ω) | u|∂Ωc = 0 ; ∇u · ν|∂Ωi = 0 } .

We prove that a proper bound on the resolvent of Lh, which is the elliptic
operator in (4.1.1a) linearized near (0, hAn, hφn) gives the stability.

Theorem 4.3. Let ν ≥ 0. There exists κ0 > 0 and C1 > 0 such that, if for
some κ > κ0 we have

sup
γ∈R
‖(Lh − iγ − ν)−1‖ < 1− C1

κ2
, (4.5.1)

then, any solution of (4.1.1) must satisfy∫ ∞
0

e2νt ‖ψ(t, ·)‖22 dt <∞ . (4.5.2)

Assumption (4.5.1) does not guarantee that the semigroup necessarily be-
comes a contraction in the long-time limit. The above stability is proved in the
large κ limit both for (4.1.1) and we treat the same system, scaled with respect
to the penetration depth, which is obtained by applying the transformation
x→ x/κ in (4.1.1).

As the resolvent of Lh in an arbitrary domain is difficult to control, we
provide an estimate of its norm for large values of h, which can be applied for
either large domains, or large κ values.

4.6 Large domains ΩR

Our aim is to show that the norm of the resolvent can be controlled from two
approximated problems, with constant current defined either in R2 or in R2

+

with Dirichlet boundary conditions.

From resolvent estimates, together with the results of Almog-Helffer-Pan in
[3, 4, 5] we deduce that the critical current, for which the normal state looses
its local stability, can be approximated by the same critical current obtained for
the above R2

+ problem. Before to state the result let us describe the toy models.

Two toy models We now give the definitions of these model operators in R2

and R2
+ = {y > 0}.



36CHAPTER 4. TIME DEPENDENT GINZBURG-LANDAU EQUATION II

These models depend on two real parameters c 6= 0 and j.
The first one is

A(j, c) = D2
x + (Dy − jx2)2 + icjy , (4.6.1)

defined on
D(A) = {u ∈ L2(R2) | Au ∈ L2(R2)} . (4.6.2)

It has empty spectrum and we have a good control of the resolvent depending
only of the real part of the spectral parameter.

The second one is A+(j, c), which is defined (via the Lax-Milgram theorem)
by the same differential formula of A but on the domain

D(A+) = {u ∈ Ṽ : A+u ∈ L2(R2
+,C)}, (4.6.3)

where
Ṽ = H1,mag

0 (R2
+,C) ∩ L2(R2

+,C; y dxdy) . (4.6.4)

Here the analysis of the spectrum is more difficult. The guess is that it is
non-empty. This is only proven for |c| large enough or small enough.

Towards the last theorem Set, for z ∈ Ω̄,

j(z) := h|∇Bn(z)| = h

c
|∇φn(z)| , (4.6.5)

and then define,

A(z) = A(j(z), c) ; A+(z) = A+(j(z), c) (4.6.6)

Under all of the above assumptions B−1
n (0) is either empty, or else consists

of a single curve Γ connecting between the two connected components of ∂Ωc.
We treat the second case. We denote the two points of intersection by z1 and
z2 and then set

νm(z1, z2, c) = min
i=1,2

inf
λ∈σ(A+(zi))

Reλ . (4.6.7)

Large domain limit Let then R > 0. We denote by ΩR the image of Ω
under the dilation x → Rx We assume that the domain Ω has the property
(R1)-(R2) and that assumptions (J1)-(J3), (B) and (C) are met.
Denote the transformed electric field by φR. It satisfies the problem{

∆φR = 0 in ΩR ,
∂φR
∂ν = −JR(x)

σ on ∂ΩR ,

where
JR(x) = Jr(x/R) .

Note that
φR(x) = Rφn(x/R) .
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The transformed magnetic potential, which we denote by AR then satisfies

AR(x) = R2An(x/R) .

Let then

LRh = −∇2
hAR + ihφR , (4.6.8)

and let

µ(R) = inf
λ∈σ(LRh )

Reλ and µ∞ = lim inf
R→∞

µ(R) . (4.6.9)

We can now state

Theorem 4.4. Under the previous assumptions, µ(R) has a limit as R→ +∞,
which is given by

µ∞ = νm .

Furthermore, let ν < µ∞. Then, ∃ R0, C, such that, for R ≥ R0,

sup
γ∈R
‖(LRh − ν − iγ)−1‖ ≤

max
(

sup
z0∈Γ
‖(A(z0)− ν)−1‖, sup

γ∈R
i=1,2

‖(A+(zi)− ν − iγ)−1‖
)(

1 +
C

R1/4

)
+

C

R1/4
. (4.6.10)

One can deduce from (4.6.10) an upper bound for the critical current where
the normal state (0, hAn, hφn) becomes globally stable. Let

jm = inf
z∈Γ

j(z) , (4.6.11a)

and

j+ = inf
i=1,2

j(zi) . (4.6.11b)

When the domain size is multiplied by R, the resolvent norm of Lh is given
by the left-hand-side of (4.6.10). By (4.5.1) it then follows that if R and κ are
sufficiently large, and if

jm > ‖A−1(1, c)‖3/2 (4.6.12a)

and

j+ > sup
γ∈R
‖(A+(1, c)− iγ)−1‖3/2 , (4.6.12b)

then the normal state must be globally stable. The above conditions serve as an
upper bound for the critical current where the normal state becomes globally
stable.
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On the semiclassical side This corresponds to the spectral analysis of∑
j

(~Dxj −Aj)2 + i~φ(x) ,

in the limit ~ → 0. With φ = 0, this analysis plays an important role in
the analysis of the superconductivity. In the above questions, we have ∇φ ·
∇curl A = 0 and the zeros of curl A consists in a curve Γ joining two points of
the boundary where the Dirichlet condition is assumed.

When A = 0, a connected problem is to determine the bottom of the (real
part of the) spectrum under the following assumptions φ is a Morse function
and has no critical point at the boundary. The answer depends on the presence
or not of critical sets inside Ω. When there are no critical points, the case is
treated in the paper of Y. Almog at Siam [1] (see also Henry). One should look
at all the points where ∇φ is orthogonal to the boundary. Assuming that these
points are isolated, we will get the result by looking at the transversal Airy
operators computed at these points. That is looking at

~2D2
t + i~|∇φ(x`)|t+ i~φ(x`)

in R+ , with Dirichlet condition at 0.
With j(x`) = |∇φ(x`)|, the smallest real part is j(x`)

2
3 ~ 4

3 cos π3 α, where α is the
lowest eigenvalue of the standard Airy operator on R+ . Actually, depending of
the angle of ∇φ with the normal, we get a model in R2

+:

~2(D2
t +D2

s) + iJ(cos θt+ sin θs) ,

with boundary condition at t = 0.
As we have seen in the study of models, the only case when spectrum is present
is the case when θ = 0.

In the case where there are critical points in Ω, we consider the quadratic
approximation of φ at the various critical points:

~2(D2
x +D2

y) + i~〈Hessφ(x`)(x, y) , (x, y)〉+ i~φ(x`)

in R2 .
In this case the bottom is of order O(h

3
2 ) and this explains why these points

will have the dominant role. (connected work of K. Pravda Starov)
In the (1D)-case, this question appears also in control theory (Beauchard,

Helffer, Henry, and Robbiano) for two models − d2

dx2 + ix in ] − R,+R[ and

− d2

dx2 + ix2.

Around Dencker-Sjöstrand-Zworski criterion
Dencker-Sjöstrand-Zworski[16] will probably give some information. We di-
vide by ~ and get ~D2

x + iφ(x) this is again an h-semiclassical problem with
~ = h2. The h-symbol is p(x, ξ) = ξ2 + iφ(x). One can look at the brackets
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{Re p, Im p} = 2ξ · ∇φ(x) and { Im p, {Re p, Im p}} = 2|∇φ(x)|2. This can be
applied at ξ = 0 for some point x. This gives an information about the existence
of the resolvent at points with Reλ = 0 and as a consequence the absence of
spectrum in the region Reλ ≤ Ch 2

3 . This is far from optimal.
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Chapter 5

Elements of proofs.

5.1 1D-models (extracted of Beauchard-Helffer-
Henry-Robbiano)

In this section, we are interested in the spectrum of the operators

A[−R,R] = − d2

dy2
+ iy and H[−R,R] = − d2

dy2
+ iy2

defined on the segment [−R,R], R > 0, with Dirichlet boundary conditions at
y = ±R, with domains

D(A[−R,R]) = D(H[−R,R]) = H1
0 ([−R,R] ∩H2(]−R,R[;C).

More precisely, we study the asymptotic behaviour, as R → +∞, of the bot-
tom of the spectrum of A[−R,R] and H[−R,R] and we prove the following two
theorems, in subsections 5.1.1 and 5.1.2 respectively.

Theorem 5.1. Let µ1 < 0 be the first zero of the Airy function. Then,

lim
R→∞

(
inf Reσ(A[−R,R])

)
=
|µ1|
2

, (5.1.1)

where σ(A[−R,R]) denotes the spectrum of A[−R,R].

Now, let us consider the case of Davies operator (or ’complex hamonic os-
cillator’)

Theorem 5.2.

lim
R→∞

(
inf Reσ(H[−R,R])

)
=

√
2

2
, (5.1.2)

where σ(H[−R,R]) denotes the spectrum of H[−R,R].

Analogous questions have been considered in [1, 3, 4, 5] and [2]. We study
these two operators thanks to technics developed in these references. The study
of more general cases (dimension 2) complementary to those studied in [1] and
[2] will be done by R. Henry in [37].

41
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5.1.1 Semi classical analysis of the complex Airy operator
(γ = 1)

We introduce three model-operators, that have well known spectral and pseu-
dospectral behaviour. Let A[−R,+∞[, AR and A]−∞,R] be the Dirchlet realiza-

tions of the operator − d2

dx2 + ix on the intervals [−R,+∞[, R and ] − ∞, R]
respectively. We are going to approximate the resolvent of A[−R,R] by the one
of A[−R,+∞[, AR or A]−∞,R] depending on where we are, respectively close to
−R, far from −R and +R or close to +R.
Let us remark that, if TR : u(x) 7→ u(x+R) and UR : u(x) 7→ u(R− x), then

T−1
R (A[−R,+∞[ − λ)TR = AR+ − (λ+ iR) (5.1.3)

and
U−1
R (A]−∞,R] − λ)UR = A∗R+ − (λ− iR), (5.1.4)

thus

inf Reσ(A[−R,∞[) = inf Reσ(A]−∞,R]) =
|µ1|
2
, (5.1.5)

because inf Reσ(AR+) = |µ1|/2, see [1].

Step 1: We prove that

lim
R→+∞

(
inf Reσ(A[−R,R])

)
≥ |µ1|

2
. (5.1.6)

Let ε > 0. We search Rε > 0 such that

∀R ≥ Rε, σ(A[−R,R]) ∩ (]−∞, |µ1|/2− ε] + iR) = ∅. (5.1.7)

We recall that, by [?], there exists Cε > 0 such that

sup
γ ≤ |µ1|/2 − ε,

ν ∈ R

‖(AR+ − (γ + iν))−1‖ ≤ Cε (5.1.8)

and
sup

γ ≤ |µ1|/2 − ε,
ν ∈ R

‖(A∗R+ − (γ + iν))−1‖ ≤ Cε. (5.1.9)

Let λ = γ+ iν ∈]−∞, |µ1|/2− ε] + iR and h1, h2, h3 ∈ C∞0 (R; [0, 1]) be such
that Supph1 ⊂]−∞,−1/2[, h1(x) = 1 for x ∈ [−1,−3/4], Supph2 ∈]−3/4, 3/4[,
h2(x) = 1 for x ∈ [−1/2, 1/2], Supph3 ⊂]1/2,+∞[, h3(x) = 1 for x ∈ [3/4, 1],
and

h2
1 + h2

2 + h2
3 ≡ 1.

For j = 1, 2, 3 and R > 0, we define

ηjR(x) = hj

( x
R

)
1[−R,R](x), (5.1.10)
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and

RR(λ) = η1
R(A[−R,+∞[ − λ)−1η1

R + η2
R(AR − λ)−1η2

R + η3
R(A]−∞,R] − λ)−1η3

R.

RR(λ) will be used as an approximation of the resolvent of A[−R,R]. We have

(A[−R,R] − λ)RR(λ) = I + [A[−R,R], η
1
R](A[−R,+∞[ − λ)−1η1

R

+ [A[−R,R], η
2
R](AR − λ)−1η2

R

+ [A[−R,R], η
3
R](A]−∞,R] − λ)−1η3

R. (5.1.11)

We estimate the second term on the right hand side. In what follows, the
estimates are uniform with respect to ν = Imλ. We have

[A[−R,R], η
1
R](A[−R,+∞[−λ)−1η1

R =

(
−(η1

R)′′ − 2(η1
R)′

d

dy

)
(A[−R,+∞[−λ)−1η1

R,

(5.1.12)
Using | sup(ηjR)′| = O(R−1) and | sup(ηjR)′′| = O(R−2) for j = 1, 2, 3, we get,
by (5.1.3) and (5.1.8),

‖(η1
R)′′(A[−R,+∞[ − λ)−1η1

R‖ = O
(

1

R2

)
. (5.1.13)

Moreover, for every v ∈ L2([−R,+∞[),∥∥∥∥ ddy (A[−R,+∞[ − λ)−1v

∥∥∥∥2

≤ (‖(A[−R,+∞[ − λ)−1‖1/2

+
√
γ‖(A[−R,+∞[ − λ)−1‖)‖v‖. (5.1.14)

Indeed, ∥∥∥∥ ddx (A[−R,+∞[ − λ)−1v

∥∥∥∥2

= Re 〈v, (A[−R,+∞[ − λ)−1v〉

−Re i〈(x− µ)(A[−R,+∞[ − λ)−1v, (A[−R,+∞[ − λ)−1v〉
+γ‖(A[−R,+∞[ − λ)−1v‖2

≤ ‖(A[−R,+∞[ − λ)−1v‖‖v‖+ γ‖(A[−R,+∞[ − λ)−1v‖2,

from which we deduce (5.1.14).
By applying (5.1.14) to v = η1

Ru, u ∈ L2(R), we get∥∥∥∥(η1
R)′

d

dy
(A[−R,+∞[ − λ)−1η1

Ru

∥∥∥∥ = O
(

1

R

)
, (5.1.15)

which gives, with (5.1.12) and (5.1.13),∥∥[A[−R,R], η
1
R](A[−R,+∞[ − λ)−1η1

R

∥∥ = O
(

1

R

)
. (5.1.16)
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In the same way, we verify that∥∥[A[−R,R], η
2
R](AR − λ)−1η2

R

∥∥ = O
(

1

R

)
(5.1.17)

and ∥∥[A[−R,R], η
3
R](A]−∞,R] − λ)−1η3

R

∥∥ | = O( 1

R

)
. (5.1.18)

The equality (5.1.11) can be written

(A[−R,R] − λ)RR(λ) = I + ER(λ),

with ‖ER(λ)‖ = O(R−1), uniformly with respect to λ ∈]−∞, |µ1|/2− ε] + iR.
We deduce the existence of Rε > 0 such that, for every R ≥ Rε, (A[−R,R] − λ)
is invertible, with inverse

(A[−R,R] − λ)−1 = RR(λ)(I + ER(λ))−1.

We have proved (5.1.7).

Step 2: We prove that

lim
R→+∞

inf Reσ(A[−R,R]) ≤
|µ1|
2
. (5.1.19)

We reduce the study to the complex Airy operator A[0,2R] on the intervall [0, 2R]
by appying the translation TR : u(x) 7→ u(x+R). We have

T−1
R (A[−R,R] − λ)TR = A[0,2R] − (λ+ iR),

thus supν∈R ‖(A[−R,R] − (γ + iν))−1‖ = supν∈R ‖(A[0,2R] − (γ + iν))−1‖
and Reσ(A[−R,R]) = Reσ(A[0,2R]).
Let θ1, θ2 ∈ C∞0 (R; [0, 1]) be such that Supp θ1 ⊂] − ∞, 2/3], θ1(x) = 1 for
x ≤ 1/2, Supp θ2 ⊂]1/2,+∞], θ2(x) = 1 for x ≥ 2/3, and θ2

1 + θ2
2 ≡ 1. For

j = 1, 2 and R > 0, we define

χjR(x) = θj

( x

2R

)
1[0,2R](x). (5.1.20)

We want to prove that

1[0,2R](A[0,2R] + 1)−11[0,2R] −→
R→+∞

(A[0,+∞[ + 1)−1 (5.1.21)

in L(L2(R+)). Let us remark that

σ(1[0,2R](A[0,2R] + 1)−11[0,2R]) = σ((A[0,2R] + 1)−1) ∪ {0},

with non vanishing eigenvalues that have the same multiplicity for both opera-
tors.
For this, we use the ’approximated resolvent’ of (A[0,2R] + 1),

R̃R = χ1
R(A[0,+∞[ + 1)−1χ1

R + χ2
R(A[0,2R] + 1)−1χ2

R.
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Then, we have

(A[0,2R] + 1)R̃R = I + [A[0,2R] + 1, χ1
R](A[0,+∞[ + 1)−1χ1

R

+ [A[0,2R] + 1, χ2
R](A[0,2R] + 1)−1χ2

R,

thus, by composing on the left by 1[0,2R](A[0,2R] + 1)−11[0,2R],

1[0,2R](A[0,2R] + 1)−11[0,2R] − χ1
R(A[0,+∞[ + 1)−1χ1

R = χ2
R(A[0,2R] + 1)−1χ2

R

−1[0,2R](A[0,2R] + 1)−11[0,2R][A[0,2R] + 1, χ1
R](A[0,+∞[ + 1)−1χ1

R

−1[0,2R](A[0,2R] + 1)−11[0,2R][A[0,2R] + 1, χ2
R](A[0,2R] + 1)−1χ2

R. (5.1.22)

Now, we control the different terms on the right hand side. The terms involving
commutators can be estimated as for (5.1.16) and we get

∥∥1[0,2R](A[0,2R] + 1)−11[0,2R][A[0,2R] + 1, χ1
R](A[0,+∞[ + 1)−1χ1

R

∥∥ = O
(

1

R

)
(5.1.23)

and∥∥1[0,2R](A[0,2R] + 1)−11[0,2R][A[0,2R] + 1, χ2
R](A[0,2R] + 1)−1χ2

R

∥∥ = O
(

1

R

)
.

(5.1.24)
Moreover, we have

Im 〈(A[0,2R] + 1)u, u〉 = 〈yu, u〉 . (5.1.25)

This, applied to u = χ2
R(A[0,2R] + 1)−1χ2

Rf , f ∈ L2(R+), gives

Im 〈(A[0,2R] + 1)u, u〉 ≥ R

2
‖u‖2.

Moreover,

| Im 〈(A[0,2R] + 1)u, u〉| ≤ ‖f‖‖(A[0,2R] + 1)−1χ2
Rf‖

+| Im 〈[A[0,2R] + 1, χ2
R](A[0,2R] + 1)−1χ2

Rf, u〉|

≤ C

(
1 +

1

R

)
‖f‖2,

where we have used (5.1.24).
Thus, we deduce that

∥∥χ2
R(A[0,2R] + 1)−1χ2

R

∥∥ = O
(

1√
R

)
. (5.1.26)

By (5.1.22), (5.1.23), (5.1.24) and (5.1.26), we have

∥∥1[0,2R](A[0,2R] + 1)−11[0,2R] − χ1
R(A[0,+∞[ + 1)−1χ1

R

∥∥ = O
(

1√
R

)
. (5.1.27)
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In order to get (5.1.21), it remains to verify that χ1
R(A[0,+∞[ +1)−1χ1

R converges
to (A[0,+∞[ + 1)−1 in L(L2(R+)). Let us denote A+ = A[0,+∞[ + 1 to simplify
notations. First, we write

χ1
RA−1

+ χ1
RA+ = (χ1

R)2 − χ1
RA−1

+ [A+, χ
1
R],

then, composing on the right by A−1
+ and using that (χ1

R)2 = 1− (χ2
R)2,

A−1
+ − χ1

RA−1
+ χ1

R = (χ2
R)2A−1

+ + χ1
RA−1

+ [A+, χ
1
R]A−1

+ . (5.1.28)

An estimate similar to (5.1.16) gives

‖χ1
RA−1

+ [A+, χ
1
R]A−1

+ ‖ = O
(

1

R

)
. (5.1.29)

Moreover, we have, by applying inequality ‖y1/2u‖ ≤ C(‖A+u‖ + ‖u‖) (see
(5.1.25)) to u = (χ2

R)2A−1
+ f , f ∈ L2(R+), and

R1/2‖(χ2
R)2A−1

+ f‖ ≤ ‖x1/2(χ2
R)2A−1

+ f‖
≤ C(‖A+(χ2

R)2A−1
+ f‖+ ‖(χ2

R)2A−1
+ f‖)

≤ C(‖(χ2
R)2f‖+ ‖[A+, (χ

2
R)2]A−1

+ f‖+ ‖(χ2
R)2A−1

+ f‖).

The second term on the right hand side can be controled in a similar way as
(5.1.16) and we get

‖(χ2
R)2A−1

+ ‖ = O
(

1√
R

)
. (5.1.30)

Finaly, (5.1.27), (5.1.28), (5.1.29) and (5.1.30) imply (5.1.21).
We conclude, by [?, Section IV, §3.5]. For any subsequence Rj → +∞ and any
eigenvalue λ ∈ σ(A−1

+ ) \ {0}, exists a sequence (λj) such that, for every j large
enough

λj ∈ σ(1[0,2Rj ](A[0,2Rj ] + 1)−11[0,2Rj ]) \ {0} = σ((A[0,2Rj ] + 1)−1) \ {0}

and λj → λ when j → +∞.

In particular, with λ = 1/(λ̃ + 1), where λ̃ = eiπ/3|µ1| ∈ σ(A[0,+∞[) is the

eigenvalue of A[0,+∞[ with smallest real part (see [?]), we get a sequence λ̃j =

1/λj − 1 ∈ σ(A[0,2Rj ]) such that Re λ̃j → Re λ̃ = |µ1|/2, from which we deduce
(5.1.19).�

5.1.2 Semi classical analysis of Davies operator(γ = 2)

The goal of this section is the proof of Theorem 5.2.
The case of the complex harmonic oscillator H[−R,R] can be treated in a

similar way. Let α ∈]0, 1[ (that will be determined later) and let ζ1
R, ζ2

R, ζ3
R ∈

C∞(R; [0, 1]) be such that Supp ζ1
R ⊂]−∞,−R+Rα[, ζ1

R(x) = 1 for x ≤ −R+
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Rα/2, Supp ζ2
R ⊂]−R+Rα/2, R−Rα/2[, ζ2

R(x) = 1 for x ∈ [−R+Rα, R−Rα],
Supp ζ3

R ⊂]R−Rα,+∞[, ζ3
R(x) = 1 for x ≥ R−Rα/2 and

(ζ1
R)2 + (ζ2

R)2 + (ζ3
R)2 ≡ 1.

Close to x = −R, we have

x2 = −2R(x+R) +R2 + o(|x+R|).

Thus, we are going to approximate H[−R,R], close to x = −R, by the operator

A−R = − d2

dx2
− 2iR(x+R) + iR2.

In the same way, we will approximate H[−R,R] close to x = +R by

A+
R = − d2

dx2
− 2iR(R− x) + iR2.

Then, we remak that, if TR : u(x) 7→ u(x + R) and UR : u(x) 7→ u(R − x), we
have

A−R = TRÃ∗RT−1
R et A+

R = URÃ∗RU−1
R ,

where ÃR is the Dirichlet realization of the complex Airy operator − d2

dx2 + iRx
on [0,+∞[. Following [30], we deduce that

inf Reσ(A+
R) = inf Reσ(A−R) = R2/3 |µ1|

2
, (5.1.31)

and, for every ε > 0, exists Cε > 0 such that

sup
γ ∈ [0, R2/3|µ1|/2 − ε],

ν ∈ R

‖(A±R − (γ + iν))−1‖ ≤ Cε
R2/3

. (5.1.32)

We call H0 the complex harmonic oscillator − d2

dx2 + ix2 on R, that will serve
to approximate H[−R,R] on the support of ζ2

R. We recall that inf Reσ(H0) =

cosπ/4 =
√

2/2 (see Davies).
Now, we take λ = γ + iν ∈ [0,

√
2/2− ε] + iR and we set

QR(λ) = ζ1
R(A−R − λ)−1ζ1

R + ζ2
R(H0 − λ)−1ζ2

R + ζ3
R(A+

R − λ)−1ζ3
R.

Then, we have

(H[−R,R] − λ)QR(λ) = I + [H[−R,R] − λ, ζ1
R](A−R − λ)−1ζ1

R

+[H[−R,R] − λ, ζ2
R](H0 − λ)−1ζ2

R + [H[−R,R] − λ, ζ3
R](A+

R − λ)−1ζ3
R

+ζ1
R(H[−R,R] −A−R)(A−R − λ)−1ζ1

R + ζ3
RH[−R,R] −A+

R)(A+
R − λ)−1ζ3

R.
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The terms involving commutators can be estimated in the same way as (5.1.16),
by noting that, for j = 1, 2, 3, sup |(ζjR)′| = O(R−α) and sup |(ζjR)′′| = O(R−2α).
Thus, we get

‖[H[−R,R] − λ, ζ1
R](A−R − λ)−1ζ1

R‖+ ‖[H[−R,R] − λ, ζ2
R](H0 − λ)−1ζ2

R‖
+‖[H[−R,R] − λ, ζ3

R](A+
R − λ)−1ζ3

R‖ = O(R−α).

Moreover, we have, by definition of A−R,

(H[−R,R] −A−R)u(x) = i(x+R)2u(x),

and on the support of ζ1
R, we have x+R ≤ Rα. Therefore,

‖ζ1
R(H[−R,R] −A−R)(A−R − λ)−1ζ1

Rf | ≤ R2α‖(A−R − λ)−1‖
≤ CεR

2(α−1/3)

by (5.1.32).
Thus, we choose α ∈]0, 1/3[.
In the same way, we verify

‖ζ3
RH[−R,R] −A+

R)(A+
R − λ)−1ζ3

R‖ ≤ CεR2(α−1/3).

Thus, we have proved that

(H[−R,R] − λ)QR(λ) = I + ẼR(λ),

with ‖ẼR(λ)‖ → 0 as R → +∞, uniformly with respect to λ in the interval
[0,
√

2/2− ε] + iR.
Thus, exists Rε > 0 such that, for every R ≥ Rε, (H[−R,R] − λ) is invertible,
with

(H[−R,R] − λ)−1 = QR(λ)(I + ẼR(λ))−1.

Thus
∀R ≥ Rε, σ(H[−R,R]) ∩ ([0,

√
2/2− ε] + iR) = ∅.

In order to prove

lim
R→+∞

inf Reσ(H[−R,R]) ≤
√

2

2
, (5.1.33)

we replace the functions χ1
R and χ2

R by

ϕjR(x) = ψj

( x
R

)
, j = 1, 2, R > 0,

where ψ1 = h1 + h3, ψ2 = h2, the hk, k = 1, 2, 3 being troncature functions
defined above.
We recall that H0 denotes the operator − d2

dx2 + ix2 defined on R, and we set

Q̃R = ϕ2
R(H0 + 1)−1ϕ2

R + ϕ1
R(H[−R,R] + 1)−1ϕ1

R.
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Thus, we have

(H[−R,R] + 1)Q̃R = I + PR

where

PR = [H[−R,R], ϕ
2
R](H0 + 1)−1ϕ2

R + [H[−R,R], ϕ
1
R](H[−R,R] + 1)−1ϕ1

R .

‖PR‖ = O(R−1). By composing on the left with (H[−R,R] + 1)−1,

(H[−R,R]+1)−1−ϕ2
R(H0+1)−1ϕ2

R = ϕ1
R(H[−R,R]+1)−1ϕ1

R+(H[−R,R]+1)−1PR.
(5.1.34)

By going back over the proof of (5.1.26) and by replacing (5.1.25) by

Im 〈H[−R,R]u, u〉 = 〈x2u, u〉 . (5.1.35)

we check that

‖ϕ1
R(H[−R,R] + 1)−1ϕ1

R‖ = O
(

1

R

)
,

By (5.1.34), this implies:

‖(H[−R,R] + 1)−1 − ϕ2
R(H0 + 1)−1ϕ2

R‖ = O
(

1

R

)
. (5.1.36)

Then, we prove, as we did prevously (see (5.1.28), (5.1.29) and (5.1.30)) that the
operator ϕ2

R(H0 +1)−1ϕ2
R converges to (H0 +1)−1 in L(L2(R)), when R→ +∞.

By the same arguments, (5.1.33) is proved, which ends the proof of the theorem.

5.2 Non-linear techniques

The first step is to analyzed the linearized operator of the system where the
linearization is considered for the normal solution. It involves a non selfadjoint
diagonal system whose spectrum can be analyzed.

A relatively easy statement is obtained in the case when the ”self-adjoint”
part of this linearized operator has positive spectrum. In our case this will
involve the Schrödinger operator with magnetic field and a ”magnetic” operator.
This gives interesting results but no effect of the current is visible. Hence this
is still the effect of the exterior magnetic field which can imply the stability.

5.3 Giorgii-Phillips revisited

So we assume that we have a nonnormal stationary point (ψ,A,Φ) of (TGDL2)
and that ∫

Ω

|ψ(x)|2 dx > 0 . (5.3.1)
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Then we get:

iφψ = (∇− iA)
2
ψ + ψ

(
1− |ψ|2

)
, in Ω , (5.3.2a)

κ2curl 2A+ σ∇φ = Im (ψ̄ · (∇− iA)ψ) , in Ω , (5.3.2b)

ψ = 0 , on ∂Ωc , (5.3.2c)

(∇− iA)ψ · ν = 0 , on ∂Ωi , (5.3.2d)

curl A = hBr , on ∂Ωi (5.3.2e)

Taking the scalar product with ψ in the first line, we get (using also the
boundary condition)

i

∫
φ|ψ|2 + ||(∇− iA)ψ||2 +

∫
|ψ|4 = ||ψ||2 . (5.3.3)

Now for the second equation, we take the scalar product with A − hAn and
observing that divA = 0, we obtain:

κ2||curl (A− hAn)||2 =

∫ (
(A− hAn) · Im (ψ̄ · (∇− iA)ψ)

)
. (5.3.4)

Now (5.3.3) implies
||(∇− iA)ψ||2 ≤ ||ψ||2 . (5.3.5)

Playing with (5.3.4), leads first to

κ2||A− hAn||2 ≤ CΩκ
2||curl (A− hAn)||2 ≤ ĈΩ||(A− hAn)|| ||(∇− iA)ψ|| .

(5.3.6)
Hence

κ2||A− hAn|| ≤ ĈΩ ||(∇− iA)ψ|| ≤ ||ψ|| (5.3.7)

and we get
κ4||A− hAn||2 + ||(∇− iA)ψ||2 ≤ C̃Ω||ψ||2 . (5.3.8)

We now compare
∫

Ω
|(∇−ihAnψ|2 dx and

∫
Ω
|(∇−iA)ψ|2 dx . A trivial estimate

is ∫
Ω

|(∇− ihAn)ψ|2 dx ≤ 2 ‖(∇− iA)ψ‖2 + 2(‖(A− hAn)|ψ| ‖2 . (5.3.9)

This gives∫
Ω

|(∇− ihAn)ψ|2 dx ≤ 2CΩ(1 + κ−4)

∫
Ω

|ψ(x)|2 dx . (5.3.10)

Since ψ satisfies (5.4.1), we obtain

λDN1 (hAn) ≤ 2CΩ(1 + κ−4) . (5.3.11)

We now need an asymptotic behavior of λDN1 (hAn) in order to get either a
contradiction (if no h satisfies the inequality) or an upper bound for h. This
will give a Giorgii-Phillips type statement that for h large enough the only
stationary solution is the normal one. Here the Kwek-Pan results are relevant.
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5.4 Giorgii-Phillips rerevisited (very provisory)

We look at the problem in the ”penetration depth” coordinates (we actually use
these coordinates in the first chapter). This refers to Sections 4 and 5 in [2].

So we assume that we have a nonnormal stationary point (ψ,A,Φ) of
(TGDL2) and that ∫

Ω

|ψ(x)|2 dx > 0 . (5.4.1)

Then we get:

iκ2φψ = (∇− iκA)
2
ψ + κ2ψ

(
1− |ψ|2

)
, in Ω , (5.4.2a)

κ curl 2A+ σ∇φ = Im (ψ̄ · (∇− iκA)ψ) , in Ω , (5.4.2b)

ψ = 0 , on ∂Ωc , (5.4.2c)

(∇− iκA)ψ · ν = 0 , on ∂Ωi , (5.4.2d)

curl A = hBr , on ∂Ωi (5.4.2e)

Taking the scalar product with ψ in the first line, we get (using also the
boundary condition)

i

∫
φ|ψ|2 + ||(∇− iκA)ψ||2 + κ2

∫
|ψ|4 = κ2||ψ||2 . (5.4.3)

Now for the second equation, we take the scalar product with A − hAn and
observing that divA = 0, we obtain:

κ||curl (A− hAn)||2 =

∫ (
(A− hAn) · Im (ψ̄ · (∇− iκA)ψ)

)
. (5.4.4)

Now (5.3.3) implies
||(∇− iκA)ψ||2 ≤ κ2||ψ||2 . (5.4.5)

Playing with (5.4.4), leads first to

κ||A− hAn||2 ≤ CΩκ||curl (A− hAn)||2 ≤ ĈΩ||(A− hAn)|| ||(∇− iκA)ψ|| .
(5.4.6)

Hence
κ||A− hAn|| ≤ ĈΩ ||(∇− iκA)ψ|| ≤ κ||ψ|| (5.4.7)

and we get
κ2||A− hAn||2 + ||(∇− iκA)ψ||2 ≤ C̃Ωκ

2||ψ||2 . (5.4.8)

We now compare
∫

Ω
|(∇ − iκhAnψ|2 dx and

∫
Ω
|(∇ − iκA)ψ|2 dx . A trivial

estimate is∫
Ω

|(∇− iκhAn)ψ|2 dx ≤ 2 ‖(∇− iκA)ψ‖2 + 2(‖(κA)− κhAn)|ψ| ‖2 . (5.4.9)

This gives ∫
Ω

|(∇− iκhAn)ψ|2 dx ≤ 2CΩκ
2

∫
Ω

|ψ(x)|2 dx . (5.4.10)
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Since ψ satisfies (5.4.1), we obtain

λDN1 (κhAn) ≤ 2CΩκ
2 . (5.4.11)

We now need an asymptotic behavior of λDN1 (κhAn). This will give a Giorgii-
Phillips type statement that for h large enough the only stationary solution is
the normal one. Here the Pan-Kwek results are relevant. The problem is that
we do not probably use the full information because we only use the information
on the self-adjoint part.

Remark 5.3. With the choices in Sections 4 and 5 of [2]. An = κ2Ãn. This
gives

λDN1 (κ3hÃn) ≤ 2CΩκ
2 . (5.4.12)

For κ large, we get, if Bn does not vanish:

1

C
(κ3h) ≤ 2CΩκ

2 .

Hence the philosophy is that for κ large and h ≥ 1, we cannot have a normal
solution as stationary solution. If Bn vanished we obtain

1

C
(κ3h)

2
3 ≤ 2CΩκ

2 .

Hence the philosophy is that for κ and h large enough, only the normal solution
can be a stationary solutionwe cannot have a normal solution as stationary
solution.
Note that many parameters are involved and various asymptotic situations can
be considered. In [2] for example, it is assumed that κ2/σ is constant.
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