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Our aim is to analyze the various energy functionals appearing in
the physics literature and describing the behavior of a
Bose-Einstein condensate in an optical lattice.

We want to justify the use of some reduced models.
For that purpose, we will use the semi-classical analysis developed
for linear problems related to the Schrödinger operator with
periodic potential or multiple wells potentials.
In some asymptotic regimes, we justify the reduction to low
dimensional problems and in a second step start their study.
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[Physical Motivation]
There is a large body of research, both experimental, theoretical
and mathematical on vortices in Bose-Einstein condensates
[PeSm, PiSt, Af, LSSY].
Current physical interest is in the investigation of very small atomic
assemblies, for which one would have one vortex per particle,
which is a challenge in terms of detection and signal analysis. An
appealing option consists in parallelizing the study, by producing
simultaneously a large number of micro-BECs rotating at the
various nodes of an optical lattice [Sn]. Experiments are under way.
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Our aim, in this paper, is to address mathematical models that
describe a BEC in an optical lattice.
The theory is inspired by a series of physics papers
[Sn, SnSt, KMPS, STKB].

We want to justify their reduction to simpler energy functionals in
certain regimes of parameters and in particular understand the
ground state energy.
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The ground state energy of a rotating BEC is given by the
minimization of

QBE ,Ω(Ψ) :=∫
R3

(
1
2 |∇Ψ− iΩ× rΨ|2 − 1

2Ω2r2 |Ψ|2
+(V (r) + Wε(z))|Ψ|2 + g |Ψ|4

)
dxdydz ,

(1)

under the constraint∫
R3

|Ψ(x , y , z)|2 dxdydz = 1 , (2)

where
I r2 = x2 + y2 , r = (x , y , z) ,
I Ω is the rotational velocity along the z axis. For simplicity,

Ω ≥ 0 . (3)

I g is the scattering length.
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A condensate is a trapped object and the potential V (r) given by

V (r) =
1

2

(
ω2
⊥r2 + ω2

z z
2
)
, (4)

corresponds to the magnetic trap (= quadratic potential).

We assume that the radial trapping frequency is much larger than
the axial trapping frequency :

0 ≤ ωz << ω⊥ . (5)

The experimental data are typically

ωz/ω⊥ ∼ 5% .
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The presence of the one dimensional optical lattice in the z
direction is modelled by

Wε(z) =
1

ε2
w(z) , (6)

where
I 1

ε2
is the lattice depth,

I w is a positive T -periodic function which admits
non-degenerate minima at the points kT (k ∈ Z) :

w(z+T ) = w(z) , w(0) = 0 , w ′′(0) > 0 , w(z) > 0 if z 6∈ TZ .
(7)

An example is

w(z) = sin2(
2πz

λ
) (8)

where λ is the wavelength of the laser light.
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We will assume that ε tends to 0 (this means deep lattice) and
that λ is fixed.

Furthermore, we assume that the lattice is deep enough so that it
dominates over the magnetic trapping potential in the z direction
and that the number of sites is large. Thus we ignore the magnetic
trap in the z direction :

ωz = 0 . (9)

Actually we mainly discuss, instead of a problem in R3,

I a periodic problem in the z direction, that is in
R2

x ,y × [−T
2 ,

T
2 ),

I or more generally in R2
x ,y × [−NT

2 , NT
2 ) for a fixed integer

N ≥ 1.
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So we focus on the minimization of the functional

Qper ,N
BE ,Ω (Ψ) :=∫

R2
x,y×]−NT

2
,NT

2
[

(
1

2
|∇Ψ− iΩ× rΨ|2 − 1

2
Ω2r2|Ψ|2

+(V (r) + Wε(z))|Ψ|2 + g |Ψ|4
)

dxdydz , (10)

under the constraint∫
R2

x,y×]−NT
2
,NT

2
[
|Ψ(x , y , z)|2 dxdydz = 1 , (11)

with

V (x , y , z) =
1

2
ω2
⊥(x2 + y2) , (12)

and Ψ satisfying

Ψ(x , y , z + NT ) = Ψ(x , y , z) . (13)
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This functional has a minimizer in its natural form domain
Dper ,N,unit

BE ,Ω and we call

Eper ,N
Ω = inf

Ψ∈Dper,N,unit
BE ,Ω

Qper ,N
BE ,Ω (Ψ) , (14)

the groundstate energy of Qper ,N
BE ,Ω .

In the case N = 1, we write more simply

Qper
BE ,Ω := Q

per ,(N=1)
BE ,Ω , Eper := E

per ,(N=1)
Ω . (15)
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Our aim is to justify that the ground state energy can be estimated
by the study of simpler models introduced in physics papers
[Sn, SnSt, KMPS].

For that purpose, we will describe how, in certain regimes, the
semi-classical analysis developed for linear problems related to the
Schrödinger operator with periodic potential or multiple wells
potentials is relevant: Outassourt [Ou], Helffer-Sjöstrand
[He, DiSj] or for an alternative approach [Si].
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The linear model which appears naturally is

H = HΩ
⊥ + Hz , (16)

with

HΩ
⊥ := −1

2
∆x ,y +

1

2
ω2
⊥r2 − iΩ(x∂y − y∂x) , (17)

and

Hz := −1

2

d2

dz2
+ Wε(z) . (18)

In this situation with separate variables, we can split the spectral
analysis, the spectrum of H being the closed set

σ(H) := σ(HΩ
⊥) + σ(Hz) . (19)
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The first operator HΩ
⊥ is an harmonic oscillator with discrete

spectrum. The bottom of its spectrum is given by

λ⊥1 := inf(σ(HΩ
⊥)) = ω⊥ . (20)

A corresponding groundstate is a Gaussian

ψ⊥ =
(ω⊥
π

) 1
2
exp−ω⊥

2
r2 .

The gap between the ground state energy and the second
eigenvalue (which has multiplicity 1 or 2) is given by

δ⊥ := λ⊥2,Ω − λ⊥1 = ω⊥ − Ω . (21)
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The properties of the periodic Hamiltonian Hz depend on the value
of N.

In the case N = 1, we call the groundstate φ1(z) and the ground
energy λz

1. In the semi-classical regime ε→ 0, λz
1 satisfies

λz
1 ∼

c

ε
, (22)

for some c > 0.

The splitting δz between the groundstate energy and the first
excited eigenvalue satisfies

δz ∼
c̃

ε
, (23)

for some c̃ > 0.
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For N > 1, the groundstate energy is unchanged and the
corresponding groundstate φN

1 is the periodic extension of φ1

considered as an (NT )-periodic function.
The precise relation is

φN
1 =

1√
N
φ1 , (24)

on the line.
But we have now N exponentially close to λz

1 lying in the first band
of the spectrum of the spectral problem for Hz on the whole line.
They are separated from the (N + 1)-th by δNz , with :

δNz = δz + Õ(exp−S/ε)) . (25)

Here Õ(exp−S/ε)) means O(exp−S ′

ε ) , ∀S ′ < S .
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The corresponding eigenfunctions satisfy

φN
` (z + T ) = exp(

2iπ(`− 1)

N
)φN
` (z) , for ` = 1, . . . ,N , (26)

corresponding to the special values k = 2π(`−1)
NT of is usually called

a k-Floquet condition.

We will sometimes use another orthonormal basis (called
(NT )-periodic Wannier functions basis) (ψN

j ) (j = 0, . . . ,N − 1) of
the spectral space attached to the N first eigenvalues.

Each of these (NT )-periodic functions have the advantage to be
localized (as ε→0) in a specific well of Wε considered as defined on
R/(NT )Z.
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Using the spectral analysis of the linear problem, there are two
natural ideas to compute upper bounds :

I either use test functions of the type

Ψ(x , y , z) = φ(z)ψ⊥(x , y) , (27)

where ψ⊥ is the first normalized eigenfunction of HΩ
⊥ and

minimize among all possible L2-normalized φ(z) to obtain a
1D-longitudinal reduced problem,
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I or use
I in the case N = 1,

Ψ(x , y , z) = φ1(z)ψ(x , y) (28)

where φ1 is the first eigenfunction of Hz and minimize among
all possible L2-normalized ψ(x , y) to obtain a 2D-transverse
reduced problem,

I or in the case N > 1

Ψ(x , y , z) =
N−1∑
j=0

ψN
j (z)ψj,⊥(x , y) (29)

where ψN
j (z) is the orthonormal basis of Wannier functions

mentioned above, and minimize on the suitably normalized
ψj,⊥’s which provide N coupled problems.
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Computing the energy of a test function of type (27), we get

Qper ,N
BE ,Ω (Ψ) = ω⊥ + EN

A (φ) (30)

where EN
A is the functional on the NT -periodic functions in the z

direction, defined on H1(R/NTZ) by

φ 7→ EN
A (φ) =

∫ NT
2

−NT
2

(
1

2
|φ′(z)|2 + Wε(z)|φ(z)|2 + ĝ |φ(z)|4

)
dz

(31)
with

ĝ := g

(∫
R2

|ψ⊥(x , y)|4 dxdy

)
=

1

2π
gω⊥. (32)

The functional EN
A was for example considered in [KMPS].
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For test functions of type (28), we get in the case N = 1

Qper
BE ,Ω(Ψ) = λz

1 + EB,Ω(ψ) (33)

with

EB,Ω(ψ)

:=

∫
R2

x,y

(
1

2
|∇x ,yψ − iΩ× rψ|2 − 1

2
Ω2r2|ψ|2

+
1

2
ω2
⊥(x2 + y2)|ψ|2 + g̃ |ψ|4

)
dx dy , (34)

and

g̃ := g

(∫ T
2

−T
2

|φ1(z)|4 dz

)
. (35)
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In the case N > 1, we define EN
B,Ω((ψj ,⊥)j=0,...,N−1) by

Qper ,N
BE ,Ω (Ψ) = λz

1

∑
j

||ψj ,⊥||2 + EN
B,Ω((ψj ,⊥)) (36)

with

Ψ =
N−1∑
j=0

ψN
j (z)ψj ,⊥(x , y) .
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Of course when minimizing over normalized Ψ’s, one gets more
simply

Qper ,N
BE ,Ω (Ψ) = λz

1 + EN
B,Ω((ψj ,⊥)) .

This reduction (or more precisely a simplified approximation of this
functional) is proposed in [Sn] on the basis of formal computations.
The functional EN

B,Ω is somehow related to the Lawrence-Doniach
model for superconductors (see [ABB1, ABB2]).
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Universal estimates and applications
Case (A) : the longitudinal model
Case (B) : the transverse model

The analysis of the linear case leads immediately to the following
trivial and universal inequalities (which are valid for any N and any
Ω such that |Ω| < ω⊥)

λz
1 + ω⊥ ≤ Eper ,N

Ω ≤ λz
1 + ω⊥ + IN (37)

where

IN :=
gω⊥
2Nπ

(∫ T
2

−T
2

|φ1(z)|4dz

)
=

I

N
. (38)

This universal estimate is obtained by considering as test function

Ψper ,N(x , y , z) = ψ⊥(x , y)φN
1 (z) ,

where φN
1 is the N-th normalized ground state introduces in (24)

and ψ⊥(x , y) is the ground state of HΩ
⊥ , actually independent of Ω.
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Universal estimates and applications
Case (A) : the longitudinal model
Case (B) : the transverse model

A rather easy semi-classical analysis shows that λz
1 + ω⊥ is a good

asymptotic of Eper ,N
Ω in the limit ε→0 when g is sufficiently small

(what we can call the quasi-linear situation). More precisely, we
have
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Universal estimates and applications
Case (A) : the longitudinal model
Case (B) : the transverse model

Theorem QL

Under the condition that either

(QLa) g << ε
1
2 , (39)

or

(QLb) gω
1
2
⊥ << 1 , (40)

then we have

Eper ,N
Ω = (λz

1 + ω⊥) (1 + o(1)) , (41)

as ε→0.

Each of these conditions implies that I is small relatively to λz or
to ω⊥.
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Universal estimates and applications
Case (A) : the longitudinal model
Case (B) : the transverse model

So our goal is to analyze more interesting cases when no one of
these two conditions is satisfied. We justify the reductions to the
lower dimensional functionals

I when mN
A is much smaller than δ⊥, where

mN
A = inf

||φ||=1
EN

A (φ) (42)

(Case A)
I when mN

B,Ω is much smaller than 1/ε, the gap between the
two first bands, where

mN
B,Ω = infP

j ||ψj,⊥||2=1
EN

B,Ω((ψj ,⊥)) . (43)

(Case B)

An independent difficulty is then to have more accurate estimates
mN

A and mN
B,Ω according to the regime of parameters.
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Universal estimates and applications
Case (A) : the longitudinal model
Case (B) : the transverse model

We do not have universal estimates for this but have to separate
two cases:

I the weak interaction case, where the interaction term (L4

term) is at most of the same order as the ground state of the
linear problem in the same direction

I the Thomas Fermi case where the kinetic energy term is much
smaller than the potential and interaction terms.
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Universal estimates and applications
Case (A) : the longitudinal model
Case (B) : the transverse model

In what follows, when N is not mentioned in mN
A , mN

B,Ω, EN
A , EN

B,Ω,
then the notations are for N = 1. Similarly, if Ω is not mentioned,
this means that either the considered quantity is independent of Ω
or that we are treating the case Ω = 0. To mention the
dependence on other parameters, we will sometimes explicitly write
this dependence like for example mN

A (ε, ĝ) or mN
B,Ω(ε, g , ω⊥).
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Universal estimates and applications
Case (A) : the longitudinal model
Case (B) : the transverse model

We consider states which are of type (27) with
ϕ ∈ L2(Rz/(NT )Z). The energy of such test functions provides
the upper bound

Eper ,N
Ω ≤ ω⊥ + mN

A (ε, ĝ) (44)

where mN
A is given by (42).

In order to estimate mN
A , we first address the “Weak Interaction”

case where

(AWIa)
1

ε
<< (ω⊥ − Ω) . (45)

and, for a given c > 0,

(AWIb) gω⊥
√
ε ≤ c . (46)
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Universal estimates and applications
Case (A) : the longitudinal model
Case (B) : the transverse model

Assumption (45) implies that the lowest eigenvalue of the linear
problem in the z direction (λz

1 ∼ 1/ε) is much smaller than the gap
in the transverse direction δ⊥ = ω⊥ − Ω. This will allow the
projection onto the subspace ψ⊥ ⊗ L2(Rz/(NT )Z).

Assumption (46) implies that the nonlinear term (of order
gω⊥/

√
ε) is of the same order as λz

1. It implies using (22) that

mN
A ≈ 1

ε
. (47)

All these estimates are obtained by rather elementary semi-classical
methods.
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Case (A) : the longitudinal model
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Thus, by (45), mN
A is much smaller than δ⊥. We prove

Theorem AWI

When ε→0, and under Conditions (45) and (46), we have

Eper ,N
Ω = ω⊥ + mN

A (ε, ĝ) (1 + o(1)) . (48)
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Universal estimates and applications
Case (A) : the longitudinal model
Case (B) : the transverse model

We now describe the “Thomas-Fermi” regime. We assume

(ATFa) gω⊥
√
ε >> 1 . (49)

(ATFb) gω⊥ε
2 << 1 . (50)

(ATFc) g
5
12 ε−

1
6ω

5
12
⊥ << (ω⊥ − Ω)

3
8 . (51)

Assumption (49) implies that the nonlinear term is much bigger
than δz . Together with (50), it permits also to estimate mN

A :

mN
A ≤ C

(
ĝ

ε

) 2
3

. (52)
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Case (A) : the longitudinal model
Case (B) : the transverse model

Theorem ATF

When ε tends to 0, and under Conditions (49), (50) and (51), we
have, as ε→0,

Eper ,N
Ω = ω⊥ + mN

A (ε, ĝ) (1 + o(1)) . (53)

The proofs give actually a much stronger result.
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Universal estimates and applications
Case (A) : the longitudinal model
Case (B) : the transverse model

This corresponds to the idea of a reduction on the ground
eigenspace in the z variable, where the interaction term is kept in
the transverse problem. We recall that we denote by λz

1 the ground
state energy of Hper

z and by φN
1 the normalized ground state. We

consider states which are of type (28), that is in L2(R2
x ,y )⊗ φ1(z).

The energy of such test functions provides the upper bound

Eper ,N
Ω ≤ λz

1 + mN
B,Ω(ε, g , ω⊥) . (54)

Note the relevant parameter g̃ satisfies

g̃ =
g

N
(

∫ T
2

−T
2

φ1(z)4dz) ≈ g

N
√
ε
. (55)
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In the Weak Interaction case, we prove the following:

Theorem BWI

When ε tends to 0, and under the conditions

(BWIa) gε−
1
2 ≤ C , (56)

(BWIb) ω⊥ε << 1 , (57)

then
Eper ,N

Ω = λz
1 + mN

B,Ω(ε, g , ω⊥)(1 + o(1)) . (58)

Condition (BWIb) implies that the bottom of the spectrum of the
linear problem in the x − y direction is much smaller than δz , the
gap in the z direction, which is of order 1/ε. In this case mB is of
order ω⊥ at most.Bernard Helffer ( Univ Paris-Sud et CNRS) Mathematical models for Bose-Einstein condensates in optical lattices (after A. Aftalion and B. Helffer)
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Universal estimates and applications
Case (A) : the longitudinal model
Case (B) : the transverse model

In the Thomas-Fermi case, we prove

Theorem BTF

When ε tends to 0, and under the conditions

(BTFa)
√
ε << g , (59)

(BTFb) ω⊥
√

gε
3
4 << 1 , (60)

and
(BTFc) g

3
2 ε

1
4ω⊥ << 1 , (61)

then
Eper ,N

Ω = λz
1 + mN

B (ε, g , ω⊥)(1 + o(1)) . (62)
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Universal estimates and applications
Case (A) : the longitudinal model
Case (B) : the transverse model

One can show that, under these assumptions, the term mN
B is

bounded by ω⊥
√

g/ε1/4 and thus is much smaller than δz which is
of order 1

ε .
Our proofs are made up of two parts: a precise estimate of mN

A and

mN
B on the one hand, and a lower bound for Eper ,N

Ω on the other
hand. The lower bound consists in showing that the upperbound
obtained by projecting on the special states introduced above in
(27), (28) or (29) is actually also asymptotically a good lower
bound.
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A key proposition

For simplicity, we look at Case A. Recalling that δ⊥ = ω⊥ − Ω:

Proposition A

∃C > 0 s. t. ∀ε ∈]0, 1], ∀ω⊥,Ω s.t. δ⊥ ≥ 1, ∀g ≥ 0,

inf
||Ψ||=1

Eper ,N
BE ,Ω (Ψ) = ω⊥ + mN

A (ε, ĝ) (1− CrA(ε, ĝ)) , (63)

with
0 ≤ rA(ε, ĝ)

≤ g1/4δ
− 1

8
⊥

(
δ⊥+ω⊥
δ⊥

) 1
4

mN
A (ε, ĝ)

1
4

+mN
A (ε, ĝ)δ⊥

−1 .

(64)
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A key proposition

We describe the proof for N = 1 and Ω = 0. We call mA the
infimum instead of mN

A .
The proof is inspired by [AB].

We project a minimizer Ψ onto ψ⊥ ⊗ L2(R/TZ), and call
ψ⊥(x , y) ξ(z) its projection :

Ψ(x , y , z) = ψ⊥(x , y)ξ(z) + w(x , y , z) (65)

with ∫
R2

ψ⊥(x , y)w(x , y , z) dxdy = 0 . (66)

The orthogonality condition implies

1 =

∫ T
2

−T
2

|ξ(z)|2 dz +

∫
R2×]−T

2
,T

2
[
|w(x , y , z)|2 dxdydz (67)
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A key proposition

Now we have the lower bound∫ T
2

−T
2

E ′B(w(·, ·, z)) dz ≥ (δ⊥+ω⊥)

∫
R2×]−T

2
,T

2
[
|w(x , y , z)|2 dxdydz ,

(68)
with

E ′B(ψ) =

∫
R2

(
1

2
|∇x ,yψ(x , y)|2 +

ω2
⊥
2

(x2 + y2) |ψ(x , y)|2
)

dxdy .
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A key proposition

We compute the energy of Ψ and use the orthogonality condition
so that

E(Ψ) = ω⊥

∫ T
2

−T
2

|ξ(z)|2 dz + E ′A(ξ)

+

∫
R2

E ′A(w(x , y , ·)) dxdy +

∫ T
2

−T
2

E ′B(w(·, ·, z)) dz

+ g

∫
R2×]−T

2
,T

2
[
|Ψ(x , y , z)|4 dxdydz , (69)

where

E ′A(φ) =

∫ T
2

−T
2

(
1

2
|φ′(z)|2 + Wε(z)|φ|2

)
dz .
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A key proposition

From (67) and (69), we find

E(Ψ) ≥ ω⊥+
δ⊥

δ⊥ + ω⊥

∫ T
2

−T
2

E ′B(w(·, ·, z)) dz+

∫
R2

E ′A(w(x , y , ·)) dxdy .

(70)
We use (70) together with the upper bound (44) and (68) to
derive that ∫

R2×]−T
2
,T

2
[
|w(x , y , z)|2 dxdydz ≤ mA(ε, ĝ)

δ⊥
. (71)
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A key proposition

Note that the righthand side in (71) is very small according to the
conditions of the theorem.
Note that (71) implies∫ T

2

−T
2

|ξ(z)|2dz ≥ 1− mA(ε, ĝ)

δ⊥
. (72)

Then, we get also,∫
R2×]−T

2
,T

2
[ |∇x ,yw(x , y , z)|2 dxdydz ≤ 2 δ⊥+ω⊥

δ⊥

mA(ε,bg)
ω⊥

,∫
R2×]−T

2
,T

2
[ |∂zw(x , y , z)|2 dxdydz ≤ 2 mA(ε, ĝ) .

(73)
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A key proposition

The Sobolev embedding of H1(R2×]− T
2 ,

T
2 [) in

L6(R2×]− T
2 ,

T
2 [) gives

‖w‖6 ≤ C‖∂xw‖1/3
2 ‖∂yw‖1/3

2

(
‖∂zw‖2

2 + ||w ||22
)1/6

, (74)

where || · ||p denotes the norm in Lp(R2
x ,y×]− T

2 ,
T
2 [).

So we obtain :

‖w‖6 ≤ C̃mA(ε, ĝ)
1
2

(
δ⊥ + ω⊥
δ⊥

) 1
3

. (75)
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A key proposition

Since by Hölder’s Inequality,

‖w‖4 ≤ ‖w‖1/4
2 ‖w‖3/4

6 ,

we deduce that

‖w‖4 ≤ C mA(ε, ĝ)
1
2 δ⊥

− 1
8

(
δ⊥ + ω⊥
δ⊥

) 1
4

. (76)
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A key proposition

We expand

|Ψ|4 = |ψ⊥|4|ξ|4 + 2|ψ⊥|2|ξ|2|w |2
+4(<(ψ⊥ξw) + 1

2 |w |
2)2 + 4|ψ⊥|2|ξ|2<(ψ⊥ξw) .

Since (69) implies that

E(Ψ) ≥ ω⊥+EA(ξ)−4g

∫
R2×]−T

2
,T

2
[
|ψ⊥(x , y)|3|ξ(z)|3|w(x , y , z)| dxdydz ,

in order to get the lower bound, we just need to prove that the
last term is a perturbation to EA(ξ).
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A key proposition

We can do the following estimates

g
∫
|ψ⊥(x , y)|3|ξ(z)|3|w(x , y , z)| dxdydz

≤ c0gω
3
4
⊥(
∫
|ψ⊥(x , y)|4 dxdy)

3
4 (
∫
|ξ(z)|4dz)

3
4 ‖w‖4

by Hölder,

≤ c1g
1/4(EA(ξ))3/4‖w‖4

using the control of the quartic term by the energy,

≤ c2g
1/4δ⊥

− 1
8

(
δ⊥+ω⊥
δ⊥

) 1
4

mA(ε, ĝ)
1
2 (EA(ξ))3/4

using the control of ||w ||4 by the energy,

≤ c3 g1/4δ⊥
− 1

8

(
δ⊥+ω⊥
δ⊥

) 1
4

mA(ε, ĝ)
1
4

(
1 + C mA(ε, ĝ)δ⊥

−1
)
EA(ξ) .

Here to get the last line, we have used the lower bound

EA(ξ) ≥ mA(ε, ĝ) ||ξ||42 ,

and (72).
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This leads to

E(Ψ) ≥ ω⊥

+EA(ξ)

(
1− C g1/4δ⊥

− 1
8

(
δ⊥+ω⊥
δ⊥

) 1
4

mA(ε, ĝ)
1
4 − C mA(ε, ĝ)δ⊥

−1

)
,

and then to the proposition.
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Case B : Snoek’s model

We just describe the reduced model occuring in the case AWI.

Using the basis (ψN
j ) of (NT )-periodic Wannier functions attached

to the N first eigenvalues, we consider, as an approximation, the
functional

CN 3 (c)j=0,...,N−1 7→ EN
A (c) = EN

A (
N−1∑
j=0

cjψj) .

Only nearby wells interact by tunneling and semi-classical analysis
leads to

λz
1

N−1∑
j=0

|cj |2
−τ<

N−1∑
j=0

cj cj+1

+ĝ (
N−1∑
j=0

|cj |4) (

∫ NT
2

−NT
2

|ψN
0 (z)|4 dz)

(77)
where τ ∼ cε−3/2e−S/ε, and cN = c0.
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So we get the question of analyzing the Discrete Nonlinear
Schrödinger model :

D(c) = −τ
N−1∑
j=0

(cjcj+1 + cjcj+1) + I
N−1∑
j=0

|cj |4 ,

with two parameters I and τ .
This model is considered by Macholm, Nicholin, Pethick, Smith.
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After some additional approximations the functional becomes

EN,approx
B ((ψj ,⊥)j) =

∑N−1
j=0

∫
R2

(
|(∇x ,y − iΩ× r)ψ⊥,j |2
+V (x , y)|ψj ,⊥(x , y)|2

)
dxdy

+s
∑N−1

j=0 ||ψj ,⊥||2

+t
∑N−1

j=0 (〈ψj ,⊥, ψj+1,⊥〉+ 〈ψj ,⊥, ψj−1,⊥〉)
+g̃
∑N−1

j=0 ||ψj ,⊥||4L4 ,

(78)
with V (x , y) = 1

2(ω2
⊥ − Ω2)(x2 + y2), which should be minimized

over the (ψj ,⊥)j such that

N−1∑
j=0

||ψj ,⊥||2 = 1 .

This is the model described by Snoek [Sn].
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Analyse fonctionnelle, Théorie et applications, Dunod, 1983.

H. Brezis and L. Oswald.
Remarks on sublinear elliptic equations.
Nonlin. Anal., vol. 10, p. 55-64 (1986).

M. Correggi, T. Rindler-Daller, and J. Yngason.
Rapidly rotating Bose-Einstein condensates in strongly
anharmonic traps.
Journal of Math. Physics 48, 042104 (2007).

M. Dimassi, J. Sjöstrand.
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à potentiel périodique. J. Funct. Anal. 72 (1987), no. 1, 65–93.

C. Pethick, H. Smith,
Bose-Einstein condensation of dilute gases.
Cambridge University Press (2001).

L.P. Pitaevskii, S. Stringari.
Bose-Einstein condensation.
Oxford Science Publications (2003).

M. Reed and B. Simon.
Methods of modern Mathematical Physics, Vol. I-IV.

Bernard Helffer ( Univ Paris-Sud et CNRS) Mathematical models for Bose-Einstein condensates in optical lattices (after A. Aftalion and B. Helffer)



Introduction
The linear model

The reduced functionals
Main results

More on proofs
Analysis of reduced models

DNLS
Case B : Snoek’s model

Academic Press, New York.

B. Simon.
Semi-classical analysis of low lying eigenvalues III.
Width of the ground state band in strongly coupled solids.
Ann. Phys. 158 (1984), 415-420.

K. Schnee and J. Yngvason.
Cond. Mat. 0510006.

M. Snoek.
PHD Thesis. Vortex matter and ultracold superstrings in
optical lattices.

M. Snoek and H.T.C. Stoof.
Theory of vortex-lattice melting in a one-dimensional optical
lattice.

Bernard Helffer ( Univ Paris-Sud et CNRS) Mathematical models for Bose-Einstein condensates in optical lattices (after A. Aftalion and B. Helffer)



Introduction
The linear model

The reduced functionals
Main results

More on proofs
Analysis of reduced models

DNLS
Case B : Snoek’s model

Phys. Rev. A 74, 033607 (2006) and arXiv:cond-mat/0605699
(30 May 2006).

A. Smerzi, A. Trombettoni, P.G. Kevrekidis, and A.R. Bishop.
Dynamical Superfluid-Insulator transition in a chain of weakly
coupled Bose-Einstein condensates.
Phys. Rev. Lett. 89, 170402 (2002).

Bernard Helffer ( Univ Paris-Sud et CNRS) Mathematical models for Bose-Einstein condensates in optical lattices (after A. Aftalion and B. Helffer)


	Introduction
	The linear model
	The reduced functionals
	Main results
	Universal estimates and applications
	Case (A) : the longitudinal model
	Case (B) : the transverse model

	More on proofs
	A key proposition
	On the proof of the proposition

	Analysis of reduced models
	DNLS
	Case B : Snoek's model


