
1

Applications to (2D)-problems

Spectral theory for the complex Airy operator: the
case of a semipermeable barrier and applications to

the Bloch-Torrey equation
Talk at NYU Shanghai.

Bernard Helffer
(after Grebenkov-Helffer-Henry, Grebenkov-Helffer)

October 5, 2016

Bernard Helffer (after Grebenkov-Helffer-Henry, Grebenkov-Helffer) Spectral theory for the complex Airy operator: the case of a semipermeable barrier and applications to the Bloch-Torrey equation Talk at NYU Shanghai.



2

Applications to (2D)-problems

The transmission boundary condition which is considered appears in
various exchange problems such as molecular diffusion across
semi-permeable membranes [35, 32], heat transfer between two materials
[10, 17, 7], or transverse magnetization evolution in nuclear magnetic
resonance (NMR) experiments [19]. In the simplest setting of the latter
case, one considers the local transverse magnetization G (x , y ; t)
produced by the nuclei that started from a fixed initial point y and
diffused in a constant magnetic field gradient g up to time t. This
magnetization is also called the propagator or the Green function of the
Bloch-Torrey equation [37] (1956):
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Applications to (2D)-problems

∂

∂t
G (x , y ; t) = (D∆− iγgx1)G (x , y ; t) , (1)

with the initial condition

G (x , y ; t = 0) = δ(x − y), (2)

where D is the intrinsic diffusion coefficient, ∆ = ∂2/∂x2
1 + . . .+ ∂2/∂x2

d

the Laplace operator in Rd , γ the gyromagnetic ratio, and x1 the
coordinate in a prescribed direction.
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Applications to (2D)-problems

In this talk, we focus in the first part on the one-dimensional situation
(d = 1), in which the operator

D2
x + ix = − d2

dx2 + ix

is called the complex Airy operator and appears in many contexts:
mathematical physics, fluid dynamics, time dependent Ginzburg-Landau
problems and also as an interesting toy model in spectral theory (see [3]).
We consider a suitable extension A+

1 of this differential operator and its
associated evolution operator e−tA

+
1 . The Green function G (x , y ; t) is

the distribution kernel of e−tA
+
1 .
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Applications to (2D)-problems

For the problem on the line R, an intriguing property is that this non
self-adjoint operator, which has compact resolvent, has empty spectrum.
However, the situation is completely different on the half-line R+. The
eigenvalue problem

(D2
x + ix)u = λu,

for a spectral pair (u, λ) with u in H2(R+), xu ∈ L2(R+) has been
thoroughly analyzed for both Dirichlet (u(0) = 0) and Neumann
(u′(0) = 0) boundary conditions.
The spectrum consists of an infinite sequence of eigenvalues of
multiplicity one explicitly related to the zeroes of the Airy function (see
[34, 25]).
The space generated by the eigenfunctions is dense in L2(R+)
(completeness property) but there is no Riesz basis of eigenfunctions.
Finally, the decay of the associated semi-group has been analyzed in
detail. The physical consequences of these spectral properties for NMR
experiments have been first revealed by Stoller, Happer and Dyson [34]
and then thoroughly discussed by De Sviet et al. and D. Grebenkov
[14, 18, 21].
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Applications to (2D)-problems

In this talk, we consider another problem for the complex Airy operator
on the line but with a transmission property at 0 which reads (cf
Grebenkov [21]), {

u′(0+) = u′(0−) ,
u′(0) = κ

(
u(0+)− u(0−)

)
,

(3)

where κ ≥ 0 is a real parameter.
The case κ = 0 corresponds to two independent Neumann problems on
R− and R+ for the complex Airy operator.
When κ tends to +∞, the second relation in (3) becomes the continuity
condition, u(0+) = u(0−), and the barrier disappears.
Hence, the problem tends (at least formally) to the standard problem for
the complex Airy operator on the line.
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Applications to (2D)-problems

We summarize our main (1D)-results in the following:

Theorem

The semigroup exp(−tA+
1 ) is contracting. The operator A+

1 has a
discrete spectrum {λn(κ)}. The eigenvalues λn(κ) are determined as
(complex-valued) solutions of the equation

2πAi′(e2πi/3λ)Ai′(e−2πi/3λ) + κ = 0, (4)

where Ai′(z) is the derivative of the Airy function.
For all κ ≥ 0, there exists N such that, for all n ≥ N, there exists a
unique eigenvalue of A+

1 in the ball B(λ±n , 2κ|λ±n |−1), where
λ±n = e±2πi/3a′n, and a′n are the zeros of Ai′(z).
Finally, for any κ ≥ 0 the space generated by the generalized
eigenfunctions of the complex Airy operator with transmission is dense in
L2(R−)× L2(R+).
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Applications to (2D)-problems

Note that due to the possible presence of eigenvalues with Jordan blocks,
we do not prove in full generality that the eigenfunctions of A+

1 span a
dense set in L2(R−)× L2(R+) . Numerical computations suggest actually
that all the spectral projections have rank one (no Jordan block) but we
can only prove that there are at most a finite number of eigenvalues with
nontrivial Jordan blocks.
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Applications to (2D)-problems
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Figure: Numerically computed pseudospectrum in the complex plane of the
complex Airy operator with the transmission boundary condition at the origin
with κ = 1. The red points show the poles λ±

n (κ).
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Applications to (2D)-problems

Basic properties of the Airy function

We recall that the Airy function is the unique solution of

(D2
x + x)u = 0 ,

on the line such that u(x) tends to 0 as x → +∞ and
Ai(0) = 1/

(
3
2
3 Γ( 2

3 )
)
. This Airy function extends into an holomorphic

function in C .
Ai is positive decreasing on R+ but has an infinite number of zeros in
R−. We denote by an (n ∈ N) the decreasing sequence of zeros of Ai.
Similarly we denote by a′n the sequence of zeros of Ai′. Moreover

an ∼
n→+∞

−
(
3π
2

(n − 1/4)

)2/3

, (5)

and

a′n ∼
n→+∞

−
(
3π
2

(n − 3/4)

)2/3

. (6)
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Applications to (2D)-problems

Ai(e iαz) and Ai(e−iαz) (with α = 2π/3) are two independent solutions
of the differential equation(

− d2

dz2 − iz

)
w(z) = 0 .

Considering their Wronskian, one gets

e−iαAi′(e−iαz)Ai(e iαz)− e iαAi′(e iαz)Ai(e−iαz) =
i

2π
∀ z ∈ C . (7)

Note the identity

Ai(z) + e−iαAi(e−iαz) + e iαAi(e iαz) = 0 ∀ z ∈ C . (8)
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Applications to (2D)-problems

The Airy function and its derivative satisfy different asymptotic:
(i) For | arg z | < π,

Ai(z) =
1
2
π−

1
2 z−1/4 exp

(
−2
3
z3/2

)(
1 +O(|z |− 3

2 )
)
, (9)

Ai′(z) = −1
2
π−

1
2 z1/4 exp

(
−2
3
z3/2

)(
1 +O(|z |− 3

2 )
)
. (10)

(ii) For | arg z | < 2
3π ,

Ai(−z) = π−
1
2 z−1/4

(
sin
(
2
3
z3/2 +

π

4

)
(1 +O(|z |− 3

2 ) (11)

− 5
72

(
2
3
z

3
2

)−1

cos
(
2
3
z3/2 +

π

4

)
(1 +O(|z |− 3

2 )

)

Ai′(−z) = −π− 1
2 z1/4

(
cos(

2
3
z3/2 +

π

4
)(1 +O(|z |− 3

2 )) , (12)

+
7
72

(
2
3
z3/2

)−1

sin(
2
3
z3/2 +

π

4
)(1 +O(|z |− 3

2 ))

)
.
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Applications to (2D)-problems

Analysis of the resolvent of A+ on the line for λ > 0

On the line R, A+ is the closure of the operator A+
0 defined on C∞0 (R)

by A+
0 = D2

x + ix . A detailed description of its properties can be found in
my book in Cambridge [?] (2013). We give the asymptotic control of the
resolvent (A+ − λ)−1 as λ→ +∞. We successively discuss the control
in L(L2(R)) and in the Hilbert-Schmidt space C2(L2(R)).
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Applications to (2D)-problems

Control in L(L2(R)).

Here we follow an idea present in an old paper of I. Herbst, the book of
Davies [12] and used in Martinet’s PHD [31] (see also [25]).

Proposition

For all λ > λ0 ,

‖(A+ − λ)−1‖L(L2(R)) ≤
√
2π λ−

1
4 exp

(
4
3
λ

3
2

)(
1 + o(1)

)
. (13)
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Applications to (2D)-problems

Proof

The proof is obtained by considering A+ in the Fourier space, i.e.

Â+ = ξ2 +
d

dξ
. (14)

The associated semi-group Tt := exp(−Â+t) is given by

Ttu(ξ) = exp
(
−ξ2t − ξt2 − t3

3

)
u(ξ − t) , ∀ u ∈ S(R) . (15)

Tt is the composition of a multiplication by exp(−ξ2t − ξt2 − t3

3 ) and of
a translation by t.
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Applications to (2D)-problems

Computing supξ exp(−ξ2t − ξt2 − t3

3 ) leads to

‖Tt‖L(L2(R)) ≤ exp
(
− t3

12

)
. (16)

It is then easy to get an upper bound for the resolvent. For λ > 0, we
have

‖(A+ − λ)−1‖L(L2(R)) = ‖(Â+ − λ)−1‖L(L2(R)) (17)

≤
∫ +∞

0
exp(tλ)‖Tt‖L(L2(R))dt (18)

≤
∫ +∞

0
exp

(
tλ− t3

12

)
dt . (19)
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Applications to (2D)-problems

Control in Hilbert-Schmidt norm

As previously, we use the Fourier representation and analyze Â+. Note
that

‖(Â+ − λ)−1‖2HS = ‖(A+ − λ)−1‖2HS (20)

We have then an explicit description of the resolvent by

(Â+ − λ)−1u(ξ) =

∫ ξ

−∞
u(η) exp

(
1
3

(η3 − ξ3) + λ(ξ − η)

)
dη .

Hence, we have to compute

‖(Â+ − λ)−1‖2HS =

∫ ∫
η<ξ

exp
(
2
3

(η3 − ξ3) + 2λ(ξ − η)

)
dηdξ .

Again, this can be analyzed after a scaling in the spirit of the Laplace
method.
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Applications to (2D)-problems

Analysis of the resolvent for the Dirichlet realization in the
half-line.

It is not difficult to define the Dirichlet realization A±,D of D2
x ± ix on

R+ (the analysis on the negative semi-axis is similar). One can use for
example the Lax Milgram theorem and take as form domain

V D := {u ∈ H1
0 (R+) , x

1
2 u ∈ L2

+} .

It can also be shown that the domain is

DD := {u ∈ V D , u ∈ H2
+} .

This implies

Proposition

The resolvent G±,D(λ) := (A±,D − λ)−1 is in the Schatten class C p for
any p > 3

2 (see [15] for definition), where A±,D = D2
x ± ix and the

superscript D refers to the Dirichlet case.
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Applications to (2D)-problems

More precisely we provide the distribution kernel G−,D(x , y ;λ) of the
resolvent for the complex Airy operator D2

x − ix on the positive semi-axis
with Dirichlet boundary condition at the origin. Matching the boundary
conditions, one gets

G−,D(x , y ;λ) =


2πAi(e−iαwy )

Ai(e−iαw0)

[
Ai(e iαwx)Ai(e−iαw0)

−Ai(e−iαwx)Ai(e iαw0)
]

(0 < x < y) ,

2πAi(e−iαwx )
Ai(e−iαw0)

[
Ai(e iαwy )Ai(e−iαw0)

−Ai(e−iαwy )Ai(e iαw0)
]

(x > y) ,

(21)
where Ai(z) is the Airy function, wx = ix + λ, and α = 2π/3 .
We have the decomposition

G−,D(x , y ;λ) = G−0 (x , y ;λ) + G−,D1 (x , y ;λ), (22)

where G−0 (x , y ;λ) is the resolvent for the Airy operator D2
x − ix on the

whole line,
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Applications to (2D)-problems

G−0 (x , y ;λ) =

{
2πAi(e iαwx)Ai(e−iαwy ) (x < y),

2πAi(e−iαwx)Ai(e iαwy ) (x > y),
(23)

and

G−,D1 (x , y ;λ) = −2π Ai(e iαλ)

Ai(e−iαλ)
Ai
(
e−iα(ix+λ)

)
Ai
(
e−iα(iy+λ)

)
. (24)

The resolvent is compact. The poles of the resolvent are determined by
the zeros of Ai(e−iαλ), i.e., λn = e iαan , where the an are zeros of the
Airy function: Ai(an) = 0 . The eigenvalues have multiplicity 1 (no
Jordan block).
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Applications to (2D)-problems

As a consequence of the analysis of the numerical range of the operator,
we have

Proposition

||G±,D(λ)|| ≤ 1
|Reλ|

, if Reλ < 0 ; (25)

and
||G±,D(λ)|| ≤ 1

|Imλ|
, if ∓ Imλ > 0 . (26)

This proposition together with the Phragmen-Lindelöf principle (see
Agmon [2] or Dunford-Schwartz [15])

Proposition

The space generated by the eigenfunctions of the Dirichlet realization
A±,D of D2

x ± ix is dense in L2
+.

It is proven by R. Henry in [27] that there is no Riesz basis of
eigenfunctions.
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Applications to (2D)-problems

The Hilbert-Schmidt norm of the resolvent for λ > 0

At the boundary of the numerical range of the operator, it is interesting
to analyze the behavior of the resolvent. Numerical computations lead to
the observation that

lim
λ→+∞

||G±,D(λ)||L(L2+) = 0 . (27)

As a new result, we will prove

Proposition

When λ tends to +∞, we have

||G±,D(λ)||HS ≈ λ−
1
4 (log λ)

1
2 . (28)

Bernard Helffer (after Grebenkov-Helffer-Henry, Grebenkov-Helffer) Spectral theory for the complex Airy operator: the case of a semipermeable barrier and applications to the Bloch-Torrey equation Talk at NYU Shanghai.



23

Applications to (2D)-problems

About the proof

The Hilbert-Schmidt norm of the resolvent can be written as

||G−,D ||2HS =

∫
R2

+

|G−,D(x , y ;λ)|2dxdy = 8π2

∞∫
0

Q(x ;λ)dx , (29)

where

Q(x ;λ) =
|Ai(e−iα(ix + λ))|2

|Ai(e−iαλ)|2
×

×
x∫

0

∣∣Ai(e iα(iy + λ))Ai(e−iαλ)−Ai(e−iα(iy + λ))Ai(e iαλ)
∣∣2 dy .
(30)
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Applications to (2D)-problems

Using the identity (8), we observe that

Ai(e iα(iy + λ))Ai(e−iαλ)−Ai(e−iα(iy + λ))Ai(e iαλ)
= e−iα

(
Ai(e−iα(iy + λ))Ai(λ)−Ai(iy + λ)Ai(e−iαλ)

)
.

(31)

Hence we get

Q(x ;λ) = |Ai(e−iα(ix+λ))|2
x∫

0

∣∣∣∣Ai(e−iα(iy + λ))
Ai(λ)

Ai(e−iαλ)
−Ai(iy + λ)

∣∣∣∣2 dy .
(32)
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Applications to (2D)-problems

More on Airy expansions

As a consequence of (9), we can write

|Ai(e−iα(ix + λ))| =
exp
(
− 2

3λ
3/2u(x/λ)

)
2
√
π(λ2 + x2)1/8 (1 +O(λ−

3
2 )), (33)

where

u(s) = −(1 + s2)3/4 cos
(
3
2
tan−1(s)

)
=

√√
1 + s2 + 1 (

√
1 + s2 − 2)√

2
.

(34)

We note indeed that |e−iα(ix + λ)| =
√
x2 + λ2 ≥ λ ≥ λ0 and that we

have a control of the argument arg(e−iα(ix + λ)) ∈ [− 2π
3 ,−

π
6 ] which

permits to apply (9).
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Applications to (2D)-problems

Similarly, we obtain

|Ai(ix + λ)| =
exp
( 2

3λ
3/2u(x/λ)

)
2
√
π(λ2 + x2)1/8 (1 +O(λ−

3
2 )) . (35)

We note indeed that |ix + λ| =
√
x2 + λ2 and that

arg((ix + λ)) ∈ [0,+π
2 ] and one can then again apply (9). In particular

the function |Ai(ix + λ)| grows super-exponentially as x → +∞.
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Applications to (2D)-problems

Basic properties of u.

Note that

u′(s) =
3

2
√
2

s√
1 +
√
1 + s2

≥ 0 (s ≥ 0), (36)

and u has the following expansion at the origin

u(s) = −1 +
3
8
s2 +O(s4) . (37)

For large s, one has

u(s) ∼ s3/2
√
2
, u′(s) ∼ 3s1/2

2
√
2
. (38)

One concludes that the function u is monotonously increasing from −1
to infinity.
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Applications to (2D)-problems

Upper bound

We start from the simple upper bound (for any ε > 0)

Q(x , λ) ≤ (1 +
1
ε

)Q1(x , λ) + (1 + ε)Q2(x , λ) , (39)

with

Q1(x , λ) := |Ai(e−iα(ix + λ))|2 |Ai(λ)|2

|Ai(e−iαλ)|2

x∫
0

|Ai(e−iα(iy + λ))|2 dy

and

Q2(x , λ) := |Ai(e−iα(ix + λ))|2
x∫

0

|Ai(iy + λ)|2 dy .

We then write

Q1(x , λ) ≤ |Ai(e−iα(ix + λ))|2 |Ai(λ)|2

|Ai(e−iαλ)|2

+∞∫
0

|Ai(e−iα(iy + λ))|2 dy

and integrating over x∫ +∞

0
Q1(x , λ)dx ≤ I0(λ)2 |Ai(λ)|2

|Ai(e−iαλ)|2
,

where I0(λ) is given by (??).
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Applications to (2D)-problems

Using (9), we obtain ∫ +∞

0
Q1(x , λ)dx ≤ Cλ−

1
2 . (40)

Hence at this stage, we have proven the existence of C > 0, ε0 > 0 and
λ0 such that such that for any ε ∈ (0, ε0] and any λ ≥ λ0:

||G−,D ||2HS ≤ (1 + ε)

8π2

∞∫
0

Q2(x ;λ)dx

+ Cλ−1ε−1 . (41)

It remains to estimate∫ +∞

0
Q2(x , λ)dx =

∫ +∞

0
dx

x∫
0

|Ai(e−iα(ix + λ))Ai(iy + λ)|2 dy . (42)
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Applications to (2D)-problems

Using the estimates (33) and (35), we obtain

Lemma

There exist C and ε0, such that, for any ε ∈ (0, ε0), for λ > ε−
2
3 , the

integral of Q2(x ;λ) can be bounded as

1
2

(1− Cε) I (λ) ≤ 8π2
∫ +∞

0
Q2(x , λ)dx ≤ 1

2
(1 + Cε) I (λ) , (43)

where

I (λ) =

∞∫
0

dx
exp
(
− 4

3λ
3/2u(x/λ)

)
(λ2 + x2)1/4

x∫
0

dy
exp
( 4

3λ
3/2u(y/λ)

)
(λ2 + y2)1/4 . (44)
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Applications to (2D)-problems

Control of I (λ).
It remains to control I (λ) as λ→ +∞ . Using a change of variables, we
get

I (λ) = λ

∞∫
0

dx
exp
(
− 4

3λ
3/2u(x)

)
(1 + x2)1/4

x∫
0

dy
exp
( 4

3λ
3/2u(y)

)
(1 + y2)1/4 . (45)

Hence, introducing

t =
4
3
λ

3
2 , (46)

we reduce the analysis to Î (t) defined for t ≥ t0 by

Î (t) :=

∞∫
0

dx
1

(1 + x2)1/4

x∫
0

dy
exp
(
t(u(y)− u(x))

)
(1 + y2)1/4 , (47)

with
I (λ) = λ Î (t) . (48)

The analysis is close to that of the asymptotic behavior of a Laplace
integral.
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Applications to (2D)-problems

Asymptotic upper bound of Î (t).

Let us start by a heuristic discussion. The maximum of u(y)− u(x)
should be on x = y . For x − y small, we have
u(y)− u(x) ∼ (y − x)u′(x). This suggests a concentration near
x = y = 0, whereas a contribution for large x is of smaller order
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Applications to (2D)-problems

The main term is

Î1(t, ε) =

∫ ε

0
dx

1
(1 + x2)1/4

x∫
0

dy
exp
(
t(u(y)− u(x))

)
(1 + y2)1/4 . (49)

Its asymptotics is obtained using the asymptotics of

Jε(σ) :=

∫ ε

0
dx

∫ x

0
exp
(
σ(y2 − x2)

)
dy ,

which has now to be estimated for large σ.
Here appears the Dawson function (cf Abramowitz-Stegun [1], p. 295
and 319)

s 7→ D(s) :=

∫ s

0
exp(y2 − s2) dy

and its asymptotics as s → +∞ ,

D(s) =
1
2s

(1 +O(s−1) . (50)
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Applications to (2D)-problems

Hence we have shown the existence of a constant C > 0 and of ε0 such
that if t ≥ Cε−3 and ε ∈ (0, ε0)

Î1(t, ε) ≤ 2
3
log t
t

+ C (ε
log t
t

+
1
ε

1
t

) . (51)
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Applications to (2D)-problems

Taking ε = (log λ)−
1
2 , we obtain

Lemma
There exists C > 0 and λ0 such that for λ ≥ λ0

||G−,D(λ)||2HS ≤
3
8
λ−

1
2 log λ(1 + C (log λ)−

1
2 ) .
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Applications to (2D)-problems

Lower bound

Once the upper bounds established, the proof of the lower bound is easy.
We start from the simple lower bound (for any ε > 0)

Q(x , λ) ≥ −1
ε
Q1(x , λ) + (1− ε)Q2(x , λ)) , (52)

and consequently∫ +∞

0
Q(x , λ) dx ≥ (1− ε)

∫ +∞

0
Q2(x , λ) dx − 1

ε

∫ +∞

0
Q1(x , λ) . (53)

Similar estimates to the upper bound give the proof of

Lemma
There exists C > 0 and λ0 such that for λ ≥ λ0

||G−,D(λ)||2HS ≥
3
8
λ−

1
2 log λ (1− C (log λ)−

1
2 ) .

Bernard Helffer (after Grebenkov-Helffer-Henry, Grebenkov-Helffer) Spectral theory for the complex Airy operator: the case of a semipermeable barrier and applications to the Bloch-Torrey equation Talk at NYU Shanghai.



37

Applications to (2D)-problems

The complex Airy operator with a semi-permeable barrier:
definition and properties

We consider the sesquilinear form aν defined for u = (u−, u+) and
v = (v−, v+) by

aν(u, v) =

∫ 0

−∞

(
u′−(x)v̄ ′−(x) + i xu−(x)v̄−(x) + ν u−(x)v̄−(x)

)
dx

+

∫ +∞

0

(
u′+(x)v̄ ′+(x) + i xu+(x)v̄+(x) + ν u+(x)v̄+(x)

)
dx

+κ
(
u+(0)− u−(0)

)(
v+(0)− v−(0)

)
, (54)

where the form domain V is

V :=
{
u = (u−, u+) ∈ H1

− × H1
+ : |x | 12 u ∈ L2

− × L2
+

}
.

The space V is endowed with the Hilbertian norm

‖u‖V :=
√
‖u−‖2H1

−
+ ‖u+‖2H1

+
+ ‖|x |1/2u‖2L2 .
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Applications to (2D)-problems

We first observe

Lemma
For any ν ≥ 0, the sesquilinear form aν is continuous on V .

As the imaginary part of the potential V (x) = ix changes sign, it is not
straightforward to determine whether the sesquilinear form aν is coercive.
Due to the lack of coercivity, the standard version of the Lax-Milgram
theorem does not apply. We shall instead use the following generalization
introduced in Almog-Helffer [4].
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Applications to (2D)-problems

Theorem

Let V ⊂ H be two Hilbert spaces such that V is continuously embedded
in H and V is dense in H . Let a be a continuous sesquilinear form on
V × V , and assume that there exists α > 0 and two bounded linear
operators Φ1 and Φ2 on V such that, for all u ∈ V ,{

|a(u, u)|+ |a(u,Φ1u)| ≥ α ‖u‖2V ,
|a(u, u)|+ |a(Φ2u, u)| ≥ α ‖u‖2V .

(55)

Assume further that Φ1 extends to a bounded linear operator on H .
Then there exists a closed, densely-defined operator S on H with domain

D(S) =
{
u ∈ V : v 7→ a(u, v) can be extended continuously on H

}
,

such that, for all u ∈ D(S) and v ∈ V ,

a(u, v) = 〈Su, v〉H .
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Applications to (2D)-problems

Moreover, from the characterization of the domain and its inclusion in D̂,
we deduce the stronger

Proposition

There exists λ0 (λ0 = 0 for κ > 0) such that (A+
1 − λ0)−1 belongs to the

Schatten class Cp for any p > 3
2 .

Note that if it is true for some λ0 it is true for any λ in the resolvent set.
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Applications to (2D)-problems

Remark

The adjoint of A+
1 is the operator associated by the same construction

with D2
x − ix . A−1 + λ being injective, this implies by a general criterion

[25] that A+
1 + λ is maximal accretive, hence generates a contraction

semigroup.
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Applications to (2D)-problems

The following statement summarizes the previous discussion.

Proposition

The operator A+
1 acting as

u 7→ A+
1 u =

(
− d2

dx2 u− + ixu−, −
d2

dx2 u+ + ixu+

)
on the domain

D(A+
1 ) =

{
u ∈ H2

− × H2
+ : xu ∈ L2

− × L2
+

and u satisfies conditions (3)
}

(56)

is a closed operator with compact resolvent.
There exists some positive λ such that the operator A+

1 + λ is maximal
accretive.
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Applications to (2D)-problems

Remark

We have
ΓA+

1 = A−1 , (57)

where Γ denotes the complex conjugation:

Γ(u− , u+) = (ū− , ū+) .

Remark (PT-Symmetry)

If (λ, u) is an eigenpair, then (λ̄, ū(−x)) is also an eigenpair.
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Applications to (2D)-problems

Integral kernel of the resolvent

Lengthy but elementary computations give:

G−(x , y ;λ, κ) = G−0 (x , y ;λ) + G1(x , y ;λ, κ) , (58)

where G−0 (x , y ;λ) is the distribution kernel of the resolvent of the
operator A∗0 := − d2

dx2 − ix on the line, whereas
G1(x , y ;λ, κ) is given by the following expressions

G1(x , y ;λ, κ) =

{
−4π2 e2iα[Ai′(e iαλ)]2

f (λ)+κ Ai(e−iαwx)Ai(e−iαwy ) , for x > 0 ,

−2π f (λ)
f (λ)+κAi(e iαwx)Ai(e−iαwy ) , for x < 0 ,

(59)
for y > 0, and

G1(x , y ;λ, κ) =

{
−2π f (λ)

f (λ)+κAi(e−iαwx)Ai(e iαwy ) , x > 0 ,

−4π2 e−2iα[Ai′(e−iαλ)]2

f (λ)+κ Ai(e iαwx)Ai(e iαwy ) , x < 0 ,
(60)

for y < 0.
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Applications to (2D)-problems

Hence the poles are determined by the equation

f (λ) = −κ , (61)

with f defined by

f (λ) := 2πAi′(e−iαλ)Ai′(e iαλ) . (62)

Remark

For κ = 0, one recovers the conjugated pairs associated with the zeros a′n
of Ai′. We have indeed as poles

λ+
n = e iαa′n , λ−n = e−iαa′n , (63)

where a′n is the n-th zero of Ai′.
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Applications to (2D)-problems

We also know that the eigenvalues for the Neumann problem are simple.
Hence by the local inversion theorem we get the existence of a solution
close to each λ±n for κ small enough (possibly depending on n) if we
show that f ′(λ±n ) 6= 0. For λ+

n , we have, using the Wronskian relation (7)
and Ai′(e−iαλ+

n ) = 0 ,

f ′(λ+
n ) = 2π e−iα Ai′′(e−iαλ+

n )Ai′(e iαλ+
n )

= 2πe−2iαλ+
n Ai(e−iαλ+

n )Ai′(e iαλ+
n )

= −iλ+
n .

(64)

Similar computations hold for λ−n . We recall that

λ+
n = λ−n .
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Applications to (2D)-problems

Applications to (2D)-problems

In higher dimension, an extension of the complex Airy operator is the
differential operator that we call the Bloch-Torrey operator or simply the
BT-operator:

−D∆ + igx1 ,

where ∆ = ∂2/∂x2
1 + . . .+ ∂2/∂x2

n is the Laplace operator in Rn, and D
and g are real parameters. More generally, we will study the spectral
properties of some realizations of the differential operator

A#
h = −h2∆ + i V (x) , (65)

in an open set Ω, where h is a real parameter and V (x) a real-valued
potential with controlled behavior at ∞, and the superscript #
distinguishes Dirichlet (D), Neumann (N), Robin (R), or transmission (T)
conditions.
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Applications to (2D)-problems

More precisely we discuss
1 the case of a bounded open set Ω with Dirichlet, Neumann or Robin

boundary condition;
2 the case of a complement Ω := {Ω− of a bounded set Ω− with

Dirichlet, Neumann or Robin boundary condition;
3 the case of two components Ω− ∪ Ω+, with Ω− ⊂ Ω− ⊂ Ω and

Ω+ = Ω\Ω−, with Ω bounded and transmission conditions at the
interface between Ω− and Ω+;

4 the case of two components Ω− ∪ {Ω− , with Ω− bounded and
transmission conditions at the boundary;

5 the case of two unbounded components Ω− and Ω+ separated by a
hypersurface and transmission conditions at the boundary.
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Applications to (2D)-problems

The state u (in the first two items) or the pair (u−, u+) in the last items
should satisfy some boundary or transmission condition at the interface.
We consider the following situations:

the Dirichlet condition: u|∂Ω = 0 ;
the Neumann condition: ∂νu|∂Ω = 0 , where ∂ν = ν · ∇, with ν
being the outwards pointing normal;
the Robin condition: h2∂νu|∂Ω = −Ku|∂Ω , where ≥ 0 denotes the
Robin parameter;
the transmission condition:

h2∂νu+ |∂Ω− = h2∂νu− |∂Ω− = K(u+ |∂Ω− − u− |∂Ω−) ,

where K ≥ 0 denotes the transmission parameter.
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Applications to (2D)-problems

Ω# denotes Ω if # ∈ {D,N,R} and Ω− if # = T .
L2

# denotes L2(Ω) if # ∈ {D,N,R} and L2(Ω−)× L2(Ω+) if # = T .
In the first part of this talk, we have described various realizations of the
complex Airy operator A#

0 := − d2

dτ2 + iτ in the four cases.
The boundary conditions read respectively:

u(0) = 0 (Dirichlet)
u′(0) = 0 (Neumann)
u′(0) = κ u(0) (Robin )
u′−(0) = u′+(0) = κ (u+(0)− u−(0)) (Transmission)

(with κ ≥ 0 in the last items). For all these cases, we have proven the
existence of a discrete spectrum and the completeness of the
corresponding generalized eigenfunctions.
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Applications to (2D)-problems

We have started the analysis of the spectral properties of the BT
operator in dimension 2 or higher that are relevant for applications in
superconductivity theory (Almog, Almog-Helffer-Pan, Almog-Helffer), in
fluid dynamics (Martinet), in control theory
(Beauchard-Helffer-Henry-Robbiano) and in diffusion magnetic resonance
imaging (Grebenkov) . We mainly focus on

definition of the operator,
construction of approximate eigenvalues in some asymptotic regimes,
localization of quasimode states near certain boundary points,
numerical simulations.
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Applications to (2D)-problems

In particular, it is interesting to discuss the semiclassical asymptotics
h→ 0 , the large domain limit, the asymptotics when g → 0 or +∞ , the
asymptotics when the transmission or Robin parameter tends to 0 . Some
other important questions remain unsolved like the existence of
eigenvalues close to the approximate eigenvalues (a problem which is only
solved in particular situations).
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Applications to (2D)-problems

When g = 0, the BT-operator is reduced to the Laplace operator for
which the answers are well known. In particular, the spectrum is discrete
in the case of bounded domains and equals [0,+∞) when one or both
components are unbounded. In the case g 6= 0 , we show that if there is
at least one boundary point at which the normal vector to the boundary
is parallel to the coordinate x1, then there exist approximate eigenvalues
of the BT-operator suggesting the existence of eigenvalues while the
associated eigenfunctions are localized near this point. This localization
property has been already discussed in physics literature for bounded
domains (deSwiet et al. 1994) for which the existence of eigenvalues is
trivial. Since our asymptotic constructions are local and thus hold for
unbounded domains, the localization behavior can be conjectured for
exterior problems involving the BT-operator.
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Applications to (2D)-problems

Some of these questions have been already analyzed by Y. Almog (see [3]
(2008) and references therein for earlier contributions), R. Henry in his
PHD (2013) (+ CPDE paper 2014) and Almog-Henry (2015) but they
were mainly devoted to the case of a Dirichlet realization in bounded
domains in R2 or particular unbounded domains like R2 and R2

+, these
two last cases playing an important role in the local analysis of the global
problem.
We consider Ah and the corresponding realizations in Ω are denoted by
AD

h , AN
h , AR

h and AT
h . These realizations will be properly under the

condition that, when Ω is unbounded, there exists C > 0 such that

|∇V (x)| ≤ C
√

1 + V (x)2 . (66)
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Applications to (2D)-problems

Our main construction is local and summarized in the following

Main (2D)-theorem

Let Ω ⊂ R2 as above, V ∈ C∞(Ω;R) and x0 ∈ ∂Ω# such that

∇V (x0) 6= 0 , ∇V (x0) ∧ ν(x0) = 0 , (67)

where ν(x0) denotes the outward normal on ∂Ω at x0 .
Assume that, in the local curvilinear coordinates, the second derivative
2 v20 of the restriction of V to the boundary at x0 satisfies

v20 6= 0 .

For the Robin and transmission cases, we assume that for some κ > 0

K = h
4
3κ . (68)
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Applications to (2D)-problems

Main theorem continued

If µ#
0 is a simple eigenvalue of the realization “#” − d2

dx2 + ix in L2
# ,

and µ2 is an eigenvalue of Davies operator − d2

dy2 + iy2 on L2(R),

then there exists a pair (λ#
h , u

#
h ) with u#

h in the domain of A#
h , such that

λ#
h = i V (x0) + h

2
3
∑
j∈N

λ#
2j h

j
3 +O(h∞) , (69)

(A#
h − λ

#
h ) u#

h = O(h∞) in L2
#(Ω) , ||u#

h ||L2 ∼ 1 , (70)

where

λ#
0 = µ#

0 | v01|
2
3 exp

(
i
π

3
v01

)
, λ2 = µ2|v20|

1
2 exp

(
i
π

4
v20

)
, (71)

with v01 := ν · ∇V (x0) .

We can also discuss a physically interesting case when κ in (68) depends
on h and tends to 0 .
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Applications to (2D)-problems

The proof of this theorem provides a general scheme for quasimode
construction in an arbitrary planar domain with smooth boundary ∂Ω. In
particular, this construction allowed us to retrieve and further generalize
the asymptotic expansion of eigenvalues obtained by de Swiet and Sen
for the Bloch-Torrey operator in the case of a disk. The generalization is
applicable for any smooth boundary, with Neumann, Dirichlet, Robin, or
transmission boundary condition. Moreover, since the analysis is local,
the construction is applicable to both bounded and unbounded
components.
In a work in progress, Almog-Grebenkov-Helffer plan to prove the
existence of the eigenvalues and the rate of the associated semi-group.
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