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Abstract

In this paper we discuss compactness of the
canonical solution operator to ∂ on weigthed
L2 spaces on Cn. For this purpose we apply
ideas which were used for the Witten Laplacian
in the real case and various methods of spectral
theory of these operators. We also point out
connections to the theory of Dirac and Pauli
operators.
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Introduction.

Background for bounded pseudoconvex

domains

Let Ω be a bounded pseudoconvex domain in C
n.

We consider the ∂-complex

L2(Ω)
∂

(0,0)

−→ L2
(0,1)(Ω)

∂
(0,1)

−→ . . .
∂

(0,n−1)

−→ L2
(0,n)(Ω)

∂
(0,n)

−→ 0 ,

where L2
(0,q)(Ω) is the space of (0, q)-forms on

Ω with coefficients in L2(Ω) . The ∂-operator on
(0, q)-forms is given by

∂

(

∑

J

′
aJ dzJ

)

=

n
∑

j=1

∑

J

′ ∂aJ

∂zj

dzj ∧ dzJ ,

where
∑ ′

means the sum over increasing multi-
indices J .

– Typeset by FoilTEX – 1



The complex Laplacian 2 = ∂ ∂
∗

+ ∂
∗
∂ acts as

an unbounded selfadjoint operator on L2
(0,q)(Ω), 1 ≤

q ≤ n, it is surjective and therefore has a continuous
inverse, the ∂-Neumann operator Nq. If v is a closed

(0, q+1)-form, then ∂
∗
Nq+1v provides the canonical

solution to ∂u = v, which is orthogonal to the kernel
of ∂ and so has minimal norm (see for instance
[CheSha]).
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The case of unbounded domains

In this talk, we discuss the compactness of the
canonical solution operator to ∂ on weighted L2-
spaces over Cn :

L2(Cn, ϕ) = {f :

∫

Cn

|f(z)|2 exp(−2ϕ(z)) dλ(z) < ∞},

where ϕ is a suitable weight-function.

Main point :
Continue to explore the connection of ∂ with the
theory of Schrödinger operators with magnetic fields,
see for example [Chr], [Bernd], [FuStr3] and [ChrFu].
Give necessary or sufficient conditions in terms of
the weight function ϕ for the solution operator to
be compact on L2(Cn, ϕ) continuing the work from
[Has3] and using results from [AusBen], [HelMoh],
[Iwa], [She], and [Stein].
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The complex one-dimensional case

Let ϕ be a subharmonic C2-function. We want
to solve

∂u = f (1)

for f ∈ L2(C, ϕ). The canonical solution operator (if
it exists) to ∂ gives a solution with minimal L2(C, ϕ)-
norm. With v = u e−ϕ and g = f e−ϕ, the equation
becomes

∂ϕv = g , (2)

with

∂ϕ = e−ϕ ∂

∂z
eϕ.

u is the minimal solution to the ∂-equation in
L2(C, ϕ) iff v is the solution to ∂ϕv = g which
is minimal in L2(C) .

The formal adjoint of ∂ϕ is

∂
∗

ϕ = −eϕ ∂

∂z
e−ϕ. (3)
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Let us introduce

�
(0,0)
ϕ = ∂

∗

ϕ ∂ϕ , �
(0,1)
ϕ = ∂ϕ ∂

∗

ϕ . (4)

(We write �
(0,0)
ϕ and �

(0,1)
ϕ because they are actually

the “Witten”- Laplacians on respectively (0, 0)− and
(0, 1)− forms).
Note that :

�
(0,0)
ϕ =

1

4
(−∆A − B) , �

(0,1)
ϕ =

1

4
(−∆A + B),

(5)
where

A1 = −∂yϕ , A2 = ∂xϕ , (6)

∆A =

(

∂

∂x
− iA2

)2

+

(

∂

∂y
+ iA1

)2

, (7)

and the magnetic field B satisfies

B(x, y) = ∆ϕ(x, y) . (8)
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Hence �
(0,·)
ϕ is (up to a multiplicative constant)

a Schrödinger operator with magnetic field and an
electric potential ±B. These operators are ([Sima]
essentially self-adjoint on C∞

0 (C).
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The canonical Solution Operator

When �
(0,1)
ϕ is invertible, it is easy to see that the

solution to the problem (2) is given by the so called
canonical operator

Sϕ := ∂
∗

ϕ

(

�
(0,1)
ϕ

)−1

. (9)

The existence of Sϕ was established by M. Christ
[Chr]) under very weak assumptions on ϕ (class W)
and Haslinger [Has3] observed that then Sϕ was

compact iff �
(0,1)
ϕ has compact resolvent.

Now we prove a criterion1 of compactness, in
terms of ϕ only.
Previous results : Molchanov, Helffer and
Morame ([HelMor]), Iwatsuka ([Iwa]), Shen ([She]),
Kondratiev-Shubin....

1We warmly thank P. Auscher for discussions on this topic.
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We assume that ϕ is a subharmonic C2 function
and that ∆ϕ belongs to the reverse Hölder class
B2(R

2) consisting of L2 positive (strictly positive
a.e.) functions V for which there exists a constant
C > 0 such that

(

1

|Q|

∫

Q

V 2 dx

)
1
2

≤ C

(

1

|Q|

∫

Q

V dx

)

,

for any cube Q in R2 .

It is known that if V is in Bq for some
q > 1 then V is in the Muckenhoupt class A∞

and the corresponding measure V (x)dx is doubling
(condition appearing in the definition of W). More
precisely it is known from [Stein] that

A∞ = ∪q>1Bq .

Note that any positive polynomial is in Bq for any
q > 1.
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Theorem 1.

Let ϕ be a subharmonic C2 function on R
2 such that

∆ϕ ∈ B2(R
2) . (10)

Then Sϕ is compact if and only if

lim
|z|→∞

∫

B(z,1)

∆ϕ(y)2 dy = +∞ . (11)

Step 1

It’s enough to show that −∆A + ∆ϕ has compact
resolvent. Using the comparison between selfadjoint
operators :

−2∆A ≥ −∆A + ∆ϕ ≥ −∆A (12)

we see that −∆A + ∆ϕ has compact resolvent
iff −∆A has compact resolvent. Note that the
invertibility results of the strict positivity of ∆ϕ a. e.
(so the proof is independent of Christ’s result).
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Step 2: necessary condition

We can apply a result of Iwatsuka ([Iwa])

Proposition 2.

Suppose that A ∈ H1
loc and that −∆A has compact

resolvent. Then

lim
|z|→∞

∫

B(z,1)

B(y)2 dy = +∞ , (13)

with B = curlA.

Step 3: sufficient condition

By the diamagnetic property, we observe that, if
−∆ + ∆ϕ has compact resolvent, then −∆A + ∆ϕ
has compact resolvent. So it is enough to prove that
−∆ + V has compact resolvent with V = ∆ϕ.
By the definition of B2(R

2), Assumption (11) implies
that

lim
|z|→∞

∫

B(z,1)

∆ϕ(y) dy = +∞ . (14)
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By Iwatsuka’s criterion, it suffices to show that

lim
|z|→∞

λ0,V (B(z, 1)) = +∞ , (15)

where λ0,V (B(z, 1)) is the lowest Dirichlet eigenvalue
of −∆+V in B(z, 1) . We use the following improved
version of the Fefferman-Phong Lemma as given in
[AusBen].
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Some Fefferman-Phong Lemma due to P.

Auscher and Ben Ali

Lemma 3.

If V ∈ A∞, then there exists CV > 0 and βV ∈]0, 1[
such that, for all cubes Q (with sidelength R), for
all u ∈ C∞

0 (Q),

CV
mβ(R2ΘQ)

R2

∫

|u(y)|2 dy

≤
∫

(|∇u(y)|2 + V (y)|u(y)|2) dy

(16)

where

ΘQ =
1

|Q|

∫

Q

V (y)dy ,

and

mβ(t) = t for t ≤ 1 , and mβ(t) = tβV for t ≥ 1 .
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End of the proof

We apply Lemma 3 with R = 1 and V = ∆ϕ.

Remark 4.

1. We actually only need assumptions at ∞.

2. We can restrict the assumptions to cubes
of size ≤ R0.
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The ∂-equation in weighted L2 - spaces

of several complex variables:

preliminaries

Let ϕ : C
n −→ R be a C2-weight function and

define the spaces :

•

L2(Cn, ϕ) = {f : C
n −→ C :

∫

Cn

|f |2 e−2ϕ dλ < ∞},

• L2
(0,1)(C

n, ϕ) = (0, 1)-forms with coefficients in

L2(Cn, ϕ) ,

• L2
(0,2)(C

n, ϕ) = (0, 2)-forms with coefficients in

L2(Cn, ϕ) ,

• A2(Cn, ϕ) = entire functions belonging to
L2(Cn, ϕ).
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We consider the ∂-complex

L2(Cn, ϕ)
∂

(0,0)

−→ L2
(0,1)(C

n, ϕ)
∂

(0,1)

−→ L2
(0,2)(C

n, ϕ) . . . .

The ∂-problem consists now in solving ∂u = f

in L2(Cn, ϕ) ∩ ker ∂
⊥

for some f ∈ L2
(0,1)(C

n, ϕ)

satisfying ∂f = 0.

As before we consider the “Witten” distorted
∂-complex

∂ϕ = expϕ∂ exp−ϕ ,

on the usual L2-forms.
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The Witten �- Laplacians �
(0,0)
ϕ and �

(0,1)
ϕ are

defined by

�
(0,0)
ϕ = (∂

(0,0)

ϕ )∗ ∂
(0,0)

ϕ ,

�
(0,1)
ϕ = (∂

(0,1)

ϕ )∗ ∂
(0,1)

ϕ + (∂
(0,0)

ϕ ) (∂
(0,0)

ϕ )∗ .
(17)

By computation, we verify

�
(0,1)
ϕ = �

(0,0)
ϕ ⊗ I + 2Mϕ, (18)

where

Mϕ =

(

∂2ϕ

∂zj∂zk

)

jk

, (19)

is the Levi-matrix.
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For ϕ in C2, it can be shown (Simader [Sima])

that �
(0,1)
ϕ can be extended to a densely defined

self-adjoint operator on L2
(0,1)(C

n), still denoted by

�
(0,1)
ϕ .

Remember also :

4 �
(0,0)
ϕ = ∆(0)

ϕ − ∆ϕ, (20)

where

∆(0)
ϕ = −

n
∑

j=1

(

(

∂

∂xj

+ i
∂ϕ

∂yj

)2

+

(

∂

∂yj

− i
∂ϕ

∂xj

)2
)

.
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About general criteria of compact

resolvent

Before we start with the analysis of the canonical
solution operator to ∂ we recall a theorem due to
Helffer-Mohamed ([HelMoh]) on compact resolvents
of Schrödinger operators with magnetic fields :

PA =
n
∑

j=1

(Dxj
− Aj(x))2 . (21)

Here Dxj
= −i ∂

∂xj
and the magnetic potential

A(x) = (A1(x), A2(x), · · · , An(x)) is supposed to
be C∞. Under these conditions, the operator is
essentially self-adjoint on C∞

0 (Rn). We introduce :

Bjk =
1

i
[Xj,Xk] =

∂Ak

∂xj

−
∂Aj

∂xk

, for j, k = 1, . . . , n ,
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the components of the magnetic fields and for q ≥ 1
the quantities :

mq(x) =
∑

j<k

∑

|α|=q−1

|∂α
x Bjk(x)| . (22)

Then the criterion is

Theorem 5. ([HelMoh])
Let us assume that there exists r and a constant C
such that

mr+1(x) ≤ C



1 +
r
∑

q=1

mq(x)



 , ∀x ∈ R
n ,

(23)
and

r
∑

q=1

mq(x) → +∞ , as |x| → +∞ . (24)

Then PA has a compact resolvent.
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(see also [She] and [KS] for further results in this
direction.)

We will mainly apply this result for the case of
real dimension 2n, where we will write the elements
of R

2n in the form (x1, y1, . . . , xn, yn) and for the
magnetic potential

A =

(

−
∂ϕ

∂y1
,

∂ϕ

∂x1
, . . . ,−

∂ϕ

∂yn

,
∂ϕ

∂xn

)

. (25)
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The analysis of the canonical solution

operator

Now suppose that ∂f = 0, for f ∈ L2
(0,1)(C

n, ϕ).
It is easy to see that the canonical solution operator
S to ∂ is compact in L2

(0,1)(C
n, ϕ) iff the canonical

solution operator Scan
ϕ to ∂ϕv = g is compact

L2
(0,1)(C

n) . More precisely, assuming that �
(0,1)
ϕ

is invertible, we define

Sϕ := (∂
(0,0)

ϕ )∗ (�(0,1)
ϕ )−1 , (26)

and observe that in this case the restriction Scan
ϕ of

Sϕ to Ker∂
(0,1)

,

Scan
ϕ = (Sϕ)

Ker ∂
(0,1) ,

permits to solve the ∂ϕ problem (or equivalently,
after reverse conjugation, the ∂-problem).
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Theorem 6.

Let ϕ be plurisubharmonic C2 such that for the lowest
eigenvalue λϕ of the Levi matrix Mϕ the condition

lim inf
|z|→∞

λϕ(z) > 0 , (27)

is satisfied. Then �
(0,1)
ϕ has a bounded inverse Nϕ

on L2
(0,1) and Sϕ is well defined and continuous on

L2
(0,1).
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Proof

We have by (18),

〈�(0,1)
ϕ v, v〉 ≥ 2〈Mϕv, v〉 ,∀v . (28)

Using Persson’s Theorem, Assumption (27) implies

that the bottom of the essential spectrum of �
(0,1)
ϕ is

strictly positive. Hence it remains to show that �
(0,1)
ϕ

is injective. This is easy using Kazdan’s uniqueness
theorem, inequality

〈�(0,1)
ϕ v, v〉 ≥

∫

Cn

λϕ(z)|v(z)|2 dλ(z). (29)

and the positivity of λϕ.
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Theorem 7.

Let ϕ be plurisubharmonic C2 such that

lim
|z|→∞

λϕ(z) = +∞ . (30)

Then Sϕ is compact.

Proof

Using (29) and (30), it follows that �
(0,1)
ϕ has

compact resolvent. It is then easy to show that
Sϕ is compact.

Example :

ϕ(z) =





n
∑

j=1

|zj|
2





m

,

for some integer m > 1.
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Remark 8.

If 0 is not in the spectrum of �
(0,1)
ϕ , then we have

∫

Cn

|u(z)|2 e−2ϕ(z) dλ(z) ≤
1

2
〈M−1

ϕ ∂u , ∂u〉L2
(0,1)

(Cn,ϕ),

(31)
for u orthogonal to Ker ∂.
Very short proof inspired by a proof of Brascamp-
Lieb inequality by Witten Laplacian techniques. By
Ruelle’s Lemma [Ru] and (28), we get

Nϕ ≤
1

2
M−1

ϕ .

This implies in particular Hörmander’s statement (in
his book in complex analysis), that for u orthogonal
to Ker ∂,

∫

Cn

|u(z)|2 e−2ϕ(z) dλ(z) ≤

∫

Cn

|∂u(z)|2
e−2ϕ(z)

λϕ(z)
dλ(z).

The constant is improved but Hörmander established
the result in greater generality (for pseudo-convex
open sets).
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Finally we mention a variant of Theorem 7 using
the results from [HelMoh], together with ideas of
M. Derridj (see [HelNou] and references therein).

Theorem 9.

Let ϕ be plurisubharmonic C2 and suppose that there
exists t ∈ (0, 1/4) and a compact set K such that

Mϕ ≥ t∆ϕ ⊗ I , in C
n \ K.

Suppose λϕ does not vanish identically. Assume that

∆
(0)
ϕ has compact resolvent. Then Sϕ is compact.

Proof

Using (18), we have :

�
(0,1)
ϕ ≥ (�(0,0)

ϕ + 2t∆ϕ) ⊗ I , in C
n \ K . (32)

By formula (20), we are then reduced to the analysis
of the compactness of the resolvent of

1

4
∆(0)

ϕ + (2t − 1/4)∆ϕ .
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The case of decoupled weights

Here we consider weights ϕ of the form

ϕ(z1, . . . , zn) =
n
∑

j=1

ϕj(zj),

where the functions ϕj are C∞ functions on C

About Dirac and Pauli operators

In this case an interesting connection to Dirac and
Pauli operators is of importance (see [CFKS], [Erd],
[HelNouWa], [Roz], [Tha]). Let us first consider the
real two dimensional case.
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The Dirac operator D is defined by

D = σ1

(

1

i
∂x − A1(x, y)

)

+σ2

(

1

i
∂y − A2(x, y)

)

,

where the σj are the Pauli matrices.
It turns out that the square of D is diagonal with the
Pauli operators P± on the diagonal:

D
2 =

(

P− 0
0 P+

)

,

where
P± = −∆A ± B(x, y) .

We get
4�(0,0)

ϕ = P− .
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It is proved in [HelNouWa] that at least one of
the operators P± has non compact resolvent if ϕ
satisfies in C the following condition (Hr) :
There exists a sequence of disjoint balls Bn of radius
≥ 1 such that (23) is satisfied in the union of these
balls.

This is in particular the case when the magnetic
potentials are polynomials.

Note also the interesting independent result (cf
[CFKS]) that the spectra of P+ and P− coincide
except at 0. So if P+ has compact resolvent then
P− has its essential spectrum reduced to {0}.
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Main results and proofs

Our main theorem is the following

Theorem 10.

Let n ≥ 2 and let ϕ be a decoupled weight such that
one of the ϕj satisfies for some rj > 0 the condition

(Hrj
), then �

(0,1)
ϕ has a non compact resolvent.

Proof

A simple computation shows that the operator �
(0,1)
ϕ

becomes diagonal, each component on the diagonal
being

Sk = �
(0,0)
ϕ + 2

∂2ϕk

∂zk∂zk

. (33)

Then

Proposition 11.

Let n ≥ 2. Under the assumptions of the theorem on
the weight function ϕ, there always exists a k such
that Sk is not with compact resolvent.
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We observe that Sk can be rewritten in the form

4Sk =
∑

j 6=k

P
(j)
− + P

(k)
+ ,

where each operator P
(ℓ)
± is the previously analyzed

Pauli operator in variables the (xℓ, yℓ). The result is
then obtained from the results by Helffer-Nourrigat-
Wang.
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