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regular domain, with

β = curl F

and
B ≥ 0

a parameter.



We consider the Neumann Laplacian with magnetic field Bβ on a
regular domain, with

β = curl F

and
B ≥ 0

a parameter.
Denoting by λN

1 (BF) the first eigenvalue of the magnetic Neumann
Laplacian on the domain, we analyze its asymptotic behavior as
B → +∞ and the corresponding location of ground states.
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We will then consider applications

◮ to superconductivity (when the magnetic field is constant)

◮ and (in the Serrambi conference) to the theory of liquid
crystals (when the magnetic field is of constant strength).

We refer to a book written in collaboration with Soeren Fournais
for more details.



The quadratic form
Let Ω ⊂ R

d (d = 2 or d = 3) be a bounded open set with smooth
boundary, let β be a magnetic field (satisfying div β = 0 in the
3D case), and we can specify, (by adddition of ∇Φ), F to be a
vector field such that

div F = 0 , (1)

curl F = β, in Ω , (2)

F · N = 0 on ∂Ω , (3)

where N(x) is the unit interior normal vector to ∂Ω.



Define QBF to be the closed quadratic form

W 1,2(Ω) ∋ u 7→ QBF(u) :=

∫

Ω
|(−i∇ + BF)u(x)|2 dx , (4)

where
W 1,2(Ω) = H1(Ω; C) ,

is the standard Sobolev space. This leads to the Neumann
problem.
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Define QBF to be the closed quadratic form

W 1,2(Ω) ∋ u 7→ QBF(u) :=

∫

Ω
|(−i∇ + BF)u(x)|2 dx , (4)

where
W 1,2(Ω) = H1(Ω; C) ,

is the standard Sobolev space. This leads to the Neumann
problem.
If we replace W 1,2(Ω) by W

1,2
0 (Ω) we will get the Dirichlet

problem which is of less interest for our applications.
If we want to discuss the two problems for comparison, we will
write QN

BF and QD
BF. With no indication this will be Neumann.
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The magnetic Laplacian
Let HN(BF) be the self-adjoint operator associated to QN

BF.
This is the differential operator

H(BF) := (−i∇ + BF)2

with domain

{u ∈ W 2,2(Ω) : N · ∇u|∂Ω = 0} .

Note that, without the boundary condition assumed for F, the
Neumann condition reads

N · (∇ + iBF)u|∂Ω = 0} ,

and is called the magnetic Neumann condition.
When Ω is regular and bounded, the operator HN(BF) has
compact resolvent. The bottom of the spectrum

λN
1 (BF) := inf Spec HN(BF) . (5)

is an eigenvalue.



Dirichlet problem
One can also consider the Dirichlet realization.
The form domain is W

1,2
0 (Ω) and the operator is H(BF) with

domain W 2,2(Ω) ∩ W
1,2
0 (Ω)).

In this case, we denote the operator by HD(BF).
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Diamagnetism and application.
The diamagnetic inequality says that, for u ∈ H1

loc ,

|∇|u|| ≤ |(∇ + iBF)u| ,

pointwise.
Using the Max-Min principle, this gives that

λN
1 (BF) ≥ λN

1 (0) = 0 , λD
1 (BF) ≥ λD

1 (0) > 0 . (6)

This is more generally true in the case when we consider the lowest
eigenvalue of the Neuman or the Dirichlet realization of the
Schrödinger operator

−H(BF) + V ,

where V is an L∞ function called the electric potential.
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◮ describe in various cases the asymptotic behavior of the
mapping B 7→ λN

1 (BF)

◮ and also analyze its monotonicity for sufficiently large values
of B .



We will

◮ describe in various cases the asymptotic behavior of the
mapping B 7→ λN

1 (BF)

◮ and also analyze its monotonicity for sufficiently large values
of B .

The asymptotic spectral analysis starts with the analysis of various
models corresponding first to constant magnetic field (or affine
magnetic fields) and to particular domains : plane, half-plane,
disks ....
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H(BF) = D2
x1

+ (Dx2 + Bx1)
2 . (7)

Here F = (0, x1) and Dxj
= 1

i
∂xj

.
After a dilation and a partial Fourier transform, we are let to

H(ξ) = D2
t + (t − ξ)2 , on the line , (8)

and hence to the spectrum of the harmonic oscillator on the line :

h = D2
t + t2 , (9)

whose spectrum is well known.

σ(H(BF)) = σess(H(BF)) = |B | (∪n∈N(2n + 1)) . (10)

These are the so called Landau-levels.



The Model in R
3.
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∑
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2
ij = 1)

H(BF) := (Dx1 + B(1
2b12x2 + 1

2b13x3))
2

+(Dx2 + B(1
2b23x3 + 1

2b21x1))
2

+(Dx3 + B(1
2b31x1 + 1

2b32x2))
2 .

(11)

After a rotation and a gauge transform, we arrive at

H(BF) := D2
x1

+ (Dx2 + Bx1)
2 + D2

x3
(12)

whose spectrum is

σ(H(BF)) = B [1,+∞[ . (13)



The result is independent of the direction of the magnetic vector
field :

β1 = b23 , β2 = b31 , β3 = b12 .
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The De Gennes Model in R
2,+.

HN(BF) = D2
x1

+ (Dx2 + Bx1)
2 , (14)

on R
2,+ = {x1 > 0}, with Neumann condition on {x1 = 0}.

After a dilation and a partial Fourier transform, we are let to
analyze the family

H(ξ) = D2
t + (t − ξ)2 , (15)

on the half-line (Neumann at 0) whose lowest eigenvalue

ξ 7→ µ(ξ)

admits a unique minimum at ξ0 > 0.



On the variation of µ
It is useful to combine two formulas

◮ Feynman-Hellmann formula :

µ′(ξ) = −2

∫ +∞

0
(t − ξ)uξ(t)

2 dt ,

where uξ is the normalized groundstate of H(ξ).

◮ Bolley-Dauge-Helffer formula :

µ′(ξ) = uξ(0)
2(ξ2 − µ(ξ)) .



On the variation of µ
It is useful to combine two formulas

◮ Feynman-Hellmann formula :

µ′(ξ) = −2

∫ +∞

0
(t − ξ)uξ(t)

2 dt ,

where uξ is the normalized groundstate of H(ξ).

◮ Bolley-Dauge-Helffer formula :

µ′(ξ) = uξ(0)
2(ξ2 − µ(ξ)) .

This permits to show that µ has a unique minimum, which is
attained at ξ0 > 0. Morever

lim
ξ→+∞

µ(ξ) = 1 , lim
ξ→−∞

µ(ξ) = +∞ .



Graph of µ and comparison with Dirichlet
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Figure: De Gennes model, computed by V. Bonnaillie-Noël



Hence two constants will play a role.
The first one is :

0 < Θ0 = µ(ξ0) = inf
ξ∈R

µ(ξ) < 1 . (16)
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Hence two constants will play a role.
The first one is :

0 < Θ0 = µ(ξ0) = inf
ξ∈R

µ(ξ) < 1 . (16)

We have
ξ20 = Θ0 ∼ 0, 59 . (17)

σ(HN(BF)) = Θ0B [1,+∞[ . (18)

The second one is :

δ0 =
1

2
µ′′(ξ0) , (19)
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3,+.
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After a rotation respecting the half-space and a gauge transform,
we look in {x1 > 0} at

L(ϑ,−i∂x3) = −∂2
x1
− ∂2

x2
+ (−i∂x3 + cos ϑ x1 + sinϑ x2)

2 .



The Lu-Pan Models in R
3,+.

The second model is quite specific of the problem in dimension 3.
After a rotation respecting the half-space and a gauge transform,
we look in {x1 > 0} at

L(ϑ,−i∂x3) = −∂2
x1
− ∂2

x2
+ (−i∂x3 + cos ϑ x1 + sinϑ x2)

2 .

By partial Fourier transform, we arrive to :

L(ϑ, τ) = −∂2
x1
− ∂2

x2
+ (τ + cos ϑ x1 + sinϑ x2)

2 ,

in x1 > 0 and with Neumann condition on x1 = 0.



It is enough to consider the variation with respect to ϑ ∈ [0, π2 ].
The bottom of the spectrum is given by :

ς(ϑ) := inf Spec (L(ϑ,−i∂x3)) = inf
τ

(inf Spec (L(ϑ, τ))) .
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We first observe the following lemma :

Lemma A
If ϑ ∈]0, π2 ], then Spec (L(ϑ, τ)) is independent of τ .

This is trivial by translation in the x2 variable.
One can then show that the function ϑ 7→ ς(ϑ) is continuous on
]0, π2 [ .
This is based on the analysis of the essential spectrum of

L(ϑ) := D2
x1

+ D2
x2

+ (x1 cos ϑ+ x2 sinϑ)2 .

and on the fact that the bottom of the spectrum of this operator
corresponds to an eigenvalue.



We then show easily that

ς(0) = Θ0 < 1 .

and
ς(
π

2
) = 1 .



We then show easily that

ς(0) = Θ0 < 1 .

and
ς(
π

2
) = 1 .

Finally, one shows that ϑ 7→ ς(ϑ) is monotonically increasing and
that

ς(ϑ) = Θ0 + α1|ϑ| + O(ϑ2) , (20)

with

α1 =

√
µ′′(ξ0)

2
. (21)



Montgomery’s model.
When the assumptions are not satisfied, and that the magnetic
field β vanishes. Other models should be consider. An interesting
example is when β vanishes along a line :

H(B) := D2
t + (Ds − Bt2)2 . (22)

This model was proposed by Montgomery in connection with
subriemannian geometry but it appears also in the analysis of the
dimension 3 case.



More precisely, we meet the following family (depending on ρ) of
quartic oscillators :

D2
t + (t2 − ρ)2 . (23)

Denoting by ν(ρ) the lowest eigenvalue, Pan-Kwek have shown
that there exists a unique minimum of ν(ρ) leading to a new
universal constant

ν̂0 = inf
ρ∈R

ν(ρ) . (24)

Hence, we get

inf σ(H(B)) = B
2
3 ν̂0 .
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One has (Feynman-Hellmann Formula)

ρmin = 2

∫
t2u2

ρmin
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where uρ denotes the normalized groundstate.
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One has (Feynman-Hellmann Formula)

ρmin = 2

∫
t2u2

ρmin
dt ,

where uρ denotes the normalized groundstate.
Numerical computations confirm that the minimum is attained for
a positive value of ρ :

ρmin ∼ 0.35 ,

and that this minimum is

Θmin ∼ 0.5698 .

Numerical computations also suggest that the minimum is non
degenerate.
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The case of the disk : Bauman-Phillips-Tang model
We consider the disc D(0,R) in R

2 and the case with constant
magnetic field.
First we state a result on the case of Dirichlet boundary conditions
(Erdös, Bolley-Helffer, Helffer-Morame).

Proposition A

As R
√

B becomes large, the following asymptotics holds :

λD
1 (B ,D(0,R)) − B ∼ 2

3
2π−

1
2 B

3
2 R exp(−BR2

2
) . (25)

As observed by Erdös there is a trick to reduce at a one
dimensional problem.
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For the Neumann problem, we will use the invariance by rotation
and reduce the problem to the spectral analysis of a family
(parametrized by m ∈ Z.

We will get (Bauman-Phillips-Tang with improvment of
Fournais-Helffer) a three terms expansion showing the role of the

curvature (coefficient of B
1
2 ).

More precisely, the proof can be sketched as follows ...
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localized at the boundary of the disk (this will be explained later
through Agmon estimates).



We can first compare (modulo an exponentially small error) (we
take a disc of radius 1) with a Dirichlet-Neumann problem in
D(0, 1) \ D(0, 1

2 ). The Dirichlet condition is on the interior disk,
the Neumann condition on the exterior disk.

This is due to the property that groundstates are as B → +∞
localized at the boundary of the disk (this will be explained later
through Agmon estimates).

We take suitable coordinates adapted to the invariance by
rotation :

t = 1 − r , s = θ .



After some scaling and using Fourier series in the tangential
variable, we see that the groundstate energy of the new problem
λDN

1 (B) is given by

λDN
1 (B) = B inf

m∈Z

eδ(m,B),B (26)

where

δ(m,B) := m − B
2 − ξ0

√
B. (27)

and eδ,B is the lowest eigenvalue of the self-adjoint operator
associated to the quadratic form

q̃δ,B [φ] =

∫ √
B/2

0
(1 − τ√

B
)−1
(
(τ + ξ0) + B− 1

2 (δ − τ2

2 )
)2|φ(τ)|2

+ (1 − τ√
B

)|φ′(τ)|2 dτ . (28)



This quadratic form is considered as a form defined on the
H1-Sobolev space associated to the space

L2
(
(0,

√
B/2); (1 − τ√

B
)dτ) ,

with Dirichlet condition on the interior circle.



The analysis of eδ,B goes through a formal expansion in powers of

B− 1
2 of the Hamiltonian :

∑

j≥0

B− j
2 kj , (29)

with

k0 := − d2

dτ2
+ (τ + ξ0)

2 ,

k1 :=
d

dτ
+ 2(τ + ξ0)(δ − τ2

2 ) + 2τ(τ + ξ0)
2 ,

k2 := τ
d

dτ
+ (δ − τ2

2 )2 + 4τ(τ + ξ0)(δ − τ2

2 ) + 3τ2(τ + ξ0)
2 .

(30)

These operators will actually be considered on R
+ with Neumann

condition at 0.
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Keeping the first three terms, we obtain
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− 1
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√
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)

+O(δ3B− 3
2 ) + O(B− 3
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We get a corresponding expansion of eδ,B in powers of B− 1
2 .

Keeping the first three terms, we obtain

eδ,B = Θ0 − C1B
− 1

2 + B−13C1

√
Θ0

(
(δ − δ̂0)

2 + C0

)

+O(δ3B− 3
2 ) + O(B− 3

2 ) ,

with

C1 =
µ′′(ξ0)

2

1

3
√

Θ0
.

The treatment of |δ| large is done differently ! We do not need an
accurate expansion because eδ,B is sufficiently far above Θ0.

We then implement δ = δ(m,B) and minimize over m ∈ Z.



Proposition B : Asymptotics of λ
N
1 for the disc

Define δ(m,B), for m ∈ Z, B > 0, by

δ(m,B) := m − B
2 − ξ0

√
B. (31)

Then there exist (computable) constants C0 and δ̌0 ∈ R such that,
if

∆̂B := inf
m∈Z

|δ(m,B) − δ̌0| , (32)

then, for all η > 0,

λN
1 (BF) = Θ0B − C1

√
B + 3C1

√
Θ0

(
∆̂2

B + C0

)
+ O(Bη− 1

2 ) .
(33)

Note that the third term in the expansion (which is due to
Fournais-Helffer) is bounded and oscillatory.



Rough estimates for general magnetic Laplacians (Lu-Pan)
We introduce

b = inf
x∈Ω

|β(x)| , (34)

b′ = inf
x∈∂Ω

|β(x)| , (35)

and, for d = 2,
b′
2 = Θ0 inf

x∈∂Ω
|β(x)| , (36)

and, for d = 3,
b′
3 = inf

x∈∂Ω
|β(x)|ς(θ(x)) (37)



Theorem 1 : Rough asymptotics

λN
1 (BF,Ω) = B min(b, b′

d) + o(B) , (38)

λD
1 (BF,Ω) = Bb + o(B) (39)

Particular case, if |β(x)| = 1, then

min(b, b′
d) = b′

d = Θ0 . (40)



Lower bounds in the 2D case
The first (trivial by integration by parts) estimate is that, when
β(x) ≥ 0, then we have, for any φ ∈ C∞

0 (Ω),

QB(φ) ≥ B

∫
β(x)|φ(x)|2 dx . (41)
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Lower bounds in the 2D case
The first (trivial by integration by parts) estimate is that, when
β(x) ≥ 0, then we have, for any φ ∈ C∞

0 (Ω),

QB(φ) ≥ B

∫
β(x)|φ(x)|2 dx . (41)

This gives immediately the lower bound for the Dirichlet
realization.
Gaussians centered at a point where |β| is minimum can be used
for getting the upper bound.
For Neumann, we should introduce a partition of unity.



A partition of unity
Let 0 ≤ ρ ≤ 1. Then there exists C s.t. ∀R0 > 0, we can find a
partition of unity χB

j satisfying in Ω,

∑

j

|χB
j |2 = 1 , (42)

∑

j

|∇χB
j |2 ≤ C R−2

0 B2ρ , (43)

and
supp (χB

j ) ⊂ Qj = D(zj ,R0 B−ρ) , (44)

where D(c , r) denotes the open disc of center c and radius r .
Moreover, we can add the property that :

either supp χj ∩ ∂Ω = ∅ , either zj ∈ ∂Ω . (45)



According to the two alternatives in (45), we can decompose the
sum in (42) in the form :

∑
=
∑

int

+
∑

bnd

,

where ‘int’ is in reference to the j ’s such that zj ∈ Ω and ‘bnd’ is
in reference to the j ’s such that zj ∈ ∂Ω.



We now implement this partition of unity in the following way :

Q(u) =
∑

j

Q(χB
j u) −

∑

j

‖ |∇χB
j | u ‖2 , ∀u ∈ H1(Ω) . (46)

Here Q = QN
BF,Ω denotes the magnetic quadratic form. This

decomposition is some time called (IMS)-formula.



We now implement this partition of unity in the following way :

Q(u) =
∑

j

Q(χB
j u) −

∑

j

‖ |∇χB
j | u ‖2 , ∀u ∈ H1(Ω) . (46)

Here Q = QN
BF,Ω denotes the magnetic quadratic form. This

decomposition is some time called (IMS)-formula.
We can rewrite the right hand side of (46) as the sum of three
(types of) terms.

Q(u) =
∑

int

Q(χB
j u)+

∑

bnd

Q(χB
j u)−

∑

j

‖ |∇χB
j | u ‖2 , ∀u ∈ H1(Ω) .

(47)



For the last term on the right side of (47), we get using (43) :

∑

j

‖ |∇χB
j | u ‖2 ≤ C B2ρ R−2

0 ‖u‖2 . (48)

This measures the price to pay when using a fine partition of unity :
If ρ is large, which seems the best for controlling the

comparison with the models, the error due to this

localization will be bad and of order O(B2ρ).

We shall see later what could be the best compromise for an
optimal choice of ρ or of R0 for our various problems (note that
the play with R0 large will be only interesting when ρ = 1

2).



The first term to the right in (47) can be estimated from below
using the basic estimate. The support of χB

j u is indeed contained
in Ω. So we have :

∑

int

Q(χju) ≥ B
∑

int

∫
β(x)|χB

j u|2 dx . (49)



The first term to the right in (47) can be estimated from below
using the basic estimate. The support of χB

j u is indeed contained
in Ω. So we have :

∑

int

Q(χju) ≥ B
∑

int

∫
β(x)|χB

j u|2 dx . (49)

The second term in the right hand side of (47) is the more delicate
and corresponds to the specificity of the Neumann problem. We
have to find a lower bound for Q(χB

j u) for some j such that
zj ∈ ∂Ω. We emphasize that zj depends on B , so we have to be
careful in the control of the uniformity.



We use the standard boundary coordinates (s, t). Let z ∈ ∂Ω and
consider functions u supported in the small disc D(z ,B−ρ). We
now choose a convenient gauge. Define

Ã1 := −
∫ t

0

(
1 − t ′k(s)

)
β̃(s, t ′) dt ′, Ã2 := 0.

With a suitable gauge change, i.e. with the substitution ṽ := e iBφv

for some function φ, we have for supp u ⊂ D(z ,R0B
−ρ),

∫
|(−i∇ + BF)u|2 dx

=

∫
(1 − tk(s))−1

∣∣(−i∂s + BÃ1)ṽ
∣∣2 + (1 − tk(s))|∂t ṽ |2 dsdt .

(50)



Define

k0 := k(0),

A(s, t) := −β̃(0, 0)
(
t − 1

2
t2k(0)

)
,

∆k(s) := k(s) − k(0),

b̃(s, t) :=
(
1 − tk(s)

)
β̃(s, t) −

(
1 − tk(0)

)
β̃(0, 0),

ã1(s, t) := −
∫ t

0
b̃(s, t ′) dt ′.

Then we have the estimates in the support of ṽ ,

|∆k| ≤ CR0B
−ρ ,

|b(s, t)| ≤ CR0B
−ρ ,

|ã1(s, t)| ≤ CR0B
−ρt .



Of course, since t = O(B−ρ), one can be more specific about this
last estimate, but we keep the t dependence for later use.
Let B be so large that 2−1 ≤ (1− tk(s)) ≤ 2 on supp ṽ . Then we
can make the following comparison between (50) and the similar
constant field, constant curvature formula :
∫

|(−i∇ + BF)u|2 dx

≥ (1 − η)

∫
(1 − tk0)

−1|(−i∂s + BA)ṽ |2 + (1 − tk0)|∂t ṽ |2 dsdt

− C

∫
t∆k

{∣∣(−i∂s + BÃ1)ṽ
∣∣2 + |∂t ṽ |2

}
dsdt

− η−1

∫
(1 − tk0)

−1B2ã2
1|ṽ |2 dsdt, (51)

for any 0 < η < 2−1 and any u with supp u ⊂ B(z ,R0B
−ρ).



The first term on the right is the quadratic form corresponding to
constant curvature and constant magnetic field, so we can
estimate

∫
(1 − tk0)

−1|(−i∂s + BA)ṽ |2 + (1 − tk0)|∂t ṽ |2 dsdt

≥
(
Θ0Bβ(z) − C1k

√
Bβ(z) − C

)
‖ṽ‖2

2 . (52)

using the result for the disk. Notice that this estimate is uniform,
since the boundary curvature is uniformly bounded.



The second term on the right is estimated by

C

∫
t∆k

{∣∣(−i∂s + BÃ1)ṽ
∣∣2 + |∂t ṽ |2

}
dsdt

≤ CĈB−2ρ

∫
|(−i∇ + BF)u|2 dx , (53)

and consequently involves the left hand side. Here we use the
property that 0 ≤ t ≤ CB−ρ on supp ṽ .



The third term is estimated by

η−1

∫
(1 − tk0)

−1B2ã2
1|ṽ |2 dsdt ≤ C̃η−1B2−4ρ ‖ṽ‖2 . (54)

To get a first not optimal estimate, we choose R0 = 1, η = B
1
2
−2ρ,

ρ = 3
8 , and conclude from (51) and (52)-(54), that

∫
|(−i∇ + BF)u|2 dx ≥

(
Θ0Bβ(z) − CB

3
4
)
‖u‖2

2, (55)

for all u such that supp u ⊂ B(z ,B−ρ).



Combining this with (46), (48) and (49), we find the lower bound.
More precisely, we find constants C and B0 such that, ∀u ∈ H1(Ω)
and ∀B ≥ B0,

Q(u) ≥ B
∑

int

∫
β(x)|χB

j u|2 dx

+Θ0B
∑

bnd

∫
β(zj)|χB

j u|2 dx − CB
3
4
∑

j

∫
|χB

j u|2 dx .



Upon replacing β(zj) by β(x) in each of the terms in the boundary
sum, we have actually proved the following.

Proposition a

There exist positive constants C and B0 such that, with

Uβ(x) :=

{
Bβ(x), d(x , ∂Ω) ≥ B− 3

8 ,

Θ0Bβ(x), d(x , ∂Ω) < B− 3
8 ,

(56)

we have
∫

Ω
|(−i∇ + BF)u|2 dx ≥

∫

Ω
(Uβ(x) − CB

3
4 )|u(x)|2 dx , (57)

for all u ∈ H1(Ω) and all B ≥ B0 .



In particular, we get the following version of the lower bound.

Proposition b

There exist positive constants C and B0 such that, for all B ≥ B0 :

λN
1 (BF) ≥

(
min(b,Θ0b

′)
)
B − C B

3
4 . (58)



We can also make the choice ρ = 1
2 , η = B− 1

8 and R0 large in (51).
This gives an estimate which may look weaker than Proposition a,
but which will be more efficient in the study of decay. The reason
is that the boundary zone now has the right length scale, namely

B− 1
2 . The result analogous to Proposition a is :

Proposition c

There exist C ,B0 > 0 and, for all R0 > 0, there exists C (R0) such
that with

U
(2)
β (x) :=

{{
Bβ(x), d(x , ∂Ω) ≥ R0B

− 1
2 ,

BC (R0)β(x), d(x , ∂Ω) ≤ R0B
− 1

2 ,
(59)

we have,

∫

Ω
|(−i∇ + BF)u|2 dx ≥

∫

Ω

(
U

(2)
β (x) − C

B

R2
0

)
|u(x)|2 dx , (60)

for all u ∈ H1(Ω) and all B ≥ B0.



Consequences.
The consequences are that a ground state is localized as
B → +∞,

◮ for Dirichlet, at the points of Ω where |β(x)| is minimum,

◮ for Neumann,
◮ if b < b′

d , at the points of Ω where |β(x)| is minimum
(no difference with Dirichlet),

◮ if b > b′

d at the points of ∂Ω where |β(x)|ς(θ(x) is minimum.



In particular, if |β(x)| = 1, we are, for Neumann, in the second
case, hence the groundstate is localized at the boundary.



In particular, if |β(x)| = 1, we are, for Neumann, in the second
case, hence the groundstate is localized at the boundary.

Moreover, when d = 3, the groundstate is localized at the point
where β(x) is tangent to the boundary.



In particular, if |β(x)| = 1, we are, for Neumann, in the second
case, hence the groundstate is localized at the boundary.

Moreover, when d = 3, the groundstate is localized at the point
where β(x) is tangent to the boundary.

All the results of localization are obtained through Agmon
estimates (as Helffer-Sjöstrand, Simon have done in the eighties
for −h2∆ + V ) .



Two-terms asymptotics in the case of a variable magnetic field
The interior case
If

b < inf
x∈∂Ω

|β(x)| for Dirichlet

or if
b < b′ for Neumann,

the asymptotics of λN
1 (BF) and λD

1 (F)) are the same (modulo an
exponentially small error).



If we assume in addition

Assumption A

◮ There exists a unique point xmin ∈ Ω such that b = |β(xmin)|.
◮ This minimum is non degenerate.



If we assume in addition

Assumption A

◮ There exists a unique point xmin ∈ Ω such that b = |β(xmin)|.
◮ This minimum is non degenerate.

we get in 2D (Helffer-Morame)

Theorem 2

λD or N
1 (BF) = bB + Θ 1

2
B

1
2 + o(B

1
2 ) . (61)

where Θ 1
2

is computed from the Hessian of β at the minimum.

The problem is still open (Helffer-Kordyukov, work in progress) in
the 3D case.



There are also many results for the case when b = 0 (Montgomery,
Helffer-Mohamed, Pan-Kwek, Helffer-Kordyukov ....).
The ground state is localized near the minimum.
When more than a minimum, tunneling can occur
(Helffer-Sjöstrand, Helffer-Kordyukov).



Main results for Neumann with constant magnetic fields
The 2D case
We recall from the previous result that in a disk of radius R , we
have

λN
1 (BF) = Θ0B − 1

R
C1

√
B + O(1) . (62)



Main results for Neumann with constant magnetic fields
The 2D case
We recall from the previous result that in a disk of radius R , we
have

λN
1 (BF) = Θ0B − 1

R
C1

√
B + O(1) . (62)

In the two dimensional case, it was proved by
DelPino-Felmer-Sternberg–Lu-Pan–Helffer-Morame the following

Theorem 3

λ1(B) = Θ0B − C1k0B
1
2 + o(B

1
2 ) , (63)

where k0 is the maximal curvature of the boundary.



Main results for Neumann with constant magnetic fields
The 2D case
We recall from the previous result that in a disk of radius R , we
have

λN
1 (BF) = Θ0B − 1

R
C1

√
B + O(1) . (62)

In the two dimensional case, it was proved by
DelPino-Felmer-Sternberg–Lu-Pan–Helffer-Morame the following

Theorem 3

λ1(B) = Θ0B − C1k0B
1
2 + o(B

1
2 ) , (63)

where k0 is the maximal curvature of the boundary.

Moreover (Fournais-Helffer) a complete expansion of λN
1 exists if

the points of maximal curvature are non degenerate.



The 3D case
We will work under the following geometric assumption

G -Assumptions

1. On the set of boundary points where β is tangent to ∂Ω, i.e.
on

Γβ := {x ∈ ∂Ω
∣∣β · N(x) = 0}, (64)

dT (β · N)(x) 6= 0 , ∀x ∈ Γβ . (65)

2. The set of points where β is tangent to Γβ is finite.



The 3D case
We will work under the following geometric assumption

G -Assumptions

1. On the set of boundary points where β is tangent to ∂Ω, i.e.
on

Γβ := {x ∈ ∂Ω
∣∣β · N(x) = 0}, (64)

dT (β · N)(x) 6= 0 , ∀x ∈ Γβ . (65)

2. The set of points where β is tangent to Γβ is finite.

These assumptions are rather generic, they imply that Γβ is is a
regular submanifold of ∂Ω and are for instance satisfied for
ellipsoids.



Two terms asymptotics
We will need a two-term asymptotics of λN

1 (BF) (due to
Helffer-Morame- Pan).

Theorem 4
If Ω and β satisfy G-Assumptions, then as B → +∞

λN
1 (BF) = Θ0B + γ̂0B

2
3 + O(B

2
3
−η),

for some η > 0.



In previous formula γ̂0 is defined by

γ̂0 := inf
x∈Γβ

γ̃0(x), (66)

where

γ̃0(x) := 2−2/3ν̂0δ
1/3
0 |kn(x)|2/3

(
δ0 +(1− δ0)|T (x) ·β|2

)1/3
. (67)

Here T (x) is the oriented, unit tangent vector to Γβ at the point x

and
kn(x) = |dT (β · N)(x)| .



Monotonicity
2D case
Two recent results obtained in collaboration with S. Fournais are
the

Theorem 5
Let Ω ⊂ R

2 and β = 1. Then there exists B0 such that
B 7→ λN

1 (BF) is monotonically increasing.

The proof results of the separate analysis of two cases :

◮ The case of the disk (results of the previous analysis),

◮ The case when the curvature is non constant (see below).
When the curvature is not constant a groundstate is localized
at the boundary but away from some interval of the boundary.



3D case

Theorem 6
Let Ω ⊂ R

3 and β satisfying G- Assumptions
Let {Γ1, . . . ,Γn} be the collection of disjoint smooth curves
making up Γβ . We assume that, for all j there exists xj ∈ Γj such
that γ̃0(xj ) > γ̂0.
Then the directional derivatives
(λN

1,±)′ := limt→0±
λN

1 (B+t)−λN
1 (B)

t
,

exist.
Moreover

lim
B→∞

(λN
1,+)′(B) = lim

B→∞
(λN

1,−)′(B) = Θ0 . (68)



We now sketch how one can derive the monotonicity result from
the known asymptotics of the groundstate energy and localization
estimates for the groundstate itself.



We now sketch how one can derive the monotonicity result from
the known asymptotics of the groundstate energy and localization
estimates for the groundstate itself.
Proof of Theorem 6

For simplicity, we assume that Γβ is connected. Applying Kato’s
analytic perturbation theory to H(B) gives the first part.
Let s0 ∈ Γ be a point with γ̃(s0) > γ̂0. Let Â be the vector
potential which is gauge equivalent to A to be chosen later.



Let Q̂B the quadratic form

W 1,2(Ω) ∋ u 7→ Q̂B(u) =

∫

Ω
| − i∇u + BÂu|2dx ,

and Ĥ(B) be the associated operator.
Then Ĥ(B) and H(B) are unitarily equivalent:
Ĥ(B) = e iBφH(B)e−iBφ, for some φ independent of B .
With ψ+

1 ( · ;β) being a suitable choice of normalized groundstate

of Ĥ(B), we get (by analytic perturbation theory applied to H(B)
and the explicit relation between Ĥ(B) and H(B),

λ′1,+(B)

= 〈Âψ+
1 ( · ;B) , p

BbA
ψ+

1 ( · ;B)〉
+〈p

BbA
ψ+

1 ( · ;B) , Âψ+
1 ( · ;B)〉 .

(69)



We now obtain for any ǫ > 0,

λ′1,+(B) =
Q̂B+ǫ(ψ

+
1 ( · ;B)) − Q̂B(ψ+

1 ( · ;B))

ǫ
(70)

− ǫ

∫

Ω
|Â|2 |ψ+

1 (x ;B)|2 dx

≥ λ1(B + ǫ) − λ1(B)

ǫ
− ǫ

∫

Ω
|Â|2 |ψ+

1 (x ;B)|2 dx . (71)

We choose ǫ := MB
2
3
−η, with η as before and M > 0 (to be taken

arbitrarily large in the end). Then, (70) becomes

λ′1,+(B) ≥ Θ0 + γ̂0B
−1/3 (1+ǫ/B)2/3−1

ǫ/B

−CM−1 − ǫ
∫
Ω |Â|2 |ψ+

1 (x ;B)|2 dx ,
(72)

for some constant C independent of M,B .



If we can prove that we can find Â such that

B
2
3

∫

Ω
|Â(x) |2 |ψ+

1 (x ;B)|2 dx ≤ C , (73)

for some constant C independent of B , then we can take the limit
B → ∞ in (72) and obtain

lim inf
B→∞

λ′1,+(B) ≥ Θ0 − CM−1. (74)



Since M was arbitrary this implies the lower bound for λ′1,+(B).
Applying the same argument to the derivative from the left,
λ′1,−(B), we get (the inequality gets turned since b < 0)

lim sup
B→∞

λ′1,−(B) ≤ Θ0. (75)

Since, by perturbation theory, λ′1,+(B) ≤ λ′1,−(B) for all B , we get
(68).
Thus it remains to prove (73).



We have ∫
Ω |Â|2 |ψ+

1 (x ;B)|2 dx

≤ C
∫
Ω\bΩ
(
ǫ,s0

)(t2 + r4)|ψ+
1 (x ;B)|2 dx

+‖Â‖2
∞
∫

bΩ
(
ǫ0,s0

) |ψ+
1 (x ;B)|2 dx ,

where Ω̂
(
ǫ0, s0

)
is a small neighborhood of s0, t = 0 defines ∂Ω

and r = 0 defines Γβ.

We can indeed choose Â with curl Â = curl F such that

|Â|2 ≤ C (t2 + r4) ,

in a neighborhood of Γβ , but outside of Ω
(
ǫ0, s0

)
.



So it remains to find the existence of a constant C > 0 and, for
any N > 0 CN > 0, such that :

∫

Ω\bΩ
(
ǫ,s0
)(t2 + r4)|ψ+

1 (x ;B)|2 dx ≤ C B−1 , (76)

and
∫

bΩ
(
ǫ,s0

) |ψ+
1 (x ;B)|2 dx ≤ CN B−N , (77)

which will imply the needed estimate (73).



The proof involves various estimates on the localization of a
ground state. They are all based on the following Agmon’s identity
for the Schrödinger operator PBA,B2σV = −∇BA + B2σV .



The proof involves various estimates on the localization of a
ground state. They are all based on the following Agmon’s identity
for the Schrödinger operator PBA,B2σV = −∇BA + B2σV .

Proposition Ag

Let Ω be a bounded regular open domain, V ∈ C 0(Ω; R),
A ∈ C 0(Ω; Rm) and φ a real valued lipschitzian function on Ω.
Then, ∀u ∈ C 2(Ω; C) satisfying

◮ either the Dirichlet condition u
∣∣
∂Ω

= 0 ,

◮ or the magnetic Neumann condition N · (∇u + iBAu)
∣∣
∂Ω

= 0 ,

we have

∫

Ω
|∇BA (eBσφu)|2 dx + B2σ

∫

Ω
(V − |∇φ|2)e2Bσφ|u|2 dx

= ℜ
(∫

Ω
e2Bσφ (PBA,B2σV u)(x) · u(x) dx

)
. (78)



The proof is a rather immediate consequence of the
Green-Riemann Formula.



The proof is a rather immediate consequence of the
Green-Riemann Formula.

In our case V = 0, but some effective electric potential will
reappear through a lower bound of the term

∫

Ω
|∇BA (eBσφu)|2 dx

of the type we have proven before.



The proof is a rather immediate consequence of the
Green-Riemann Formula.

In our case V = 0, but some effective electric potential will
reappear through a lower bound of the term

∫

Ω
|∇BA (eBσφu)|2 dx

of the type we have proven before.

It remains then to make a clever choice of φ which could be a
multiple of the distance of the boundary, or some tangential
Agmon distance inside the boundary.



Localization estimates at the boundary
We start by recalling the decay of a groundstate in the direction
normal to the boundary. We use the notation

t(x) := dist (x , ∂Ω). (79)

Now, if ϕ ∈ C∞
0 (Ω), i.e. has support away from the boundary, we

have already observe that

QB(ϕ) ≥ B‖ϕ‖2
2. (80)

It is a consequence of this elementary inequality (and the fact that
Θ0 < 1) that groundstates are exponentially localized near the
boundary.



Agmon estimates.

Theorem 7
There exist positive constants C , a1,B0 such that

∫
Ω e2a1B

1/2t(x)
(
|ψB(x)|2

+B−1|(−i∇ + BF)ψB(x)|2
)

dx

≤ C ‖ψB‖2
2,

(81)

for all B ≥ B0, and all groundstates ψB of the operator H(B).



We will mainly use this localization result in the following form.

Corollary 8

For all n ∈ N, there exists Cn > 0 and Bn ≥ 0 such that, ∀B ≥ Bn,
∫

t(x)n|ψB(x)|2 dx ≤ Cn B−n/2‖ψB‖2
2 .



Localization inside the boundary
We work in tubular neighborhoods of the boundary as follows. For
ǫ > 0, define

B(∂Ω, ǫ) = {x ∈ Ω : t(x) ≤ ǫ}. (82)

For sufficiently small ǫ0 we have that, for all x ∈ B(∂Ω, 2ǫ0), there
exists a unique point y(x) ∈ ∂Ω such that t(x) = dist (x , y(x)).
Define, for y ∈ ∂Ω, the function ϑ(y) ∈ [−π/2, π/2] by

sinϑ(y) := −β · N(y). (83)

We extend ϑ to the tubular neighborhood B(∂Ω, 2ǫ0) by
ϑ(x) := ϑ(y(x)).



In order to obtain localization estimates in the variable normal to Γ,
we use the following operator inequality (due to Helffer-Morame).

Theorem 9
Let B0 be chosen such that B

−3/8
0 = ǫ0 and define, for

B ≥ B0,C > 0 and x ∈ Ω,

WB(x) :=

{
B − CB1/4, t(x) ≥ 2B−3/8,

Bς(ϑ(x)) − CB1/4, t(x) < 2B−3/8.
(84)

Then, for C large enough

H(B) ≥ WB , (85)

(in the sense of quadratic forms) for all B ≥ B0.



We use this energy estimate to prove Agmon type estimates on the
boundary.

Theorem 10
Suppose that Ω ⊂ R

3 and β satisfy G-Assumptions. Define for
x ∈ ∂Ω,

dΓ(x) := dist (x ,Γ),

and extend dΓ to a tubular neighborhood of the boundary by
dΓ(x) := dΓ(y(x)).
Then there exist constants C , a2 > 0,B0 ≥ 0, such that

∫

B(∂Ω,ǫ0)
e2a2B

1/2dΓ(x)3/2 |ψB(x)|2 dx ≤ C‖ψB‖2
2, (86)

for all B ≥ B0 and all groundstates ψB of H(B).



We have the following easy consequence.

Corollary 11

Suppose that Ω ⊂ R
3 satisfies G-Assumptions relatively to β.

Then for all n ∈ N there exists Cn > 0 such that
∫

B(∂Ω,ǫ0)
dΓ(x)n|ψB (x)|2 dx ≤ CnB

−n/3‖ψB‖2
2, (87)

for all B > 0 and all groundstates ψB of H(B).



Consider now the set MΓ ⊂ Γ where the function γ̃0 is minimal,

MΓ := {x ∈ Γ : γ̃0 = γ̂0}. (88)

For simplicity, we asume that Γ is connected.

Theorem 12
Suppose that Ω ⊂ R

3 satisfies G-Assumptions relatively to β and
let δ > 0. Then for all N > 0 there exists CN such that if ψB is a
groundstate of H(B), then

∫

{x∈Ω : dist (x ,MΓ)≥δ}
|ψB(x)|2 dx ≤ CNB−N , (89)

for all B > 0.



Ginzburg-Landau functional 2D
The Ginzburg-Landau functional is given, with

β = curl F = 1 ,

by
Eκ,σ[ψ,A] =∫
Ω

{
|∇κσAψ|2 − κ2|ψ|2 + κ2

2 |ψ|4
}

dx

+κ2σ2
∫
Ω | curl A − 1|2 dx ,

with

◮ Ω simply connected,

◮ (ψ,A) ∈ W 1,2(Ω; C) × W
1,2

div
(Ω; R2),

◮ ∇A = (∇ + iA) ,

◮ W
1,2

div
(Ω; R2) = {A ∈ W 1,2(Ω,R2) | div A = 0 } .



Ginzburg-Landau functional 3D
The Ginzburg-Landau functional is given, with

β = curl F ,

by
Eκ,σ[ψ,A] =∫
Ω

{
|∇κσAψ|2 − κ2|ψ|2 + κ2

2 |ψ|4
}

dx

+κ2σ2
∫

R3 | curl A − β|2 dx ,

with

◮ Ω simply connected,

◮ (ψ,A) ∈ W 1,2(Ω; C) × Ẇ
1,2

div ,F
(R3; R3),

◮ β = (0, 0, 1),

◮ ∇A = (∇ + iA) ,

◮ Ẇ
1,2

div ,F
(R3; R3) = {A | div A = 0 , A−F ∈ Ẇ 1,2(R3,R3) } .



Claim : Minimizers exist.



Claim : Minimizers exist.

As Ω is bounded, the existence of a minimizer is rather standard,
so the infimum is actually a minimum. However, in general one
does not expect uniqueness of minimizers. A minimizer should
satisfy the Euler-Lagrange equation, which is called in this context
the Ginzburg-Landau system.



This equation reads

−∇2
κσAψ = κ2(1 − |ψ|2)ψ ,

curl
(

curl A − 1
)

= − 1
κσℑ

(
ψ∇κσAψ

)
}

in Ω , (90a)

ν · ∇κσAψ = 0 ,
curl A − 1 = 0

}
on ∂Ω . (90b)



Notice that the weak formulation of (90) is

ℜ
∫

Ω

(
∇κσAφ · ∇κσAψ − κ2(1 − |ψ|2)φψ

)
dx = 0 , (91a)

∫

Ω
( curl α)( curl A − 1) dx = − 1

κσ

∫

Ω
ℑ
(
ψ∇κσAψ

)
α dx , (91b)

for all (φ, α) ∈ H1(Ω) × H1(Ω,R2) .



The analysis of the system (90) can be performed by PDE
techniques. We note that this system is non-linear, that H1(Ω) is,
when Ω is bounded and regular in R

2 , compactly imbedded in
Lp(Ω) for all p ∈ [1,+∞[ , and that, if div A = 0 ,
curl 2A = (−∆A1,−∆A2) .

Actually, the non-linearity is weak in the sense that the principal
part is a linear elliptic system. One can show in particular that the
solution in H1(Ω,C) × H1

div
(Ω) of the elliptic system (90) is

actually, when Ω is regular, in C∞(Ω
)
.
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Terminology for the minimizers

◮ The pair (0,F) is called the Normal State.

◮ A minimizer (ψ,A) for which ψ never vanishes will be called
SuperConducting State.

◮ In the other cases, one will speak about Mixed State.

The general question is to determine the topology of the subset in
R

+ × R
+ of the (κ, σ) corresponding to minimizers belonging to

each of these three situations.
Giorgi-Phillips’ Theorem says that, for given κ > 0, there exists
σ0(κ) > 0, such that, for σ ≥ σ0(κ) the global minimizer is (0,F).



Local critical field = Global critical field

Looking at the Hessian of the Ginzburg-Landau functional
computed at the point (0,F) leads us to conjecture that a
bifurcation between normal solutions and mixed solutions occurs
when

λN
1 (κσF) = κ2 .

This corresponds at a local critical field H loc
C3 (κ) or at least at a

local critical zone [H loc
C3(κ) ,H

loc

C3(κ)] .



More precisely, let us define the following subsets of the positive
real axis :

N (κ) := {σ > 0
∣∣ Eκ,σ has a non-trivial minimizer} , (92)

N loc(κ) := {σ > 0
∣∣λN

1 (κσ F) < κ2} , (93)

N sc(κ) := {σ > 0
∣∣ The Ginzburg-Landau equations

have non-trivial solutions} . (94)

HC3
(κ) := sup N (κ) , HC3

(κ) := inf R
+ \ N (κ) . (95)

Similarly, we define local fields and generalized fields by

H
loc

C3
(κ) := sup N loc(κ) , H loc

C3
(κ) := inf R

+ \ N loc(κ) ,

H
sc

C3
(κ) := sup N sc(κ) , Hsc

C3
(κ) := inf R

+ \ N sc(κ) .

(96)



Main results
Our main result below is that all the critical fields above are
contained in the interval [H loc

C3
(κ),H

loc

C3
(κ)] , when κ is large. More

precisely, the different sets N (κ), N loc(κ) and N sc(κ) coincide for
large values of κ . The proof we give is identical for the 2- and
3-dimensional situations.



We first observe the following general inequalities.

Theorem CFa
Let Ω ⊂ R

d , d = 2 or d = 3 be a bounded, simply connected
domain with smooth boundary. The following general relations
hold between the different definitions of HC3

,:

H loc

C3
(κ) ≤ HC3

(κ) , (97)

H
loc

C3
(κ) ≤ HC3

(κ) . (98)



For large values of κ , we have a converse to (98).

Theorem CFb
Let Ω ⊂ R

d , d = 2 or d = 3 , be a bounded, simply connected
domain with smooth boundary. If d = 2 , suppose that the external
magnetic field β satisfies

0 < Θ0b
′ < b . (99)

If d = 3 , we suppose that β ∈ S
2 is constant.

Then there exists κ0 > 0 such that for κ ≥ κ0 ,

H
loc

C3
(κ) = HC3

(κ) . (100)



Theorem CFc
Furthermore, if the function B 7→ λN

1 (BF) is strictly increasing for
large B , then all the critical fields coincide for large κ and are
given by the unique solution σ to the equation

λN
1 (κσ F) = κ2 . (101)

Remark.

This explains why we have analyzed the monotonicity of
B 7→ λN

1 (BF) for B large.



Around the proof of Theorem CFb
The crucial point leads in the following argument.
If, for some σ, there is a non trivial minimizer (ψ,A) so

Eκ,σ(ψ,A) ≤ 0 .

Then
0 < ∆ := κ2||ψ||22 − QκσA[ψ] = κ2||ψ||44 ,

where QκσA[ψ] is the energy of ψ.



The last equality is a consequence of the first G-L equation.
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Note that the localization of the minimizer leads to the proof of :

||ψ||L2(Ω) ≤ C κ−
1
4 ||ψ||L4(Ω) , (102)

which is true for κ large enough.this gives

||ψ||2 ≤ C κ−
3
4 ∆

1
4 .
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Note that the localization of the minimizer leads to the proof of :

||ψ||L2(Ω) ≤ C κ−
1
4 ||ψ||L4(Ω) , (102)

which is true for κ large enough.this gives

||ψ||2 ≤ C κ−
3
4 ∆

1
4 .

By comparison of the quadratic forms Q respectively associated
with A et F, we get, with a = A − F :

∆ ≤
[
κ2 − (1 − ρ)λN

1 (κσ F)
]
‖ψ‖2

2 + ρ−1(κσ)2
∫

Ω
|aψ|2 dx ,

(103)

for all 0 < ρ < 1.



Note that by the regularity of the system Curl-Div, combined with
the Sobolev’s injection theorem, we get

‖a‖4 ≤ C1‖a‖W 1,2 ≤ C2‖ curl a‖2 .



Note that by the regularity of the system Curl-Div, combined with
the Sobolev’s injection theorem, we get

‖a‖4 ≤ C1‖a‖W 1,2 ≤ C2‖ curl a‖2 .

Now ∆ is also controlling ‖ curl a‖2
2, so we get :

(κσ)2‖a‖2
4 ≤ C ∆ .



Combining all these inequalities leads to :

0 < ∆ ≤
≤
[
κ2 − (1 − ρ)λN

1 (κσF)
]
‖ψ‖2

2 + ρ−1(κσ)2‖a‖2
4‖ψ‖2

4

≤
[
κ2 − λN

1 (κσF)
]
‖ψ‖2

2

+CρλN
1 (κσF)∆

1
2κ−

3
2 + Cρ−1∆

3
2κ−1 .



Chosing ρ =
√

∆κ−
3
4 , and using the rough upper bound

λN
1 (κσ F) < Cκ2, we find

0 < ∆ ≤
[
κ2 − λN

1 (κσ F)
]
‖ψ‖2

2 + C∆κ−
1
4 .



This shows finally, for κ large enough independently of σ
sufficiently close to “any” third critical field (they have the same
asymptoics)

0 < ∆ ≤ C̃
[
κ2 − λN

1 (κσ F)
]
‖ψ‖2

2 ,

so in particular
κ2 − λN

1 (κσ F) > 0 .

Coming back to the definitions this leads to the statement.



Some questions in the theory of Liquid crystals

The model
The energy for the model in Liquid Crystals can be written1 as

E [ψ,n] =

∫

Ω

{
|∇qnψ|2 − κ2|ψ|2 +

κ2

2
|ψ|4

+ K1 | div n|2 + K2 |n · curl n + τ |2 + K3 |n × curl n|2
}

dx ,

where :
• Ω ⊂ R3 is the region occupied by the liquid crystal,
• ψ is a complex-valued function called the order parameter,
• n is a real vector field of unit length called director field,
• q is a real number called wave number,
• τ is a real number measuring the chiral pitch,
• K1 > 0, K2 > 0 and K3 > 0 are called the elastic coefficients,
• κ > 0 depends on the material and on temperature.

1This is an already simplified model where boundary terms have been

eliminated.



The two questions are then :
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◮ What is the nature of the minimizers ?



The two questions are then :

◮ What is the minimum of the energy ?

◮ What is the nature of the minimizers ?

Of course the answer depends heavily on the various parameters !!



As in the theory of superconductivity, a special role will be played
by the following critical points of the functional, i.e. the pairs

(0,n) ,

where n should minimize the second part of the functional called
the Oseen-Frank functional :
∫

Ω

{
K1 | div n|2 + K2 |n · curl n + τ |2 + K3 |n × curl n|2

}
dx .

These special solutions are called “nematic phases” and one is
naturally asking if they are minimizers or local minimizers of the
functional.



A first upper bound
For τ > 0, let us consider C(τ) the set of the S

2-valued vectors
satisfying :

curl n = −τn , div n = 0 .
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A first upper bound
For τ > 0, let us consider C(τ) the set of the S

2-valued vectors
satisfying :

curl n = −τn , div n = 0 .

It can be shown that C(τ) consists of the vector fields NQ
τ such

that, for some Q ∈ SO(3),

N
Q
τ (x) ≡ QNτ (Q

tx) , ∀x ∈ Ω, (104)

where

Nτ (y1, y2, y3) = (cos(τy3), sin(τy3), 0) , ∀y ∈ R
3 . (105)

Note that is also equivalent, when |n|2 = 1 to

div n = 0, n · curl n + τ = 0, n × curl n = 0 . (106)

So the last three terms in the functional vanish iff n ∈ C(τ).



As a consequence, if we denote by

C (K1,K2,K3, κ, q, τ) = inf
(ψ,n)∈V(Ω)

E [ψ,n] ,

the infimum of the energy over the natural maximal form domain
of the functional, then

C (K1,K2,K3, κ, q, τ) ≤ c(κ, q, τ) , (107)

where
c(κ, q, τ) = inf

n∈C(τ)
inf
ψ

Gqn(ψ) (108)

and Gqn(ψ) is the so called the reduced Ginzburg-Landau
functional.



Reduced Ginzburg-Landau functional
Given a vector field A, this functional is defined on H1(Ω,C) by

ψ 7→ GA[ψ] =

∫

Ω
{|∇Aψ|2 − κ2|ψ|2 +

κ2

2
|ψ|4} dx . (109)

For convenience, we also write GA[ψ] as G[ψ,A].
So we have

c(κ, q, τ) = inf
n∈C(τ),ψ∈H1(Ω,C)

G[ψ, qn] . (110)

and
E(ψ,n) = G[ψ,qn] , (111)

if
n ∈ C(τ) .
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We have seen that in full generality that
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A limiting case
We have seen that in full generality that

C (K1,K2,K3, κ, q, τ) ≤ c(κ, q, τ) . (112)

Conversely, it can be shown (Bauman-Calderer-Liu-Phillips, Pan,
Helffer-Pan), that when the elastic parameters tend to +∞, the
converse is asymptotically true.

Proposition LCa

lim
K1,K2,K3→+∞

C (K1,K2,K3, κ, q, τ) = c(κ, q, τ) . (113)

So c(κ, q, τ) is a good approximation for the minimal value of E
for large Kj ’s.
Note that an interesting open problem is to control the rate of
convergence in (113).
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We now examine the non-triviality of the minimizers realizing
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Minimizers of the reduced G-L functional
We now examine the non-triviality of the minimizers realizing
c(κ, q, τ).
As for the Ginzburg-Landau functional in superconductivity, this
question is closely related to the analysis of the lowest eigenvalue
µ(qn) of the Neumann realization of the magnetic Schrödinger
operator

−∇2
qn

in Ω, with
∇qn = ∇− iqn ,

namely λ = λN
1 (qn) (in short λN

1 (qn)) is the lowest eigenvalue of
the following problem

{
−∇2

qnφ = λφ in Ω,

N · ∇qnφ = 0 on ∂Ω,
(114)

where N is the unit outer normal of ∂Ω.



But the new point is that we will minimize over n ∈ C(τ). So we
shall actually meet

µ∗(q, τ) = inf
n∈C(τ)

λN
1 (qn) . (115)



Our main comparison statement (analogous to some statement in
Fournais-Helffer for surface superconductivity) is :

Proposition LCb

− κ2|Ω|
2

[1 − κ−2µ∗(q, τ)]
2
+ ≤ c(κ, q, τ) (116)

and

c(κ, q, τ) ≤ −κ
2

2
[1 − κ−2µ∗(q, τ)]

2
+ sup

n∈C(τ)
sup

φ∈Sp(qn)

(
∫
Ω |φ|2 dx)2∫
Ω |φ|4 dx

,

(117)
where Sp(qn) is the eigenspace associated to µ(qn).



This shows also that c(κ, q, τ) is strictly negative if and only

µ∗(κ, τ) < κ2 .



The link with spectral theory for Schrödinger with magnetic field
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The link with spectral theory for Schrödinger with magnetic field
Main questions
As a consequence of Proposition LCb, we obtain that the transition
from nematic phases to non-nematic phases (the so called smectic
phases) is strongly related to the analysis of the solution of

1 − κ−2µ∗(q, τ) = 0 . (118)

This is a pure spectral problem concerning a family indexed by
n ∈ C(τ) of Schrödinger operators with magnetic field −∇2

qn.

In the analysis of (118), the monotonicity of q 7→ µ∗(q, τ) is an
interesting open question (see Fournais-Helffer in the case of
Surface Superconductivity).
This will permit indeed to find a unique solution of (118)
permitting a natural definition of the critical value QC3(κ, τ).



We have proved with Pan that if τ stays in a bounded interval,
then this quantity and µ∗(q, τ) can be controlled in two regimes

◮ σ → +∞ ,

◮ σ → 0 ,

where
σ = qτ

which is in some sense the leading parameter in the theory.



Semi-classical case : qτ large
When looking at the general problem, various problems occur.



Semi-classical case : qτ large
When looking at the general problem, various problems occur.

The magnetic field −qτn (corresponding when n ∈ C(τ) to the
magnetic potential qn) is no more constant, so one should extend
the analysis of Helffer-Morame (d = 3) to this case.



A first analysis (semi-classical in spirit) gives :

Theorem LCc
As σ = qτ → +∞,

µ∗(q, τ) = Θ0(qτ) + O((qτ)
2
3 ) (119)

where the remainder is controlled uniformly for τ ∈]0, τ0].

This condition can be relaxed (N. Raymond 2008) at the price of a
worse remainder.



This leads (assuming the uniqueness of QC3), to

τ QC3(κ, τ) =
κ2

Θ0
+ O(κ

4
3 ) . (120)



Coming back to the limit σ → +∞, an open question (but see Pan
and work in progress by Helffer-Pan) is to find uniform two terms
asymptotic for µ(qnτ ) and for µ∗(q, τ).



A simpler question
A simpler question which is partially solved in Pan (2007) (with
the help of Helffer-Morame (d=3)) and corresponds to the case
τ = 0 is the following :



A simpler question
A simpler question which is partially solved in Pan (2007) (with
the help of Helffer-Morame (d=3)) and corresponds to the case
τ = 0 is the following :

Given a strictly convex open set, find the direction h of the
constant magnetic field giving asymptotically as σ → +∞ the
lowest energy for the Neumann realization in Ω of the Schrödinger
operator with magnetic field σ h.



Let us present shortly the answer to this question. We assume that

Assumption G’

At each point of ∂Ω the curvature tensor has two strictly positive
eigenvalues κ1(x) and κ2(x), so

0 < κ1(x) ≤ κ2(x) .

This assumption implies that for any h, the corresponding set Γh of
boundary points where h is tangent to ∂Ω, i.e.

Γh := {x ∈ ∂Ω
∣∣h · N(x) = 0}, (121)

is a regular submanifold of ∂Ω.
For any given h, let Fh be the magnetic potential such that

curl Fh = h , div Fh = 0 , Fh · N(x) = 0 on ∂Ω .



We have the following two-term asymptotics of λN
1 (σFh) of the

Neuman Laplacian ∆σFh
, (due to Helffer-Morame-Pan).

Theorem 20
If Ω and h as above, then, as σ → +∞,

λN
1 (σFh) = Θ0σ + γ̂hσ

2
3 + O(σ)

2
3
−η, (122)

for some η > 0.
Moreover η is independent of h and the control of the remainder is
uniform with respect to h.



and γ̂h is defined by
γ̂h := inf

x∈Γh

γ̃h(x), (123)

where

γ̃h(x) := 2−2/3ν̂0δ
1/3
0 |kn(x)|2/3

(
δ0+(1−δ0)|Th(x)·h|2

)1/3
. (124)

Here Th(x) is the oriented, unit tangent vector to Γh at the point
x and

kn(x) = |dT (β · N)(x)| .
Here is now the answer to the “simpler” question. We have just

to determine infh γ̂h or equivalently

inf
h,x∈Γh

|kn(x)|2/3
(
δ0 + (1 − δ0)|Th(x) · h|2

) 1
3
.

So everything is reduced to the analysis of the map

Γh ∋ x 7→ kn(x)2
(
δ0 + (1 − δ0)|Th(x) · h|2

)
.



This last expression can be written in the form

Γh ∋ x 7→
κ1(x)2 cos2 φ(x) + κ2(x) sin2 φ(x)
−(1 − δ0)(κ1(x) − κ2(x))2 sin2 φ(x) cos2(φ(x)) ,

where, for x ∈ ∂Ω, φ(x) is defined by writing

h = cosφ(x)u1(x) + sinφ(x)u2(x) ,

with (u1(x), u2(x)) being the orhonormal basis of the curvature
tensor at x , associated to the eigenvalues κ1(x) and κ2(x).
When minimizing over h and x ∈ Γh, it is rather easy to show that
the infimum is obtained by first choosing a point x0 of ∂Ω where
κ1(x) is minimum and then taking h = u1(x0).



This leads to the proposition

Proposition 21

Under Assumption (116), we have

inf
h
γ̂h = inf

x∈∂Ω
(κ1(x))

2
3 . (125)

This answers to our question.



Let Ω be a smooth, simply-connected domain in R
2. Let

γ : R/(|∂Ω|Z) → ∂Ω

be a parametrization of the boundary with |γ′(s)| = 1 for all s.
Let ν(s) be the unit vector, normal to the boundary, pointing
inward at the point γ(s). We choose the orientation of the
parametrization γ to be counter-clockwise, so

det
(
γ′(s), ν(s)

)
= 1 .

The curvature k(s) of ∂Ω at the point γ(s) is now given by

γ′′(s) = k(s)ν(s) .



The map Φ defined by,

Φ : R/(|∂Ω|Z)×]0, t0[→ Ω ,

(s, t) 7→ γ(s) + tν(s) , (126)

is clearly a diffeomorphism, when t0 is sufficiently small, with
image

Φ
(
R/(|∂Ω|Z)×]0, t0[

)
= {x ∈ Ω

∣∣ dist (x , ∂Ω) < t0} =: Ωt0 .

Furthermore, with the distance to the boundary t(x),
t(Φ(s, t)) = t.
The inverse Φ−1 defines a system of coordinates for a tubular
neighborhood of ∂Ω in Ω that we can use locally or semi-globally.



If A is a vector field on Ωt0 with β = curl A we define the
associated fields in (s, t)-coordinates by

Ã1(s, t) = (1 − tk(s))A(Φ(s, t)) · γ′(s) , Ã2(s, t) = A(Φ(s, t)) · ν(s) ,
(127)

β̃(s, t) = β(Φ(s, t)) . (128)

Then
∂sÃ2 − ∂tÃ1 = (1 − tk(s))β̃ . (129)

Furthermore, for all u ∈ H1(Ωt0), we have, with v = u ◦ Φ,

∫

Ωt0

|(−i∇ + A)u|2 dx (130)

=

∫ {
(1 − tk)−2

∣∣∣(−i∂s + Ã1)v
∣∣2 +

∣∣(−i∂t + Ã2)v
∣∣2
}
(1 − tk) dsdt ,

∫

Ωt0

|u(x)|2 dx =

∫
|v(s, t)|2(1 − tk(s)) dsdt .



The next lemma is quite useful for the fine analysis in a tubular
neighborhood of the boundary and gives a kind of normal form.

Lemma (Semi-global version)

Let θ on Ωt0 s.t the corresponding θ̃ is t-independent. Then
∃C > 0 s.t. , if A satisfies curl A = θ on ∂Ω , and with Ã

defined as in (127), then ∃ϕ(s, t) on R/(|∂Ω|Z)×]0, t0[ s.t.

Ā(s, t) =

(
Ā1(s, t)
Ā2(s, t)

)

:= Ã −∇(s,t)ϕ =

(
γ0 − θ̃(s, 0)t + t2k(s)

2 + t2b(s, t)
0

)
, (131)

where

γ0 =
1

|∂Ω|

∫

Ω
curl A dx . (132)



Local version
Furthermore, if [s0, s1] is a subset of R/(|∂Ω|Z) with
s1 − s0 < |∂Ω|, then we may choose ϕ on ]s0, s1[×]0, t0[ s.t.

Ā(s, t) =

(
Ā1(s, t)
Ā2(s, t)

)

:= Ã −∇(s,t)ϕ =

(
−θ̃(s, 0)t + t2k(s)

2 + t2b(s, t)
0

)
. (133)

No need to have some γ0 !
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