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1 Introduction

Let K be a global field of characteristic p ≥ 0 and let AK denote the ring of adèles of
K. Let G be a reductive group over K, andX be a torsor under G. We are interested in
rational points onX, and more precisely, on various local-global principles associated to
X: does X satisfy the Hasse principle, i.e. does X(AK) 6= ∅ imply X(K) 6= ∅? If not,
can we explain the failure using the so-called Brauer-Manin obstruction to the Hasse
principle? Assuming that X(K) 6= ∅, can we estimate the size of X(K) by studying
the so-called weak and strong approximation on X (with a Brauer-Manin obstruction
if necessary), i.e. the closure of the set X(K) in the topological space X(AS

K), where
S is a (not necessarily finite) set of places of K and AS

K is the ring of S-adèles (with
no components in S)?

The answer to those questions is known in the case whereK is a number field, see for
instance [San], Corollaries 8.7 and 8.13, for the Hasse principle and weak approximation,
and [Dem2], Theorem 3.14 for strong approximation. Note that in the number field
case, similar results are known for certain non principal homogeneous spaces of G (see
[Bor] or [BD]).

In the case of a global field of positive characteristic, the answer is known for
semisimple simply connected groups (thanks to works by Harder, Kneser, Chernousov,
Platonov, Prasad), but the general case is essentially open (see [Ros], Theorem 1.9 for
some related results). One strategy to attack the remaining local-global questions is
similar to one that worked for number fields: arithmetic duality theorems for tori, and
abelianization of Galois cohomology (see for instance [Dem1] and [Dem2] for the case
of strong approximation over number fields). Indeed, given a reductive group G over
a field L (e.g. L is a global or a local field), one can construct a complex of tori of

1



length two C := [T1 → T2],
1 together with “abelianization maps”H i(L,G)→ H i(L,C)

(cohomology sets here are Galois cohomology or hypercohomology sets), such that the
cohomology sets of G can be computed via the abelian cohomology groups of C and
the Galois cohomology of a semisimple simply connected group associated to G. The
latter is well-understood when L is a local or global field.

Motivated by the discussion above, this paper deals with arithmetic duality theo-
rems for complexes of tori over global fieldsK of positive characteristic; in characteristic
0, we also get refinements of previously known results.

The aforementioned applications to the arithmetic of reductive groups and homo-
geneous spaces will be given in a future paper.

The main object is a two-term complex C := [T1 → T2] of K-tori T1 and T2, and we
are particularly interested in its Galois hypercohomology groups H i(K,C). The main
result of the paper can be summarized as follows: we get Poitou-Tate exact sequences
relating global Galois cohomology groups H i(K,C) and local ones H i(Kv, C) - for any
place v of K - via the cohomology of the dual object Ĉ of C. To be more precise,
let us introduce some notation: K is the function field of a smooth, projective, and
geometrically integral curve X over a finite field k. Let X(1) denote the set of closed
points in X. If A is a discrete abelian group, then A∗ is the Pontryagin dual of
homomorphisms from A to Q/Z, and A∧ denotes the completion A∧ := lim

←−n∈N∗
A/n.

We can now state one of the main results in the paper (see Theorem 5.10):

Theorem. Let C := [T1 → T2] be a two-term complex of K-tori, and Ĉ := [T̂2 → T̂1]
be the dual complex, where T̂ is the module of characters of a torus T (T1 and T̂2 are
in degree −1). Then there is an exact sequence

0 −−−−→ H−1(K,C)∧ −−−−→
[∏′

v∈X(1) H−1(Kv , C)
]
∧
−−−−→ H2(K, Ĉ)∗

y

H1(K, Ĉ)∗ ←−−−−
[∏′

v∈X(1) H0(Kv, C)
]
∧
←−−−− H0(K,C)∧

y
H1(K,C) −−−−→

⊕
v∈X(1) H1(Kv, C) −−−−→ H0(K, Ĉ)∗

y
0 ←−−−− H−1(K, Ĉ)∗ ←−−−−

⊕
v∈X(1) H2(Kv, C) ←−−−− H2(K,C)

(1)

In the case where K is a number field, we also recover a generalization of [Dem1],
Theorems 6.1 and 6.3. In the function field case, some partial results related to this
exact sequence for one single torus can be deduced from section 6 in [Go1].

The main ingredient to prove the Theorem above is the so-called Artin-Mazur-Milne
duality theorem for the fppf cohomology of finite flat commutative group schemes over
open subsets of X (see [Mi2], Theorem III.8.2 and [DH], Theorem 1.1). It is worth
noting that although the complexes that appear in the previous theorem consist of
smooth group schemes (hence the result can be stated using only Galois cohomology),
it is essential for the proof to involve finite group schemes (which are not smooth in
general) over Zariski open subsets of X. That’s why [DH], Theorem 1.1, is required

1Throughout the paper, the piece of notation := means that the equality is a definition.
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instead of the Artin-Verdier duality Theorem ([Mi2], Cor. II.3.3.) in étale cohomology.
Likewise for Theorems 4.11 and 4.9.

Also, since it is necessary at some point to work with the fppf topology, the approach
of duality theorems via Ext groups (like [Mi2], Th. II.3.1) does not seem to work, the
difficulty being the lack of good notion of constructible sheaf for the fppf topology (see
[Mi2], introduction to chapter III).

The structure of the paper is the following: section 2 extends the construction
and properties given in [DH] of fppf cohomology with compact support to the case of
bounded complexes of finite flat group schemes. General properties of étale cohomology
of complexes of tori and of their dual complexes are given in section 3. Section 4 deals
with applications of Artin-Mazur-Milne duality theorem to various duality statements
for the étale cohomology of complexes of tori over open subsets U of X. In section
5, one deduces several Poitou-Tate exact sequences for Galois cohomology from the
results of section 4.

2 Compact support hypercohomology

Let K be the function field of a smooth, projective, and geometrically integral curve
X over a finite field k. Let U be a non empty Zariski open subset of X. Denote by
U (1) the set of closed points of U .

Let C = (Cp)p∈Z be a bounded complex of fppf sheaves over U . In this text, we

define the dual of C to be the Hom-complex Ĉ defined by

Ĉ := Hom•(C,Gm[1]) ,

following the sign conventions in [SP], Tag 0A8H or in [AC], X.5.1. Note that there is
a functorial morphism of complexes

Tot(C ⊗ Ĉ)→ Gm[1]

mapping an element c⊗ϕ ∈ Cp⊗Hom(Cq, An) to 0 if p 6= q, and to (−1)p(n−1)ϕ(c) ∈ An
if p = q.

With those conventions, if C is concentrated in degree 0, i.e. C = F with F an
fppf sheaf, then Ĉ is the same as the Cartier dual FD := Hom(F ,Gm) attached in
degree −1, i.e. Ĉ = FD[1] and the above pairing coincides with the obvious pairing
F ⊗FD[1]→ Gm[1] with no extra sign.

Note also that for any bounded complex C, we have a natural isomorphism of

complexes Ĉ[1]
∼
−→ Ĉ[−1], given by a sign (−1)n+1 in degree n. And given a morphism f :

A→ B of bounded complexes, we have a natural isomorphism of complexes ̂Cone(f)
∼
−→

Cone(f̂)[−1] such that the following diagram commutes

Â[1] //

∼
��

̂Cone(f) //

∼
��

B̂
f̂

//

=
��

Â

=
��

Â[−1] // Cone(f̂)[−1] // B̂
f̂

// Â .

(2)

If N is a commutative group scheme (over U or over K), its Cartier dual is denoted
ND. The Pontryagin dual of a topological abelian group A (consisting of continuous
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homomorphism from A to Q/Z) is denoted A∗. Unless explicitly specified, the topology
used for sheaves (resp. complex of sheaves) and cohomology (resp. hypercohomology)
is the fppf topology.

For each closed point v of X, the completion of K at v is denoted by Kv : it is a
local field of characteristic p with finite residue field Fv (observe the slight difference of

notation with [DH], where Kv stands for the henselization and K̂v for the completion).
Denote by Ov the ring of integers of Kv. For every fppf sheaf F over U with generic
fibre F , recall ([DH], Prop 2.1) the long exact sequence (where the piece of notation
v 6∈ U means that we consider all closed points of X \ U).

...→ H i
c(U,F)→ H i(U,F)→

⊕

v 6∈U

H i(Kv , F )→ H i+1
c (U,F)→ ... (3)

There is also a long exact sequence

...→ H i
c(U,F

′)→ H i
c(U,F)→ H i

c(U,F
′′)→ H i+1

c (U,F ′)→ ... (4)

associated to every short exact sequence

0→ F ′ → F → F ′′ → 0

of fppf sheaves.

Let us now extend the construction of the groups H i
c(U, ...) and [DH], Prop 2.1 to

the case of bounded complexes. Let C := [· · · → Fi → Fi+1 → . . . ] be a bounded
complex of fppf sheaves over U . Let C → I•(C) be an injective resolution of the
complex C, in the sense of [SP], Tag 013K. Following [DH], section 2, let Z := X \ U

and Z ′ :=
∐
v∈Z Spec (Kv)

i
−→ U . Denote by Cv and I•(C)v their respective pullbacks

to SpecKv, for v /∈ U .
We now define Γc(U, I

•(C)) to be the following object in the category of complexes
of abelian groups:

Γc(U, I
•(C)) := Cone

(
Γ(U, I•(C))→ Γ(Z ′, i∗I•(C))

)
[−1] ,

and Hr
c (U, C) := Hr(Γc(U, I

•(C))). We will also denote by RΓc(U, C) the complex
Γc(U, I

•(C)). Similarly, one can define, for any closed point v ∈ X, complexes Γv(Ov , C)
computing fppf cohomology groups Hr

v (Ov, C) over SpecOv with support in the closed
point, as in [DH], before Lemma 2.6.

As in [DH], similar definitions could be made when K is a number field (taking
into account the real places), but in this article we will focus on the function field case.
However, we will make remarks regularly throughout the text explaining similarities
and differences appearing in the number field case.

We will need the analogue of [DH], Prop 2.1 and Prop 2.12 for bounded complexes
C: by construction, the first two points of loc. cit. Prop. 2.1 (i.e. exact sequence (3)
and (4)) still hold for bounded complexes.

Proposition 2.1. Let C be a bounded complex of flat affine commutative group schemes
of finite type over U , and let V ⊂ U be a non empty open subset.

1. There is a canonical commutative diagram of abelian groups:
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⊕
v/∈V H

r−1(Kv , C)

��

⊕
v/∈U H

r−1(Kv, C)
i2oo

��

. . . //
⊕

v∈U\V H
r−1(Ov , C) //

i1
55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

Hr
c (V, C) //

��

Hr
c (U, C) //

��

⊕
v∈U\V H

r(Ov , C) // . . .

Hr(V, C)

��

Hr(U, C)

��

Resoo

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥

⊕
v/∈V H

r(Kv, C)
π //

⊕
v/∈U H

r(Kv , C) ,

where the long row and the columns are exact.

2. Let V ⊂ U be a non empty open subset. Then there is an exact sequence

...→
⊕

v∈U\V

Hr
v (Ov, C)→ Hr(U, C)→ Hr(V, C)→

⊕

v∈U\V

Hr+1
v (Ov, C)→ ...

Proof: We follow the proofs of [DH], Prop 2.1 3 and of Prop 2.12.
Easy dévissages imply that [DH], Lemmas 2.6 holds with F replaced by a bounded

complex of flat commutative group schemes of finite type and Lemma 2.9 holds for
bounded complexes of fppf sheaves. Likewise Lemma 2.10 holds for bounded complexes
of étale sheaves or of smooth commutative group schemes. Therefore, one can copy the
proofs of [DH], Prop 2.1 (3) and Prop 2.12 to get the required Proposition.

Lemma 2.2. Let C be a bounded complex of flat commutative group schemes of finite
type over U with generic fibre C over K. Let i be an integer. For each v ∈ U (1), denote
by H i

nr(Kv , C) the image of H i(Ov , C) in H
i(Kv, C). Let V ⊂ U be a non empty Zariski

open subset. Then there is an exact sequence

H i(U, C)→
∏

v 6∈U

H i(Kv , C)×
∏

v∈U\V

H i
nr(Kv , C)→ H i+1

c (V, C).

Proof: There is a commutative diagram such that the second line and the left
column are exact (by (3) and Prop. 2.1 2.):

H i(U, C) −−−−→
∏
v 6∈U H

i(Kv, C)×
∏
v∈U\V H

i
nr(Kv, C)

y
yj

H i(V, C) −−−−→
∏
v 6∈U H

i(Kv , C)×
∏
v∈U\V H

i(Kv, C) −−−−→ H i+1
c (V, C)

y
y

∏
v∈U\V H

i+1
v (Ov , C) −−−−→

=

∏
v∈U\V H

i+1
v (Ov , C)

For v ∈ U \ V , the localization exact sequence (cf. proof of Proposition 2.1, 2.)

H i(Ov , C)→ H i(Kv , C)→ H i+1
v (Ov, C)
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yields that the second column is a complex. Since j is injective by definition, the
required exact sequence follows by diagram chasing.

For a complex C of finite flat group schemes, let us now endow the groups H∗
c (U, C)

with a natural topology, compatible with the one defined in [DH] in the case where C
is a finite flat group scheme.

Let F be a local field (that is: a field complete for a discrete valuation with finite

residue field) and let C := [Cr
fr
−→ Cr+1 → · · · → Cs] be a bounded complex of finite

commutative group schemes over SpecF , with Ci in degree i. We assume that F is
of positive characteristic p (if F is p-adic, then all groups Hr(F, C) are finite by [Mi2],
Cor. I.2.3).

Definition 2.3. A morphism f : G1 → G2 of topological groups is strict if it is
continuous, and the restriction f : G1 → f(G1) is an open map (where the topology on
f(G1) is induced by G2). This is equivalent to saying that f induces an isomorphism
of the topological quotient G1/ ker f with the topological subspace f(G1) ⊂ G2.

Let A := ker(fr), and let C := Cone(A[−r]
j
−→ C). Then there is an exact triangle

A[−r]
j
−→ C

i
−→ C

p
−→ A[1− r] . (5)

In addition, we have a natural quasi-isomorphism ϕ : C → C′, where C′ := [Cr+1/Im (fr)→
Cr+2 → · · · → Cs] has a smaller length than C.

There is an alternative dévissage for the complex C, given by the exact triangle:

C̃
i′
−→ C

p
−→ Cr[−r]

∂
−→ C̃[1] , (6)

where C̃ := [Cr+1
fr+1
−−−→ Cr+2 → · · · → Cs].

Recall that for a finite and commutative F -group scheme N , the fppf groups
H i(F,N) are finite if i 6= 1 ([Mi2], §III.6) and they are equipped with a locally com-
pact topology for i = 1 by [Čes1]. By induction on the length of C, one deduces that
if Ci = 0, then H i+1(F, C) is finite. In particular, with the previous notation, we get
that H i(F, C) is finite if i ≤ r or i ≥ s+ 2.

We now define a natural topology on H i(F, C) by induction on the length of C, such
that any morphism of such complexes induces a strict map between hypercohomology
groups. Using the dévissages given by (5) and (6), one gets the following exact sequences

H i−1(F, C′)→ H i−r(F,A)
f
−→ H i(F, C)

g
−→ H i(F, C′)→ H i+1−r(F,A)→ . . . (7)

and

H i−r−1(F,Cr)→ H i(F, C̃)
f ′
−→ H i(F, C)

g′
−→ H i−r(F,Cr)→ H i+1(F, C̃)→ . . . , (8)

where all the groups except H i(F, C) are endowed with a natural topology via the
induction hypothesis (observe that C ′

r = 0).

• Assume that i = r + 1. Equip Im f ∼= H i−r(F,A)/ImH i−1(F, C′) with the quo-
tient topology. Then the two rightmost groups in exact sequence (7) are finite,
and we can endow Hr+1(F, C) with the topology such that Im f is an open sub-
group (see [DH], beginning of section 3). In other words it is the finest topology
such that f is continuous. Then f and g are strict.
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• Assume that i 6= r+1. Then H i−r(F,Cr) is finite (and discrete), and using exact
sequence (8) one can similarly endow H i(F, C) with the finest topology making
f ′ continuous. Then both maps f ′ and g′ are strict.

By construction, this topology is functorial in C, i.e. if C1 → C2 is a morphism of
complexes, then the induced map H i(F, C1)→ H i(F, C2) is strict. In addition, given a
quasi-isomorphism C1 → C2, the induced morphism on cohomology groups is a homeo-
morphism.

Let us now deal with the topology on the groups H∗
c (U, C), where C is a complex

of finite flat commutative group schemes defined over U . Recall that we have an exact
sequence analogous to (3):

H i−1(U, C)→
⊕

v/∈U

H i−1(Kv, C)→ H i
c(U, C)→ H i(U, C) . (9)

We endow the groups H i(U, C) with the discrete topology, and the groups H i−1(Kv, C)
with the topology defined above.

Lemma 2.4. For all i, the map H i(U, C)→
⊕

v/∈U H
i(Kv, C) has discrete image.

Proof: We prove the result by induction on the length of C, using the dévissages
induced by the exact triangles (5) and (6).

• Assume that i = r + 1. Using the exact triangle (6), we get the following com-
mutative diagram of long exact sequences of topological groups (where all maps
are strict):

Hr+1(U, C̃) //

��

Hr+1(U, C) //

��

H1(U,Cr)

��⊕
v/∈U H

r+1(Kv , C̃) //
⊕

v/∈U H
r+1(Kv, C) //

⊕
v/∈U H

1(Kv , Cr) .

The groups on the left hand side are finite, and by [Čes2] Lemma 2.7, the image of
the right hand side map is discrete in

⊕
v/∈U H

1(Kv , Cr). Since
⊕

v/∈U H
r+1(Kv , C)

is Hausdorff, an easy topological argument implies that the image of the central
vertical map is discrete.

• Assume that i 6= r + 1. Using the exact triangle (5), we get the following com-
mutative diagram of long exact sequences of topological groups:

H i−r(U,A) //

��

H i(U, C) //

��

H i(U, C′)

��⊕
v/∈U H

i−r(Kv, A) //
⊕

v/∈U H
i(Kv , C) //

⊕
v/∈U H

i(Kv, C
′) .

The groups on the left hand side are finite, and by induction on the length of the
complex, the image of the right hand side map is discrete in

⊕
v/∈U H

1(Kv , C
′).

A similar topological argument as before implies that the central vertical map is
discrete.
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As a consequence of this Lemma, one can endow H i
c(U, C) with the following topol-

ogy: we put the quotient topology on the group
⊕

v/∈U H
i(Kv , C)/ImH i(U, C) (this

topology is Hausdorff), and since H i(U, C) is discrete, there is a unique topology on
H i
c(U, C) such that the maps in the exact sequence (9) are strict.

Lemma 2.5. The topological group H i
c(U, C) is profinite.

Proof: We prove this Lemma by induction on the length of the complex C. By
[DH], Proposition 3.5, the Lemma is proven when C is a complex of length one, i.e.
concentrated in one given degree.

Given a complex C, consider the previous dévissages:

• Assume that i = r + 1. Then the exact sequence (7) implies that the group
Hr+1
c (U, C) is an extension (the maps being strict) of a (discrete) finite group by

a profinite group (which is a quotient of H1
c (U,A) by a closed subgroup), hence

Hr+1
c (U, C) is profinite.

• Assume that i 6= r + 1. Then the exact sequence (8) implies that H i
c(U, C) is an

extension of a finite (discrete) group by a profinite group (which is a quotient of
H i
c(U, C̃) by a closed subgroup), hence it is profinite.

3 Cohomology of tori and short complexes of tori

Let U be a non empty Zariski open subset of X. Recall that for every U -torus T (in
the sense of [SGA3], IX, Déf. 1.3), there is a finite étale covering (that can be taken to
be connected and Galois) V of U such that TV := T ×U V is split, that is: isomorphic
to some power Gr

m (r ∈ N) of the multiplicative group ([SGA3], X, Th. 5.16). The
group of characters T̂ of T is a U -group scheme locally isomorphic to Zr for the étale
topology, namely it is a torsion-free and finite type Gal(V/U)-module.

Given a complex of U -tori C = [T1
ρ
→ T2] with generic fibre C = [T1

ρ
→ T2] over K,

where by convention T1 is in degree −1 and T2 in degree 0, we can apply the construction

of section 2. Namely we have dual complexes Ĉ = [T̂2 → T̂1] and Ĉ = [T̂2
ρ̂
→ T̂1]

(concentrated in degrees −1 and 0), which are respectively defined over U and over K.
Fix a separable closure K of K. Denote by S the finite set X \U and by GS = πét1 (U)
the étale fundamental group of U , which is the Galois group of the maximal field
extension KS ⊂ K of K unramified outside S; then each T̂i (i = 1, 2) can be viewed as
a discrete GS-module.

Recall that fppf and étale cohomology coincide for sheaves represented by smooth
group schemes ([Mi1], section III.3) like a torus T , its group of characters T̂ , or finite
flat group schemes of order prime to p. In particular (by [Mi1], Lemma III.1.16) we
have for every integer i:

lim
−→
U

H i(U, C) ∼= H i(K,C)

(where the limit is over all non empty Zariski open subsets U of X), and likewise for
the complex Ĉ.
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For such 2-term complexes, the pairings of section 2 can be made explicit (see
[Dem1], section 2; note that the sign conventions are slightly different here), and give
maps

C ⊗L Ĉ → Gm[1]; C ⊗L Ĉ → Gm[1]

in the bounded derived category Db(U) (resp. Db(SpecK)) of fppf sheaves over U
(resp. over SpecK). In the case T1 = 0 or T2 = 0, we recover (up to shift) the classical
pairings T ⊗ T̂ → Gm and T ⊗ T̂ → Gm associated to one single torus T . We also
have for each positive integer n the n-adic realizations

TZ/n(C) := H0(C[−1]⊗L Z/n); TZ/n(Ĉ) := H0(Ĉ[−1]⊗L Z/n)

and likewise for C and Ĉ. The fppf sheaf TZ/n(C) is representable by a finite group
scheme of multiplicative type over U (in the sense of [SGA3], IX, Déf. 1.1) with Cartier
dual TZ/n(Ĉ), and similarly for TZ/n(C) and TZ/n(Ĉ) over K. Besides we have exact
triangles ([Dem1], Lemme 2.3), where for every abelian group (or group scheme) A,
the piece of notation nA stands for the n-torsion subgroup of A:

n(ker ρ)[2]→ C ⊗
L Z/n→ TZ/n(C)[1]→ n(ker ρ)[3] (10)

and
TZ/n(Ĉ)[1]→ Ĉ ⊗

L Z/n→ ̂
n(ker ρ)→ TZ/n(Ĉ)[2] (11)

in Db(U), and similar triangles for C, Ĉ in Db(SpecK).
Note also that the objects C ⊗L Z/n and Ĉ ⊗L Z/n in the derived category have

canonical representatives as complexes of fppf sheaves given by C ⊗L Z/n = Tot(C ⊗
[Z

n
−→ Z]) and Ĉ ⊗L Z/n = Tot(Ĉ ⊗ Z/n).

We also have an exact triangle in Db(U):

(ker ρ)[1]→ C → coker ρ→ (ker ρ)[2], (12)

where coker ρ is a torus and M := ker ρ is a group of multiplicative type, and the dual
exact triangle

(ĉoker ρ)[1]→ Ĉ → k̂er ρ→ (ĉoker ρ)[2]. (13)

For every integer i, there are exact sequences

...→ H i(U,T1)→ H i(U,T2)→ H i(U, C)→ H i+1(U,T1)→ ... (14)

...→ H i(U, T̂2)→ H i(U, T̂1)→ H i(U, Ĉ)→ H i+1(U, T̂2)→ ... (15)

and we also have similar exact sequences for the compact support fppf cohomology
groups H i

c(U, ...).

Lemma 3.1. a) Let T be a torus over U . Then H0(U,T ) and H1(U,T ) are of finite
type. If U 6= X, then H1(U,T ) is finite.

b) Let N be a finite group scheme of multiplicative type over U . Then H1(U,N )
and H2

c (U,N
D) are finite.
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Proof: a) Let V be an étale and finite connected Galois covering of U such that
TV := T ×U V is isomorphic to Gr

m for some non negative integer r. The group T (V ) ≃
H0(V,Gm)

r is of finite type by Dirichlet’s theorem on units. Therefore H0(U,T ) ⊂
H0(V,T ) = T (V ) is also of finite type.

Set G = Gal(V/U). Then the Hochschild-Serre spectral sequence provides an exact
sequence

0→ H1(G,T (V ))→ H1(U,T )→ H1(V,TV ).

Since TV ∼= Gr
m, the group H

1(V,TV ) ∼= (PicV )r is of finite type (resp. finite if U 6= X)
by finiteness of the ideal class group of a global field. As T (V ) is of finite type and G
is finite, the group H1(G,T (V )) is finite by [Ser], Chap. VIII, Cor 2. Thus H1(U,T )
is of finite type (resp. finite if U 6= X) as well.

b) We can assume (by ([Mi2], Lemma III.8.9 and [DH], Cor. 4.9) that U 6= X.
Since every finitely generated Galois module is a quotient of a torsion-free and finitely
generated Galois module, the assumption that N is of multiplicative type implies (by
[SGA3], X, Prop 1.1) that there is an exact sequence of U -group schemes

0→ N → T1 → T2 → 0,

where T1 and T2 are U -tori. Therefore there is an exact sequence of abelian groups

H0(U,T2)→ H1(U,N )→ H1(U,T1).

By a), we know that H1(U,T1) is finite. Let n be the order of N ; then the map
H0(U,T2) → H1(U,N ) factorizes through a map H0(U,T2)/n → H1(U,N ). But
H0(U,T2)/n is finite becauseH0(U,T2) is of finite type by a). Finally H1(U,N ) is finite.
The finiteness of H2

c (U,N
D) follows by Artin-Mazur-Milne duality ([DH], Th. 1.1).

Remark 3.2. By dévissage, the finiteness of H1(U,N ) holds for a (not necessarily
finite) group of multiplicative type N because such a group is an extension of a finite
group by a torus. Recall also ([Mi2], Lemma III.8.9 and [DH], Cor. 4.8) that for
every finite and flat commutative group scheme N over U , the groups H i(U,N ) and
H3−i
c (U,N ) are finite if i 6= 1 or if U = X, and also if p does not divide the order of N

(by [DH], Prop 2.1., 4. and [Mi2], Th. II.3.1). Besides these groups are trivial if i ≥ 4
(this is part of [DH], Th. 1.1).

For an fppf sheaf (or a bounded complex of fppf sheaves) F on U with generic fibre
F , we set (cf. exact sequence (3))

Di(U,F) = Ker [H i(U,F)→
⊕

v 6∈U

H i(Kv, F )] = Im [H i
c(U,F)→ H i(U,F)].

Lemma 3.3. We have D2(U,Gm) = 0.

Proof: Let Fv be the residue field of Kv. By [Mi2], Prop II.1.1 b), we have

H2(Ov ,Gm) = BrOv ∼= BrFv = 0

because Fv is finite. The Brauer group BrU of U injects into BrK ([Mi1], Cor. IV.2.6).
Now every element of D2(U,Gm) ⊂ BrU ⊂ BrK has trivial restriction to BrKv
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for all places v of K, hence it is trivial by Brauer-Hasse-Noether Theorem ([NSW],
Th. VIII.1.17).

Lemma 3.4. Let T be a U -torus with generic fibre T .

a) The group H1(U, T̂ ) is finite; the groups H0(U, T̂ ) and H0
c (U, T̂ ) are of finite

type and torsion-free. The group H1
c (U, T̂ ) is of finite type.

b) The group H2
c (U,T ) is finite. In particular, if U = X, then H2(X,T ) is finite.

c) Assume U 6= X. Then H2
c (U, T̂ ) is finite.

d) Assume i ≥ 4. Then H i(U, T̂ ) = H i
c(U, T̂ ) = 0. If U 6= X, then H3(U, T̂ ) = 0.

e) If U = X, then H3(U, T̂ ) = H3(X, T̂ ) is finite.

Proof: a) Let V be a finite connected Galois étale covering of U such that T ×U V is
split. Let L be the function field of V and set G = Gal(L/K). We have H1(V,Z) = 0
because H1(V,Z) injects into H1(L,Z) by Leray spectral sequence. Therefore we have
H1(V, T̂ ) = 0, hence the group H1(U, T̂ ) identifies (by the Hochschild-Serre spectral
sequence) to a subgroup of H1(G, T̂ ), which is finite because T̂ is a G-module of finite
type. The assertion aboutH0(U, T̂ ) (which is a subgroup of H0(K, T̂ )) andH0

c (U, T̂ ) ⊂
H0(U, T̂ ) is obvious (we even have H0

c (U, T̂ ) = 0 if U 6= X). Also the exact sequence

⊕

v 6∈U

H0(Kv , T̂ )→ H1
c (U, T̂ )→ H1(U, T̂ )

shows shat H1
c (U, T̂ ) is of finite type.

b) By (3), there is an exact sequence

⊕

v 6∈U

H1(Kv, T )→ H2
c (U,T )→ D2(U,T )→ 0.

The groups H1(Kv, T ) are finite ([Mi2], Cor. I.2.3). Since we have D2(V,Gm) = 0 by
Lemma 3.3, a restriction-corestriction argument shows that D2(U,T ) is a subgroup of

nH
2(U,T ), where n = #Gal(V/U). By the Kummer sequence in the fppf topology

0→ nT → T
.n
→ T → 0,

the group nH
2(U,T ) is a quotient of H2(U, nT ), which is finite (even if p divides n, cf.

Remark 3.2). Thus H2
c (U,T ) is finite.

c) Let n > 0. Using the exact sequence in the fppf topology

0→ T̂
.n
→ T̂ → T̂ /n→ 0, (16)

we see that nH
2
c (U, T̂ ) is a quotient of H1

c (U, T̂ /n), which is finite (see Remark 3.2). It
is therefore sufficient to show that H2

c (U, T̂ ) is of finite exponent, and by a restriction-
corestriction argument, we reduce to the case T̂ = Z. As H1(Kv ,Z) = 0, we have

H2
c (U,Z) = Ker[H2(U,Z)→

⊕

v 6∈U

H2(Kv,Z)].
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By [Mi2], Lemma II.2.10, this yields

H2
c (U,Z)

∼= Ker[H1(U,Q/Z)→
⊕

v 6∈U

H1(Kv,Q/Z)],

hence
H2
c (U,Z)

∼= Ker[H1(GS ,Q/Z)→
⊕

v 6∈U

H1(Kv,Q/Z)].

Therefore H2
c (U,Z) is a subgroup of H1(Gal(L/K),Q/Z), where L ⊂ KS is the max-

imal abelian extension of K that is unramified outside S and totally decomposed at
every v ∈ S = X \U . The group Gal(L/K) is isomorphic to PicU by class field theory,
which implies that it is finite because U 6= X. Hence H2

c (U,Z) is finite, which proves
the lemma.

d) For i ≥ 4, the groups H i
c(U, T̂ ) and H

i(U, T̂ ) coincide thanks to exact sequence
(3) because the local fieldKv is of strict cohomological dimension 2 ([NSW], Cor. 7.2.5).
Assume U 6= X and i ≥ 3. Then, by [Mi2], Prop II.2.9., we have H i(U, T̂ ) = H i(GS , T̂ ),
which is zero: indeed GS is of strict cohomological dimension 2 by [NSW], Th. 8.3.17. It
remains to deal with the case U = X (now we assume i ≥ 4). By [Mi2], Lemma II.2.10,
the group H i(X,Z) is torsion; by a restriction-corestriction argument, the same holds
for H i(X, T̂ ). Since Q is uniquely divisible, this yields

H i(X, T̂ ) = H i−1(X, T̂ ⊗Q/Z) = lim
−→
n

H i−1(X, T̂ /n).

For i ≥ 5, the group H i−1(X, T̂ /n) is zero (cf. Remark 3.2), so we are done. Assume
i = 4. We observe that the finite group H3(X, T̂ /n) is dual to H0(X, nT ) by Artin-
Mazur-Milne duality ([DH], Th. 1.1), so the dual of the discrete torsion groupH4(X, T̂ )
is the profinite group

lim
←−
n

H0(X, nT ) = lim
←−
n

n(T (K))

(the equality holds because the X-group scheme nT is finite and X is connected). But
K is a global field, hence T (K)tors is finite: indeed if L is a finite extension of K such
that T splits over L, then T (K) ⊂ T (L) with T (L) ≃ (L∗)r for some r, and L∗ contains
only finitely many roots of unity. Therefore T (K) has trivial Tate module, which yields
the result.

e) Using exact sequence (16), we get a surjection H2(X, T̂ /n)→ nH
3(X, T̂ ), so it is

sufficient (by Remark 3.2) to show that H3(X, T̂ ) is of finite exponent. By restriction-
corestriction, we can therefore assume that T̂ = Z. By the same method as in d), we
get that the dual of H3(X,Z) is lim

←−n
H1(X,µn). As H0(X,Gm) = k∗ because X is a

proper and geometrically integral curve, we get an exact sequence of finite groups

0→ k∗/k∗
n

→ H1(X,µn)→ nPicX → 0.

Since PicX is of finite type, we have lim←−n(nPicX) = 0, hence lim←−nH
1(X,µn) is the

inverse limit of the k∗/k∗
n

, which is k∗ itself because k is finite. Thus H3(X,Z) is the
dual of k∗, which is finite (but not zero).
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Remark 3.5. Assume U = X. Then the group H2
c (U, T̂ ) = H2(X, T̂ ) is in general

infinite: for example H2(X,Z) ∼= H1(X,Q/Z) is the dual of the étale fundamental
group πét1 (X) and the latter is an extension of Gal(k̄/k) = Ẑ; therefore H2(X,Z)
contains a copy of Q/Z.

Proposition 3.6. Let C = [T1
ρ
→ T2] be a complex of U -tori with generic fibre C =

[T1 → T2].

a) Let i ∈ {−1, 0}. Then the groups H i(U, Ĉ) and H i
c(U, Ĉ) are of finite type, and

the restriction map H i(U, Ĉ) → H i(K, Ĉ) is an isomorphism. The restriction map
H1(U, Ĉ)→ H1(K, Ĉ) is injective. If U 6= X, then H1

c (U, Ĉ) is of finite type.

b) The groups H−1(U, C) and H−1
c (U, C) are of finite type, and so is H0(U, C). If

U = X, then H1(U, C) = H1(X, C) is of finite type.

c) Assume U 6= X. Then D1(U, C) and D1(U, Ĉ) are finite.

Proof: a) The fact that H i(U, Ĉ) and H i
c(U, Ĉ) are of finite type for i ∈ {−1, 0}

follows immediately by dévissage (cf. exact sequences (15) and (3)) from Lemma 3.4
a), and we even have H−1

c (U, Ĉ) = 0 if U 6= X. For a U -torus T , the restriction map
H0(U, T̂ ) → H0(K, T̂ ) obviously is an isomorphism. Let V be a connected Galois
covering of U with function field L and group G, such that T splits over V . As seen
before, we have H1(V,Z) = H1(L,Z) = 0, hence H1(V, T̂ ) = H1(L, T̂ ) = 0. By the
Hochschild-Serre spectral sequence we get H1(U, T̂ ) ∼= H1(K, T̂ ) because both groups
identify to H1(G, T̂ ). By [Mi2], Lemma II.2.10, we have

H2(U, T̂ ) ∼= H1(U, T̂ ⊗Q/Z) = lim−→
n>0

H1(U, T̂ /n),

and H1(U, T̂ /n) →֒ H1(K, T̂ /n) because T̂ /n is a finite U -group scheme, which implies
H2(U, T̂ ) →֒ H2(K, T̂ ).

The commutative diagram with exact lines

0 −−−−→ Hi(U, T̂1) −−−−→ Hi(U, T̂2) −−−−→ Hi(U, Ĉ) −−−−→ Hi+1(U, T̂1) −−−−→ Hi+1(U, T̂2)y
y

y
y

y

0 −−−−→ Hi(K, T̂1) −−−−→ Hi(K, T̂2) −−−−→ Hi(K, Ĉ) −−−−→ Hi+1(K, T̂1) −−−−→ Hi+1(K, T̂2)

and the five lemma now give that the restriction map H i(U, Ĉ) → H i(K, Ĉ) is an
isomorphism for i ∈ {−1, 0}, and is injective for i = 1. The fact that H1

c (U, Ĉ) is of
finite type if U 6= X is immediate by dévissage thanks to Lemma 3.4 c).

b) The first two assertions follow from Lemma 3.1, using exact sequence (14). For
U = X, every X-torus T satisfies that H1(X,T ) is of finite type (Lemma 3.1) and
H2(X,T ) is finite (Lemma 3.4, b), whence the result.

c) By functoriality, the image of D1(U, C) by the map u : H1(U, C)→ H2(U,T1) is a
subgroup of D2(U,T1). The latter is finite by Lemma 3.4 b), because it is a quotient of
H2
c (U,T1). As the kernel of u is a quotient of H1(U,T2) (which is finite by Lemma 3.1

a), this means that D1(U, C) is finite.

The group H2
c (U, T̂2) is finite by Lemma 3.4, c). Hence D2(U, T̂2) is finite. On the

other hand, the kernel of the map H1(U, Ĉ) → H2(U, T̂2) is a quotient of the group
H1(U, T̂1), which is finite by Lemma 3.4 a). Thus D1(U, Ĉ) is finite.
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Remark 3.7. The same argument as in Proposition 3.6 a) shows that for v ∈ U ,
the restriction map H i(Ov, Ĉ) → H i(Kv, Ĉ) is an isomorphism for i ∈ {−1, 0}, and is
injective for i = 1.

Recall ([Dem1], section 3) that for v ∈ X(1), given a complex C of Kv-tori, the
groups H−1(Kv, C) and H0(Kv , C) are equipped with a natural Hausdorff topology
(and the groups H i(Kv , C) are endowed with the discrete topology for i ≥ 1, as are all
groups Hr(Kv, Ĉ) for −1 ≤ r ≤ 2).

Lemma 3.8. The image I of the group H0(U, C) into
⊕

v 6∈U H
0(Kv, C) is a discrete

(hence closed) subgroup, and so is the image of H−1(U, C) into
⊕

v 6∈U H
−1(Kv , C).

Proof: We can assume U 6= X. Let us start with the case when C = Gm.
Then O∗

U := H0(U,Gm) is a discrete subgroup of
⊕

v 6∈U K
∗
v , because its intersec-

tion with the open subgroup
⊕

v 6∈U O
∗
v is H0(X,Gm) = k∗, which is finite. Con-

sider now a U -torus T . Let W be a connected Galois finite covering of U (with
function field L ⊃ K) that splits T . Let G := Gal(L/K). By the case T = Gm,
the subgroup H0(W,T ) is discrete in

⊕
w 6∈W H0(Lw, T ), so H0(U,T ) is discrete in⊕

v 6∈U H
0(Kv , T ) because it is the intersection of H0(W,T ) ⊂

⊕
w 6∈W H0(Lw, T ) with⊕

v 6∈U H
0(Kv , T ) = (

⊕
w 6∈W H0(Lw, T ))

G. Thus I is discrete when C = T is one single
torus.

In the general case, exact triangle (12) yields a commutative diagram with exact
lines

H1(U,M) −−−−→ H0(U, C)
u

−−−−→ H0(U,T )
y

yj
y

⊕
v 6∈U H

1(Kv ,M) −−−−→
⊕

v 6∈U H
0(Kv, C) −−−−→

⊕
v 6∈U H

0(Kv, T ),

whereM is a U -group of multiplicative type and T is a U -torus. Since U 6= X, the right
vertical map is injective. As the lemma holds for C = T , the image J of H0(U,T ) into⊕

v 6∈U H
0(Kv , T ) is discrete, hence there is an open subgroup H of

⊕
v 6∈U H

0(Kv, T )

such that J ∩ H = {0}. Let H1 be the inverse image of H in
⊕

v 6∈U H
0(Kv , C), it is

an open subgroup of
⊕

v 6∈U H
0(Kv , C) such that j−1(H1) is a subgroup of keru. As

H1(U,M) is finite (Remark 3.2), we also have that keru is finite and so is j−1(H1).
Therefore I ∩H1 = j(j−1(H1)) is finite, which implies that I is discrete.

The same result for the image of H−1(U, C) into
⊕

v 6∈U H
−1(Kv, C) follows imme-

diately because H−1(U, C) is a subgroup of H0(U,T1) (which has just been shown to
be a discrete subgroup of

⊕
v 6∈U H

0(Kv , T1)), and
⊕

v 6∈U H
−1(Kv, C) is a topological

subspace of
⊕

v 6∈U H
0(Kv, T1).

Remark 3.9. The analogue of Lemma 3.8 does not hold over a number field as soon
as at least one finite place of K is not in U and K has at least two non archimedean
places: indeed for the exact sequence

0→ H0(U,Gm)→
⊕

v 6∈U

H0(Kv ,Gm)→ H1
c (U,Gm)→ H1(U,Gm)→ 0
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to hold (cf. [DH], beginning of section 2), the groups H0(Kv ,Gm) at the archimedean
places must be understood as the modified Tate group Ĥ0(Kv,Gm). The intersection
I of H0(U,Gm) with the compact subgroup

⊕
v 6∈U O

∗
v ⊂

⊕
v 6∈U H

0(Kv ,Gm) (where by

convention O∗
v means Ĥ0(Kv,Gm) at the archimedean places) is countable and infinite

(it is isomorphic to O∗
K), hence I is not compact by Baire’s Theorem. Therefore the

image of H0(U,Gm) in
⊕

v 6∈U H
0(Kv,Gm) is not closed.

Equip the finitely generated group H0(U, C) with the discrete topology. We give
H0
c (U, C) the unique topology such that all maps in the exact sequence

H−1(U, C)→
⊕

v 6∈U

H−1(Kv, C)→ H0
c (U, C)→ H0(U, C) (17)

are strict (by Lemma 3.8, the left map is strict and the quotient of
⊕

v 6∈U H
−1(Kv , C)

by the image of H−1(U, C) is a locally compact Hausdorff group). We also give the finite
group (cf. Proposition 3.6 c) D1(U, C) the discrete topology, and topologize H1

c (U, C)
such that all maps in the exact sequence

H0(U, C)→
⊕

v 6∈U

H0(Kv, C)→ H1
c (U, C)→ D1(U, C)→ 0 (18)

are strict.

Definition 3.10. Define E as the class of those abelian topological groups A that are
an extension

0→ P → A
π
→ F → 0 (19)

(the maps being continuous) of a finitely generated group F (equipped with the discrete
topology) by a profinite group P (this implies that all maps in this exact sequence are
strict by [DH], Lemma 3.4).

It is easy to check that for every group A in E , a closed subgroup of A and the
quotient of A by any closed subgroup of A are still in E . Also a topological extension
of a (discrete) finitely generated group by A stays in E . Finally, every group A in E is
isomorphic to the direct product of a finitely generated group (equipped with discrete
topology) by a profinite group: indeed up to replacing F by F/Ftors and P by π−1(Ftors)
in the extension (19), we can assume that F = Zr for some r ≥ 0. Since F is free, the
morphism π has a section s : F → A, which is automatically continuous because F is
discrete. Setting B = s(F ), we get a topological isomorphism A ∼= P ×B.

Definition 3.11. Let A be an abelian group. For every prime number ℓ, the ℓ-adic
completion of A is

A(ℓ) := lim
←−
m∈N

(A/ℓm).

We also set
A∧ := lim←−

n∈N∗

A/n =
∏

ℓ prime

A(ℓ).

The piece of notation A{ℓ} stands for the ℓ-primary torsion subgroup of A.

For A finitely generated, we have A(ℓ) = A⊗Z Zℓ; since Zℓ is a torsion-free (hence
flat) Z-module, the functors A 7→ A(ℓ) and A 7→ A∧ are exact in the category of finitely
generated abelian groups.
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Lemma 3.12. Let A→ B → E → 0 be an exact sequence of abelian groups.

a) The induced map B(ℓ) → E(ℓ) is surjective.

b) If ℓE is finite, then the induced sequence

A(ℓ) → B(ℓ) → E(ℓ) → 0

is exact. Likewise if A/ℓ is finite.

Proof: a) Since the functor .⊗Z Z/ℓm is right exact, the sequence

A/ℓm → B/ℓm → E/ℓm → 0

is exact. Therefore the projective system (ker[B/ℓm → E/ℓm])m≥1 has surjective transi-
tion maps, which implies that the map lim←−m(B/ℓ

m)→ lim←−m(E/ℓ
m) remains surjective.

b) Assume that ℓE is finite. Then (by induction on m) we also have that ℓmE is
finite for every positive integer m thanks to the exact sequence

ℓE →ℓm+1 E
.ℓ
→ℓm E.

Let I ⊂ B be the image of A by the map A → B. By a), the map A(ℓ) → I(ℓ) is
surjective, so it is sufficient to prove that the sequence

I(ℓ) → B(ℓ) → E(ℓ)

is exact. By the snake lemma, we have an exact sequence

ℓmE → I/ℓm → B/ℓm → E/ℓm.

Taking projective limit over m yields the required exact sequence because the kernel of
the map I/ℓm → B/ℓm is finite (it is a quotient of ℓmE). Similarly, if A/ℓ is finite, then
A/ℓm (hence also I/ℓm) is finite for every positive m and the same argument works.

If we assume further that A is a topological abelian group, its profinite completion
is A∧ := lim

←−H
(A/H), where H runs over all open subgroups of finite index in A. If A

is profinite, then A = A∧ = A∧. If A is in the class E , then A →֒ A∧ = A∧.

Proposition 3.13. Let C = [T1 → T2] be a complex of U -tori with generic fiber C =
[T1 → T2]. Let v ∈ X(1). The topological groups H−1(Kv, C) and H0(Kv, C) are in
E, as are the groups H0

c (U, C) and H1
c (U, C). In particular, for i ∈ {−1, 0}, we have

H i(Kv , C)∧ = H i(Kv , C)∧ and for i ∈ {0, 1}, we have H i
c(U, C) →֒ H i

c(U, C)∧.

Proof: Let T be a U -torus with generic fibre T . Let v be a closed point of X and
let L be a finite Galois extension of Kv such that T splits over L. As L∗ ≃ Z×O∗

L is
in E , so is T (L). Then H0(Kv , T ) is in E as a closed subgroup of T (L) (the subgroup
of Gal(L/Kv)-invariants). The exact sequence

H0(Kv , T1)→ H0(Kv , T2)→ H0(Kv, C)→ H1(Kv , T1)

and the definition of the topology on H0(Kv, C) now imply that H0(Kv, C) is in E .
The exact sequence (18) and Lemma 3.8 yield that H1

c (U, C) is in E because D1(U, C)
is finite.
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Similarly the group H−1(Kv , C) = ker[H0(Kv, T1) → H0(Kv , T2)] is a closed sub-
group of H0(Kv , T1), hence is in E . This implies that H0

c (U, C) is in E thanks to the
exact sequence (17), the group H0(U, C) being of finite type by Proposition 3.6.

Lemma 3.14. Let v ∈ U and let C be a complex of Ov-tori. Then H i(Ov , C) = 0 for
i ≥ 1.

Proof: Using the exact sequence (14) with U replaced by Ov , we can assume that
C = T is one single torus. Since T is smooth over Ov, the fppf cohomology group
H i(Ov ,T ) coincides with the étale group, and it is isomorphic ([Mi2], Prop. II.1.1. b)
to the Galois cohomology groupH i(Fv, T̃ ), where Fv is the residue field of Ov and T̃ the
reduction of T mod. v, which is a torus over the finite field Fv. Now H1(Fv, T̃ ) = 0 by
Lang’s theorem ([Lan]). For i ≥ 2, the Galois cohomology group H i(Fv, T̃ ) is torsion.
Let n > 0. By the Kummer sequence applied to the torus T̃ over the perfect field Fv,
the n-torsion subgroup nH

i(Fv, T̃ ) is a quotient of H i(Fv, nT ), which is zero because
Fv is of cohomological dimension 1 ([Ser], Chap. XIII, Prop. 2). This proves the
lemma.

Remark 3.15. Using the definition of fppf compact support cohomology given in [DH]
(which, in particular, takes care of the set ΩR of real places; see loc. cit., Prop. 2.1),
most results of this section hold (with the same proof) if we replace K by a number
field with ring of integers OK , X by SpecOK , and U by a non empty Zariski open
subset of X. Also the piece of notation v 6∈ U means that we consider the closed points
of X \ U and the real places of K; for v ∈ ΩR and i ≤ 0, the groups H i(Kv, ...) must
be understood as the modified Tate groups (cf. Remark 3.9). More precisely:

• Lemma 3.1 a) hold without the restriction U 6= X; b) and Remark 3.2 are useless
because for every finite flat commutative U -group scheme N , all groups H i(U,N )
and H i

c(U,N ) are finite (cf. [DH], Th.1.1).

• Lemma 3.4 a) and b) are unchanged; c) holds without the restriction U 6= X.
In d), the vanishing of H i

c(U, T̂ ) for i ≥ 4 still holds but the proof uses a dif-
ferent argument (namely that the dual of this group is the inverse limit of the
H4−i(U, nT ), which is zero even in the case i = 4 because the finitely generated
group H0(U,T ) has trivial Tate module). The vanishing of H i(U, T̂ ) for i ≥ 4
must be replaced by its finiteness if ΩR 6= ∅. Finally, the vanishing of H3(U, T̂ )
does not hold any more, even if ΩR = ∅ (if Leopoldt’s conjecture is assumed, then
H3(U, T̂ ){ℓ} = 0 for ℓ invertible on U , but not in general for other primes; [Mi2],
Th. II.4.6. b) is wrong for r = 3, the problem in the proof being that the second
line of the diagram needs not remain exact after taking profinite completions);
neither does e) hold as soon as there are at least two archimedean places. Also,
there is no more counterexample as in Remark 3.5.

• Proposition 3.6 a) and c) hold (without the condition U 6= X), b) is also true
(and when U = X, the group H1(X, C) is even finite).
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4 Duality theorems in fppf cohomology

In order to state and prove duality results for the cohomology of complexes of fppf
sheaves, we need to extend some constructions from [DH] to the context of bounded
complexes. Let A and B be two bounded complexes of fppf sheaves over U . Following
[SGA4], XVII, 4.2.9 or [FS], appendix A, one can consider the Godement resolutions
G(A) and G(B) of A and B. As in [God], II.6.6 or in [FS], appendix A, there is a
natural commutative diagram of complexes

A⊗B

))❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘

��

Tot(G(A) ⊗G(B)) // G(A⊗B) .

Following [DH], proof of Lemma 4.1, one gets a functorial morphism of complexes

Tot(Γc(U,G(A)) ⊗ Γ(U,G(B)))→ Γc(U,G(A ⊗B)) (20)

and a functorial pairing

RΓc(U,A)⊗
L RΓ(U,B)→ RΓc(U,A⊗B) .

In particular, if C is a bounded complex and Ĉ := Hom•(C,Gm[1]) its dual, using
the morphism Tot(C ⊗ Ĉ)→ Gm[1] from section 2, we get functorial pairings

Tot(Γc(U,G(C)) ⊗ Γ(U,G(Ĉ)))→ Γc(U,G(Gm[1]))

and
RΓc(U,C)⊗L RΓ(U, Ĉ)→ RΓc(U,Gm[1]) . (21)

Following section 2, given a bounded complex C of finite flat commutative group
schemes over U , there is a natural topology on the abelian groups H i

c(U, C). This topol-
ogy is profinite via Lemma 2.5, and considering Hj(U, Ĉ) as discrete torsion groups,
the pairings

H i
c(U, C) ×H

j(U, Ĉ)→ H i+j+1
c (U,Gm)

are continuous by the same argument as [DH], Lemma 4.4.

Proposition 4.1. Let C be a bounded complex of finite flat commutative group schemes
over U . For all i ∈ Z, there is a perfect pairing between profinite and discrete torsion
groups

H2−i
c (U, C)×H i(U, Ĉ)→ H3

c (U,Gm) ∼= Q/Z .

Proof: The isomorphism H3
c (U,Gm) ∼= Q/Z follows from [Mi2], Prop. II.2.6 and

[DH], Prop. 2.1., 4).
We now prove the Proposition by induction on the length of the complex C.

• if C is concentrated in a given degree n, then the Proposition is a direct conse-
quence of [DH], Theorem 1.1.
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• assume that C := [Cr
fr
−→ Cr+11 → · · · → Cs], with Ci in degree i, has length

s − r ≥ 1. Let A := ker(fr), and let C := Cone(A[−r]
j
−→ C). Then there is an

exact triangle

A[−r]
j
−→ C

i
−→ C

p
−→ A[1− r] .

We apply the functor ·̂ to this exact triangle. Then, using (2), we get that the
natural triangle

Â[1 − r]
p̂
−→ Ĉ

î
−→ Ĉ

ĵ
−→ Â[−r]

is exact.

Since the pairing between a complex and its dual is functorial, we get from the
previous triangles a commutative diagram of topological groups with exact rows,
where the vertical maps comes from the pairings (21):

H i−1
c (U, C) //

��

H i−r
c (U,A) //

��

H i
c(U, C) //

��

H i
c(U, C) //

��

H i+1−r
c (U,A)

��

H3−i(U, Ĉ)∗ // H3+r−i(U,AD)∗ // H2−i(U, Ĉ)∗ // H2−i(U, Ĉ)∗ // H2+r−i(U,AD)∗ .

(22)
The second line remains exact as the dual of an exact sequence of discrete groups.

Note that we have a quasi-isomorphism ϕ : C → C′, where C′ := [Cr+1/Im(fr)→
Cr+2 → · · · → Cs] has a smaller length than C, hence by induction, we can assume
that the natural maps Hr

c (U, C
′)→ H2−r(U, Ĉ′)∗ are isomorphisms. Since all the

Ci’s are finite flat group schemes, we see that the dual morphism ϕ̂ : Ĉ′ → Ĉ is
a quasi-isomorphism, hence by functoriality of the pairings, we deduce that the

maps Hr
c (U, C)→ H2−r(U, Ĉ)∗ are isomorphisms too.

Hence in diagram (22), all vertical morphisms, except perhaps the central one,
are isomorphisms. Then the five Lemma implies that the central morphism is an
isomorphism.

By induction on the length of C, the Proposition is proven.

From now on, we denote by C = [T1 → T2] a complex of U -tori with generic fibre
C = [T1 → T2] and dual Ĉ (cf. section 3). As a consequence of the previous proposition,
we can get the global duality results for the cohomology of the complex C ⊗L Z/n:

Proposition 4.2. Let n be a positive integer (not necessarily prime to p). Let i be an
integer with −2 ≤ i ≤ 2.

1. There is a perfect pairing of finite groups

H i(U, C ⊗L Z/n)×H1−i
c (U, Ĉ ⊗L Z/n)→ Q/Z .

If U 6= X, the groups H2(U, C ⊗L Z/n) and H−1
c (U, Ĉ ⊗L Z/n) are zero.

2. There is a perfect pairing

H i
c(U, C ⊗

L Z/n)×H1−i(U, Ĉ ⊗L Z/n)→ Q/Z
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between the profinite group H i
c(U, C ⊗

LZ/n) and the discrete group H1−i(U, Ĉ ⊗L

Z/n). These groups are finite if i 6∈ {0, 1} or if p and n are coprime. The groups
H−2
c (U, C ⊗L Z/n) and H3(U, Ĉ ⊗L Z/n) are zero if U 6= X.

Moreover, all the groups involved are zero if |i| > 2.

Proof: Recall that there is a quasi-isomorphism of complexes ψ = C ′ → C ⊗L Z/n,

where C ′ := [nT1
ρ
−→ nT2], with nT1 in degree −2, and that the dual morphism ψ̂ :

̂C ⊗L Z/n → Ĉ ′ = [T̂2/n
−ρ̂
−−→ T̂1/n] =

(
Ĉ ⊗L Z/n

)
[−1] (with T̂2/n in degree 0) is also

a quasi-isomorphism.
Since C ′ is a bounded complex of finite flat commutative group schemes, then

Proposition 4.1 implies that the pairings in the statement of the Proposition are perfect
pairings of topological groups.

Let us now check the finiteness and vanishing results. Using the exact triangle (10),
we get an exact sequence:

H i+2(U, n ker ρ)→ H i(U, C ⊗L Z/n)→ H i+1(U, TZ/n(C)) .

As the finite U -group schemes TZ/n(C) and n ker ρ are of multiplicative type, Lemma 3.1
and Remark 3.2 imply that the groups Hr(U, TZ/n(C)) and H

r(U, n ker ρ) are finite for

every integer r. Thus H i(U, C ⊗L Z/n) is finite.

Similarly, using the exact triangle (10), the group H i
c(U, C ⊗

L Z/n) is finite for
i 6∈ {0, 1} (or if p and n are coprime) by Remark 3.2.

Recall that for a finite and flat group scheme N over U , we have Hr(U,N ) = 0 for
r < 0 (obvious), for r ≥ 4, and also for r = 3 if U 6= X : indeed by loc. cit. Hr(U,N )
is dual to H3−r

c (U,ND); the latter is clearly zero if r ≥ 4 and if U 6= X, we also have
H0
c (U,N

D) = 0 thanks to the exact sequence

0→ H0
c (U,N

D)→ H0(U,ND)→
⊕

v 6∈U

H0(Kv, N
D),

the last map being injective by the assumption U 6= X. The previous dévissages now
yield the vanishing assertions of the proposition.

Proposition 4.3. Let i be an integer. Let n be a positive integer (not necessarily prime
to p).

a) The groups nH
i(U, C) and H i(U, C)/n are finite. The group H i(U, C) is torsion

if i ≥ 2 (resp. if i ≥ 1 and U 6= X). Besides H i(U, C) = 0 in the following cases :
i ≥ 4; i ≤ −2; i = 3 and U 6= X.

b) The groups nH
i
c(U, Ĉ) and H i

c(U, Ĉ)/n are finite. The group H i
c(U, Ĉ) is torsion

if i ≥ 2, and it is zero if i ≥ 4 or i ≤ −2. Assume further U 6= X; then H i
c(U, Ĉ) = 0

for i = −1.

Proof: a) Using the exact triangle in Db(U) :

C
.n
→ C → C ⊗L Z/n→ C[1],

we get an exact sequence of abelian groups

0→ H i(U, C)/n → H i(U, C ⊗L Z/n)→n H
i+1(U, , C)→ 0. (23)
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sinceH i(U, C⊗LZ/n) is finite (Proposition 4.2 1.), the finiteness of the groups nH
i+1(U, C)

and H i(U, C)/n follows for all i.

To prove that H i(U, C) is torsion if i ≥ 2 (resp. if U 6= X and i = 1), we can restrict
by dévissage (using exact sequence (14)) to the case when C = T is one single torus.
If U 6= X and i = 1, this follows from Lemma 3.1, a), so assume i ≥ 2. We can also
assume by a restriction-corestriction argument that T = Gm because the torus T is
split by some finite étale covering of U . Now H2(U,Gm) = BrU is torsion because it
injects into BrK; also H3(U,Gm) is torsion (it is even 0 if U 6= X) and H i(U,Gm) = 0
for i ≥ 4 by [Mi2], Prop. II.2.1., the group scheme Gm being smooth (hence étale and
fppf cohomology coincide).

For every U -torus T , we have H i(U,T ) = 0 for negative i (obvious), hence by
dévissage H i(U, C) = 0 for i < −1. Let i ≥ 3; as seen before H i(U, C) is torsion and

nH
i(U, C) is a quotient of H i−1(U, C ⊗LZ/n) by exact sequence (23). The latter is zero

if i ≥ 4, and also if i = 3 when U 6= X by the vanishing assertions in Proposition 4.2
1.. Thus H i(U, C) is zero if i ≥ 4, and also if i = 3 if we assume further U 6= X.

b) Similarly, the finiteness statements follow from the exact sequence

0→ H i
c(U, Ĉ)/n→ H i

c(U, Ĉ ⊗
L Z/n)→ nH

i+1
c (U, Ĉ)→ 0 (24)

combined to Proposition 4.2 1.. Let i ≥ 2. To prove that H i
c(U, Ĉ) is torsion we can

assume that Ĉ is the dual of a torus (via exact sequence (15)), then that Ĉ = Z (by a
restriction-corestriction argument). Using the exact sequence

⊕

v 6∈U

H i−1(Kv,Z)→ H i
c(U,Z)→ H i(U,Z),

it is sufficient to prove that H i(U,Z) is torsion because the Galois cohomology groups
H i−1(Kv ,Z) are torsion for i− 1 > 0. This holds by [Mi2], Lemma II.2.10.

Let T be a U -torus. For each integer i, there is an exact sequence
⊕

v 6∈U

H i−1(Kv , T̂ )→ H i
c(U, T̂ )→ H i(U, T̂ )→

⊕

v 6∈U

H i(Kv, T̂ ). (25)

Therefore H i
c(U, T̂ ) = 0 for i < 0, hence H i

c(U, Ĉ) = 0 (by dévissage) for i < −1. For
i ≥ 4, we have H i

c(U, T̂ ) = 0 by Lemma 3.4 d), and H i
c(U, Ĉ) = 0 by dévissage.

Assume now U 6= X. Then H0
c (U, T̂ ) = 0 by exact sequence (25) applied to i = 0:

indeed the map H0(U, T̂ ) →
⊕

v 6∈U H
0(Kv, T̂ ) is injective (choose a closed point v of

X \ U ; then the restriction maps H0(U, T̂ ) → H0(K, T̂ ) and H0(K, T̂ ) → H0(Kv, T̂ )
are injective). Therefore H−1

c (U, Ĉ) = 0 by dévissage.

Proposition 4.4. Let i be an integer. Let n be a positive integer (not necessarily prime
to p).

a) The group nH
i(U, Ĉ) is finite if i 6∈ {1, 2}. The group H i(U, Ĉ)/n is finite if

i 6= 1. The group H i(U, Ĉ) is torsion if i ≥ 1, and it is zero if i ≥ 4 or i ≤ −2. If we
assume further U 6= X, then H3(U, Ĉ) = 0.

b) The group nH
i
c(U, C) is finite if i 6= 1. The group H i

c(U, C)/n is finite if i 6∈ {0, 1}.
The group H i

c(U, C) is torsion for i ≥ 2, and it is zero if i ≥ 4 or i ≤ −2 (resp. i = −1
if U 6= X).
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Proof: a) The exact sequence

0→ H i(U, Ĉ)/n→ H i(U, Ĉ ⊗L Z/n)→n H
i+1(U, Ĉ)→ 0 (26)

and Proposition 4.2 2. yield the finiteness of nH
i(U, Ĉ) for i 6∈ {1, 2} and of H i(U, Ĉ)/n

for i 6∈ {0, 1}. Besides the abelian group H0(U, Ĉ) is of finite type by Proposition 3.6.
In particular H0(U, Ĉ)/n is finite.

Let i ≥ 1. To prove that H i(U, Ĉ) is torsion, we can assume (by dévissage) that
Ĉ = T̂ , where T is one single torus, then that Ĉ = Z (by restriction-corestriction); then
the result holds by [Mi2], Lemma II.2.10. For i ≤ −2 or i ≥ 4 (resp. i = 3 if U 6= X),
the group H i(U, Ĉ) is zero by dévissage (using Lemma 3.4, d) for the latter).

b) There is an exact sequence

0→ H i
c(U, C)/n → H i

c(U, C ⊗
L Z/n)→n H

i+1
c (U, C)→ 0 (27)

By Proposition 4.2 2., the group nH
i
c(U, C) is finite for i 6∈ {1, 2} and the group

H i
c(U, C)/n is finite for i 6∈ {0, 1}. To prove that the groups H i

c(U, C) are torsion
for i ≥ 2, we can assume as usual that C = T is a torus. Then we apply Proposition 4.3
a) and the exact sequence

⊕

v 6∈U

H i−1(Kv , T )→ H i
c(U,T )→ H i(U,T ).

Besides H2
c (U,T ) is finite by Lemma 3.4 b), so H2

c (U, C) is also of cofinite type by
dévissage because we already know that H3

c (U,T1) is torsion of cofinite type.

Obviously we have H i
c(U,T ) = 0 for every negative i, hence H i

c(U, C) = 0 by
dévissage if i ≤ −2. Assume i ≥ 4. then H i

c(U, C) = H i(U, C) (apply exact sequence
(3) and use the fact that Kv is of strict cohomological dimension 2), so H i

c(U, C) = 0 by
Proposition 4.3 a). If we assume further U 6= X, then H0

c (U,T ) = 0 (same argument
as in Proposition 4.3 b), so H−1

c (U, C) = 0 by dévissage.

Remark 4.5. Using Remark 3.2, it is easy to see that the finiteness assertions of
Proposition 4.4 hold for every i if we assume further that p does not divide n, but
this is no longer true in general if U 6= X. Indeed the group H1(U,Z/p) and its
dual H2

c (U, µp) can be infinite (cf. [Mi2], Lemma III.8.9). Since H1(U,Z) = 0 and

pH
2
c (U,Gm) is finite, this implies that pH

2(U,Z) and H1
c (U,Gm)/p are infinite, which

gives examples of pH
i(U, Ĉ) infinite for i = 1, 2 and of H i

c(U, C)/p infinite for i = 0, 1.

The complex C = [Gm
.p
→ Gm] is an example with pH

1
c (U, C) and H1(U, Ĉ)/p infinite

(indeed C is quasi-isomorphic to µp[1] and Ĉ is quasi-isomorphic to Z/p).

Remark 4.6. For every integer r and every positive integer n, the groups Hr(U, C)/n
and Hr

c (U, Ĉ)/n are finite by Proposition 4.3 b), so for each prime number ℓ (including
ℓ = p), the ℓ-adic completions

Hr(U, C)(ℓ) := lim
←−
m

Hr(U, C)/ℓm; Hr
c (U, Ĉ)

(ℓ) := lim
←−
m

Hr
c (U, Ĉ)/ℓ

m

are profinite. Exact sequence (27) shows that Hr
c (U, C)/n is a closed subgroup of the

profinite group Hr
c (U, C ⊗

L Z/n), hence Hr
c (U, C)/n is profinite and so is the ℓ-adic

completion Hr
c (U, C)

(ℓ).
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The map C ⊗L Ĉ → Gm[1] induces for every integer r pairings

Hr(U, C) ×H2−r
c (U, Ĉ)→ H3

c (U,Gm) ∼= Q/Z. (28)

Hr
c (U, C) ×H

2−r(U, Ĉ)→ H3
c (U,Gm) ∼= Q/Z. (29)

We now prove a key lemma.

Lemma 4.7. Let ℓ be a prime number (possibly equal to p). Let i be an integer.

a) The maps
ψ : H i+1(U, C){ℓ} → (H1−i

c (U, Ĉ)(ℓ))∗

ψ′ : H1−i
c (U, Ĉ){ℓ} → (H i+1(U, C)(ℓ))∗

induced by the pairing (28) are surjective and have divisible kernel. Besides ψ′ is an
isomorphism if i = −2 and ψ is an isomorphism if we have both i = 1 and U 6= X.

b) The map
ϕ : H i+1(U, Ĉ){ℓ} → (H1−i

c (U, C)(ℓ))∗

induced by the pairing (29) is surjective, and has divisible kernel (resp. is an isomor-
phism if we assume both i = 1 and U = X). Assume i 6∈ {−1, 0}. Then the map

ϕ′ : H1−i
c (U, C){ℓ} → (H i+1(U, Ĉ)(ℓ))∗

is surjective and has divisible kernel (resp. is an isomorphism if i = −2).

Observe that for U 6= X, the groups involved can be non zero only if −2 ≤ i ≤ 1.

Proof: a) For each positive integer m, there is an exact commutative diagram of
finite abelian groups,

0 −−−−→ H i(U, C)/ℓm −−−−→ H i(U, C ⊗L Z/ℓm) −−−−→ ℓmH
i+1(U, C) −−−−→ 0

y
y

yψm

0 −−−−→ (ℓmH
2−i
c (U, Ĉ))∗ −−−−→ H1−i

c (U, Ĉ ⊗L Z/ℓm)∗ −−−−→ (H1−i
c (U, Ĉ)/ℓm)∗ −−−−→ 0.

(30)
By Proposition 4.2 1., the middle vertical map is an isomorphism. Taking direct limit
over m and applying the snake lemma, we get that ψ = lim

−→m
ψm is surjective and

Kerψ is a quotient of (TℓH
2−i
c (U, Ĉ))∗. Since each ℓmH

2−i
c (U, Ĉ) is finite, the ℓ-adic

Tate module TℓH
2−i
c (U, Ĉ) is profinite and torsion-free, which implies that the dual

(TℓH
2−i
c (U, Ĉ))∗ is divisible. For U 6= X and i = 1, the group H1

c (U, Ĉ) is of finite type
by Proposition 3.6 a), so its ℓ-adic Tate-module is zero and ψ has trivial kernel.

The argument for ψ′ is similar, using the exact commutative diagram

0 −−−−→ H−i
c (U, Ĉ)/ℓm −−−−→ H−i

c (U, Ĉ ⊗L Z/ℓm) −−−−→ ℓmH
1−i
c (U, Ĉ) −−−−→ 0

y
y

yψ′

m

0 −−−−→ (ℓmH
2+i(U, C))∗ −−−−→ H2+i(U, C ⊗L Z/ℓm)∗ −−−−→ (H1+i(U, C)/ℓm)∗ −−−−→ 0.

(31)
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Besides, for i = −2, the Tate module of H2+i(U,C) = H0(U, C) is trivial because
H0(U, C) is a finitely generated abelian group (Proposition 3.6, b), which gives that ψ′

has trivial kernel.

b) There is an exact commutative diagram of discrete abelian groups (observe that
the second line is obtained by dualizing an exact sequence of profinite groups):

0 −−−−→ H i(U, Ĉ)/ℓm −−−−→ H i(U, Ĉ ⊗L Z/ℓm) −−−−→ ℓmH
i+1(U, Ĉ) −−−−→ 0

y
y

yϕm

0 −−−−→ (ℓmH
2−i
c (U, C))∗ −−−−→ H1−i

c (U, C ⊗L Z/ℓm)∗ −−−−→ (H1−i
c (U, C)/ℓm)∗ −−−−→ 0.

(32)
Since the middle vertical is an isomorphism by Proposition 4.2 2. and ℓm(H

2−i
c (U, C))

is profinite for each m (hence H2−i
c (U, C) has profinite ℓ-adic Tate module), the same

argument as in a) yields that ϕ is surjective with divisible kernel. If U = X and i = 1,
then H2−i

c (U, C) = H1(X, C) is of finite type by Proposition 3.6 b), so it has trivial
ℓ-adic Tate module and ϕ is an isomorphism.

The argument for ϕ′ is similar, except that we use the exact commutative diagram

0 −−−−→ H−i
c (U, C)/ℓm −−−−→ H−i

c (U, C ⊗L Z/ℓm) −−−−→ ℓmH
1−i
c (U, C) −−−−→ 0

y
y

yϕ′

m

0 −−−−→ (ℓmH
i+2(U, Ĉ))∗ −−−−→ H i+1(U, Ĉ ⊗L Z/ℓm)∗ −−−−→ (H i+1(U, Ĉ)/ℓm)∗ −−−−→ 0.

(33)
only for i 6∈ {−1, 0} (for i ∈ {−1, 0} and U 6= X, the diagram would consist of

profinite but possibly infinite groups if ℓ = p, so direct limits would not necessarily
behave well; in particular, ℓ-adic completions involved would not necessarily be profi-
nite). The same argument as in a) shows that ϕ′ is surjective with divisible kernel, and
this kernel is trivial for i = −2 because the finitely generated abelian group H0(U, Ĉ)
(cf. Proposition 3.6, a) has trivial ℓ-adic Tate module.

Remark 4.8. For abelian groups A, B, assertions like “A{ℓ} → (B(ℓ))∗ is surjective
with divisible kernel” can be rephrased as follows : the pairing A{ℓ} × B(ℓ) → Q/Z
has trivial right kernel and divisible left kernel.

The following theorem extends the function field case of [Mi2], Th. II.4.6. (which
corresponds to C = T or C = T [1], where T is a torus).

Theorem 4.9. a) The pairing (28) induces a perfect duality between the discrete tor-
sion group H3

c (U, Ĉ) and the finite-type Ẑ-module H−1(U, C)∧, resp. between the discrete
torsion group H2

c (U, Ĉ) and the finite-type Ẑ-module H0(U, C)∧.

b) Assume U 6= X. The pairing (28) induces a perfect duality between the dis-
crete torsion group H1(U, C) and the finite-type Ẑ-module H1

c (U, Ĉ)∧, resp. between the
discrete torsion group H2(U, C) and the finite-type Ẑ-module H0

c (U, Ĉ)∧.

Proof: a) Let ℓ be a prime number. Then the map ψ′ of Lemma 4.7 a) is an
isomorphism for i = −2, which yields the first point (recall that H3

c (U, Ĉ) and H
2
c (U, Ĉ)

are torsion of cofinite type by Proposition 4.3; also H−1(U, C) and H0(U, C) are finitely
generated by Proposition 3.6).
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In the case U = X, the second point is a duality between H2(X, Ĉ) and H0(X,C)∧,
which follows from Lemma 4.7 b) in the case i = 1. Now assume U 6= X and let T
be a U -torus. By the first point applied to C = T [1], the group H3

c (U, T̂ ) is dual to
H0(U,T )∧. By Lemma 4.7 a) with i = −1 and C = T [1], the finite group H2

c (U, T̂ ) (cf.
Lemma 3.4, c) is dual to the finite group H1(U, T ) (cf. Lemma 3.1, a): indeed a finite
group coincides with its ℓ-adic completion and doesn’t contain a non trivial divisible
subgroup. There is a commutative diagram with exact lines (observe that the second
line is obtained by applying the ℓ-completion functor to an exact sequence of finitely
generated group, then dualizing an exact sequence of profinite groups):

H2
c (U, T̂2){ℓ} −−−−→ H2

c (U, T̂2){ℓ} −−−−→ H2
c (U, Ĉ){ℓ} −−−−→ H3

c (U, T̂2){ℓ} −−−−→ H3
c (U, T̂1){ℓ}yf1

yf2

yh

yg1

yg2

(H1(U, T2)(ℓ))∗ −−−−→ (H1(U, T1)(ℓ))∗ −−−−→ (H0(U, C)(ℓ))∗ −−−−→ (H0(U, T2)(ℓ))∗ −−−−→ (H0(U, T1)(ℓ))∗.

Now h is an isomorphism by the five-lemma, whence the result.

b) Consider diagram (30) for i = 0. By a), the left vertical map is an isomorphism
and by Proposition 4.2 1., the middle vertical map is an isomorphism, hence ψm is
an isomorphism from ℓmH

1(U, C) to (H1
c (U, Ĉ)/ℓ

m)∗. Taking direct limit over m, then
direct sum over all prime ℓ, yields the duality between the torsion group of cofinite
type (cf. Proposition 4.3) H1(U, C) and the finite type Ẑ-module (cf. Proposition 3.6)
H1
c (U, Ĉ)∧.

Lemma 4.7 a) for i = 1 yields that for U 6= X, the map ψ an isomorphism, which
immediately gives the duality between the torsion group of finite type (cf. Proposi-
tion 4.3) H2(U, C) and the finite type Ẑ-module (cf. Proposition 3.6) H0

c (U, Ĉ)∧.

Remark 4.10. In the case U = X, the first assertion of Theorem 4.9 b) should be
replaced by a duality between H1(X, Ĉ) and H1(X, C)∧ (see Theorem 4.11 b) below
in the case U = X). The second assertion (duality between H2(X, C) and H0(X, Ĉ)∧)
actually still holds, cf. Theorem 4.11 a).

The following duality theorem has the same flavour as [Mi2], Th II.4.6. b) (but one
should be careful that in the number field case, the case r = 3 of the latter does not
hold in general, see also Remark 4.18).

Theorem 4.11. a) The pairing (29) induces a perfect duality between the discrete
torsion group H3

c (U, C) and the finite-type Ẑ-module H−1(U, Ĉ)∧, resp. between the
discrete torsion group H2

c (U, C) and the finite-type Ẑ-module H0(U, Ĉ)∧.

b) The pairing (29) induces a perfect duality between the discrete torsion group
H1(U, Ĉ) and the profinite group H1

c (U, C)∧, resp. between the discrete torsion group
H2(U, Ĉ) and the profinite group H0

c (U, C)∧.

Proof: a) Let ℓ be any prime number. The map ϕ′ of Lemma 4.7 b) is an isomor-
phism for i = −2, which yields the first point (Proposition 4.2 2. yields that H3

c (U, C)
and H2

c (U, C) are torsion groups of cofinite type; Proposition 3.6 gives that H−1(U, Ĉ)
and H0(U, Ĉ) are finitely generated).

There is a commutative diagram with exact lines
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H2
c (U, T1){ℓ} −−−−→ H2

c (U, T2){ℓ} −−−−→ H2
c (U, C){ℓ} −−−−→ H3

c (U, T1){ℓ} −−−−→ H3
c (U, T2){ℓ}yf1

yf2

yh

yg1

yg2

(H1(U, T̂1)(ℓ))∗ −−−−→ (H1(U, T̂2)(ℓ))∗ −−−−→ (H0(U, Ĉ)(ℓ))∗ −−−−→ (H0(U, T̂1)(ℓ))∗ −−−−→ (H0(U, T̂2)(ℓ))∗.

The maps g1 and g2 are isomorphisms by the first point applied to C = T1, C = T2.
The maps f1 and f2 are isomorphisms by Lemma 4.7 b) applied to the same complexes
(map ϕ in the case i = −1): indeed for a U -torus T , the groups H1(U, T̂ ) and H2

c (U,T )
are finite (Lemma 3.4 a) and b), hence they coincide with their ℓ-adic completions and
do not contain a non trivial divisible subgroup. Therefore h is an isomorphism by the
five-lemma, whence the second point.

b) Consider diagram (32) for i = 0. By a), the left vertical map is an isomorphism
and the middle vertical map is an isomorphism by Proposition 4.2 1., hence ϕm is an
isomorphism from ℓmH

1(U, Ĉ) to (H1
c (U, C)/ℓ

m)∗. Taking direct limit over m, then
direct sum over all prime ℓ, yields the duality between H1(U, Ĉ) (which is torsion by
Proposition 4.4, but not necessarily of cofinite type, cf. Remark 4.5) and H1

c (U, C)∧.

Now consider diagram (32) for i = 1. By the previous duality, the left vertical map
induces an isomorphism between H1(U, Ĉ)/ℓm and (ℓm(H

1
c (U, C)∧))

∗. Since H1
c (U, C)

is in the class E (that is: it is the product of a finite type group by a profinite group)
by Proposition 3.13, the ℓm-torsion of H1

c (U, C) and of H1
c (U, C)∧ coincide, hence the

left vertical map is actually an isomorphism and the right vertical map ψm is an iso-
morphism as well (the middle vertical map is an isomorphism by Proposition 4.2 2.).
Taking direct limit and direct sum over all prime ℓ, we get the duality between the
torsion group (cf. Proposition 4.4) H2(U, Ĉ) and the profinite group H0

c (U, C)∧.

Proposition 4.12. The pairing (28) for r = 1 induces a perfect pairing of finite groups

D1(U, C)×D1(U, Ĉ)→ Q/Z. (34)

Proof: Fix a prime number ℓ. There is a commutative diagram :

0 −−−−→ D1(U, C){ℓ} −−−−→ H1(U, C){ℓ} −−−−→
⊕

v 6∈U H
1(Kv, C){ℓ}

yψ
yβ

0 −−−−→ (D1(U, Ĉ)(ℓ))∗ −−−−→ (H1
c (U, Ĉ)

(ℓ))∗ −−−−→ (
⊕

v 6∈U H
0(Kv, Ĉ)(ℓ))∗.

(35)

The first line is exact by definition of D1(U, C). The sequence

⊕

v 6∈U

H0(Kv, Ĉ)→ H1
c (U, Ĉ)→ D1(U, Ĉ)→ 0

is also exact by definition of D1(U, Ĉ). Using Lemma 3.12 and the fact that the ℓ-adic
completion functor (ℓ) commutes with finite direct sums, the sequence

⊕

v 6∈U

H0(Kv , Ĉ)
(ℓ) → H1

c (U, Ĉ)
(ℓ) → D1(U, Ĉ)(ℓ) → 0
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of profinite groups is exact as well, and its dual sequence (which is the second line of
the diagram) remains exact.

The commutative diagram (35) defines a map

θ : D1(U, C){ℓ} → (D1(U, Ĉ)(ℓ))∗.

We observe that by [Dem1] Th. 3.1 (which is the local duality theorem), the map β
is an isomorphism, and we also know by Theorem 4.9 that ψ is an isomorphism. By
diagram chasing θ is an isomorphism. Since this holds for every prime ℓ (including
ℓ = p), the proposition is proven, the finiteness of D1(U, C) and D1(U, Ĉ) being known
by Proposition 3.6 c).

Remark 4.13. Of course, the pairing (34) can also be defined via the pairing (29).

Lemma 4.14. Assume U 6= X. Then D2(U, C) and D0(U, Ĉ) are finite.

Proof: Using the exact triangle (12) and the fact that coker ρ := T is a torus, we
know that D2(U,T ) is finite and is sufficient to show that H3(U, ker ρ) is finite to get
the finiteness of D2(U, C). But ker ρ is a group of multiplicative type, so there is an
exact sequence

0→ T1 → ker ρ→ F → 0,

where F is a finite group of multiplicative type and T1 is a torus. Since H3(U,T1) = 0
by Proposition 4.3 a) and H3(U,F) = 0 (cf. Remark 3.2; it is dual to H0

c (U, F̂), which
is zero because U 6= X), the group H3(U, ker ρ) is actually zero.

The group D0(U, k̂er ρ) is trivial thanks to the assumption U 6= X. Thus the exact
triangle (13) shows that D0(U, Ĉ) is finite because so is H1(U, T̂ ) (Lemma 3.4 a).

Lemma 4.15. Assume U 6= X. Then the groups D0(U, C) and D2(U, Ĉ) are finite.

Proof: For a U -torus T , we have D0(U,T ) = 0 because U 6= X. For a U -group
of multiplicative typeM, we also know (Remark 3.2) that H1(U,M) is finite, whence
the finiteness of D0(U, C) via the exact triangle (12).

Exact triangle (13) and the vanishing of H3(U, T̂ ) for a U -torus T (Lemma 3.4 d)

imply that D2(U, T̂ ) injects into D2(U,M̂), so it only remains to show that the latter

is finite. We show that H2
c (U,M̂) is finite. By dévissage it is sufficient to prove this

when M is a finite group of multiplicative type and when M is a torus. The first case
follows from Lemma 3.1 b) and the second one from Lemma 3.4 c).

Proposition 4.16. The pairing (28) for r = 2 induces a perfect pairing of finite groups

D2(U, C)×D0(U, Ĉ)→ Q/Z. (36)
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Proof: The argument is exactly the same as in the proof of Proposition 4.12, using
now the commutative diagram with exact lines:

0 −−−−→ D2(U, C){ℓ} −−−−→ H2(U, C){ℓ} −−−−→
⊕

v 6∈U H
2(Kv, C){ℓ}

y
y

0 −−−−→ (D0(U, Ĉ)(ℓ))∗ −−−−→ (H0
c (U, Ĉ)

(ℓ))∗ −−−−→ (
⊕

v 6∈U H
−1(Kv , Ĉ)(ℓ))∗.

(37)

Indeed the right vertical map is an isomorphism by [Dem1], Th. 3.1 and the mid-
dle vertical map is an isomorphism as well by Theorem 4.9, b). It remains to apply
Lemma 4.14.

Proposition 4.17. The pairing (29) for r = 0 induces a perfect pairing of finite groups

D0(U, C)×D2(U, Ĉ)→ Q/Z. (38)

Proof: Again the argument is the same as in Proposition 4.12, using this time the
commutative diagram with exact lines:

0 −−−−→ D2(U, Ĉ){ℓ} −−−−→ H2(U, Ĉ){ℓ} −−−−→
⊕

v 6∈U H
2(Kv, Ĉ){ℓ}

y
y

0 −−−−→ (D0(U, C)(ℓ))∗ −−−−→ (H0
c (U, C)

(ℓ))∗ −−−−→ (
⊕

v 6∈U H
−1(Kv , C)(ℓ))∗.

(39)

The right vertical map is an isomorphism by [Dem1], Th. 3.1 (recall that by Proposi-
tion 3.13, the groups H−1(Kv, C)∧ and H−1(Kv, C)∧ coincide), and the middle vertical
map is an isomorphism as well by Theorem 4.11, b); Lemma 4.15 then yields the result.

Remark 4.18. Again there are analogous results over a number field :

• Proposition 4.2 1. holds except that for n even, the vanishing statements for
i ≥ 2 do not hold any more if ΩR 6= ∅. In Proposition 4.2 2., all groups involved
are finite, but the vanishing statements for i ≤ −2 are in general false if n is even
and ΩR 6= ∅.

• In Proposition 4.3 and Proposition 4.4, the vanishing statements must be replaced
by finiteness statements if ΩR 6= ∅ for the following groups: H i(U, C) for i ≥ 4,
H i
c(U, Ĉ) for i ≤ −2, H i(U, Ĉ) for i ≥ 4, H i

c(U, C) for i ≤ −2. The groups
H3(U, C), H−1

c (U, Ĉ), and H−1
c (U,C) are still finite if U 6= X (resp. zero if

U 6= X and ΩR = ∅). Also, the group H1(U, C) is finite even if U = X and
the finiteness assertions in Proposition 4.4 a) hold without any condition on i.
Finally, the vanishing of H3(U, Ĉ) does not hold any more (see Remark 3.15 about
H3(U, T̂ )) even for ΩR = ∅.

• Lemma 4.7 is unchanged, except that the restriction U 6= X can be removed in
a) for i = 1.
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• Theorem 4.9 is unchanged (which gives a more precise statement than [Dem1],
Th. 4.3) except that the assumption U 6= X can be removed in b). Theorem 4.11
a) is still true, as is the first assertion of Theorem 4.11 b), but not the second
assertion of Theorem 4.11 b): the pairing H2(U, Ĉ){ℓ} × H0

c (U, C)
(ℓ) has trivial

right kernel and divisible left kernel, but for triviality of the left kernel we need
ℓ invertible on U and Leopoldt’s conjecture.

• Proposition 4.12 is unchanged (this removes the condition ℓ ∈ O∗
U in [Dem1],

Cor 4.7). Lemma 4.14 also holds (in the proof, the groupsH3(U,T1) andH
0
c (U, F̂)

might be only finite if ΩR 6= ∅, but this does not affect the result), as does
Proposition 4.16 (the assumption ker ρ finite made in [Dem1], Lemma 5.13, is
not necessary). The first part of Lemma 4.15 still holds, but not its second part
because in general the ℓ-primary part of H3(U, T̂ ) is infinite if ℓ is not invertible
on U (and even for ℓ ∈ O∗

U , the finiteness of H3(U, T̂ ){ℓ} relies on Leopoldt’s
conjecture). Similarly Proposition 4.17 does not hold any more in general, we
only get that the pairing (38) has trivial left kernel and divisible right kernel (see
also [Dem1], paragraph 5.4. for a variant).

5 Poitou-Tate exact sequences

Let C = [T1 → T2] be a complex of K-tori with dual Ĉ = [T̂2 → T̂1]. We can
choose a non empty Zariski open subset U0 of X such that C extends to a complex
C = [T1

ρ
→ T2] of U0-tori with dual Ĉ. For every integer i and every K-group scheme

(or bounded complex of K-group schemes) M (e.g. M = T , M = T̂ ), define

X
i(M) := Ker [H i(K,M)→

∏

v∈X(1)

H i(Kv,M)].

Lemma 5.1. There exists a non empty Zariski open subset U1 ⊂ U0 such that for
every Zariski open subset V ⊂ U1:

a) For i ∈ {1, 2}, the restriction map rU1,V : H i(U1, C)→ H i(V, C) induces isomor-
phisms

Di(U1, C) ∼= Di(V, C) ∼= X
i(C).

b) For r ∈ {0, 1}, the canonical map Hr(V, Ĉ)→ Hr(K, Ĉ) is injective and identifies
Dr(V, Ĉ) with X

r(Ĉ).

Proof: We can deal with the two properties a) and b) separately (up to taking the
intersections of the various provided U1).

a) Let’s start with arbitrary non empty Zariski open subsets V ⊂ U ⊂ U0. Take
i ∈ {1, 2}. For all v ∈ U , we have H i(Ov , C) = 0 by Lemma 3.14, which implies that
the image of Di(U, C) by rU,V is contained in Di(V, C). The induced map Di(U, C) →
Di(V, C) is surjective thanks to the compatibility of the covariant map H i

c(V, C) →
H i
c(U, C) with rU,V ([DH] Prop 2.1 (3)). Since all Di(U, C) are finite by Proposition 3.6

c) and Lemma 4.14, the decreasing sequence of positive integers #Di(U, C) (when U
becomes smaller and smaller) must stabilize for some U = U1. We get an isomorphism
from Di(U1, C) to D

i(V, C) for all V ⊂ U1. Since H
i(K,C) is the direct limit over V of

the H i(V, C), we get an injective map u : Di(U1, C) → H i(K,C). As Di(U1, C) is the
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same as Di(V, C) for every V ⊂ U1, the image of u is contained in X
i(C) (because its

restriction to H i(Kv, C) is zero for all v 6∈ V and V can be taken arbitrarily small).
Conversely, every element of Xi(C) can be lifted to an a ∈ H i(V, C) for some V , and
by definition a ∈ Di(V, C) = Di(U1, C), so the image of u contains Xi(C).

b) Let V ⊂ U0 be an arbitrary non empty Zariski open subset. Let r ∈ {0, 1}. The
injectivity of Hr(V, Ĉ)→ Hr(K, Ĉ) has been proven in Proposition 3.6 a). Identifying
now Dr(V, Ĉ) with a subgroup of Hr(K, Ĉ), we get (again using the maps Hr(V, Ĉ)→
Hr(U, Ĉ) for V ⊂ U ⊂ U0) a decreasing sequence of finite subgroups (when V becomes
smaller and smaller), which stabilizes for some U1. Since Dr(U1, Ĉ) is also Dr(V, Ĉ)
for every V ⊂ U1, we have Dr(U1, Ĉ) ⊂ X

r(Ĉ). On the other hand, every element
of X

r(Ĉ) comes from Hr(V, Ĉ) for some V ⊂ U1, and it is then automatically in
Dr(V, Ĉ) = Dr(U1, Ĉ) because it is everywhere locally trivial.

Theorem 5.2. There are perfect pairing of finite groups

X
1(C)×X

1(Ĉ)→ Q/Z.

X
2(C)×X

0(Ĉ)→ Q/Z.

Proof: This follows immediately from Lemma 5.1 and Proposition 4.12 (resp.
Proposition 4.16) applied to U1.

Lemma 5.3. There exists a non empty Zariski open subset U1 of U0 such that for
every non empty Zariski open subset V of U1:

-the restriction map H0(V, C)→ H0(K,C) is injective.

-For all non empty Zariski open subsets W ⊂ V , the canonical map

jW,V : H2
c (W, Ĉ)→ H2

c (V, Ĉ)

is surjective and the image of D2(V, Ĉ) by the restriction map

rV,W : H2(V, Ĉ)→ H2(W, Ĉ)

is a subgroup of D2(W, Ĉ).

Proof: Let U ⊂ U0 be a non empty Zariski open subset. By the exact triangle (12),
there is a commutative diagram with exact lines

0 −−−−→ H1(U,M) −−−−→ H0(U, C) −−−−→ H0(U,T0)y
y

y
0 −−−−→ H1(K,M) −−−−→ H0(K,C) −−−−→ H0(K,T0),

whereM is a U -group of multiplicative type with generic fibre M and T0 is a U -torus.
Since the right vertical map is clearly injective, it is sufficient to prove the injectivity
of the left vertical map for U small enough. We can writeM as an extension

0→ T →M→ F → 0
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of a finite U -group of multiplicative type F by a U -torus T . This yields a commutative
diagram with exact lines

0 −−−−→ H0(U,F) −−−−→ H1(U,T ) −−−−→ H1(U,M) −−−−→ H1(U,F)
y

y
y

y
0 −−−−→ H0(K,F ) −−−−→ H1(K,T ) −−−−→ H1(K,M) −−−−→ H1(K,F ).

Since F is finite (hence proper) over U , the left vertical map is an isomorphism and
the right vertical map is injective. It is therefore sufficient to prove that for a U -
torus T , the restriction map H1(U,T )→ H1(K,T ) is injective for U sufficiently small.
Set NU = ker[H1(U,T ) → H1(K,T )]. For every Zariski open subset V → U , the
restriction map H1(U,T )→ H1(V,T ) induces a homomorphism iU,V : NU → NV . By
Lemma 2.2, this homomorphism is surjective. Lemma 3.1 implies that the group NV is
finite, and the decreasing sequence of positive integers (#NV ), V ⊂ U0 must stabilize
for some V = U1 ⊂ U0. Then the maps iU1,V for V ⊂ U1 are isomorphisms, which
implies (passing to the limit) that the restriction map NU1 → H1(K,T ) is injective.
By definition of NU1 , this means that NU1 = 0, hence NV = 0 for every V ⊂ U1. This
gives the first point.

For W ⊂ V ⊂ U1, the restriction map H0(V, C)→ H0(W, C) is injective because so
is its composition with H0(W, C) → H0(K, C). As H0(V, C) and H0(W, C) are finitely
generated by Proposition 3.6 b), the induced map H0(V, C)∧ → H0(W, C)∧ is still
injective. By Theorem 4.9, the dual map H2

c (W, Ĉ) → H2
c (V, Ĉ) is surjective. Now

the compatibility of rV,W with jW,V ([DH], Prop 2.1 c) gives that rV,W (D2(V, Ĉ)) ⊂

D2(W, Ĉ).

Theorem 5.4. There is a perfect pairing of finite groups

X
0(C)×X

2(Ĉ)→ Q/Z.

Proof: As in the proof of Lemma 5.1, Lemma 5.3 and Lemma 4.15 imply that
for a sufficiently small Zariski open subset U ⊂ U0, we have X

0(C) = D0(U, C) and
X

2(Ĉ) ∼= D2(U, Ĉ). Now apply Proposition 4.17.

For each integer i, denote by
∏′

v∈X(1) H i(Kv, C) (resp.
∏′

v∈X(1) H i(Kv, C)∧) the
restricted product of the H i(Kv , C) (resp. of the H i(Kv, C)∧) with respect to the
H i

nr(Kv , C) (resp. to the image of H1(Ov , C) in H i(Kv , C)∧). The same notation

stands for Ĉ. The groups
∏′

v∈X(1) H i(Kv, C) and
∏′

v∈X(1) H i(Kv , Ĉ) are equipped
with their restricted product topology (associated to the topology previously defined
on the H i(Kv , C) and H i(Kv , Ĉ)). All groups H i(K,C) (resp. H i(K, Ĉ)) are equipped
with the discrete topology.

Lemma 5.5. Let i be an integer. Then the image of H i(K,C) in
∏′

v∈X(1) H i(Kv , C)

is discrete for the subspace topology. The same holds if C is replaced by Ĉ.

Proof: As the local fields Kv are of strict cohomological dimension 2, the statement
is obvious except for −1 ≤ i ≤ 2. Fix a Zariski open subset U ⊂ U0 with U 6= X.
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All groups H i(Kv, Ĉ) are discrete, so the subgroup E :=
∏
v 6∈U{0}×

∏
v∈U H

i
nr(Kv , Ĉ)

is open in
∏′

v∈X(1) H i(Kv, Ĉ). Let I be the image of H i(K, Ĉ) in
∏′

v∈X(1) H i(Kv , Ĉ).

Every element of H1(K, Ĉ) comes from H1(V, Ĉ) for some V ⊂ U , hence by Lemma 2.2,
there is a surjection Di(U, Ĉ)→ I ∩E. Since all groups Di(U, Ĉ) are finite by Proposi-
tion 3.6 c), Lemma 4.14 and Lemma 4.15, this implies that I ∩ E is finite, hence I is
discrete.

The same argument shows that the image J of H i(K,C) in
∏′

v∈X(1) H i(Kv, C) is
discrete for i ≥ 1. For i ∈ {−1, 0}, this is an immediate consequence of Lemma 3.8
(again combined with Lemma 2.2).

Lemma 5.6. Let U ⊂ U0 be a non empty Zariski open subset with U 6= X.

a) There are exact sequences

H0(U, C)→
∏

v 6∈U

H0(Kv, C)×
∏

v∈U

H0
nr(Kv, C)→ H1(K, Ĉ)∗.

0→ H−1(U, C)→
∏

v 6∈U

H−1(Kv, C)×
∏

v∈U

H−1
nr (Kv, C)→ H2(K, Ĉ)∗.

b) There are exact sequences

H2(U, Ĉ)→
∏

v 6∈U

H2(Kv, Ĉ)×
∏

v∈U

H2
nr(Kv, Ĉ)→ H−1(K,C)∗ → 0.

H1(U, Ĉ)→
∏

v 6∈U

H1(Kv , Ĉ)×
∏

v∈U

H1
nr(Kv , Ĉ)→ H0(K,C)∗ → D2(U, Ĉ).

Proof: a) Let V ⊂ U be a non empty Zariski open subset. Let i ∈ {−1, 0}. By
Lemma 2.2, we have an exact sequence

H i(U, C)→
∏

v 6∈U

H i(Kv , C)×
∏

v∈U\V

H i
nr(Kv , C)→ H i+1

c (V, C).

By Proposition 3.13, the map H i+1
c (V, C) → H i+1

c (V, C)∧ is injective, thus by The-
orem 4.11 we get an exact sequence

H i(U, C)→
∏

v 6∈U

H i(Kv, C)×
∏

v∈U\V

H i
nr(Kv, C)→ H1−i(V, Ĉ)∗,

where H1−i(V, Ĉ) is a discrete torsion group. Besides, the kernel of the first map is a
subgroup of Di(U, C), hence it is finite for i = 0 by Lemma 4.15. This kernel is also
obviously zero for i = −1 as soon as V 6= U . This implies that the inverse limit of this
exact sequence (when V runs over all non empty Zariski open subsets of U) remains
exact, which yields the result.

b) We apply again Lemma 2.2 and observe that for i ∈ {1, 2}:

-we have H i+1
c (V, Ĉ) ≃ (H1−i(V, C)∧)

∗ ≃ H1−i(V, C)∗ by Theorem 4.9, because the
discrete finitely generated (cf. Proposition 3.6, b) group H1−i(V, C) and its completion
have same dual.
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-the groups Di(U, Ĉ) are finite (Lemma 4.15 and Proposition 3.6 c).

Now the same method as in a) gives the exactness of

H i(U, Ĉ)→
∏

v 6∈U

H i(Kv , Ĉ)×
∏

v∈U

H i
nr(Kv , Ĉ)→ H1−i(K,C)∗.

Besides, by [DH], Prop 2.1, there is a commutative diagram with exact lines:

Di+1(U, Ĉ)
x

∏
v∈U\V H

i
nr(Kv, Ĉ) −−−−→ H i+1

c (V, Ĉ) −−−−→ H i+1
c (U, Ĉ)

x
x

∏
v 6∈V H

i(Kv , Ĉ) ←−−−−
∏
v 6∈U H

i(Kv, Ĉ).

The right column is also exact by definition of Di+1(U, Ĉ). By diagram chasing, this
yields an exact sequence

∏

v 6∈U

H i(Kv , Ĉ)×
∏

v∈U\V

H i
nr(Kv, Ĉ)

sV→ H i+1
c (V, Ĉ)→ Di+1(U, Ĉ). (40)

As seen before, the kernel of sV is the image of H i(U, Ĉ), which implies that forW ⊂ V ,
the transition map ker sW → ker sV is surjective. The map

∏

v 6∈U

H i(Kv, Ĉ)×
∏

v∈U\W

H i
nr(Kv , Ĉ)→

∏

v 6∈U

H i(Kv , Ĉ)×
∏

v∈U\V

H i
nr(Kv , Ĉ)

is also obviously surjective. Thus taking projective limit over V in (40) gives an exact
sequence

∏

v 6∈U

H i(Kv , Ĉ)×
∏

v∈U

H i
nr(Kv , Ĉ)→ H1−i(K,C)∗ → Di+1(U, Ĉ)

(indeed recall that H i+1
c (V, Ĉ) ∼= H1−i(V,C)∗). It remains to observe that for i = 2, we

have D3(U, Ĉ) ⊂ H3(U, Ĉ) = 0 (Proposition 4.4).

Theorem 5.7 (Poitou-Tate I). In the sequence

0 −−−−→ H−1(K,C) −−−−→
∏′

v∈X(1) H−1(Kv, C) −−−−→ H2(K, Ĉ)∗
y

H1(K, Ĉ)∗ ←−−−−
∏′

v∈X(1) H0(Kv, C) ←−−−− H0(K,C)
y

H1(K,C) −−−−→
⊕

v∈X(1) H1(Kv , C) −−−−→ H0(K, Ĉ)∗
y

0 ←−−−− H−1(K, Ĉ)∗ ←−−−−
⊕

v∈X(1) H2(Kv , C) ←−−−− H2(K,C)

(41)
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every sequence of three consecutive terms is exact, except the two ones respectively
finishing with H0(K,C) and H1(K,C), which must be replaced with the following “com-
pleted” exact sequences:

∏′

v∈X(1)
H−1(Kv , C)∧ → H2(K, Ĉ)∗ → H0(K,C).

∏′

v∈X(1)
H0(Kv, C)∧ → H1(K, Ĉ)∗ → H1(K,C).

Proof: Let U ⊂ U0 be a non empty Zariski open subset with U 6= X.

First take i ∈ {1, 2}. By (3), there is an exact sequence

H i(U, C)→
⊕

v 6∈U

H i(Kv, C)→ H i+1
c (U, C)

and for i = 2 the last map is surjective because H3(U, C) = 0 by Proposition 4.3 a).
By Theorem 4.9 and Proposition 3.13, we have

H i+1
c (U, C) ∼= H1−i(U, Ĉ)∗ ∼= H1−i(K, Ĉ)∗,

whence (by Lemma 3.14) for every non empty Zariski open subset V ⊂ U , a commu-
tative diagram with exact lines

H i(U, C) −−−−→
⊕

v 6∈U H
i(Kv, C) −−−−→ H1−i(K, Ĉ)∗

y
yj

y=

H i(V, C) −−−−→
⊕

v 6∈V H
i(Kv, C) −−−−→ H1−i(K, Ĉ)∗,

where j is obtained by putting 0 at the missing places (and the right horizontal maps
are surjective for i = 2). Therefore taking direct limit over U in the first line of this
diagram gives that the last two lines of (41) are exact. The exactness of the first two
lines of (41) comes from Lemma 5.6 after taking again direct limit over U .

It remains to prove the exactness of the following three sequences:

∏′

v∈X(1)
H−1(Kv, C)∧ → H2(K, Ĉ)∗ →X

0(C)→ 0.

∏′

v∈X(1)
H0(Kv , C)∧ → H1(K, Ĉ)∗ →X

1(C)→ 0.

⊕

v∈X(1)

H1(Kv , C)→ H0(K, Ĉ)∗ →X
2(C)→ 0.

We observe that for 0 ≤ i ≤ 2, the following sequence is exact:

0→X
i(Ĉ)→ H i(K, Ĉ)

pi
→

∏′

v∈X(1)
H i(Kv, Ĉ).

Set Ai := Im pi; we get exact sequences (the maps being strict by Lemma 5.5) of
Hausdorff, totally disconnected groups

0→X
i(Ĉ)→ H i(K, Ĉ)→ Ai → 0.
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0→ Ai →
∏′

v∈X(1)
H i(Kv, Ĉ),

where Ai is equipped with the discrete topology. By [HSS], Lemma 2.4 (where the
groups are assumed to be locally compact, but the proof shows that it sufficient to
assume that they have a basis of neighborhoods of zero consisting of open subgroups;
this is the case for all groups considered here), the duals of these exact sequences are
also exact. Recall that for i ∈ {−1, 0}, the group H i(Kv, C)∧ = lim

←−n>0
(H i(Kv, C)/n)

is also the completion H i(Kv, C)∧ of H i(Kv, C) with respect to the open subgroups

of finite index. By [Dem1], Th 3.1. and 3.3., the dual of
∏′

v∈X(1) H i(Kv , Ĉ) is∏′

v∈X(1) H1−i(Kv , C)∧ for 1 ≤ i ≤ 2, and the dual of the group
∏′

v∈X(1) H0(Kv, Ĉ) =∏
v∈X(1) H0(Kv , Ĉ) (cf. Remark 3.7) is

⊕
v∈X(1) H1(Kv, C). By Theorems 5.4 and 5.2,

the dual of the finite group X
i(Ĉ) is X2−i(C). This proves the result.

Theorem 5.8 (Poitou-Tate II). In the sequence

0 −−−−→ H−1(K, Ĉ) −−−−→
∏
v∈X(1) H−1(Kv, Ĉ) −−−−→ H2(K,C)∗

y
H1(K,C)∗ ←−−−−

∏
v∈X(1) H0(Kv, Ĉ) ←−−−− H0(K, Ĉ)

y
H1(K, Ĉ) −−−−→

∏′

v∈X(1) H1(Kv, Ĉ) −−−−→ H0(K,C)∗
y

0 ←−−−− H−1(K,C)∗ ←−−−−
∏′

v∈X(1) H2(Kv, Ĉ) ←−−−− H2(K, Ĉ)

(42)

every sequence of three consecutive terms is exact, except the two ones respectively
finishing with H0(K, Ĉ) and H1(K, Ĉ), which must be replaced with the following com-
pleted exact sequences:

∏

v∈X(1)

H−1(Kv, Ĉ)∧ → H2(K,C)∗ → H0(K, Ĉ).

∏

v∈X(1)

H0(Kv , Ĉ)∧ → H1(K,C)∗ → H1(K, Ĉ).

Proof: This is very similar to the proof of Theorem 5.7. Let U ⊂ U0 be a non empty
open subset with U 6= X. For i ∈ {−1, 0}, (3) and Proposition 3.6 a) give an exact
sequence

H i(K, Ĉ)→
∏

v 6∈U

H i(Kv, Ĉ)→ H i+1
c (U, Ĉ),

such that the kernel of the first map is zero for i = −1, and this kernel is finite (by
Lemma 4.14) for i = 0. Applying Theorem 4.9 and taking projective limit over U , we
obtain that the first two lines of (42) are exact.

Taking direct limit over U in the exact sequences of Lemma 5.6 b) yields the ex-
actness of the last line and of the sequence

H1(K, Ĉ)→
∏′

v∈X(1)
H1(Kv, Ĉ)→ H0(K,C)∗ →X

2(Ĉ).
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because X
2(Ĉ) ∼= lim−→U

D2(U, Ĉ) (cf. Theorem 5.4).

Finally, dualizing the exact sequence of discrete groups

0→X
i(C)→ H i(K,C)→

⊕

v∈X(1)

H i(Kv, C)

for i ∈ {1, 2} gives the missing pieces of Theorem 5.8, thanks to Theorem 5.2 and
[Dem1], Th. 3.1. and 3.3.

Remark 5.9. As the groups H1(K, Ĉ) and H2(K, Ĉ) are torsion, it is also possible to
replace the last two lines of (42) by the following exact sequences

0→X
1(Ĉ)→ H1(K, Ĉ)→ (

∏′

v∈X(1)
H1(Kv, Ĉ))tors → (H0(K,C)∧)

∗ →X
2(Ĉ)→ 0.

(43)

0→X
2(Ĉ)→ H2(K, Ĉ)→ (

∏′

v∈X(1)
H2(Kv, Ĉ))tors → (H−1(K,C)∧)

∗ → 0. (44)

Indeed for i ∈ {−1, 0}, the dual of H i(K,C)∧ = lim←−n>0
(H i(K,C)/n) (equipped with

the inverse limit topology) is

lim−→
n>0

(H i(K,C)/n)∗ = lim−→
n>0

nH
i(K,C)∗ = (H i(K,C)∗)tors,

which gives that (43) and (44) are exact, except that we don’t have the surjectivity of
(H0(K,C)∧)

∗ →X
2(Ĉ) yet. To see the latter, we first observe that for a K-torus T ,

the subgroup of divisible elements in H0(K,T ) is trivial (indeed we may assume that
T is split and this is so for K∗ because K is a global field); then the same property
holds by dévissage (using (12)) for H0(K,C) because for a group of multiplicative type
M , the group H1(K,M) is of finite exponent via Hilbert 90. Therefore the canonical
map H0(K,C) → H0(K,C)∧ is injective, whence an injection X

0(C) →֒ H0(K,C)∧,
whose dual (H0(K,C)∧)

∗ →X
2(Ĉ) (cf. Theorem 5.4) is surjective, the group X

0(C)
being finite and H0(K,C)∧ having a basis of neighborhoods of zero consisting of open
subgroups (cf. [HSS], Lemma 2.4).

We can now prove the following variant of Theorem 5.7:

Theorem 5.10 (Poitou-Tate, I’). There is an exact sequence

0 −−−−→ H−1(K,C)∧ −−−−→ [
∏′

v∈X(1) H−1(Kv , C)]∧ −−−−→ H2(K, Ĉ)∗
y

H1(K, Ĉ)∗ ←−−−− [
∏′

v∈X(1) H0(Kv, C)]∧ ←−−−− H0(K,C)∧y
H1(K,C) −−−−→

⊕
v∈X(1) H1(Kv , C) −−−−→ H0(K, Ĉ)∗

y
0 ←−−−− H−1(K, Ĉ)∗ ←−−−−

⊕
v∈X(1) H2(Kv , C) ←−−−− H2(K,C)

(45)
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Proof: Dualizing (43) and (44) yields the two exact sequences

0→X
0(C)→ H0(K,C)∧ → [

∏′

v∈X(1)
H0(Kv , C)]∧ → H1(K, Ĉ)∗ →X

1(C)→ 0.

0→ H−1(K,C)∧ → [
∏′

v∈X(1)
H−1(Kv, C)]∧ → H2(K, Ĉ)∗ →X

0(C)→ 0.

The other parts of the sequence follow from Theorem 5.7.

Remark 5.11. A subtle point here is that for i ∈ {−1, 0}, there is a canonical injective
map (which is induced by the isomorphism

∏
vH

i(Kv, C)∧ ∼= [
∏
vH

i(Kv , C)]∧):

∏′

v∈X(1)
H i(Kv , C)∧ →֒ [

∏′

v∈X(1)
H i(Kv , C)]∧,

but this map is not surjective in general. For instance if i = 0 and C = Gm, we have
H0(Kv , C) ∼= O∗

v × Z; as
⊕

v∈X(1) Ẑ is smaller than [
⊕

v∈X(1) Z]∧, the aforementioned
map is not surjective. Observe that the natural map H i(K,C)→

∏′
v∈X(1) H i(Kv , C)∧

does not in general extend to H i(K,C)∧, it is only defined on the bidual H i(K,C)∗∗,
which is smaller than H i(K,C)∧.

Remark 5.12. Dualizing the exact sequence

0→X
i(C)→ H i(K,C)→

⊕

v∈X(1)

H i(Kv , C)→ H1−i(K, Ĉ)∗ →X
i+1(K,C)→ 0

for i ∈ {1, 2} also yields an exact Poitou-Tate sequence II’, which is the same as (42)
except that for r ∈ {−1, 0}, the group Hr(K, Ĉ) (resp.

∏
v∈X(1) Hr(Kv, Ĉ)) has to be

replaced by Hr(K, Ĉ)∧ (resp. by (
∏
v∈X(1) Hr(Kv , Ĉ))∧ =

∏
v∈X(1) Hr(Kv, Ĉ)∧).

Remark 5.13. If we replace the function field K by a number field, some results of
this section still hold and some of them have to be modified. Namely:

• Theorem 5.2 is unchanged (with the same proof), see also Theorems 5.7 and 5.12
in [Dem1] (in the latter the assumption ker ρ finite is unnecessary).

• Lemma 5.3 still holds. Therefore Theorem 5.4 is also true: indeed since the
pairing (38) has divisible right kernel and trivial left kernel, taking the direct
limit over U (and using the facts that the sequence of finite groups D0(U, C)
stabilizes for U sufficiently small) yields a pairing X

0(C)×X
2(Ĉ) with divisible

right kernel and trivial left kernel. But it is known that X
2(Ĉ) is finite (see

[Dem1], proof of Th. 5.14), whence the result (which extends [Dem1], Th. 5.23).
Actually the image of H2

c (U, Ĉ) into H2(K, Ĉ) is finite by dévissage thanks to
exact triangle (13): indeed H3(K, T̂ ) ∼=

⊕
v∈ΩR

H3(Kv, T̂ ) is finite for a torus

T , and H2
c (U,M̂) is also finite for a group of multiplicative typeM because we

already saw (cf. Remark 3.15 and Lemma 3.4, c) that this holds when M is a
torus or a finite group.

• In Lemma 5.5, one has to restrict to i ≥ 1 for the assertion about C. The result
about Ĉ holds for an arbitrary i (although the group D2(U, Ĉ) might be infinite,
we just saw that its image in H2(K, Ĉ) is finite, which is sufficient).
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• Lemma 5.6 a) is not valid any more (one has to complete the first two terms in
the exact sequences); the second exact sequence of b) still holds (same proof),
as does the first one except for the surjectivity of the last map, which must be
replaced by the exact sequence

∏

v 6∈U

H2(Kv, Ĉ)×
∏

v∈U

H2
nr(Kv, Ĉ)→ H−1(K,C)∗ → D3(U, Ĉ)→ 0

because we lack the vanishing of D3(U, Ĉ). Also, since D2(U, Ĉ) is in general
infinite, the proof of the exactness of

H2(U, Ĉ)→
∏

v 6∈U

H2(Kv, Ĉ)×
∏

v∈U

H2
nr(Kv, Ĉ)→ H−1(K,C)∗

is a little bit more complicated (using exact triangle (13) one reduces to the case
when C is quasi-isomorphic toM[1], whereM is a group of multiplicative type;

then one proceeds as in Lemma 5.6 b), the group D2(U,M̂) being finite because

H2
c (U,M̂) is finite).

• By the previous observations, the end of sequence (41) starting withH1(K, Ĉ)∗ →
H1(K,C)→ ... remains exact. Theorem 5.8 is valid with one single slight compli-
cation in the proof: we do not know in general that D3(U, Ĉ) = 0, but the direct
limit over U of the D3(U, Ĉ) is X3(Ĉ), which is zero. Theorem 5.10 is therefore
also unchanged, which extends [Dem1], Theorems 6.1 and 6.3.

Remark 5.14. In the case of one single torus T with module of characters T̂ , some of
our results of section 4 and 5 can be deduced from similar theorems on 1-motives proven
by González-Avilés ([Go1], Th. 6.6) and González-Avilés/Tan ([Go2], Th. 3.11).

Acknowledgements. We thank J.L. Colliot-Thélène and the anonymous referee
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