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Abstract. These notes aim to provide an introduction to the geomet-
ric group theory woven around nonpositively curved cube complexes.
The main goal is to outline the proof that a hyperbolic group G with
a quasiconvex hierarchy has a finite index subgroup that embeds in a
right-angled Artin group. We sketch the supporting ingredients of the
proof: The basics of nonpositively curved cube complexes, wallspaces
and dual CAT(0) cube complexes, special cube complexes, the combi-
nation theorem for special cube complexes, the combination theorem for
cubulated groups, cubical small-cancellation theory, and the malnormal
special quotient theorem. We also discuss generalizations to relatively
hyperbolic groups. Finally, we describe applications towards Baumslag’s
conjecture on the residual finiteness of one-relator groups with torsion,
and to the virtual specialness and virtual fibering of certain hyperbolic
3-manifolds, including those with at least one cusp.
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Note to the reader

The target audience for these lecture notes consists of younger researchers
at the beginning of their careers as well as seasoned researchers in neigh-
boring areas interested in quickly acquiring the viewpoint. The requisite
background for reading this text should be at the level of an introductory
course on geometric group theory or even just hyperbolic groups, though
some comfort with graphs of groups would be helpful. I have attempted to
include all defined terms and notation in an index at the end of the docu-
ment, and hope that the intrepid reader will be able to dive into a chapter
of interest and work outwards.
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CHAPTER 1

Overview

Our goal is to describe a stream of geometric group theory connecting
many of the classically considered groups arising in combinatorial group
theory with right-angled Artin groups. The nexus here are the “special
cube complexes” whose fundamental groups embed naturally in right-angled
Artin groups.

Nonpositively curved cube complexes, which Gromov introduced merely
as a convenient source of examples [28], have come to take an increasingly
central status within parts of geometric group theory – especially among
groups with a comparatively small number of relations. Their ubiquity is
explained by Sageev’s construction [65] which associates a dual cube com-
plex to a group that has splittings or even ‘semi-splittings’ i.e. codimension-1
subgroups.

Right-angled Artin groups, which at first appear to be a synthetic class
of particularly simple groups, have taken their place as a natural target –
possibly even a “universal receiver” for groups that are well-behaved and
that have good residual properties and many splittings or at least “semi-
splittings”.

We begin by reviewing nonpositively curved cube complexes and a disk
diagram approach to them – first entertained by Casson (above dimension 2).
These disk diagrams are used to understand their hyperplanes and convex
subcomplexes. While many of the essential properties of CAT(0) cube com-
plexes can be explained using the CAT(0) triangle comparison metric, we
have not adopted this viewpoint. It seems that the most important charac-
teristic properties of CAT(0) cube complexes arise from their hyperplanes,
and these are exposed very well through disk diagrams – and the view will
serve us further when we take up small-cancellation theory.

Special cube complexes are introduced as cube complexes whose im-
mersed hyperplanes behave in an organized way and avoid various forms
of self-intersections. CAT(0) cube complexes are high-dimensional general-
izations of trees, and likewise, from a certain viewpoint, special cube com-
plexes play a role as high-dimensional “generalized graphs”. In particular
they allow us to build (finite) covering spaces quite freely, and admit natural
virtual retractions onto appropriate “generalized immersed subgraphs” just
like ordinary 1-dimensional graphs. The fundamental groups of special cube
complexes embed in right-angled Artin groups – because of a local isometry
to the cube complex of a naturally associated raag. Since right-angled Artin
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1. OVERVIEW 4

groups embed in (and are closely allied with) right-angled Coxeter groups,
this means that one can obtain linearity and residual finiteness by verifying
virtual specialness.

We describe some criteria for verifying that a nonpositively curved cube
complex is virtually special – the most fundamental is the condition that
double hyperplane cosets are separable. A deeper criterion [36] arises from
a nonpositively curved cube complex that splits along an embedded 2-sided
hyperplane into one or two smaller nonpositively curved cube complexes.
Under good enough conditions the resulting cube complex is virtually spe-
cial:

Theorem 1.1 (Specializing Amalgams). Let Q be a compact nonposi-
tively curved cube complex with π1Q hyperbolic. Let P be a 2-sided embedded
hyperplane in Q such that π1P ⊂ π1Q is malnormal and each component of
Q −No(P ) is virtually special. Then Q is virtually special.

A subgroup H of G is “codimension-1” if H splits G into two or more
“deep components” – like an infinite cyclic subgroup of a surface group. In
his PhD thesis, Sageev understood that when G acts minimally on a CAT(0)
cube complex X̃, the stabilizers of hyperplanes are virtually codimension-1
subgroups of G. He contributed an important converse to this:

Construction 1.2 (dual CAT(0) cube complex). Given a group G and
a collection H1, . . . ,Hr of codimension-1 subgroups, one obtains an action
of G on a dual CAT(0) cube complex – whose hyperplane stabilizers are
commensurable with conjugates of the Hi.

We review Construction 1.2 in the context of Haglund-Paulin wallspaces,
and describe some results on the finiteness properties of the action of G on
the CAT(0) cube complex X̃. The main point is that if we can produce
sufficiently many quasiconvex codimension-1 subgroups in the hyperbolic
group G, then we can apply Construction 1.2 to obtain a proper cocompact
action of G on a CAT(0) cube complex. This is how we prove the following
result [43]:

Theorem 1.3 (Cubulating Amalgams). Let G be a hyperbolic group that
splits as A∗CB or A∗Ct=D where C is malnormal and quasiconvex. Suppose
A,B are each fundamental groups of compact cube complexes. And suppose
that some technical conditions hold (and these hold when A,B are virtually
special). Then G is the fundamental group of a compact nonpositively curved
cube complex.

A hierarchy for a group G is a way to repeatedly build it starting with
trivial groups (but sometimes other basic pieces) by repeatedly taking amal-
gams A ∗C B and A∗Ct=D whose vertex groups have shorter length hierar-
chies. The hierarchy is quasiconvex if at each stage the amalgamated sub-
group C is a finitely generated that embeds by a quasi-isometric embedding,
and similarly, the hierarchy is malnormal if C is malnormal in A ∗C B or
A∗Ct=D.
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Taken together, Theorem 1.1 and Theorem 1.3 inductively provide the
following target for virtual specialness – a malnormal variant of our main
result in Theorem 1.7.

Theorem 1.4 (Malnormal Quasiconvex Hierarchy). Suppose G has a
malnormal quasiconvex hierarchy. Then G is virtually compact special.

Cubical Small-cancellation Theory: A presentation ⟨a, b, . . . ∣W1, . . . ,Wr⟩
is C ′( 1

n) if for any “piece” P (i.e. a subword that occurs in two or more
ways among the relators) in a relator Wi we have ∣P ∣ < 1

n ∣Wi∣. For n ≥ 6 the
group G of the presentation is hyperbolic and disk diagram methods provide
a very explicit understanding of many properties of G.

The presentation above can be reinterpreted as ⟨X ∣ Y1, . . . , Yr⟩ where X
is a bouquet of loops and each Yi → X is an immersed circle corresponding
to Wi, and the group G of the presentation is then π1X/⟨⟨π1Y1 . . . , π1Yr⟩⟩.
We generalize this to a setting where X is a nonpositively curved cube
complex and each Yi → X is a local isometry. We also offer a notion of
C ′( 1

n) small-cancellation theory for such “cubical presentations”. The main
results of classical small-cancellation theory – Greendlinger’s lemma and the
ladder theorem (and other results involving annular diagrams) have quite
explicit generalizations. In particular, we obtain the following result which
generalizes the classification of finite trees: T is either a single vertex, is a
subdivided arc, or has three or more leaves:

Theorem 1.5. If D is a reduced diagram in a cubical C ′( 1
24) presenta-

tion then either D is a single 0-cell or cone-cell, or D is a “ladder” consisting
of sequence of cone-cells, or D has at least three spurs and/or cornsquares
and/or shells.

The undefined terms in Theorem 1.5 are described in Chapter 9, but the
reader might wish to take a glimpse at Figure 9.5.

One motivation for introducing a cubical small-cancellation theory is
that when the “relators” Yi also have given wallspace structures, then there
are natural walls – and hence usually codimension-1 subgroups – in the
group G, generalizing the same phenomenon for C ′(1

6) groups.
This cubical small-cancellation theory helps to coordinate the proof of

the following result:

Theorem 1.6 (Malnormal Special Quotient Theorem). Let G be hyper-
bolic and virtually compact special. Let {H1, . . . ,Hr} be an almost malnor-
mal collection of subgroups. There exist finite index subgroups H ′

1, . . . ,H
′
r

such that G/⟨⟨H ′
1, . . . ,H

′
r⟩⟩ is virtually compact special and hyperbolic.

Most of our exposition circulates around the proof of Theorem 1.6. As-
suming that G = π1X, we first choose a collection of local isometries Yi →X
with π1Yi =Hi. We then choose appropriate finite covers Ŷi (the H ′

i will be
π1Ŷi) such that the group Ḡ of ⟨X ∣ Ŷ1, . . . , Ŷr⟩ has a finite index subgroup
Ḡ′ with a malnormal quasiconvex hierarchy (we have hidden a few steps
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here) that can be obtained by cutting along hyperplanes in a finite cover X̂.
Thus Ḡ′ is virtually special by Theorem 1.4.

Theorem 1.7 (Quasiconvex Hierarchy). Suppose G is hyperbolic and
has a quasiconvex hierarchy. Then G is virtually compact special.

Proving Theorem 1.7 depends on proving virtual specialness of the amal-
gamated free products and HNN’s that arise at each stage of the hierarchy.
Given a splitting, say G = A∗Ct=D, the plan is to find a finite index sub-
group G′ with an almost malnormal quasiconvex hierarchy and conclude by
applying Theorem 1.4. To do this, we verify separability of C by apply-
ing Theorem 1.6 to quotient subgroups of C using an argument inducting
on Height(G,C). This idea of repeatedly quotienting with an induction on
height was independently discovered by Agol-Groves-Manning.

Generalizations of Theorem 1.7 hold in many (and conjecturally all)
cases when G is hyperbolic relative to abelian subgroups. We describe how
to deduce these generalizations from Theorem 1.7. The proof of separabil-
ity essentially involves a generalization of Theorem 1.7 to provide virtually
special peripheral quotienting. However cubulating requires some additional
work.

1.1. Applications

We describe three notable classes of groups with quasiconvex hierarchies
in Chapter 16:

Limit groups have hierarchies given by Kharlamopovich-Miasnikov and
by Sela, and are thus virtually special.

Every one-relator group has a Magnus-Moldavanskii hierarchy – and for
one relator groups with torsion this hierarchy is a quasiconvex hierarchy.
(Though technically one must pass to a torsion-free finite index subgroup).
This resolves Baumslag’s conjecture that every one-relator group with tor-
sion is residually finite – indeed they are virtually special and thus linear
and have separable quasiconvex subgroups.

For a hyperbolic 3-manifold M with an incompressible surface S the
Haken hierarchy of M yields a quasiconvex hierarchy for π1M provided π1S
is geometrically finite, and so π1M is virtually special. When the hyper-
bolic 3-manifold has a geometrically finite incompressible surface, we thus
find that π1M is subgroup separable: Indeed, the geometrically finite sub-
groups are quasiconvex and hence separable using virtual specialness, and
the virtual fiber subgroups are easily seen to be separable, and there are
no other subgroups by the Tameness Theorem [1, 13]. A second corollary
is that when the hyperbolic manifold M is Haken, in the sense that it has
an incompressible surface S, then M is virtually fibered. Indeed, either S
is a virtual fiber, or it is geometrically finite, and in the latter case π1M is
virtually in a raag and thus virtually RFRS and so Agol’s fibering criterion
applies [2].
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1.2. A Scheme for Understanding Groups

The above discussions are instances of partial success in implementing
the following “grand plan” for understanding many groups:

● Find codimension-1 subgroups in a group G.
● Produce the dual CAT(0) cube complex C̃ upon which G acts.
● Verify that G acts properly and relatively cocompactly on C̃ by

examining the extrinsic nature of the codimension-1 subgroups.
● Consequently G is the fundamental group of a nonpositively curved

cube complex C = G/C̃. (Or C is an orbihedron if G has torsion.)
● Find a finite covering space Ĉ of C, such that Ĉ is special.
● The specialness reveals many structural secrets of G. For instance,
G is linear since it embeds in SLn(Z), and the geometrically well-
behaved subgroups of G are separable.

In conclusion, in many cases, especially when G has comparatively few
relators we see that:

Though G might arise as the fundamental group of a small 2-complex or
3-manifold, in many cases one should sacrifice this small initial presentation
in favor of a much larger and higher-dimensional object that is a nonposi-
tively curved special cube complex, and has the advantage of being far more
organized, thus revealing important structural aspects of G.



CHAPTER 2

Nonpositively Curved Cube Complexes

This chapter serves as a quick introduction to nonpositively curved cube
complexes. We quickly review the basic definitions in Section 2.1. A va-
riety of examples are provided in Section 2.2. The fundamental examples,
which arise from right-angled Artin groups, are described in Section 2.3.
While Gromov introduced nonpositively curved cube complexes as a source
of examples with metric nonpositive curvature in the sense that the thin
triangle comparison condition holds, we have adopted a combinatorial view-
point here. Metric arguments are not usually critical here, and though a
traditional geometric group theory attitude can sometimes coordinate or
motivate a proof, it seems to make things messier to work simultaneously in
two categories. The key feature that gives nonpositively curved cube com-
plexes their characteristic properties are the hyperplanes which we describe
in Section 2.4 and will continually revisit in Chapter 3 and subsequently.

2.1. Definitions

An n-cube is a copy of [−1,1]n. Its faces are restrictions of some coor-
dinates to ±1. We regard the faces as cubes in their own right.

Figure 2.1. Two faces in a 3-cube

A cube complex X is a cell complex obtained by gluing cubes together
along faces. The identification maps of faces are modeled by isometries – so
this is entirely combinatorial.

Figure 2.2. A cube complex

8
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The link of a 0-cube v of X is the simplex-complex whose n-simplices
are corners of (n + 1)-cubes adjacent with v. So link(v) is the “ε-sphere”
about v in X.

Figure 2.3. Link within a cube complex

A flag complex is a simplicial complex with the property that n + 1
vertices span an n-simplex if and only if they are pairwise adjacent. Thus
a flag complex is determined completely by a simplicial graph. Note that a
graph Γ is flag if and only if girth(Γ) ≥ 4.

Figure 2.4. A 2-dimensional and 1-dimensional flag complex

The cube complex X is nonpositively curved if link(v) is a flag complex
for each v ∈ X0. We say X̃ is a CAT(0) cube complex if it is nonpositively
curved and simply-connected.

Remark 2.1. A CAT(0) cube complex also has a genuine CAT(0) tri-
angle comparison metric where each n-cube is isometric to [−1,1]n however
this is not usually the best viewpoint here.

We use the notation X̃ since a CAT(0) cube complex X̃ arises as the
universal cover of a nonpositively curved cube complex X.

Example 2.2 (Not nonpositively curved). The cube complex homeo-
morphic to an n-sphere obtained by identifying two n-cubes identified along
their boundaries is not nonpositively curved for n ≥ 2. Indeed, the link of
each 0-cube is not simplicial.

The cube complex obtained by removing one of the eight 3-cubes around
the origin in R3 is not nonpositively curved. The link of the central 0-cube
is isomorphic to the simplicial complex obtained from an octahedron by
removing a single open 2-simplex.

2.2. Some Favorite 2-Dimensional Examples

Example 2.3 (Dehn Complex). A link projection is alternating if the
curves travel alternately above and below at crossings. The projection is
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prime if each embedded circle σ in the plane that intersects the projection
P transversely in exactly two noncrossing points has the property that the
part of P on either the inside or on the outside of σ consists of a single arc.
A projection that is not prime is illustrated on the right of Figure 2.5. (Any
link that is both prime and alternating in the usual sense has a projection
that is both prime and alternating.)

Let L be a link in S3. The Dehn complex X of L is a square complex that
embeds in S3 −L. The 2-complex X has exactly two 0-cells vb, vt which are
positioned at the “bottom” and at the “top” of the projection plane. We give
the projection the checkerboard coloring. There is a 1-cell for each region of
the projection – the 1-cells associated with black regions are oriented from
vt to vb and the 1-cells associated with white regions are oriented from vb to
vt. There is a 2-cell for each crossing of P , it is a square corresponding to a
path that travels up and down around the crossing (following the boundary
of a saddle).

Figure 2.5. An embedded Dehn complex

Figure 2.6. Squares correspond to crossings

Weinbaum discovered that the link projection is prime and alternating
if and only if the Dehn complex X is nonpositively curved, but he formu-
lated this in terms of C(4)-T(4) small-cancellation complexes [72, 52]. The
explanation we give here is from [81].

We first observe that link(vt) embeds in the projection diagram (with
the traditional omitted parts indicating the nature of the crossing points).

To see that X is nonpositively curved exactly when P is prime and
alternating, we note that the checkerboard coloring shows that link(vt) is
bipartite so it suffices to verify that there are no 2-cycles. But the two
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Figure 2.7. link(vt) embeds in the projection diagram

different types of 2-cycles would show that P is either not alternating or not
prime.

Figure 2.8. 2-cycles that indicate that P is not alternating
or not prime.

Example 2.4 (From graphs of graphs). Let X be a topological space
that decomposes as a graph Γ of spaces where each vertex space Xv is a
graph and each edge space Xe × [−1,1] is the product of a graph and an
interval. Suppose the attaching maps φe− ∶ Xe × {−1} → Xι(e) and φe+ ∶
Xe×{+1} →Xτ(e) are combinatorial immersions. Then X is a nonpositively
curved square complex.

Figure 2.9. A graph of spaces with two vertex spaces and
two edge spaces.

Example 2.5 (Amalgam along Z). A group of the form F2 ∗ZF2 always
arises as a graph of groups which is the fundamental group of a graph of
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spaces yielding a nonpositively curved square complex as above. To do this
we can subdivide to make ∣U ∣ = ∣V ∣ where U and V are words generating Z
in the two free groups. This subdivision rarely works for an HNN extension
F2∗Zt=Z. Understanding how to deal with such HNN examples was one of
the motivations for this research.

Figure 2.10. Subdivide the left and right vertex spaces so
that the cylinder edge space has bounding circles of the same
length as on the right.

A VH-complex is a square complex whose 1-cells are divided into two
classes: vertical and horizontal, and where attaching maps of 2-cells are
length 4 paths that alternate between vertical and horizontal edges.

Figure 2.11. A VH-complex

When X arises as a graph of spaces as in Example 2.4, then link(v) is a
bipartite graph, and X is a nonpositively curved VH-complex. The vertical
1-cells are in the vertex spaces, and the horizontal 1-cells project to edges
of the underlying graph. Note that the nonpositive curvature holds because
the attaching maps are immersions. We now draw attention to two classes
of graphs of spaces that arise from restrictions on the nature of the attaching
maps of edges spaces:

Example 2.6 (Complete Square Complexes). When all attaching maps
φe± are covering maps of graphs, then X is a complete square complex which
means that each link(v) is a complete bipartite graph. In this case, the
universal cover X̃ is isomorphic to the cartesian product of two trees. These
can be surprisingly complicated and we refer to [82], and to [47] for some
simple such examples. Most notably, Burger-Mozes gave such examples
where π1X is infinite simple [12].

Example 2.7 (Clean VH-complexes). When all attaching maps φe± are
combinatorial embeddings, then X is clean. Sometimes X might not be
clean but has a finite covering space that is clean.
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Figure 2.12. A complete square complex with 6 squares.

Figure 2.13. A VH-complex for a genus 2 surface, together
with a degree 4 clean cover

Remark 2.8. When X is a compact nonpositively curved VH-complex,
then X has a (single or) double cover X̂ that splits as a graph of spaces as
in Example 2.9, and so π1X̂ splits as a corresponding graph of groups. In
this case X has a clean finite cover precisely when the edge groups of π1X̂
are separable [81].

2.3. Right-Angled Artin Groups

The right-angled Artin group (raag) or graph group G(Γ) associated to
the simplicial graph Γ has the following presentation:

(2.1) ⟨ gv ∶ v ∈ Vertices(Γ) ∣ [gu, gv] ∶ (u, v) ∈ Edges(Γ) ⟩
Example 2.9.
(1) G( ) ≅ Z3

(2) G( ) ≅ F3

(3) G( ) ≅ F2 × F3

(4) G( ) ≅ π1(S3 − )
When girth(Γ) ≥ 4, the standard 2-complex R of Presentation (2.1) is

already a nonpositively curved square complex. In general, we must also add
higher dimensional cubes. We define R(Γ) to be the cube complex obtained
from the standard 2-complex of Presentation (2.1) by adding an n-cube for
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each collection of n pairwise commuting generators – i.e. for each n-clique
in Γ. R(Γ) is often called the Salvetti complex [16].

We record the above construction as follows:

Theorem 2.10. For each [finite] simplicial graph Γ, there is a [compact]
nonpositively curved cube complex R(Γ) such that the associated raag G(Γ)
can be identified with π1R(Γ). In particular, the standard 2-complex of the
defining presentation for G(Γ) equals the 2-skeleton of R(Γ).

Example 2.11. A 3-dimensional example that is worth thinking through
to illustrate the construction proving Theorem 2.10 is indicated in Fig-
ure 2.14. Notice that R(Γ) has only one 0-cell v, and that link(v) contains
two copies of Γ: one “ascending” and one “descending” and has additional
simplices corresponding to corners of cubes that are mixed.

Figure 2.14. Γ is on the left, and link(v) is on the right.
Note that link(v) contains an octahedron whose eight 2-
simplices correspond to the eight corners of the added 3-cube.

Proposition 2.12. Raags have the following properties:
(1) They are residually torsion-free nilpotent [22].
(2) They are residually finite rational solvable [2].
(3) They are linear [46].
(4) They embed in right-angled Coxeter groups and hence in SLn(Z)

[44, 20].

We refer to Charney’s survey paper for more about right-angled and
other Artin groups [15].

2.4. Hyperplanes

A midcube is a subspace of a cube obtained by restricting one coordinate
to 0. A hyperplane is a connected subspace of a CAT(0) cube complex that
intersects each cube in a single midcube or in ∅. The hyperplane H is said
to be dual to each 1-cube that it intersects.

We record some fundamental properties of hyperplanes given in [65].
We will describe proofs in Chapter 3.

Theorem 2.13. Let X̃ be a CAT(0) cube complex
(1) Each midcube lies in a unique hyperplane of X̃.
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Figure 2.15. Midcubes in a 1-cube, 2-cube, and 3-cube

Figure 2.16. Some hyperplanes in a 3-dimensional CAT(0)
cube complex, and in the plane, and in a tree.

(2) A hyperplane H of X̃ is itself a CAT(0) cube complex (regard mid-
cubes as cubes).

(3) The cubical neighborhood N(H) ≅H×[−1,1] is a convex subcomplex
of X̃ called the carrier of H.

(4) X̃ −H consists of two components.

Remark 2.14. We usually use the L1 metric on a CAT(0) cube complex
X̃, where distance equals the length of the shortest path that is piecewise
parallel to axes. The inclusion X̃1 ⊂ X̃ is then an isometric embedding,
where we use the graph metric on X̃1. We note that d(p, q) = #(p, q) for
p, q ∈ X̃0, where #(p, q) denotes the number of hyperplanes separating p
and q.

A geodesic in X̃ is a combinatorial edge path in the 1-skeleton of X̃ that
is a geodesic in X̃1 with respect to the graph metric. A subcomplex Ỹ of
X̃ is convex if for any geodesic γ in X̃, if the endpoints of γ are in Ỹ then
γ ⊂ Ỹ .



CHAPTER 3

Cubical disk diagrams, hyperplanes, and convexity

The goal of this chapter is to acquaint the reader with disk diagrams
in nonpositively curved cube complexes. Disk diagrams have long been
understood to have widespread utility in combinatorial and geometric group
theory, and especially within small-cancellation theory. Casson introduced
the viewpoint of using disk diagrams for compact nonpositively curved cube
complexes in lectures in the 1980’s, where he used “bigon removal” to give a
very simple elegant proof of a quadratic isoperimetric function. I am grateful
to Yoav Moriah for sharing his notes on this topic with me, and to Michah
Sageev for sending them to me and encouraging me to examine them in
response to my paper [80]. The simple idea of “bigon removal” opened my
eyes to the possibility of developing the cubical small-cancellation theory we
discuss later. Sageev independently developed and utilized the disk diagram
viewpoint to prove many of the fundamental properties of hyperplanes in
[65]. Our own treatment of this is not meant to be efficient, but rather
to provide the reader with a level of comfort and experience as we shall
routinely adopt aspects and arguments arising for cubical disk diagrams
later when we study diagrams in cubical presentations in Chapter 9.1.

We recall the definition of a disk diagram in Section 3.1. We use disk
diagrams to prove the fundamental properties of hyperplanes in Section 3.2.
We define local isometries between nonpositively curved cube complexes in
Section 3.3. We review background and some useful lemmas concerning
quasiconvexity in Section 3.4. Finally, in Section 3.5 we describe the H-
cocompact convex subcomplex that arises for a quasiconvex subgroup H of
a hyperbolic group G acting properly and cocompactly on a CAT(0) cube
complex X̃.

3.1. Disk Diagrams

A disk diagram D is a compact contractible combinatorial 2-complex
with a chosen planar embedding D ⊂ R2. Its boundary path or boundary
cycle ∂pD is the attaching map of the 2-cell containing the point at ∞
(regarding S2 = R2 ∪∞).

A diagram in a complex X is a combinatorial map D →X.

Lemma 3.1 (van Kampen). A closed combinatorial path P →X is null-
homotopic if and only if there exists a diagram D →X with P ≅ ∂pD so that

16
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Figure 3.1. Disk diagrams and their boundary paths

there is a commutative diagram:

∂pD → D
∥ ↓
P → X

When X is a cube complex, D is a square complex and we study the
dual curves in D which are defined like hyperplanes. Each dual curve is
an immersed circle or an immersed interval that starts and ends on distinct
1-cells of ∂pD.

Figure 3.2. Dual curves in a square disk diagram

When X is nonpositively curved and D → X has minimal area among
all those disk diagrams in X with the same boundary path, the behavior
of dual curves is quite controlled. The main idea behind this control is
summarized by the following result due to Casson whose viewpoint we have
adopted here.

Theorem 3.2 (Bigon removal). Let D → X be a disk diagram with X
a nonpositively curved cube complex. Any bigon B of dual curves can be
replaced (through a homotopy) by a diagram B′ with fewer squares, and
the dual curve pairing of edges of ∂pB and ∂pB

′ remains the same. See
Figure 3.3.

Since whenever there is a dual curve that passes through two 1-cells that
are adjacent to the same vertex there is then a bigon cutting through it as
in Figure 3.4, it follows that:

(1) Each dual curve embeds – i.e. it cannot self-cross.
(2) A minimal area diagram D for P →X has no nonogons, oscugons,

or bigons (see Figure 3.5).

Sketch of Theorem 3.2. Choose a smallest area bigon within D. We
then choose a lowest triangle of dual curves with at least one side on the
bigon. Its existence is sketched in Figure 3.9. There are two cases depending
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Figure 3.3. Bigonal subdiagrams can be replaced by subdi-
agrams with two fewer squares since Area(B′) ≤ Area(B)−2.

Figure 3.4. A dual curve that passes through adjacent
edges has another dual curve cutting through it to form a
bigon.

Figure 3.5. A dual curve cannot self-cross as on the left
in any diagram, moreover, minimal area diagrams cannot
contain nonogons, oscugons, or bigons.

on whether or not one of the vertices of this triangle is also a vertex of the
bigon. These two possibilities are indicated in Figure 3.6. In each case we
are able to homotope the diagram to a new diagram using a hexagon move
illustrated in Figure 3.8, which pushes the front three squares in a cube to
become the back three squares.

Figure 3.6.

Repeating these hexagon moves we obtain a smaller and smaller area
bigon until we arrive at the base case illustrated in Figure 3.8 when two
squares are actually replaced by a length 2 path. This canceled pair of
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squares plays a role similar to a “cancelable pair” in small-cancellation the-
ory. �

Figure 3.7. Hexagon move
Figure 3.8. Canceled pair
of squares

Figure 3.9. Consider the set of vertices in the graph of dual
curves internal to a bigon. If there are no vertices then either
there are no dual curves and we can cancel a pair of squares,
or there are some dual curves and we can perform a leftward
or rightward hexagon move at a corner. Otherwise, there is
a partial ordering on the vertices where u < v if the triangle
with u on top contains v on one of its legs. A lowest vertex
in this partial ordering gives a triangle corresponding to a
hexagon move.

Figure 3.10. Complete example of bigon removal
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3.2. Properties of Hyperplanes

The first part of the following statement shows that hyperplanes exist,
as any midcube extends uniquely to an “immersed hyperplane” and it does
not self-cross, and hence its only nonempty intersection with a cube is in a
single midcube.

Corollary 3.3. Let H be an immersed hyperplane in a CAT(0) cube
complex X̃. Then

(1) H does not self-cross.
(2) H does not self-osculate.
(3) H is simply-connected.

Sketch. In each case a smallest area counterexample leads to an even
smaller one by considering a bigon that must reside inside and applying
Theorem 3.2. �

Figure 3.11.

Corollary 3.4. A hyperplane H of the CAT(0) cube complex X̃ is
2-sided, so N(H) ≅H × [−1,1].

Note that Corollary 3.4 follows from Corollary 3.3.(3), since an I-bundle
over the simply-connected space H must be trivial. Another way of thinking
about this is to observe that if H is 1-sided, then one could produce a
connected double cover of X, contradicting that X is simply-connected.

To illustrate the principle, we give a diagrammatic proof

Proof. If H is 1-sided, then there is a path γ → N(H) that starts and
ends on opposite 0-cubes of a 1-cube e dual to H but does not traverse any
1-cube dual to H. Consider a disk diagram for the closed path γe. The dual
curve λ in D that starts at the center of e must end at the center of some
edge e′ in γ which is impossible since λ maps to H, so e′ is an edge of γ that
is dual to H. �

Corollary 3.5. X̃ −H consists of exactly two components.

Corollary 3.5 follows from a Meyer-Vietoris sequence using that X̃ is
simply-connected and H̃ is connected. However, we again give a diagram-
matic proof similar to the proof of Corollary 3.4.

Proof. Note that N(H) = H × I so X̃ −H contains at most two com-
ponets. If X̃ − H contained one component, then there would be a path
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γ → (X̃ −H) that starts and ends on opposite sides of a 1-cell e dual to
H, Indeed, there is a path γ′ that is disjoint from H and starts and ends
on 0-cubes in opposite components of N(H) −H And γ′ can be extended
to a path γ that starts and ends on opposite 0-cubes on an edge e dual to
H. Here we use that H is path connected to extend γ′ parallel to H in
N(H) ≅ H × I, and since H does not self-cross we see that γ does not pass
through any edge dual to H. Let D be a disk diagram for γe. Then the
dual curve λ starting at e must end on a 1-cell in γ which is impossible. �

Figure 3.12. The hyperplane H is 2-sided. And X̃ − H
consists of two components

Lemma 3.6 (No Inter-osculations: “crossing pair has a square”). Let
U,V be hyperplanes in X̃. If U,V cross in some square s – i.e. are dual to
distinct 1-cells on ∂s, and U,V are dual to 1-cells e, f meeting at a vertex
v, then e, f lie on ∂s′ for some square s′.

Figure 3.13. Crossing pair has a square. Hyperplanes can-
not interosculate in X̃

Proof. Consider a diagram D surrounded with two dual curves on the
top and bottom that cross on the right and osculate on the left. Note that
such a diagram can always be built in the situation in the hypothesis of the
Lemma, since we can take two crossing ladders that start at s and end at
the vertex v, and then fill this in with some subdiagram.

Starting with the diagram on the left in Figure 3.14, we now proceed
exactly as in Theorem 3.2 except that we will now only use hexagon moves
pushing upwards downwards and leftwards until we get the diagram in the
middle of Figure 3.14. We then use hexagon moves to push the square s
leftwards to reveal the desired square s′. �
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Figure 3.14. To see that the crossing hyperplanes must
cross again when they come close, we first push squares out
of the bounded region in a diagram, and then slide the right-
square over to the left.

Definition 3.7 (Cornsquare). A cornsquare in a disk diagram D is a
square s with a pair of dual curves emanating from s and ending on adjacent
edges a, b in ∂pD. We say that ab is the outerpath of the cornsquare s. See
Figure 3.15.

Figure 3.15. Three cornsquares in a disk diagram D

Lemma 3.6 can be arranged to play a critical role because of the follow-
ing:

Remark 3.8 (Finding cornsquares). Let D be a disk diagram between
a path σ and a path γ. Let a, b be dual curves that emanate from distinct
edges of σ. If either a = b or if a, b cross, then there exist dual curves a′, b′

emanating from distinct adjacent edges of σ (inclusively between a, b) such
that a′, b′ cross in D. See Figure 3.16. The case where a = b follows from the
crossing case, since an innermost such situation is a crossing. The statement
follows by considering an innermost pair of edges whose dual curves cross.

Figure 3.16. Finding a cornsquare

Lemma 3.9. γ → X̃ is a geodesic ⇔ the edges of γ are dual to distinct
hyperplanes of X̃.
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Proof. (⇐) holds since any other path γ′ with the same endpoints
must travel through edges dual to these hyperplanes (and possibly some
others) since hyperplanes separate X̃.

Figure 3.17. The hyperplanes dual to edges of a geodesic
γ must be crossed by any other path γ′ with the same end-
points.

(⇒) holds because if γ passed through two edges e1, e2 dual to the same
hyperplane H then we could shorten its length by 2 contradicting that it is
a geodesic. Indeed, first note that e1 ≠ e2. Now consider a minimal area disk
diagram D between the subpath of γ joining e1, e2, and a path σ → N(H)
with the same endpoints. By Remark 3.8, there is a cornsquare in D with
outerpath on σ. Following Figure 3.14, we can use hexagon moves to push
the square so that its corner is directly on σ, and then since σ is a path
on N(H) the square also lies in N(H), and so we can push σ passed this
square to obtain a shorter path σ′ → N(H) with a smaller area diagram D′

between σ′ and the subpath of γ. �

Figure 3.18. A geodesic
γ cannot cross a hyper-
plane twice as there would
be a shortcut

Figure 3.19. If γ passes through a
hyperplane H twice, then we consider
a minimal area diagram D between γ
and a path in N(H). A cornsquare in
D shows that there was a smaller area
choice.

We will revisit the method of this last proof as it bring us to discuss the
idea that hyperplane carriers are convex.
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3.3. Local Isometries and Convexity

Definition 3.10 (Local isometry). A combinatorial map φ ∶ Y → X of
nonpositively curved cube complexes is a local isometry if for each y ∈ Y 0,
the map link(y) → link(φ(y)) is injective and moreover link(y) ⊂ link(φ(y))
embeds as a full subcomplex in the sense that if u, v are vertices of link(y)
that map to adjacent vertices of link(φ(y)) then u, v are already adjacent
in link(y). (The flag complex condition then implies that (n+ 1) vertices of
link(y) span an n-simplex iff their images in link(φ(y)) span an n-simplex.

A more concrete way to define a local isometry is that Y →X is locally-
injective and has no missing corners of squares in the sense that if two
1-cubes e, f at a 0-cube y map to edges φ(e), φ(f) which bound the corner
of a square at φ(y) then e, f already bound the corner of a square at y.
(Careful: we really mean “ends of edges” here.)

Figure 3.20. The above map from an annulus to a surface
is a local isometry that is not an embedding.

Figure 3.21. The above map is not a local isometry from
an annulus into a clinder. The failure is at the bold vertex.

Figure 3.22. Local isometries of 1-torus and 2-torus into a
3-torus and the respective embeddings of links as full sub-
complexes
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Example 3.11. Any immersion of graphs is a local isometry. Any cov-
ering map is a local isometry. A fundamental example of a local isometry is
a map N̄ → X where N̄ = N(H̄) is the carrier of an immersed hyperplane
H̄ →X in a nonpositively curved cube complex X. See Definition 4.1.

The following lemma was first noted in [58] in terms of the (noncombi-
natorial) CAT(0) metric popularized by Gromov:

Lemma 3.12 (Local isometry ⇒ Convex embedding). If φ ∶ Y → X is
a local isometry then φ̃ ∶ Ỹ → X̃ is an embedding as a convex subcomplex
(hence in particular an isometric embedding).

Figure 3.23. Considering a minimal diagram between a
path γ̃ and a local isometry Ỹ → X̃ shows that γ̃ must lift to
Ỹ if γ̃ is a geodesic.

Proof. Consider a geodesic γ̃ → X̃ that is homotopic in X̃ to a path
σ̃ → Ỹ . Let D → X̃ be a disk diagram for γ̃σ̃−1, and suppose that D has
minimal area among all possible such choices with σ̃ → Ỹ allowed to vary
among paths with the same endpoints as γ̃.

Suppose D is not a subdivided interval (in which case γ̃ = σ̃ lies in Ỹ as
desired).

Consider the dual curve emanating from the first internal edge of γ̃.
The dual curve cannot terminate at another edge of γ̃ as in the first

diagram of Figure 3.23 since then γ would not be a geodesic. Indeed there
are no bigons within D so the path γ′ that tracks along this dual curve
without crossing it is shorter than γ.

The second situation of Figure 3.23 is impossible by the minimal area of
D.

We are thus in the third situation of Figure 3.23, and so there is a
cornsquare as in Remark 3.8. But then as in Figure 3.19, we can push this
cornsquare towards Ỹ and pass it through, leading to a new choice of σ̃ and
having reduced the area of the disk diagram by 1. This is impossible. �

Corollary 3.13 (Carriers are convex). Let H be a hyperplane in X̃

and let N(H) be its carrier. Then N(H) is a convex subcomplex of X̃.

Let H be a hyperplane in X̃, let
←Ð
H and

Ð→
H be the closures of the two

components of X̃ −H, and let N(←ÐH) and N(Ð→H) denote the smallest sub-
complexes of X̃ containing these subspaces. These are the two halfspace
carriers associated with H. It follows from Corollary 3.13 that:
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Corollary 3.14. Halfspace carriers are convex.

Corollary 3.14 is useful in Section 3.5 since the intersection of convex
subcomplexes of X̃ is again convex.

3.4. Background on Quasiconvexity

In this section we quickly recall some basic definitions and results about
quasiconvex subgroups.

3.4.1. Quasiconvexity.

Definition 3.15 (Quasiconvex). Let G be a group with a finite set of
generators S = {s1, . . . , sr}, and let Γ = Γ(G,S) be its Cayley graph. A
subgroup H of G is quasiconvex if there exists µ > 0 such that the following
holds for any geodesic γ in Γ: If the endpoints of γ lie in H then γ ⊂ Nµ(H).
We use the notation Nµ(H) for the closed µ-neighborhood of a subspace H.

In general, the quasiconvexity of H depends upon the choice of gener-
ators determining the Cayley graph as can be seen by considering cyclic
subgroups of Z2. However when G is hyperbolic, being quasiconvex is inde-
pendent of the set of generators, although the constant κ may vary. Both
finite and finite-index subgroups are always quasiconvex. A quasiconvex
subgroup is finitely generated and the intersection of quasiconvex subgroups
is quasiconvex. When G is hyperbolic, being quasiconvex is equivalent to
being finitely generated and quasi-isometrically embedded. We refer the
reader to [70].

When G is hyperbolic relative to subgroups {P1, . . . , Pr} there is also a
notion of relatively quasiconvex. We refer the reader to [61] and to [39, 53]
for a discussion of the definitions. The basic idea is that H is relatively
quasiconvex if geodesics in a Cayley graph lie in a µ-neighborhood of the
union of H with the parabolic subgroups that have nontrivial intersection
with H. For the case of greatest interest, when the parabolic subgroups
Pi are virtually f.g. abelian, being relatively quasiconvex is equivalent to
being quasi-isometrically embedded [39]. We will often use the simple term
“quasiconvex” instead of “relatively quasiconvex”.

3.4.2. Malnormality.

Definition 3.16 (Malnormal Collection). A collection of subgroups
{H1, . . . ,Hr} of G is malnormal provided that Hg

i ∩Hj = {1G} unless i = j
and g ∈ Hi. Similarly, the collection is almost malnormal if intersections of
nontrivial conjugates are finite.

Here we use the notation Hg = gHg−1.

Definition 3.17 (Height). Consider a collection {H1, . . . ,Hk} of sub-
groups of G. We say Hgi

mi and H
gj
mj are distinct conjugates unless mi = mj

and Hmigi = Hmjgj . We emphasize that each “conjugate” corresponds to a
value of (mi,Hmigi) and not just a subgroup Hgi

mi .
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The collection has height 0 ≤ h ≤ ∞ if h is the largest number so
that there are h distinct conjugates of these subgroups whose intersection
Hg1
m1 ∩H

g2
m2 ∩⋯∩Hgh

mh is infinite. If each Hi is finite, then the height of the
collection is h = 0. If there is an infinite collection of distinct conjugates
whose intersection is an infinite subgroup, then the height of the collection
is h = ∞.

For instance, if G is infinite and [G ∶ H] < ∞ then the height of H
in G equals [G ∶ H]. A collection of subgroups is almost malnormal as in
Definition 3.16 precisely if its height is ≤ 1.

The notion of height was introduced and studied in [27] where it was
shown that quasiconvex subgroups of word-hyperbolic groups have finite
height. It follows that a finite collection of quasiconvex subgroups also has
finite height. We have explored the notion a bit further for relatively hyper-
bolic groups in [42]. Let us record this result of Gitik-Mitra-Rips-Sageev as
follows:

Lemma 3.18 (Quasiconvex ⇒ Finite Height). Let {H1, . . . ,Hr} be a
collection of quasiconvex subgroups of the word-hyperbolic group G. Then
{H1, . . . ,Hr} has finite height in G.

Finally, we record several observations about separability and intersect-
ing conjugates. The reader can postpone this until it is used in Chapter 14.
An element g ∈ G is an intersecting conjugator of the subgroup C provided
that ∣Cg∩C ∣ = ∞. Note that if g is an intersecting conjugator of C then C, gC
must have infinite coarse intersection in the Cayley graph, and so gC has
a bounded length representative (which is necessarily also an intersecting
conjugator). Consequently:

Lemma 3.19. Let C be a quasiconvex subgroup of the hyperbolic group
G. Then C has finitely many cosets giC of intersecting conjugators.

Separating C from the finitely many intersecting conjugators supplied
by Lemma 3.19 we have the following:

Lemma 3.20. If C is separable and quasiconvex in the hyperbolic group
G then there is a finite index subgroup G′ such that C is malnormal in G′.

Let G be hyperbolic relative to {P1, . . . , Pr}. A subgroup H of G is
relatively malnormal if Hg∩H is parabolic or finite for all g /∈H. Lemma 3.20
was generalized in [42] to:

Lemma 3.21. If C is separable and relatively quasiconvex in the hyper-
bolic group G then there is a finite index subgroup G′ such that C is relatively
malnormal in G′.

3.4.3. Almost malnormal collections of commensurators. The
reader can postpone this material until it is used in Section 12.3 and Chap-
ter 14.
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The groups H1,H2 are abstractly commensurable if they contain iso-
morphic finite index subgroups. We say the subgroups H1,H2 of G are
commensurable if H1 ∩H2 has finite index in both H1 and H2. This leads
us to the notion of the commensurator CG(H) of H in G which is defined
by:

CG(H) = {g ∈ G ∶ [H ∶Hg ∩H] < ∞}.
It is shown in [49] (see also [4]) that [CG(H) ∶ H] < ∞ for any infinite
quasiconvex subgroup H of the word-hyperbolic group G. Consequently, in
this case CG(H) is itself quasiconvex in G.

Lemma 3.22. Let {H1, . . . ,Hr} be a collection of quasiconvex subgroups
of a word-hyperbolic group G.

A subgroup K of G is a “maximal-infinite intersection of conjugates” of
{H1, . . . ,Hr} if the intersection of K with any further conjugate is finite.

Let K1, . . . ,Ks be representatives of the finitely many distinct conju-
gacy classes of maximal-infinite intersection of conjugates of {H1, . . . ,Hr}.
Then {CG(K1), . . . ,CG(Ks)} is an almost malnormal collection of subgroups
of G.

Note that this is indeed a finite collection by Lemma 3.18. To see that
it is necessary to pass to commensurators, consider the example of a finite
index subgroup such as: nZ ⊂ Z.

3.5. Cores, Hulls, and Superconvexity

Thinking of free groups as fundamental groups of graphs is helpful for un-
derstanding their subgroups. In particular, each finitely generated subgroup
is naturally the fundamental group of an immersed finite graph [71]. We
now sketch how this generalizes in higher dimensions. We refer to [33, 67]
for more details.

Theorem 3.23. Let X̃ be a CAT(0) cube complex that is locally finite
and δ-hyperbolic (thus finite dimensional). Let H act on X̃ with a quasicon-
vex orbit Hx̃. For each compact set K ⊂ X̃ there is an H-cocompact convex
subcomplex Ỹ such that HK ⊂ Ỹ .

The statement of Theorem 3.23 covers the case where H is a quasiconvex
subgroup of a hyperbolic group G that acts properly and cocompactly on
X̃. The subcomplex Ỹ is the intersection Hull(HK) of the carriers of closed
halfspaces containing HK and is depicted heuristically in Figure 3.24.

Corollary 3.24. Let X be a compact nonpositively curved based cube
complex with G = π1X hyperbolic. Then for each quasiconvex subgroup H
of G there exists a compact nonpositively curved cube complex Y and based
local isometry Y →X such that:

H ⊂ G
∥ ∥

π1Y → π1X
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Figure 3.24. The intersection Ỹ = Hull(HK) of closed half-
spaces containing the orbit HK of the compact subcomplex
K is an H-cocompact subcomplex of X̃.

Proof. Choose Ỹ using Theorem 3.23 and let Y =H/Ỹ . �

We refer to the local isometry Y → X as a core for H, and note that
when X̂ is the based cover of X with H = π1X̂, the space Y embeds as a
compact subcomplex of X̂ that is a deformation retract of X̂, just as in the
simple scenario of the core of a cover of a graph.

Remark 3.25. There is also a relatively hyperbolic version of Corol-
lary 3.24 providing a “sparse” Y when G is hyperbolic relative to abelian
subgroups and X is compact or sparse. (See the end of Section 7.4 for the
notion of sparse.)

Lemma 3.26. There exists θ and D such that any metric-geodesic γ of
length D crosses a hyperplane U of X̃ with angle ≥ θ.

We note that this proof uses the metric-geodesic and angles definable in
the (noncombinatorial) CAT(0) metric. We refer to [11] for background.

Figure 3.25. Some hyperplane U crosses γ with angle ≥ θ.

Sketch. This can be deduced by considering midcube intersections with
geodesics in a d-cube with d ≤ dim(X̃). �
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Figure 3.26. Some midcube makes a large angle with a
geodesic in a d-cube.

Proof of Theorem 3.23. Consider the following convex subcomplex
consisting of the intersection of halfspace carriers containing HK:

Ỹ = Hull(HK) = ⋂
HK⊂

Ð→
U

N(Ð→U )

Observe that N(Ð→U ) ⊂ NR(Hx̃) (as we can assume x̃ ⊂ K) because if
d(p,HK) > R = D + diam(K) then Lemma 3.26 provides a hyperplane U
making a large angle with a geodesic γ nearly from p to HK, and a compu-
tation using the quasiconvexity of HK shows that U ∩HK = ∅ because of
δ-thin triangles. �

Figure 3.27. Any point p that is sufficiently far from HK
is separated from HK by a hyperplane U . If U intersects the
quasiconvex subspace HK as on the right, then a triangle
with two long sides consisting of part of γ and a geodesic
in U would have fellow-traveling at the corner near p which
violates that ∢ ≥ θ.

Definition 3.27 (Superconvex). Ỹ ⊂ X̃ is superconvex if it is convex
and for each bi-infinite geodesic γ̃ ⊂ X̃, if γ̃ ⊂ Nr(Ỹ ) for some r ≥ 0, then
γ̃ ⊂ Ỹ .

Lemma 3.28 (Superconvex core). Let H ⊂ G be a quasiconvex subgroup
with G acting properly and cocompactly on a CAT(0) cube complex X̃. For
each compact subcomplex K, the subspace HK lies in an H-cocompact su-
perconvex subcomplex Ỹ ⊂ X̃.
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Proof. δ-hyperbolicity and κ-quasiconvexity imply that any bi-infinite
geodesic γ̃ that lies in Nr(Hx̃) for some r, actually lies in Ns(Hx̃) for some
uniform s. Now let Ỹ = Hull(Ns(HK)). �

There are variations on Lemma 3.28 that work when G is hyperbolic
relative to subgroups {P1, . . . , Pr}. A subgroup H is full in G if for each i
and each g ∈ G, either ∣H ∩ P gi ∣ < ∞ or [Pi ∶ H ∩ P gi ] < ∞. The following is
proven in [67]:

Lemma 3.29 (Full superconvex core). Let G be hyperbolic relative to
{P1, . . . , Pr}. Suppose G acts properly and cocompactly on a CAT(0) cube
complex X̃. Let H ⊂ G be a relatively quasiconvex subgroup that is full.
For each compact subcomplex K, the subspace HK lies in an H-cocompact
superconvex subcomplex Ỹ ⊂ X̃.



CHAPTER 4

Special Cube Complexes

A CAT(0) cube complex successfully generalizes the notion of a tree, and
in many ways a nonpositively curved cube complex generalizes the notion of
a graph. However, from the viewpoint of many of the properties arising from
(locally) cutting and retracting, a more faithful generalization of a graph
is a special cube complex. The difference is felt especially prominently on
algebraic properties of the fundamental group. This chapter presents special
cube complexes which were introduced in [36].

We first describe special cube complexes in terms of forbidden hyper-
plane pathologies in Section 4.1. We describe simple criteria for the virtual
specialness of a nonpositively curved cube complex in Section 4.2. Given
that the hyperplane pathologies are mostly concerned with some sort of
failure of embeddedness, it is not surprising that the criteria for virtual spe-
cialness have to do with separability of hyperplane subgroups. Special cube
complexes were devised precisely to permit us to construct the “canonical
completion” and “retraction” which we describe in Section 4.3. Using the
core described in Section 3.5, this enables us to see that quasiconvex sub-
groups are separable when X is compact and special and π1X is hyperbolic.
Thus in the presence of hyperbolicity, the virtual specialness criterion takes
an even more definitive form as described in Section 4.4. Namely, X is vir-
tually special iff all quasiconvex subgroups are separable. Finally, we discuss
fundamental commutative diagrams that make the canonical completion and
retraction behave predictably with respect to subcomplexes in Section 4.5.
We then describe a lemma that will help us to aim the canonical retraction
map in Section 4.6. These last two technical sections will support the proof
sketched in Chapter 5.

4.1. Hyperplane Definition of Special Cube Complex

Definition 4.1 (Immersed Hyperplane). An immersed hyperplane in a
nonpositively curved cube complex X is H̄ = Stabilizer(H)/H where H is a
hyperplane of X̃. Note that there is a natural map H̄ → X and that each
midcube of a cube of X extends to a unique immersed hyperplane.

Definition 4.2 (Special). A nonpositively curved cube complex X is
special if:

(1) Each immersed hyperplane embeds (and we will thus omit the term
“immersed”).

32
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Figure 4.1. An immersed hyperplane in a nonpositively
curved cube complex

(2) Each hyperplane is 2-sided.
(3) No hyperplane self-osculates.
(4) No two hyperplanes interosculate.

The prohibited hyperplane pathologies are depicted in Figure 4.2. The im-
mersed hyperplane H̄ is 2-sided if there is a way of consistently directing
its dual 1-cubes so that 1-cubes on opposite sides of a square have the same
direction. Using this direction on the 1-cubes, we say H̄ self-osculates if
it is dual to two distinct 1-cubes with the same initial or terminal 0-cube.
Finally, H̄, H̄ ′ interosculate if they cross and they have dual 1-cubes that
share a 0-cube but do not lie on a common 2-cube.

Figure 4.2. Self-crossing, 1-sidedness, self-osculation, and
interosculation

Figure 4.3. The “no interosculation” condition means that
if two hyperplanes cross and then come close together at some
other vertex, then they also cross at that vertex. Thus if one
sees a configuration as on the left, then there must have been
an additional square allowing the hyperplanes to cross again
as on the right.

Example 4.3.
(1) Any graph is special.
(2) Any CAT(0) cube complex is special.



4.2. SEPARABILITY CRITERIA FOR VIRTUAL SPECIALNESS 34

Figure 4.4. The above configuration is not prohibited in
a special cube complex – note the orientation which makes
it an “indirect self-osculation”, and it thus differs from the
third pathology in Figure 4.2

(3) Any subcomplex of a product of two graphs A ×B is special.
(4) The cube complex R(Γ) of a raag G(Γ) is special.

Any compact clean VH-complex X has a finite cover X̂ that is a sub-
complex of the product A×B of graphs (see [81]). Even this turns out to be
a surprisingly rich family of virtually special examples. However, it is the
final class in Example (2.10) that is the most important: The fundamen-
tal examples of special cube complexes are those associated to raags as in
Theorem 2.10.

The following result provides an alternate characterization of specialness.
It provides a bridge from the organized cubical geometry of a special cube
complex to the easy algebra of raags.

Theorem 4.4. Let X be a nonpositively curved cube complex. Then X
is special iff there is a local isometry X → R for some R = R(Γ).

Since a local isometry is π1-injective we have:

Corollary 4.5. If X is special then π1X is a subgroup of a raag.

Proof of Theorem 4.4. (⇐) If A → B is a local isometry and B is
special then A is special since the four pathologies project to pathologies
under local isometries.

(⇒) Let Γ be the crossing graph of X. The vertices of Γ correspond
to hyperplanes of X and two vertices are adjacent iff the corresponding
hyperplanes cross.

The 2-sidedness of hyperplanes allows us to consistently direct 1-cells of
X dual to the same hyperplane.

The labeling and directing of X1 gives a map X1 → R(Γ) which ex-
tends to a local isometry X → R. It is an immersion since there is no
self-osculation. It is a local isometry since there is no interosculation. �

4.2. Separability Criteria for Virtual Specialness

Theorem 4.6. Let X be a compact nonpositively curved cube complex.
Then X has a finite special cover if and only if

(1) π1U is separable in π1X for each hyperplane U
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Figure 4.5. The crossing graph Γ of hyperplanes in X

(2) π1Uπ1V is separable in π1X for each pair of crossing hyperplanes
U,V .

Figure 4.6. Some double hyperplane cosets π1Uπ1V to consider.

Note that we allow the basepoint to vary among all centers of all cubes
in the above statement, and we also note that U,V might denote the same
self-crossing hyperplane.

Definition 4.7. S ⊂ G is separable if it is closed in the profinite topol-
ogy on G which is the topology whose basis consists of finite index cosets.
Equivalently, S is separable if for each g /∈ S, there is a finite quotient G→ Ḡ
such that ḡ /∈ S̄. In particularly, G is residually finite if each nontrivial el-
ement g has nontrivial image ḡ in some finite quotient Ḡ of G. Thus G is
residually finite iff {1G} is separable which holds when the profinite topology
is Hausdorff. A subgroup H is separable iff H is the intersection of finite
index subgroups of G.

Separability is related to lifting to embeddings because of the following
lemma first made explicit by Peter Scott [68]:

Lemma 4.8. Let X̂ → X be a covering map of complexes. Then π1X̂ is
separable in π1X (if and) only if the following holds: Then for each compact
subcomplex K ⊂ X̂ there is an intermediate finite cover X̄ such that X̂ →X
factors as X̂ → X̄ →X and such that K embeds in X̄ as follows:

K
↙ 3 ↘

X̂ → X̄ → X
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A well-known consequence of Lemma 4.8 is:

Corollary 4.9. Suppose Y is compact and Y → X is π1-injective,
and Y lifts to an embedding in the cover X̂ associated to π1Y , and π1Y is
separable. Then Y →X lifts to an embedding in a finite cover.

Corollary 4.9 explains how Conditions (1), (2), and (3) in Definition 4.2
are achieved in a finite cover using Condition (1) of Theorem 4.6. Condi-
tion (2) of Definition 4.6 allows us to obtain Condition (4) of Definition 4.2
in a finite cover.

Remark 4.10. There is a version of Theorem 4.6 that works for a
G action on X̃ with finitely many hyperplane orbits and finitely many
Stabilizer(U)-orbits of hyperplanes intersecting U and osculating U for each
hyperplane U of X̃. (We need Intersector(U,V ) and Osculator(U,V ) to be
separable).

Theorem 4.6 is naturally achievable in many cases. For instance, we
used it to verify the virtual specialness of the Niblo-Reeves cubulation [59]
of Coxeter groups in [37], and we used it to verify the virtual specialness of
simple-type arithmetic hyperbolic lattices in [6, 7].

4.3. Canonical Completion and Retraction

We now turn to the notions of canonical completions and retractions,
and we refer to [36, 35]. These notions and some of their applications were
originally explored in 1-dimension in the course of understanding separa-
bility properties of free groups in work published in [78], and subsequently
[79]. Around 1994, when I was first examining this, it seemed to be an or-
ganized way of producing covering spaces of graphs, but turned out to have
very convenient specific properties. An early attempt was made to gener-
alize this to the cube complexes of raags in [45], and subsequently it was
a nice surprise to find a clear-cut formulaic generalization with Haglund in
2002, when we created special cube complexes without initially realizing the
connection to raags. It is substantially because of the canonical completion
and retraction properties that special cube complexes deserve to be thought
of as “generalized graphs”, at least from the viewpoint of the retractive
properties of graphs that lead to many group theoretical properties of free
groups.

Definition 4.11 (A ⊗R B). Let α ∶ A → R and β ∶ B → R be local
isometries of cube complexes. We define their fiber-product A ⊗R B to be
the cube complex whose n-cubes are pairs of n-cubes in A and B respec-
tively that map to the same cube in R. This is a frequently encountered
definition when R is a bouquet of circles, and it is defined analogously in
higher dimensions. We note that A⊗RB may not be connected. A 0-cell of
A ⊗R B corresponds to a pair (a, b) ∈ A ×B with α(a) = β(b). When α,β
are connected covering maps, the component of A⊗R B containing (a, b) is
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the based cover that is the smallest common cover of the based covers (A,a)
and (B, b) of (R,p) where α(a) = p = β(b). We note that A ⊗R B is the
universal receiver in the category whose objects are commutative diagrams
of local isometries of cube complexes as displayed below. Morphisms in this
category are maps C1 → C2 so that there is the usual further commutative
diagram.

C → B
↓ ↓
A → R

Definition 4.2 was crafted to enable the following generalization of M.Hall’s
theorem:

Construction 4.12. Let f ∶ Y →X be a local isometry with X special
and Y compact. There exists a finite cover ρ ∶ ∁(Y →X) → X and an
embedded lift f̂ ∶ Y → ∁(Y →X) of f ∶ Y → X, and a retraction map
r ∶ ∁(Y →X) → Y . The maps ρ and r are the canonical completion and
canonical retraction associated to f ∶ Y →X.

Let X → R denote the local isometry to the nonpositively curved cube
complex of the right-angled Artin group associated with X in Theorem 4.4.

In the 1-dimensional case we complete each component of the preimage
of each loop of R to a covering map. The new edges retract to the arcs of
components they complete to circles. This provides Y ↪ ∁(Y → R) and the
retraction ∁(Y → R) → Y . We then define ∁(Y →X) =X⊗R∁(Y → R), and
we define the retraction map using the composition ∁(Y →X) → ∁(Y → R) →
Y . We refer the reader to the commutative diagram and concrete example
in Figure 4.7:

We now turn to the general case and refer to Figure 4.8. The key
point is that for a local isometry Y → R when we consider the 1-skeleta,
the previously defined map ∁(Y 1 → R1) → R1 extends to a covering map
∁(Y → R) → R. We again use the fiber-product to define ∁(Y →X) as in
the 1-dimensional case exactly as in the commutative diagram in Figure 4.7.
Finally the retraction maps defined on the 1-skeleton extend naturally to the
higher cubes allowing us to define the canonical retraction ∁(Y → R) → Y ,
and we then define the canonical retraction ∁(Y →X) → Y using the com-
position ∁(Y →X) → ∁(Y → R) → Y .

4.4. Separability in the Hyperbolic Case

We can now obtain some interesting applications towards separability
by combining the core result described in Section 3.5 with the canonical
completion tool of Section 4.3.

Theorem 4.13. Suppose X is special and compact and that π1X is hy-
perbolic. Then every quasiconvex subgroup H of G = π1X is separable.
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Figure 4.7. Canonical Completion in 1-dimensional case.

∁(Y →X) = X ⊗R ∁(Y → R) → ∁(Y → R)
= 4

↓ Y ↓
↙ ↘

X → R

Proof 1. Let σ /∈H. By Theorem 3.23, there is anH-cocompact convex
subcomplex Ỹ that contains σ̃. Let Y =H/Ỹ . Let G′ = π1∁(Y →X). Then
H ⊂ G′ but σ /∈ G′. �

Proof 2. (assumes residual finiteness of raags) By Corollary 3.24, let
Y → X be a compact local isometry with H = π1Y . Then Y is a retract of
∁(Y →X). Thus H is a retract of G′ = π1∁(Y →X). Thus H is closed in
the profinite topology on G′ since a retract of a Hausdorff topological space
is closed. Hence H is separable in G′, and thus separable in G. �

As a quick consequence of Theorem 4.13 we see that: If G is virtually
compact special hyperbolic and H is quasiconvex in G, then H is separable.
Indeed, let G′ be the finite index special subgroup, and let H ′ = G′ ∩ H.
Note that H ′ is separable in G′, and thus the intersection of finite index
subgroup and hence also separable in G. Thus H separable in G as it is the
union of finitely many closed sets consisting of the cosets of H ′ in H.

Theorem 4.14. Let X be a compact nonpositively curved cube complex
with π1X hyperbolic. Then X is virtually special if and only if each quasi-
convex subgroup is separable.

Proof. (⇒) Holds by Theorem 4.13. (⇐) Note that hyperplanes have
quasiconvex subgroups by Corollary 3.13. If all quasiconvex subgroups are
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Figure 4.8. The above figure corresponds to the following
commutative diagram:

∁(Y →X) → ∁(Y → R) ⊃ ∁(Y 1 → R1)
↖ ↗

↓ Y ↓ ↓
↙ ↘

X → R ⊃ R1

separable then all quasiconvex double cosets are separable by Theorem 4.16.
The result thus follows from Theorem 4.6. �

We obtain the following useful consequence of Theorem 4.14. Note that
while generalizations of this are known in relatively hyperbolic situations, it
is an open problem whether virtual specialness is always an invariant of the
fundamental group.

Corollary 4.15. Suppose X and X ′ are compact nonpositively curved
cube complexes with isomorphic fundamental groups that are hyperbolic. If
X is virtually special then X ′ is virtually special.

The following result was obtained by Minasyan clarifying earlier work
of Gitik [56, 26].

Theorem 4.16. Let G be an arbitrary hyperbolic group. If all quasicon-
vex subgroups of G are separable then all double quasiconvex cosets of G are
separable.

We close this section with a conjecture about virtual specialness:
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Conjecture 4.17. Let X be a compact nonpositively curved cube com-
plex. Suppose π1P is separable for each hyperplane P of X. Then X is
virtually special.

Remark 4.18. We note that Conjecture 4.17 asks whether the criteria
of Theorems 4.6 and 4.14 can be simplified. Conjecture 4.17 has an affirma-
tive answer in the very simple scenario where X is a nonpositively curved
VH-complex [81]. For in that case, separable hyperplanes implies virtual
cleanliness, and compact clean complexes virtually embed in the product
A ×B of graphs.

When π1X is hyperbolic, separability allows us to pass to a finite cover
where all hyperplanes are malnormal and embedded. Then Theorem 5.1
proves Conjecture 4.17 by induction. Similarly, in the relatively hyperbolic
case, Theorem 15.3 proves Conjecture 4.17 when π1X is hyperbolic relative
to f.g. free abelian subgroups. Little is know about the general case, and a
result not depending on some form of hyperbolicity will push the envelope
here.

4.5. Wall-Injectivity and a Fundamental Commutative Diagram

This section is only necessary to support the details in an argument in
Chapter 5.

Definition 4.19 (Wall-injective). A combinatorial map of cube com-
plexes D → C is wall-injective if distinct hyperplanes of D map to distinct
hyperplanes of C.

When D and C are 1-dimensional, wall-injectivity is equivalent to in-
jectivity on the set of 1-cells. Figure 4.9 depicts an embedding that is not
wall-injective.

Figure 4.9. The inclusion of cube complexes above is not
wall-injective

Being wall-injective is not stable under taking covering spaces, as can
be seen in Figure 4.10.

Remark 4.20. Consider the canonical completion ∁(Y →X) of a local
isometry Y →X. Observe that Y ↪ ∁(Y →X) is wall-injective. Indeed this
follows by examining the behavior of the canonical retraction map.

Lemma 4.21 (Fundamental commutative diagram). Suppose D → C is
a wall-injective local-isometric embedding with D finite and C special. Then
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Figure 4.10. The preimage of a wall-injective subcomplex
in a covering space might not be wall-injective, as is the case
for the red circle above.

there are commutative diagrams whose vertical maps are canonical comple-
tions, canonical retractions, and canonical inclusions.

D = D
∩ ∩

∁(D →D) ⊂ ∁(D → C)
↓ ↓
D ↪ C

D = D
↑ ↑

∁(D →D) ⊂ ∁(D → C)

Sketch. In the 1-dimensional case, imagine first building ∁(D →D)
and then building ∁(D → C) around it. The general case is similar. �

Figure 4.11. The fundamental commutative diagram.

4.6. Wall Projection Controls Retraction

This section is only necessary to support the details in an argument in
Chapter 5.

Definition 4.22 (Wall Projection). Let A ⊂ X and B ⊂ X be subcom-
plexes of a nonpositively curved cube complex X. Define the 1-skeleton of
WProjX(B → A) to be the union of A0 and all 1-cells a of A that are parallel
to 1-cells of B in the sense that there is 1-cell b of B such that a, b are dual
to the same hyperplane of X. To this 1-skeleton we add all cubes whose
1-skeleta were included. (We think of the cubes being likewise parallel into
B.)
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Figure 4.12. WProjX(B → A) is indicated on the left,
where A,B are the indicated subcomplexes of the complex
X on the right.

WProjX(B → A) consists of a collection of locally-convex subcomplexes
of A. In the 1-dimensional case, WProjX(B → A) = A0 ∪ (B ∩A).

Let B̂ → B be a covering map, and let A→ B be a map with A connected.
An elevation of A → B is a minimal cover Â → A and a lift of Â → B to
a map Â → B̂. There are usually multiple choices of elevation - and one
can specify by choosing basepoints. The choice is usually clear from the
context and often allowed to vary. We abuse the terminology as is done for
the more standard term “lift” which is an elevation with Â = A, and when
the elevation Â → B̂ is an embedding, we often refer to its image as the
elevation of A to B̂.

Our reason for being interested in wall projections is the following:

Lemma 4.23. Let A,B be subcomplexes of the special cube complex X
with A compact. Consider an elevation B̆ of B to ∁(A→X). Then r(B̆) ⊂
WProjX(B → A).

Sketch. Since the canonical retraction map is “label preserving” (though
it is not orientation preserving and can collapse dimension) a 1-cell b̆ of B̆
either collapses to a 0-cell or maps to a 1-cells in A dual to the same hyper-
plane as b in X. �

Lemma 4.23 is powerful when WProjX(B → A) is trivial in the sense
that each component of WProjX(B → A) is simply connected – i.e. CAT(0).
For then r(B̆) is null-homotopic for each B̆.

The following is proven in [35]:

Lemma 4.24 (Trivial Wall Projection). Let X be a compact (virtually)
special nonpositively curved cube complex with π1X hyperbolic. let A→X be
a compact local isometry with π1A ⊂ π1X malnormal. There exists a finite
cover Ao → A such that any further cover Ā → Ao can be completed to a
finite special cover X̄ →X such that:

(1) All elevations of A→X to X̄ are embeddings.
(2) The base elevation Ā is wall-injective in X̄.
(3) Every elevation Ȧ of A that is distinct from Ā ⊂ X̄ has WProjX̄(Ȧ→

Ā) trivial.
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Sketch. This is easy when X is 1-dimensional: Let Xo →X be a finite
cover in which all elevations of A are embedded, and let Ao be the base
elevation. Note that each Ă1 ∩ Ă2 is a forest because of malnormality. Now
for any Ā→ Ao we let X̄ = ∁(Ā→Xo). �

The proof of Lemma 4.24 in higher dimensions is treacherous...



CHAPTER 5

Virtual Specialness of Malnormal Amalgams

In this chapter we employ results described in Chapter 4 about special
cube complexes and particularly about canonical completion and retraction,
to give a sketch of the main theorem in [35]. Theorem 5.2 states this theorem
in the case where G acts properly and cocompactly on X̃, but we focus on the
simpler version in Theorem 5.1 which gives a criterion for a nonpositively
curved cube complex X to be virtually special if it can be cut along a
malnormal hyperplane into virtually special pieces. Section 5.1 proves that
quasiconvex subgroups of π1X are separable, and hence X is virtually special
by the criterion in Theorem 4.14. The key ingredient enabling this proof of
separability is the covering space property stated in Lemma 5.3, which we
focus on in Section 5.2. As the proof of Lemma 5.3 is hard to motivate, we
first present a simpler but incorrect sketch of proof relying on an unrealizable
fantasy. The reader is encouraged to consider the fantasy and real versions
in Figures 5.10 and 5.11 when attempting to navigate through the details.

Though the proof of Theorem 5.1 should generalize to various relatively
hyperbolic settings, and indeed, the statement of Theorem 5.1 is covered
by a mild generalization of Theorem 15.3, the statement of Theorem 5.1 is
difficult to generalize without some measure of hyperbolicity and/or mal-
normality. We refer to Conjecture 4.17.

Although we have attempted to give sketches, the proofs are still quite
involved, and this chapter is recommended only for the reader who wishes
to see the an account of the details of subgroup separability proofs that
are executed by building finite covering spaces. The general reader should
absorb the statement of Theorem 5.1 and move on to subsequent material.
It is only the statement of Theorem 5.1 (or actually the generalization al-
lowing torsion in Theorem 5.2) will be used later, and we will not use the
methodology employed in these proofs.

5.1. Specializing Malnormal Amalgams

We will sketch a proof of the following torsion-free case of Theorem 5.2:

Theorem 5.1. Let Q be a compact nonpositively curved cube complex
with π1Q hyperbolic. Let P be a 2-sided embedded hyperplane with π1P mal-
normal in π1Q. Suppose each component of Q −No(P ) is virtually special.
Then Q is virtually special.

44
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Figure 5.1. P ⊂ No(P ) ⊂ Q in the separating and nonsep-
arating cases.

Note that No(P ) denotes the open cubical neighborhood of P consisting
of all open cubes intersecting P . Theorem 5.1 is already interesting in the
case that each component of Q−No(P ) is a graph, which is the main result
in [79]. Surprisingly, there is little formal difference between the proofs,
though several easy steps in the 1-dimensional case turn out to be deeper and
technically challenging to verify in arbitrary dimensions. This is especially
the case for Lemma 4.24.

The following is one of the two ingredients providing Theorem 12.2.
An “orbihedron style” reformulation would make its statement parallel to
Theorem 5.1. Its proof requires a bit of bookkeeping to see that the torsion
is irrelevant right from the onset, and we refer to [35] for the details. We

use the notation
Ð→̃
P for a halfspace associated to a hyperplane P̃ .

Theorem 5.2. Let G be a hyperbolic group that acts properly and co-
compactly on the CAT(0) cube complex Q̃. Let P̃ be a hyperplane such that
Stabilizer(P̃ ) is almost malnormal in G and such that gP̃∩P̃ ≠ ∅ ⇒ gP̃ = P̃
and moreover g

Ð→̃
P =

Ð→̃
P .

Suppose that for each component X̃ of Q̃−No(P̃ ), the group Stabilizer(X̃)
has a finite index torsion-free subgroup H such that H/X̃ is compact special.

Then G has a finite index torsion-free subgroup J such that J/Q̃ is com-
pact special.

A main ingredient in the proof of Theorem 5.1 is the following:

Lemma 5.3 (Isomorphic Elevations). Let Q be a compact nonpositively
curved cube complex and let P be a hyperplane in Q such that:

(1) π1Q is hyperbolic
(2) P is an embedded, nonseparating, 2-sided hyperplane in Q.
(3) π1P is malnormal in π1Q.
(4) X = Q −No(P ) is virtually special.

Then for any finite cover X̂ →X, there is a finite regular cover
▷◁
X factoring

through X̂ such that
▷◁
X induces the same cover on each side A,B of P .

We prove Theorem 5.1 by showing that π1Q has separable quasiconvex
subgroups and applying Theorem 4.14.

Theorem 5.4. Let Q be as in Lemma 5.3. Then every quasiconvex
subgroup of π1Q is separable.
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Figure 5.2.
▷◁
X→ X̂ → X. The isomorphism between A,B

arising from the product N(P ) lifts to isomorphisms be-

tween the elevations
▷◁
A ,

▷◁
B to the finite cover

▷◁
X that factors

through the cover X̂.

Proof. We think of Q as a graph of spaces, with vertex space X =
Q−No(P ) and with open edge space No(P ) having attaching maps A→X
and B →X.

Let Q̇ → Q be a based cover associated to some quasiconvex subgroup
H, and let σ ∈ π1Q − π1Q̇, and let σ̇ be the based lift of σ to Q̇.

Figure 5.3. The compact core Y of Q̇ is chosen to contain σ̇.

By Corollary 3.24, let Y be a compact core containing σ̇ (see Figure 5.3).
For each vertex space Yi of Y contained in Ẋi, we use separability in π1X
to choose an intermediate finite cover X̂i → X (with Ẋi → X̂i → X) such
that Yi ↪ Ẋi projects to an embedding Yi ↪ X̂i. And moreover, we use
the double quasiconvex coset separability of Theorem 4.16 to ensure that,
furthermore, the various incoming and outgoing edge space of Yi project to
distinct elevations of A,B to X̂i. See Figure 5.4.

Let Z be obtained from Y by extending each Yi to X̂i (see Figure 5.5).
Note that Z → X is a finite cover on each vertex space, and contains some
information on how to attach edge spaces. We now create a finite cover
▷◁
Z → Z such that all vertex spaces are isomorphic:
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Figure 5.4. The intermediate cover X̂i maintains the em-
bedding of Yi and also maintains the distinctness of the at-
tachment sites of those incoming and outgoing edge spaces at
Ẋi that are represented in Y . We have sketched an example
where X is a graph, and all edge spaces are cylinders, so the
incoming (red) and outgoing (purple) edge spaces are lines
and circles which project to circles in X̂i.

Figure 5.5. We then extend Y →X to Z →X by extending
each vertex space Yi to the chosen finite cover X̂i.

Let X̂ be a finite cover factoring through each X̂i. Let
▷◁
X→ X̂ be as in

Lemma 5.3. Let
▷◁
Q→ Q be a finite cover whose unique vertex space is

▷◁
X

(see Figure 5.6).

Let
▷◁
Z =

▷◁
Q ⊗QZ so there is a commutative diagram:

▷◁
Z → Z
↓ ↓
▷◁
Q → Q

The partial one-to-one correspondence between the various elevations of

A,B to vertex spaces of
▷◁
Z extends to a complete one-to-one correspondence,

and we use this to attach all missing edge spaces. Note that there are as
many missing incoming as missing outgoing because A,B have the same

number of elevations to
▷◁
X . Let Q̂ denote the finite cover of Q constructed

in this manner, and note that
▷◁
Z ⊂ Q̂.
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Figure 5.6. The finite cover
▷◁
Q has vertex space isomorphic

to
▷◁
X and attached edge spaces associated to a one-to-one

correspondence between elevations of A and B.

Figure 5.7. The edge spaces of
▷◁
Z (above) are extended to

finite covers, and the missing edge spaces are added to obtain
Q̂ (below).

Finally, σ is separated from π1Q in the right coset representation in π1Q̂.
Indeed, each element of π1Y sends the trivial coset to a coset corresponding

to a preimage of the basepoint of Y (i.e. a lift of a basepoint of Z) in
▷◁
Z ,

but σ translates the trivial coset to the coset represented by the endpoint

of the lift
▷◁
σ of σ to Q̂. �
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5.2. Proof of the Isomorphic Elevation Lemma

We now describe the proof of Lemma 5.3 in the separating case. Let
Q = No(P ) = L⊔R and let A↫ L and B ↬ R denote the attaching maps of
P × {±1} as in Figure 5.8.

Figure 5.8. Q = L ⊔A≅B R.

We refer to Figure 5.9 for a schematic summary of the entire proof under
rigorous assumptions.

Remark 5.5 (Fantasy Proof). We refer the reader to Figure 5.10 for
the initial motivation under simplified assumptions that cannot be obtained:
Namely, that there is a cover L̂ and an elevation Â and a retraction L̂ →
Â such that all other elevations of A to L are nullhomotopic under the
retraction. (And likewise, a cover R̂ and elevation B̂ to R̂ with B̂ ≅ Â, and
a retraction R̂ → B̂.)

To see that this fantasy cannot be realized, consider the case where
L is a bouquet of two circles labelled by a, b and A is an immersed circle
corresponding to the commutator [a, b]. Then any finite L̂ corresponds to
a branched cover of a surface whose 2-cells have boundary paths that are
elevations of [a, b]. Now for any cover, the elevation Â is homologically
equal to the sum of all the other elevations, and so these others cannot all
be simultaneously null-homotopic under a retraction map to A.

We use Lemma 4.24 and some canonical completions and retractions to
obtain finite covers L̂, R̂ with based elevations Â, B̂ such that:

(1) Each elevation of A to L̂ and of B to R̂ is an embedding
(2) The isomorphism A ≅ B lifts to an isomorphism Â ≅ B̂
(3) The base elevations Â, B̂ are wall-injective in L̂, R̂

(4) WProjL̂(Ai → Â) and WProjR̂(Bi → B̂) are trivial for all nonbase
elevations Ai,Bi.

Form ∁(Â→ L̂) and ∁(B̂ → R̂) and note that we have the following commu-
tative diagram from Lemma 4.21:

∁(Â→ L̂) ↩ ∁(Â→ Â) ≅ ∁(B̂ → B̂) ↪ ∁(B̂ → R̂)
↓ ↓ ↓ ↓
L̂ ↩ Â ≅ B̂ ↪ R̂

Let P̄ → P be a finite cover of P factoring through all (corresponding)
elevations of A to ∁(Â→ L̂) and elevations of B to ∁(B̂ → R̂). Let Ā, B̄ be
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the corresponding covers of A,B. We use canonical retraction to induce the
following covers:

∁(Â→ L̂) → Ā
↓ ↓

∁(Â→ L̂) → L̂

∁(Â→ Â) → Ā
↓ ↓

∁(Â→ Â) → Â

∁(B̂ → B̂) → B̄
↓ ↓

∁(B̂ → B̂) → B̂

∁(B̂ → R̂) → B̄
↓ ↓

∁(B̂ → R̂) → R̂

We obtain the following commutative diagram:

∁(Â→ L̂) ↩ ∁(Â→ Â) ≅ ∁(B̂ → B̂) ↪ ∁(B̂ → R̂)
↓ ↓ ↓ ↓
L̂ ↩ Â ≅ B̂ ↪ R̂

Let
▷◁
A L and

▷◁
A denote the smallest regular covers factoring through all

elevations of A to ∁(Â→ L̂) and ∁(Â→ Â) respectively. We claim that
▷◁
A L

and
▷◁
A are isomorphic covers of A. It is immediate that

▷◁
A L factors through

▷◁
A since ∁(Â→ Â) ↪ ∁(Â→ L̂) so each elevation of A to the former is also

an elevation to the latter. To see that
▷◁
A factors through

▷◁
A L we note that

elevations of A to
▷◁
A L are either contained in ∁(Â→ Â) or factor through

non-base elevations of A to L̂.
Consider an elevation ¯̂

iA of A to ∁(Â→ L̂), and note that it factors
through elevations to intervening spaces as in the following diagram:

¯̂
iA ⊂ ∁(Â→ L̂)

∥ ↓
Âi ⊂ ∁(Â→ L̂)
↓ ↓
Ai → L̂
↓ ↓
A → L

The key point is that ¯̂
iA ≅ Âi as, by Lemma 4.23, the triviality of WProjL̂(Ai →

Â) implies that Âi is nullhomotopic in the canonical retraction map r ∶
∁(Â→ L̂) → Â. Thus Â factors through ¯̂

iA ≅ Âi by choice of Ā. Thus
▷◁
A

factors through ¯̂
iA since

▷◁
A factors through Ā.

Similarly
▷◁
B R≅

▷◁
B .

Let
▷◁
L and

▷◁
R denote the smallest regular covers factoring through ∁(Â→ L̂)

and ∁(B̂ → R̂). Note that elevations of A to
▷◁
L are isomorphic to

▷◁
A L≅

▷◁
A

and similarly for elevations of B.
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Figure 5.9. We form
▷◁
Q by taking a balanced number of

copies: 3⋅
▷◁
L and 2⋅

▷◁
R and gluing them together along copies

of
▷◁
P ×[−1,1].

Now build Q by taking a balanced disjoint union of copies: deg(
▷◁
R )⋅

▷◁
L

⊔deg(
▷◁
L )⋅

▷◁
R , and choose a one-to-one correspondence between elevations

of A and B to attach the various edge spaces
▷◁
P ≅ [−1,1].
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Figure 5.10. The fantasy proof of Lemma 5.3. (Read upwards.)
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Figure 5.11. The real proof of Lemma 5.3. (Read upwards.)



CHAPTER 6

Wallspaces and their Dual Cube Complexes

We begin this chapter by describing the wallspaces which were intro-
duced by Haglund-Paulin in [34]. We define wallspaces in Section 6.1 where
we give a variant of their notion. In Section 6.2 we describe Sageev’s con-
struction of the cube complex dual to a wallspace, and in Section 6.3 we
sketch a proof that it is CAT(0). In Section 6.4 we describe a variety of
sources of wallspaces. While Sageev originally applied his construction to
the wallspaces built using codimension-1 subgroups described in Section 6.5,
the dual cube complex of an arbitrary cube complex is implicit in his con-
struction and was described explicitly in [60, 17], and was already being
employed in [59, 80].

6.1. Wallspaces

A wall partition of a space X is a decomposition X = ←ÐW ∪ Ð→W into
halfspaces. We let W = ←ÐW ∩Ð→W . In our viewpoint, W is usually nonempty,
and is referred to as a wall, and we refer to

←Ð
W −W and

Ð→
W −W as its open

halfspaces. Usually X is a geodesic metric space, W is connected, X −W
has exactly two components, and no two wall partitions are associated with
the same wall.

A wallspace (X,W) is a space X together with a collection of wall par-
titions such that: Firstly, #(p, q) < ∞ for all p, q ∈X, where #(p, q) denotes
the number of walls separating p, q in the sense that p, q lie in distinct open
halfspaces. Secondly, each p ∈ X betwixts finitely many walls, in the sense
that p ∈ ←ÐW ∩Ð→W . In other words, p lies on finitely many walls.

Remark 6.1. Haglund-Paulin’s original notion of wallspace in [34] has
a more elegant definition: They define a wall to be a genuine partition of
X and the finite betwixting property holds automatically. We have found it
convenient to offer the more flexible variation on their idea described above.

Example 6.2. Every CAT(0) cube complex is a wallspace – the walls
correspond to hyperplanes.

6.2. The Dual CAT(0) Cube Complex

The CAT(0) cube complex C dual to a wallspace is defined as follows:
A 0-cube v is an orientation on each wall – that is, v(W ) is a choice of one

54
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Figure 6.1. Two wallspaces.

of the two halfspaces
←Ð
W,
Ð→
W for each wall W ∈ W. And moreover this choice

must satisfy the following two properties:

(1) No two walls are oriented away from each other (i.e. all chosen
halfspaces intersect, so v(W ) ∩ v(W ′) ≠ ∅ for W,W ′ ∈ W.)

(2) All but finitely many walls are oriented towards some (and hence
any) point x ∈X (i.e. x ∈ v(W ) for almost all W ∈ W).

A 1-cube joins two 0-cubes in C precisely when they differ on exactly
one wall. An n-cube is attached exactly when its (n−1)-skeleton is present.

Figure 6.2. A 0-cube of C cannot have walls oriented away
from each other, nor can it have infinitely many walls oriented
away from a single point x ∈X.

Figure 6.3. The dual cube complexes are: a tree, a square
complex, and a 3-dimensional CAT(0) cube complex that is
harder to depict.

G acts on the wallspace (X,W) if it acts on X and permutes the walls
(or technically, permutes the wall partitions). There is then a natural action
of G on the dual cube complex C.
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Figure 6.4. A system of n bi-infinite families of real lines
in R2 has dual cube complex isomorphic to T̃n.

Figure 6.5. Two different wallspaces on an infinite strip
and their dual cube complexes.

6.3. C is CAT(0)

To see that C is nonpositively curved we verify that link(v) is a flag
complex for each v ∈ C0. That link(v) has no loops is because we attached a
2-cube when its 1-skeleton is there – and implicitly assumed that its skeleton
is an embedded subcomplex. That link(v) has no bigons is because two
consecutive edges ab at the corner of a 2-cube uniquely determine the other
two edges a′b′ where a′, b′ are associated to the same walls as a, b respectively
and the 2-cube has boundary aba′b′. To see that link(v) is a flag complex,
we consider a collection of (n + 1) pairwise adjacent vertices in link(v) and
observe that they bound an n-simplex. This n-simplex is a corner of the
n-cube which corresponds to independently varying the orientations of the
associated n distinct walls, while leaving the orientations of all other walls
fixed.

To see that C is simply-connected, we consider a closed edge path
e1e2⋯et and show that we can either remove a backtrack or else we can
push a pair of edges eiej across a 2-cube to replace them by e′je

′
i and obtain

a “lower complexity” homotopic edge path. Each edge corresponds to a wall,
and since the path is closed, each wall must occur an even number of times.
Our complexity will be the least number of edges between two edges associ-
ated to the same wall, as might occur for a subpath of our cyclic path of the
form epep+1ep+2⋯ep+q−1ep+q where ep, ep+q are associated to the same wall,
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but no ep+i is associated to the ep wall for 1 ≤ i < q. When this complexity is
zero there is a backtrack. Otherwise one argues that each intervening edge
ep+i is associated to a wall that crosses the wall of ep – indeed all four possi-
ble orientations arise among the four vertices on ep, ep+r. Consequently, we
can push across a square to replace epep+1 by e′p+1e

′
p and hence have a lower

complexity subpath of e′p+1e
′
pep+2⋯ep+q−1ep+q by omitting the first edge e′p+1.

6.4. Some Examples

Definition 6.3 (Wallspace from tracks). A track T in a 2-complex
A is an embedded graph which is disjoint from the 0-skeleton, intersects
each closed 1-cell in finitely many points, and intersects each closed 2-cell
in finitely many properly embedded intervals: their boundary points map
to the boundary of the 2-cell and their interior maps to its interior. The
definition we give is slightly more general than the standard “Dunwoody
track”. The key property of a track T is that it has a neighborhood N(T )
in A such that N(T ) is homeomorphic to a (−1,1)-bundle over T , with T
corresponding to the section at 0.

Each component T̃ ⊂ Ã in the preimage of T provides a wall in Ã. Indeed,
N(T̃ ) ≅ (−1,1)×T , so T has a 2-sided neighborhood, and thus Ã−T̃ consists
of two open halfspaces meeting along T̃ .

Thus a locally finite collection of tracks in A naturally makes Ã into a
wallspace. A great many of the examples that we describe arise in this form,
or some higher dimensional variation.

Example 6.4 (A tricky wallspace from tracks). Let A be the standard
2-complex of the following presentation:

⟨a, b, u, c, d, v ∣ ab−1u−1, b−1au, [b, c], cd−1v−1, d−1cv−1⟩.
Let B be the standard 2-complex of:

⟨a, b, u, c, d, v, t ∣ ab−1u−1, b−1au, [b, c], cd−1v, d−1cv, at = a, dt = d, (uv)t = vu⟩
We regard A as a subcomplex of B and note that the 2-cells of A occur on
the left of Figure 6.6 which (also) illustrates the 2-cells of B. The group
π1B×Z is isomorphic to the pure mapping class group of the five punctured
sphere [23].

Figure 6.6. Tracks in the 2-complex B.

There are five tracks corresponding to the embedded graphs that are
transverse to B1 illustrated in Figure 6.6. Our wallspace is the 2-complex
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B̃ together with the graphs that are components of the preimages of these
graphs in B̃.

I had incorrectly hoped to show that π1B acts freely on this wallspace,
but Piotr Przytycki found an error in my proof – there is actually a noncyclic
free group acting trivially on the dual cube complex.

Example 6.5 (Examples from Rhombi). Any CAT(0) metric space that
is a 2-complex built from rhombi has a wallspace structure investigated in
[47]. The walls arise from trees that cut through the rhombi along mid-
cells. This structure is consistent with de Bruijn’s beautiful treatment of
the Penrose tilings in [21], which remarkably anticipates Sageev’s dual cube
complex construction. The carriers of walls in a Penrose tiling by rhombi
are called worms. See Figure 6.7.

Figure 6.7. The cube complex dual to the wallspace on a
Penrose tiling is a copy of R5 since there are five bi-infinite
families of parallel walls. This explains how de Bruijn inter-
preted the Penrose tiling as a 2-flat traveling in a copy of R5.

The following example gives a taste of the material described in greater
generality in Chapter 10. We refer the reader to Definition 9.1 for the notion
of C ′(1

6).
Example 6.6 (Wallspaces from small-cancellation theory). Every sim-

ply connected C ′(1
6) complex X̃ is a wallspace: The walls are graphs that

intersect 2-cells and 1-cells of X̃ in midcells. We first subdivide the 1-skeleton
so that all 2-cells have an even circumference. Some facts about these walls:

Figure 6.8. A wall in a C ′(1
6) small-cancellation complex

on the left, and the 4 midcells of an octagon on the right.
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(1) Each immersed wall in X̃ embeds,
(2) is 2-sided (as it is locally 2-sided and H1(X̃) = 0),
(3) is a tree – or possibly a multi-tree when X̃ has duplicate 2-cells as

often arises from presentations when relators are proper powers;
(4) and has a convex carrier – i.e. the smallest subcomplex containing

the wall is a convex subcomplex.
The above properties are proven using Greendlinger’s lemma and the ladder
theorem – see Section 9.2.1.

Figure 6.9. A wall in a C ′(1
6) complex is a multi-tree.

6.5. Wallspaces from Codimension-1 Subgroups

Let G be a finitely generated group. H ⊂ G is a codimension-1 subgroup
if for some r > 0, there are two or more H-orbits of components Ki in
Γ −Nr(H) that are deep in the sense that Ki /⊂ Ns(H) for any s > 0. This
doesn’t depend on the choice of Cayley graph Γ = Γ(G,S).

Example 6.7. The following examples are illustrated in Figure 6.10:
(1) Zn ⊂ Zn+1

(2) π1S
1 ↬ π1M

2

(3) π1M
2 ↬ π1M

3 with M2,M3 aspherical.
(4) C ⊂ A ∗C B with C ⊊ A,C ⊊ B.

Figure 6.10. Some codimension-1 subgroups.

To obtain a wall from a codimension-1 subgroup, first let {Ki}i∈I denote
a complete set of representatives of the H-orbits in Γ − Nr(H). Partition
the index set into I = ←ÐI ⊔ Ð→I . Let W = Nr(H) and

←Ð
W = (W ∪ ⋃

i∈
←Ð
I
HKi)

and
Ð→
W = (W ∪⋃

i∈
Ð→
I
HKi). This can be done for any subgroup, but we have

in mind the case where Nr(H) is connected and separates Γ, and where the
translates of at least one deep component is assigned to each halfspace of
W .
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Remark 6.8. Stabilizer(W ) and Stabilizer(←ÐW ) might only be commen-
surable with H.

We obtain a wallspace with a G-action by letting X = Γ and lettingW =
{(g←ÐW,g

Ð→
W )}g∈G. This construction can also be implemented with finitely

many subgroups Hj . The reader should check that #(p, q) < ∞ and that
any point p betwixts finitely many walls.

Example 6.9. Any finitely generated infinite index subgroup of F2 is
codimension-1. However there are infinitely many choices of walls for a given
subgroup. In fact, there are so many choices that for any finitely generated
infinite index subgroup, one can choose a sufficiently complicated wall so
that the action of F2 on the associated dual cube complex is free [75].

Example 6.10. For a closed hyperbolic M3, Kahn-Markovic provide
many immersed incompressible surfaces Si ↬ M [48]. Choosing finitely
many and applying the above construction gives a wallspace (M̃3,{gS̃i}).
We then obtain an action of π1M

3 on its dual CAT(0) cube complex. We
describe a “soft approach” using ∂M̃3 to choose sufficiently many Kahn-
Markovic surfaces in order to obtain a free action in [7]. This approach
sidesteps the linear separation verifications which can be arduous.



CHAPTER 7

Finiteness properties of the dual cube complex

Finding codimension-1 subgroups of G and choosing associated walls
allows us to produce an action on the dual cube complex but it does not
necessarily guarantee that this action will be illuminating and that the com-
plex won’t be pathological. In this chapter we investigate conditions on G
and the wall space ensuring that the dual will have valuable finiteness prop-
erties. The broad theme is that “sufficiently many” walls leads to properness
of the group action and negative curvature coupled with metric tameness
of the walls leads to cocompactness of the group action. We begin by dis-
cussing the cubes of the dual in Section 7.1. We then describe the “bounded
packing property” for a subgroup of G in Section 7.2, and show that when
the wall stabilizers have the bounded packing property then the dual cube
complex is finite dimensional. Following Sageev, in Section 7.3 we explain
the key point that the action on the dual cube complex is cocompact when
G is hyperbolic and the wall stabilizers are quasiconvex. In Section 7.4 we
describe a generalization of this to relative cocompactness of the action on
the dual when the wall stabilizers are relatively quasiconvex and G is rela-
tively hyperbolic. The reader focused on the hyperbolic setting should skip
Section 7.4. We turn to properness of the action in Section 7.5, and show
that G acts properly on the dual if the number of walls separating g1x, g2x
grows as d(g1, g2) grows. Finally, in Section 7.6 we describe the “cut-wall”
criterion for showing that G acts with finite stabilizers, that is sometimes
easy to verify.

7.1. The Cubes of C:

Two walls (←ÐW 1,
Ð→
W 1), (

←Ð
W 2,

Ð→
W 2) cross if all four quarterspaces are nonempty:

←Ð
W 1 ∩

←Ð
W 2,

←Ð
W 1 ∩

Ð→
W 2,

Ð→
W 1 ∩

←Ð
W 2,

Ð→
W 1 ∩

Ð→
W 2 ≠ ∅

In many cases, walls cross precisely when W1∩W2 ≠ ∅. Indeed, this holds for
“geometric wallspaces” where the space X is a topological space, each wall
W is closed and connected, and X −W consists of exactly two components
which are precisely the open halfspaces of W .

Each n-cube of the dual cube complex C corresponds to a cardinality n
collection of pairwise crossing walls together with an orientation on all other
walls towards these (i.e. to intersect both their halfspaces), and such that
all but finitely many walls are oriented towards a basepoint x ∈X.
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Figure 7.1. The above wallspace contains four bold walls,
one dotted wall, and eight other walls. The four bold inde-
pendently orientable walls together with orientations on all
the other walls determine a 4-cube in the dual cube complex.
That 4-cube is not maximal, since the dotted wall crosses
each of these four.

Example 7.1. Following Definition 6.3, if walls in X arise from finite
collections of embedded tracks in X, say T1, . . . , Td, then dim(C) ≤ d.

7.2. The Bounded Packing Property and Finite Dimensionality:

Definition 7.2. H ⊂ G has bounded packing if for each D there ex-
ists N = N(D) bounding the cardinality of collections {g1H, . . . , grH} of
pairwise D-close left cosets.

Figure 7.2. A collection of four pairwise D-close cosets of H.

Example 7.3. Finite subgroups, normal subgroups, and separable sub-
groups [83] have bounded packing.

It was pointed out in [66], that the following result is implicit in [27].
An explicit argument using a bounded height argument is given in [42].

Theorem 7.4 (Sageev). If H is a quasiconvex subgroup of a hyperbolic
group G then H has bounded packing.

We abstracted the above notion of bounded packing in [42], and gener-
alized Theorem 7.4 to:
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Theorem 7.5. If G is hyperbolic relative to {Pi} and each Pi has bounded
packing relative to its subgroups then G has bounded packing relative to qua-
siconvex subgroups.

Since cubes of the dual cube complex C(X) correspond to collections of
pairwise crossing walls in X, the bounded packing property leads to finite
dimensionality as follows [40]:

Theorem 7.6. Suppose the finitely generated group G has bounded pack-
ing with respect to finitely generated subgroups H1, . . . ,Hr. Let C(X) be the
dual CAT(0) cube complex with respect to a system of Hi-walls in X = Γ(G).
Then C(X) is finite dimensional.

Example 7.7. Rubinstein-Wang found a graph manifold M and im-
mersed incompressible surface S ↬M such that all translates of S̃ intersect
in the sense that g1S̃ ∩ g2S̃ ≠ ∅ in M̃ . Thus dim(C) = ∞, and the dual cube
complex C is actually an infinite cube.

The Rubinstein-Wang example π1M does not have bounded packing
with respect to the surface subgroup π1S. Thompson’s group T has a sub-
group without bounded packing: Namely, the stabilizer of a hyperplane in
the action of T on the infinite-dimensional CAT(0) cube complex discovered
by Farley [25].

7.3. Cocompactness in the Hyperbolic Case

Theorem 7.8 (Sageev 97). If X̃ is δ-hyperbolic and G acts properly and
cocompactly on X̃, and there are finitely many G-orbits of walls, and each
wall W is quasiconvex (i.e. Stabilizer(W ) is quasiconvex). Then G acts
cocompactly on the dual cube complex C = C(X).

Proof. There is an upper bound on the dimension of C because of
Theorem 7.4 and Theorem 7.6. Consequently we can apply the following key
lemma to see that there are finitely many G-orbits of maximal cubes. �

The following was proven in [59]:

Lemma 7.9 (bounded in-center). For each κ,D, δ there exists R such that
if W1, . . . ,Wt is a collection of pairwise D-close κ-quasiconvex subspaces of
the δ-hyperbolic space X, then there is a point p ∈X such that: d(Wi, p) ≤ R
for all i.

7.4. Relative Cocompactness in the Relatively Hyperbolic Case

The following theorem is the main result in [40]:

Theorem 7.10. Let G be hyperbolic relative to {Pi}. Suppose G acts
properly and cocompactly on X̃ and each Pi cocompactly stabilizes some
F̃i ⊂ X̃. Suppose X̃ is a wallspace and each wall has relatively quasicon-
vex stabilizer. There exists a compact subcomplex K ⊂ C(X̃) and convex
Pi-invariant subcomplexes C(F̃i) ⊂ C(X̃) such that:
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(1) C(X̃) = GK ∪⋃iGC(F̃i)
(2) giC(F̃i) ∩ gjC(F̃j) ⊂ GK unless F̃i = F̃j and g−1

j gi ∈ Stabilizer(F̃i).
(3) Moreover, each C(F̃i) ∩GK lies in a finite neighborhood of PiK.

It is sometimes the case that each C(F̃i) is the dual cube complex of
an induced wallspace structure on F̃i whose walls are intersections of F̃i
with walls of X̃. Indeed, this is the case when the following property holds:
for pairs of walls W,W ′ of X̃ that intersect F̃i, if W,W ′ cross then (W ∩
F̃i), (W ′∩ F̃i) cross. The general case involves the dual cube complex C(F̃i)
of an induced “hemiwallspace” and this is studied in detail in [40].

Figure 7.3. A relatively cocompact cubulation

We give the following definition to permit us to describe Example 7.12

Definition 7.11 (B(6)). X̃ satisfies the B(6) small-cancellation condi-
tion if for each 2-cell R, the concatenation of three consecutive pieces P1P2P3

in ∂pR satisfies ∣P1P2P3∣ ≤ 1
2 ∣∂pR∣. Note that X̃ satisfies B(6) when each

piece P satisfies ∣P ∣ ≤ 1
6 ∣∂pR∣, and in particular C ′(1

6) is B(6). We discuss
small-cancellation in Section 9.2.1.

Example 7.12. A honeycomb is a copy of the hexagonal tiling of the
Euclidean plane, possibly with some of its 1-cells subdivided. See Figure 7.4.

Figure 7.4. A honeycomb

Let X be the standard 2-complex of:

⟨a, b, c, d, e ∣ abca−1b−1c−1, cdec−1d−1e−1, adbea−1d−1b−1e−1⟩
Then X̃ is B(6) and contains a collection of honeycombs that are isolated
in the sense that they have uniformly bounded overlap. The group π1X is
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hyperbolic relative to the stabilizers of these honeycombs which are virtually
Z2. These honeycombs play the role of F̃i in Theorem 7.10.

Another B(6) example that arises naturally is the following presentation
for the fundamental group of the figure 8 knot complement: ⟨a, b ∣ baa = abb⟩.

When G is hyperbolic relative to f.g. virtually abelian subgroups {Pi},
the dual cube complexes C(F̃i) are quasiflats that are quasi-isometric to
Eni . G is said to act cosparsely on C(X̃) in this case and G/C is sparse.

In conclusion, the most important case covered by Theorem 7.10 is where
G is hyperbolic relative to virtually abelian subgroups {Pi}, in which case
C(X̃) looks like a finite cubular neighborhood of G, with some cubulated
copies of Eni hanging off. These are the C(F̃i) translates. They are coarsely
disjoint and attached along coarse copies of Pi cosets in G.

7.5. Properness of the G Action on C(X̃)

In a Haglund-Paulin wallspace (X̃,W), for each point p ∈ X̃ there is a
canonical 0-cube Vp defined by orienting all walls towards p. In general Vp
is a canonical cube whose independent walls are those betwixted by v.

Figure 7.5. The canonical cube Vp is a 0-cube on the left
and a 2-cube on the right.

There is a G-equivariant map X̃ → Cubes(C(X̃)) defined by p ↦ Vp.
Note that #(p, q) = dC(Vp, Vq) for p, q ∈ X̃. Consequently, to understand
properness of the action on C, we are led to examine the relationship between
# and dX̃ .

Lemma 7.13. G acts metrically properly on C if and only if #(p, gp) →
∞ as g →∞.

An action of a group G on a metric space C is metrically proper if for
each r > 0 and each c ∈ C the set {g ∶ gBr(c) ∩Br(c) ≠ ∅} is finite. When
C has compact closed balls, this is the same as acting properly in the sense
{g ∶ gS ∩ S ≠ ∅} is finite whenever S ⊂ C is compact.

In practice we often verify that #(p, gp) → ∞ by verifying the sufficient
condition of linear separation which states that: there exists k1, k2 > 0 such
that #(p, q) ≥ k1dX̃(p, q) − k2 for all p, q ∈ X̃.

This is normally done by finding L > 0 such that for any geodesic γ → X̃,
each length L subsegment γ′ ⊂ γ is cut at a single point by a wall W such
that W doesn’t cut γ anywhere else.
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Figure 7.6. Verifying linear separation as on the left, can
be a messy affair as on the right. Moving along the geodesic
γ one passes through many walls locally, but one might pass
through only a few walls globally.

While this can be tricky to verify in general, there are situations where
it is routine. For instance:

Lemma 7.14. If X̃ is a metric CAT(0) space, and each wall is a convex
hyperplane (i.e. codimension-1 subspace), and components of X̃ − ∪W ∈WW

have diameter uniformly bounded by D, then X̃ satisfies the linear separation
property.

Proof. #(p, q) equals the number of points of intersection between γ
and the collection of walls {W}, and successive points are within D of each
other. �

Figure 7.7. Linear separation is immediate when the walls
are convex hyperplanes in a CAT(0) metric space, and the
complementary regions have uniformly bounded diameter.

We can now record the commensurability invariance of being cubulated:

Lemma 7.15. Let G be a finitely generated group that contains a finite
index subgroup G′ that acts metrically properly on a CAT(0) cube complex.
Then G acts metrically properly on a CAT(0) cube complex.

Moreover, if G is hyperbolic and G′ acts properly and cocompactly on a
CAT(0) cube complex then so does G.

Proof. Observe that the finite index subgroup G′ of G gives a sufficient
system of quasiconvex walls in the Cayley graph of G. By Theorem 7.8 and
Lemma 7.13 the group G again acts properly and cocompactly on the dual
CAT(0) cube complex X̃. �

Without hyperbolicity, there are examples where the finite index sub-
group G′ is the fundamental group of a compact nonpositively curved cube
complex, but the torsion-free group G is not. We refer to [32] for a discussion
of this failure for crystallographic groups.
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7.6. The Cut-Wall Criterion for Properness

An axis Rg for an element g acting on X̃ is a g-invariant copy of R in
X̃. A cut-wall for g is a wall W such that gnW ∩Rg = {n} for all n ∈ Z.

Figure 7.8. A cut-wall for g.

When G has no infinite torsion-subgroup the following condition suffices
to prove properness. It is a variation of similar conditions examined in [40].

Lemma 7.16. If each infinite order element g ∈ G has a cut-wall then
the action of G on C has the property that the stabilizer of each point is a
torsion group.

Proof. Suppose hc = c for some point c ∈ C, then hd!v = v where v is a
0-cube on the smallest d-cube containing c. Let g = hd! and consider an axis
Rg and cut-wall W for g. That gv = v means that the orientations of walls
{gnW} is preserved by the action of g. Moreover {g2nW} are all oriented
towards +∞ or all towards −∞ as in Figure 7.9. This contradicts the 2nd
axiom defining 0-cubes of C, since infinitely many walls are oriented away
from 0 ∈ Rg. �

Figure 7.9. An infinite sequence of distinct walls that are
directed away from a point on the line.

Example 7.17. The cut-wall criterion applies to metric CAT(0) wallspaces
with convex hyperplane walls. But now we need not assume that comple-
mentary regions are uniformly bounded, just that each is bounded, and that
each element has an axis. (We note that in general it is possible to have
parabolic elements with no axis.)

Example 7.18. The cut-wall criterion applies to wallspaces built from
trees of wallspace with a cut-wall criterion satisfied by each vertex space and
with connected intersections of walls with vertex spaces. See Chapter 8.1.



CHAPTER 8

Cubulating Malnormal Graphs of Cubulated
Groups

The goal of this chapter is to describe how to cubulate a hyperbolic group
G that splits as a graph of cubulated hyperbolic groups. Our exposition
sketches results presented in [43], and we refer there for the details. The edge
groups of G immediately provide a substantial amount of the codimension-1
subgroups needed to effectively apply the dual cube complex construction.
Indeed, any element of G that is “hyperbolic” with respect to the action on
the Bass-Serre tree is cut by an edge group. It remains to find codimension-1
subgroups that are sufficient from the viewpoint of each vertex group Gv of
G. We do this by “extending” sufficiently many codimension-1 subgroups
of each Gv into codimension-1 subgroups of G. This is illustrated for a
simplistic non-hyperbolic example in Section 8.1 which aims to give the
reader some intuition about how the immersed walls in a base space develop
to walls in the tree of spaces that is its universal cover. Two techniques
are employed to deal with more complicated examples: “extensions” and
“turns”. In Section 8.2 we describe how a codimension-1 subgroup in an edge
group extends into a codimension-1 subgroup in a neighboring vertex group.
In Section 8.3 we describe how a codimension-1 subgroup in a vertex group
can be “turned around” within an adjacent edge group so that it returns
and is absorbed in the original vertex group. In Section 8.4 we combine
these techniques to prove the main result by constructing sufficiently many
quasiconvex codimension-1 subgroups of the group G.

8.1. A Wallspace for an Easy Non-Hyperbolic Group

To motivate some aspects of the constructions described later in this
section, we will examine a system of walls in a group that is not hyperbolic
but splits as an amalgamated product Z2 ∗Z Z2. In [74], we have provided a
detailed case-study of the cubability of any group G splitting as a graph of
groups with Z2 vertex groups with Z edge groups. Many such groups that
admit free actions on CAT(0) cube complexes. However, though G acts
freely, the dual cube complex is generally not locally finite nor even finite
dimensional.

Let ⟨a, b⟩ and ⟨c, d⟩ denote copies of Z2 and consider a group G that
splits as the following amalgamated free product.

⟨a, b⟩ ∗a=c2 ⟨c, d⟩
68
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Observe that G is the fundamental group of a compact nonpositively
curved cube complex obtained by starting with appropriate cubical subdi-
visions of standard tori, and then gluing a cubical cylinder using attaching
maps that are local isometries. However, to motivate our later construc-
tions, we provide an alternate cubulation dual to a wallspace provided by a
system of codimension-1 subgroups.

Let X denote a graph of spaces corresponding to the splitting of G: so
X has two vertex spaces, each of which is homeomorphic to a torus, and X
has a single edge space homeomorphic to a cylinder. And this cylinder is
attached on each side along a closed curve representing a and c2 respectively.

There are three orbits of walls in X̃. Let S denote a circle cutting the
cylinder C × I of X in half. The first type of wall in X̃ is a line consisting
of any lift of the universal cover of S̃. Its two halfspaces correspond to
the parts of X̃ lying on opposite sides of the strip C̃ × I. The second and
third types of walls are trees corresponding to lift of the two graphs graphs
indicated in Figure 8.1. It is convenient that in this simple case, these
underlying “immersed walls” are embedded subspaces, but one can imagine
more elaborate examples where the underlying immersed walls do not embed
in the base space.

Figure 8.1. The green, red, and blue graphs in the space
X provide walls in X̃ corresponding to components of their
preimages.

Let us consider the resulting walls in X̃ of the second and third type.
Observe that X̃ is a tree of spaces whose vertex spaces are planes and whose
edge spaces are strips. One of our walls intersects a vertex space in a line, and
then proceeds through adjacent strips in segments, after which it becomes
a line in the next vertex space, and so forth. In particular, we note that a
wall intersects a vertex space in either a line or in ∅.

One sees that these are indeed walls since X̃ is simply connected, and
an open neighborhood of each wall W is of the form W × (−1,1) with W
identified with W × {0}.

To see that G acts freely on the dual CAT(0) cube complex, we note
that the axis criterion can be applied. Any element g ∈ G is either elliptic
or hyperbolic with respect to the Bass-Serre tree. If it is hyperbolic, then a
wall of the first type serves as a cut-wall for g. If it is elliptic, then either
a blue or red line within the plane stabilized by g will serve as a cut-wall
for an axis of g within that plane. And this cut-wall functions as a cut-wall
within all of X̃ since walls intersect a vertex space in at most one line.
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Figure 8.2. Three walls in X̃.

8.2. Extending Walls

An H-wall in a group G is a finite neighborhoodNr(H) of H in Γ = Γ(G)
and a decomposition Γ = ←ÐH ∪Ð→H with

←Ð
H ∩Ð→H = Nr(H) – so each component

of Γ −Nr(H) lies in
←Ð
H or

Ð→
H .

As discussed in Section 6.5, the motivating case is where Γ−Nr(H) has
two components, each of which is deep.

Figure 8.3. An H-wall.

Let G ⊂ G′. An H-wall in G extends to an H ′ wall in G′ if H = H ′ ∩G
and

←Ð
H ⊂ Nr(

←Ð
H ′) and

Ð→
H ⊂ Nr(

Ð→
H ′) for some r.

Figure 8.4. Some extensions of H-walls. The second and
third examples are indicated using fundamental groups of
subspaces.
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Theorem 8.1. Let X be a compact special cube complex, and let G =
π1X be hyperbolic. Let H ⊂ G be a quasiconvex subgroup of G. Let A be a
quasiconvex subgroup of H. Then any A-wall in H extends to a B-wall of
G.

Proof. By Theorem 3.23, let YH → X be a compact core for H. Let
YA → YH be a compact core for A, such that, moreover, the two sides of the
A-wall coarsely lie in distinct halfspaces ỸH − ỸA (partitioned accordingly).

Let ŶH → YH be a finite cover such that YA embeds in ŶH .
Consider ∁(ŶH →X) and the canonical retraction ∁(ŶH →X) → ŶH .

The preimage of the locally convex subcomplex YA ⊂ ŶH is a locally convex
subcomplex YB ⊂ ∁(ŶH →X), and let B = π1YB. The B-halfspaces are
the preimages of the A-halfspaces under the retraction X̃ → ỸH induced by
∁(ŶH →X) → ŶH . �

Figure 8.5. Using Canonical Completion and Retraction to
Extend an H-wall.

8.3. Constructing Turns

We now describe how to construct “turns” which are immersed walls in
an edge space which permit an immersed wall in a vertex space to enter the
edge space, then wander around for a while, and then return to the vertex
space parallel to the way that they entered. Before describing how to do
this in general, we illustrate the situation with a simple example of a surface
vertex space XA and cylinder edge space XC × I where the immersed wall
consists of a circle X ′

H → XA in the surface, that needs to extend into an
immersed wall in the cylinder. This is illustrated in Figure 8.7.

We will now work with immersed walls which are locally 2-sided, π1-
injective immersions whose universal covers lift to actual walls. We will
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Figure 8.6. Wall extension using canonical completion and
retraction.

Figure 8.7. Turn in a cylindrical edge space

use notation like XC ↬ XA to denote such an immersed wall, with the
understanding that A = π1XA and C = π1XC etc.

Consider the general scenario of a vertex space XA with edge space
XC ×I attached to it. We will describe a recipe to mimic the construction of
a turn that we gave above in the intuitive setting of a surface and cylinder.

An H ′-wall of A induces an H-wall of C where H = C ∩ H ′. Let us
denote this by XH → XC . (We are interested in the case where C is not
coarsely contained on one side of the H ′-wall, in which case the induced wall
would be a trivial wall – which we essentially ignore in our applications.)
We use separability of H in C to choose a cover X̂C → XC that has large
girth (relative to H ′). We now cut-and-paste to build the turn: Consider the
cover X̂C × [−1,1] →XC × [−1,1] and the wall X̂C × {0} that resides inside.
We cut-and-paste XH × [−1,0] with X̂C × {0} as illustrated in Figure 8.8.

8.4. Cubulating Malnormal Amalgams

Theorem 8.2. Let G = A ∗C B or A∗Ct=C′. Then G acts properly and
cocompactly on a CAT(0) cube complex provided the following hold:

(1) G is hyperbolic.
(2) C is quasiconvex and almost malnormal in G.
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Figure 8.8. Cutting and pasting to form the turn.

Figure 8.9. Building turns.

(3a) A,B are virtually π1 of a nonpositively curved cube complex.
(3b) C has separable quasiconvex subgroups. [and likewise for C ′]
(3c) There is a sufficient system of quasiconvex Hi-walls in C that ex-

tend to H ′
i-walls in A,B. [and likewise for C ′]

We note that Conditions (3a), (3b) and (3c) follow from the following:
(3) A,B are each virtually π1 of a compact special cube complex.

We describe a relatively hyperbolic generalization of Theorem 8.2 in
Theorem 8.5.

Two instances where Theorem 8.2 takes a simplified form are as follows:

Example 8.3 (Z edge group). Let G = A ∗Z B or A∗Zt=Z′ where A,B
are fundamental groups of nonpositively curved cube complexes and Z is
a malnormal subgroup of G. Then G is the fundamental group of a non-
positively curved cube complex. This is because Conditions (3b) and (3c)
automatically hold when C ≅ Z.

Example 8.4 (Free vertex groups). F2 ∗⟨U,V ⟩=⟨U ′,V ′⟩ F
′
2 is cubulated

whenever ⟨U,V ⟩ is malnormal in F2 and ⟨U ′, V ′⟩ is malnormal in F ′
2. (In

fact, malnormality on one side suffices.)

Sketch of proof of Theorem 8.2. The plan for proving Theorem 8.2
is to produce sufficiently many quasiconvex codimension-1 subgroups, and
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then obtain a proper action on the dual cube complex. As discussed in
Chapter 7.5, “sufficiently many” leads to a proper action on the dual cube
complex and quasiconvexity leads to its cocompactness.

Figure 8.10. Start with a sufficient set of immersed walls
in XC , and extend these into immersed walls in XA and XB

Figure 8.11. Consider the original sufficient immersed
walls (arising from the cubulations) of XA and XB and add
those as well.

Figure 8.12. Double all these immersed walls, and turn
those immersed walls that enter XC × I on each side.

The malnormality of C and a choice of sufficiently “large” turns ensures
that the new immersed walls correspond to quasi-isometrically embedded
subgroups and lift to genuine embedded walls in X̃. The quasiconvexity
within the vertex groups is one of the technical points verified in [43], and
then the quasiconvexity within all of π1X is ensured by a criterion in [9].
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Figure 8.13. Add a vertical wall cutting through each XC × I

These new walls have the property that they intersect each collared
vertex space X̃+

A and X̃+
B in a single component or in ∅. The linear separation

property is verified to make sure that elliptic elements in the vertex groups
act freely, and the cut-criterion using the vertical walls ensures that the
hyperbolic elements act freely. �

We employ the following relatively hyperbolic version of Theorem 8.2.
Its proof is similar but requires more care.

Theorem 8.5. Let G = L ∗E R be hyperbolic relative to f.g. virtually
abelian subgroups. Suppose L,R are quasiconvex and are fundamental groups
of compact [sparse] nonpositively curved cube complexes that are virtually
special. Suppose E ⊂ L is aparabolic and almost malnormal. Then G acts
properly and cocompactly [cosparsely] on a CAT(0) cube complex.

We actually do not require above that the cube complex for R is virtually
special – just the one for L. The following variant of a special case of
Theorem 8.5 can be proven easily and independently:

Corollary 8.6. Let G be hyperbolic relative to f.g. free abelian sub-
groups. Suppose G splits as L ∗E R with E quasiconvex in G. Suppose
R = E × Zn and that E is a full quasiconvex subgroup of L. Suppose L is
cocompactly [cosparsely] cubulated. Then G acts properly and cocompactly
[cosparsely] on a CAT(0) cube complex.



CHAPTER 9

Cubical Small Cancellation Theory

Following Gromov, who introduced his “rotating-family” method in [29],
a number of approaches have been given for obtaining a hyperbolic quotient
Ḡ = G/⟨⟨H1, . . . ,Hr⟩⟩ where Hi are appropriate quasiconvex subgroups of
the hyperbolic group G. Most notably, this idea has been developed in [62]
and [30]. We describe an approach within the cubical category: so G = π1X
where X is a nonpositively curved cube complex, and the Hi are represented
by local isometries Yi →X having large systoles compared to their overlaps.
While the approach is limited in its applicability, it is more combinatorial
than geometric, and the conclusions one obtains are concrete and explicit.
The approach also represents a faithful generalizations of the classical small-
cancellation theory. When X is 1-dimensional, this approach was already
developed in early work of Rips. See, for instance [64].

We begin by defining cubical presentations in Section 9.1, and roughly
indicating how to think of disk diagrams in this setting. In Section 9.2 we
recall the fundamental theorem of small-cancellation theory in the classical
case, and then describe it in the cubical case. We note that statements re-
quiring less stringent small-cancellation hypotheses are proven in [76]. We
review the Combinatorial Gauss-Bonnet Theorem in Section 9.3. We sketch
a proof of the fundamental theorem of small-cancellation theory in the clas-
sical case in Section 9.4. In Section 9.5, we generalize the notion of reduced
diagram from the classical case, and then define the C ′( 1

n) small-cancellation
condition in the cubical case. We show how to construct examples of C ′( 1

24)
cubical presentations in Section 9.6. In Section 9.7 we describe how to de-
compose a disk diagram D →X∗ into conecells, rectangles, and shards. This
allows us to assign angles and apply the Combinatorial Gauss-Bonnet The-
orem to prove the fundamental theorem of small cancellation theory in the
cubical case following the same method as in the classical case.

Since the intention of this chapter is to generalize the classical small-
cancellation C ′( 1

n) condition, let us conclude the introduction to this chapter
by recalling it:

Definition 9.1 (Classical C ′( 1
n)). Let X be a 2-complex. A nontrivial

combinatorial path P → X is a piece if the lift P̃ → X̃ is a subpath of
two distinct cycles in X̃1 that are the boundary cycles of 2-cells of X̃. A
2-complex X satisfies the C ′( 1

n) metric small-cancellation condition if ∣P ∣ <
76
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1
n ∣∂pR∣ whenever P is a piece that is a subpath of the boundary path ∂p of
the 2-cell R.

We often obtain the 2-complex X as the standard 2-complex of a pre-
sentation ⟨a, b, . . . , ∣ W1,W2, . . .⟩. In this case, P is a piece in X provided
that the corresponding word in the generators appears in two distinct ways
as a subword among the cyclic words W ±1

i . The meaning of “distinct” is
subtle when some Wi = V ni

i is a proper power or when some relator appears
multiple times in the presentation. Two occurrences of P are not regarded
as distinct if they differ by an automorphism of a relator or by an isomor-
phism between the two relators. For instance in the following presentation,
a, cc, and d3 are pieces, but ccc, ab, and aba are not.

⟨a, b, c ∣ (ab)5, accc, accc, dddc−1d−3c⟩

This agrees with the definition above that used X̃.

9.1. Cubical Presentations

A cubical presentation ⟨X ∣ Y1, Y2, . . . , ⟩ consists of a nonpositively curved
cube complex X together with local isometries of cube complexes φi ∶ Yi →
X.

Figure 9.1. Classical, Rips-Segev (popularized by Gro-
mov), and Cubical presentations.

The group G determined by the cubical presentation isG = π1X/⟨⟨π1Y1, π1Y2, . . . ⟩⟩ ≅
π1X

∗ where X∗ = X ⊔ Cone(Yi)/{(yi,0) ∼ φi(yi) ∶ ∀yi ∈ Yi}. The notation
⟨⟨H1,H2, . . . , ⟩⟩ denotes the smallest normal subgroup containing ∪Hi.

We will often use X∗ to denote the cubical presentation ⟨X ∣ Y1, Y2, . . . ⟩.
Note that X∗ is built from cubes and pyramids. We denote its universal

cover by X̃∗, and are mainly interested in the cubical part of X̃∗ which is
the cover of X associated to ⟨⟨π1Y1, π1Y2, . . .⟩⟩. Note that X plays the role
of a bouquet of circles in a classical presentation, and the cubical part of X̃∗

generalizes the Cayley graph.
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Figure 9.2. X∗ is built from X by attaching cones over the
relators

9.1.1. Disk Diagrams in X∗. A disk diagram D in X∗ is a combina-
torial map of a disk diagram D → X∗ such that ∂pD → X. We decompose
D into 0-cubes, 1-cubes, and 2-cubes mapping to X and triangles mapping
to the various Cone(Yi).

The triangles are partitioned into cyclic families each around a point
mapping to the conepoint of some Cone(Yi) and we combine each such
family together to form a cone-cell.

We define Comp(D) = (#cone-cells,#squares).

Figure 9.3. A disk diagram in X∗ has squares mapping to
X together with cone-cells formed from sequences of triangles
around each conepoint.

9.2. The Fundamental Theorem of Small-Cancellation Theory

We now state and illustrate the main theorem of small-cancellation the-
ory in the classical and cubical cases. Most theorems in small-cancellation
theory are applications of or variants of these statements (together with
analogous statements for annular diagrams).

For instance, by considering minimal complexity diagrams whose bound-
ary path is a (nonclosed) path in Yi, one can show that each Yi →X lifts to
an embedding in X̃∗.

9.2.1. Fundamental theorem of classical small-cancellation the-
ory.

Theorem 9.2. Let X be a C ′(1
6) classical presentation. A reduced disk

diagram D →X is either:
(1) a single 0-cell or 2-cell;
(2) a “ladder”;
(3) or contains three or more shells and/or spurs.
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Figure 9.4. A single 0-cell or 2-cell, a possibly singular lad-
der, and a diagram with three or more spurs and or shells.

Here a shell R in D is a 2-cell with ∂pR = QS where Q is a subpath of
∂pD and ∣S∣ < ∣Q∣. A spur is a valence 1 vertex that is the endpoint of a
1-cell in ∂D.

9.2.2. Fundamental theorem of cubical small-cancellation the-
ory. We will define the C ′( 1

n) condition for cubical presentations as well as
the notion of reduced diagram in that context in Section 9.5. The rough
idea is the same as in the classical case: C ′( 1

n) says that pieces are < 1
n of

the boundary cycles. However, we now have “cone-cells” instead of 2-cells,
and there are pieces with other cone-cells and also pieces with “rectangles”.
Roughly speaking, a diagram is reduced if it is (locally) of minimal area.

Theorem 9.3. Let X∗ be a C ′( 1
12) cubical presentation. A reduced disk

diagram D →X∗ is either:

(1) a single 0-cell or cone-cell;
(2) a “ladder”;
(3) or contains three or more shells, cornsquares, and/or spurs.

Note that we have strengthened the classical hypothesis that pieces have
length < 1

6 to a hypothesis that they have length < 1
12 . We have also added

“cornsquares” to the list of positive curvature features.

Figure 9.5. A single 0-cell or single cone-cell, a possibly
singular ladder, and a diagram with three or more spurs,
cornsquares, and/or shells.
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9.3. Combinatorial Gauss-Bonnet Theorem

An angled 2-complex X is a combinatorial 2-complex that has an an-
gle∢(c) ∈ R associated to each corner c of each 2-cell (or equivalently, asso-
ciated to each edge in each link).

κ(v) = 2π − πχ(link(v)) − ∑
c∈Corners(v)

∢(c)

The curvature at a 2-cell f of X is defined by:

κ(f) = ∑
c∈Corners(f)

∢(c) − (∣∂pf ∣ − 2)π

where ∣∂pf ∣ denotes the length of the boundary path of f .
Letting def(∢) = π − ∢ we have the following equivalent formulas that

are sometimes useful:

(9.1) κ(v) = π(2 − deg(v)) − ∑
c∈Corners(v)

def(∢(c))

(9.2) κ(f) = 2π − ∑
c∈Corners(f)

def(∢(c))

Our cases of greatest interest are when X is a disk diagram and the
formula for κ(v) often simplifies. In particular when v is internal κ(v) =
2π − ∑∢ and when v is at a nonsingular boundary point κ(v) = π − ∑∢.
We indicate some common scenarios in Figure 9.6.

Figure 9.6. Some curvatures of 0-cells

Theorem 9.4. Let X be a compact angled 2-complex then:

2πχ(X) = ∑
v∈0−cells

κ(v) + ∑
f∈2−cells

κ(f)

Proof. This is just a way of distributing χ = V −E +F as “curvature”
among the 0-cells and 2-cells. We refer to [55] for a proof consistent with
our terminology. �
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9.4. Greendlinger’s Lemma and the Ladder Theorem

We now sketch proofs of Greendlinger’s Lemma and the Ladder Theorem
for the classical C(6) small-cancellation setting. Combined, these results
provides Theorem 9.2.

A piece in a disk diagram D is a path P →D that arises in two ways as
a subpath of a boundary path of a 2-cell. We normally ignore trivial pieces
having length 0.

Figure 9.7. Pieces.

D satisfies the C(p) small-cancellation condition if no 2-cell R in D has
∂pR the concatenation of < p pieces.

Figure 9.8. Five and seven pieces around 2-cells.

An i-shell in D is a 2-cell R such that ∂pR = QS where the outerpath Q
is a subpath of ∂pD and the innerpath S is the concatenation of i nontrivial
pieces. A spur is a 1-cell ending at a 0-cell of valence 1.

Figure 9.9. A spur, 0-shell, 1-shell, 2-shell, and 3-shell.

We emphasize that the innerpath of an i-shell is the concatenation of i
nontrivial pieces. In some sense, a 0-shell is a degenerate 1-shell, as its
innerpath consists of one trivial piece in D. This viewpoint is consistent
with the values assigned below.
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Theorem 9.5 (“Greendlinger’s Lemma”). Let D be a C(6) disk dia-
gram. Then either D is a single 0-cell or D is a single closed 2-cell or D
has at least 2π worth of i-shells and spurs whose values are:

π for spurs
π for 0-shells and 1-shells

2π
3 for 2-shells
π
3 for 3-shells

Sketch. We assign angles to corners of 2-cells using the following rules:
2π
3 at internal corners at vertices of valence ≥ 3.
π at valence 2 vertices (i.e. where two 2-cells meet, or a single 2-cell

meets the boundary)
π
2 at singly external corners
0 at doubly external corners of valence > 2.

Figure 9.10. Assigning angles to corners of 2-cells.

A 2-cell R is internal if it has no bounding 1-cell in ∂D, and it is external
if ∂R contains a 1-cell in ∂D. We say R is multiply-external if ∂pR has more
than one maximal subpath that is a subpath of ∂pD. The terms singly-
external, doubly-external, triply-external etc. have the obvious meanings.

Figure 9.11. Internal, external, and multiply external 2-cells.

κ(f) ≤ 0 when f is internal or multiply-external, and κ(f) < 0 when
f is triply-external (or more). Indeed, when f is internal we have κ(f) =
2π − ∣∂pf ∣(π − 2π

3 ) = 2π − ∣∂pf ∣π3 , and when f is m-external κ(f) ≤ 2π − 2mπ
2 .

When f is an i-shell, it is singly-external and treating i = 0 like i = 1 we
have κ(f) = 2π − π

2 −
π
2 −(i−1)2π

3 = π −(i−1)2π
3 which agrees with the listed

values.
An internal 0-cell v has κ(v) ≤ 0 (there are two cases to consider:

valence(v) > 2 and valence(v) = 2). A boundary 0-cell v has κ(v) = π if
v is at the tip of a spur. Otherwise it has κ(v) ≤ 0 (again there are several
cases to consider).
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In the exceptional cases where D is a single 0-cell v or single closed 2-cell
f we have κ(v) = 2π and κ(f) = 2π respectively. Let us now assume that D
is not exceptional.

Applying Theorem 9.4 we have:

2π = 2πχ(D) = ∑
v

κ(v) +∑
f

κ(f)

≤ π(#(spurs)) + π(#(0-shells)) + π(#(1-shells)) + 2π
3

(#(2-shells)) + π
3
(#(3-shells)) �

Theorem 9.6 (The Ladder Theorem). If the C(6) diagram D has ex-
actly two features of positive curvature (i.e. spurs, and i-shells with 0 ≤ i ≤ 3)
then D is a ladder.

Sketch. Both features must have curvature equal to exactly π, and all
other 0-cells and 2-cells must have curvature exactly 0. Removing a spur
or 0-shell or 1-shell from one side, the remainder is a single 0-cells or 2-
cell, or is a ladder by induction. Indeed, we uncovered exactly one positive
curvature feature, and the removed feature was attached on the interior of
the outerpath of the newly exposed positively curved feature – otherwise
there would have been more than two positively curved features to begin
with. Thus the original D was a ladder. �

Figure 9.12. Removing one of the positively curved fea-
tures exposes at most one positively curved feature, and thus
leaves behind a smaller ladder (or a single 0-cell or 2-cell).
The removed positively curved feature is attached on the inte-
rior of the outerpath of the exposed positively curved feature
in the smaller ladder – otherwise there would have been an
additional feature of positive curvature as in the right two
diagrams.

9.5. Reduced Diagrams

For parallelism we will use the notation X∗ for a 2-complex (though this
is not in exact agreement with our usage for a cubical presentation, where
the cones are built from pyramids.) In classical small-cancellation theory,
a diagram D → X∗ is reduced if it has no cancelable pair, which is a pair
of 2-cells R1,R2 that meet along an edge e (and possibly other edges) such
that starting at e, their boundary paths eP1, eP2 project to the same closed
path in X, so there is a commutative diagram:

e → ∂pR2

↓ ↗ ↓
∂pR1 → X
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The cancelable pair is removed by deleting the open cells R1,R2 and the
maximal open piece that e extends to, and identifying P1, P2. (If we only
remove the open 1-cell e, there could be some tails hanging off of the newly
created diagram.)

The C(p) condition on X∗ is defined implicitly by requiring that no
reduced diagram D → X∗ can have a 2-cell whose boundary path is the
concatenation of fewer than p pieces. Equivalently, for each reduced diagram
D →X∗, the diagram D is C(p). The C ′( 1

n) condition on X∗ says that each
piece P between 2-cells R1,R2 in a reduced diagram has ∣P ∣ < 1

n ∣∂pRi∣.

Figure 9.13. Removing a cancelable pair in classical case.

We now describe some generalizations of this cancelable pair removal
procedure, as well as some further available reductions that arise for cubical
presentations.

Figure 9.14. Reductions in diagrams D →X∗.

Combining cone-cells: involves two cone-cells C1,C2 that map to the
same Cone(Y ) and that meet along a maximal open arc E such that ∂pCi =
EPi and such that the concatenation P1P

−1
2 projects to a closed path in

Cone(Y ). We replace C1∪E∪C2 by a new cone-cell C mapping to Cone(Y )
and with ∂pC = P1P

−1
2 .

Replacing cone-cells: involves a cone-cell C mapping to some Cone(Y )
such that ∂pC is already null-homotopic in Y , and so we can replace C by
a square disk diagram Dc → Y with ∂pDc = ∂pC.
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Absorbing squares: There are really two essentially different possibilities
here: In the first case, a cone-cell C absorbs a “contiguous square” s that
lies along an edge e on ∂C, and such that the map ∂C → Y extends to a
map ∂C ∪ s→ Y . We replace C by a new cone-cell C ′ such that ∂pC

′ has e
replaced by ∂s − e.

In the second case, s is a cornsquare whose outerpath lies on C. As in
Lemma 3.6, we can homotope the square part of D without changing the
number of squares so that there is now a square s′ with a corner along ∂pC
in the sense that ∂s′ = abcd and ab is a subpath of ∂pC. We replace C by
the cone-cell C ′ where ∂pC

′ is obtained from ∂pC by replacing ab by cd.
Removing bigons: involves a bigonal square diagram in D which neces-

sarily can be replaced by a smaller square diagram as in Theorem 3.2.
We emphasize that: All these reductions reduce Comp(D). Consequently,

reduced diagrams with a given boundary path always exist, since a minimal
complexity diagram with a given boundary path must be reduced.

Definition 9.7 (Reduced Diagram). For a cubical presentation X∗, a
diagram D →X∗ is reduced if:

(1) there is no bigon in a square subdiagrams
(2) there is no cornsquares whose outerpath lies on a cone-cell
(3) no square sharing an edge with the boundary of a cone-cell can be

absorbed into it.
(4) no adjacent cone-cells sharing an edge can be combined to form a

single cone-cell.
(5) ∂pC →X is essential for each cone-cell C.

Definition 9.8 (Pieces and the C ′( 1
n) condition). The pieces in a re-

duced diagram D → X∗ are subpaths P → ∂pC of the boundary path of a
cone-cell C such that the dual curves initiating at edges of P “fellow-travel”
within the square part of D until they adjacently terminate on the bound-
ary of another cone-cell or on a rectangle. We will focus on the rectangles
carrying these outgoing dual curves.

X∗ is C( 1
n) if ∣P ∣ < 1

n ∣∣Yi∣∣ whenever P is a piece in a cone-cell C of D
where C maps to Cone(Yi). The size ∣P ∣ denotes the diameter of the lift P̃
to Ỹi ⊂ X̃, and ∣∣Yi∣∣ denotes the length of the shortest essential combinatorial
path in Yi.

Figure 9.15. Cone-pieces and wall-pieces.
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9.6. Producing Examples

A quick source of examples of classical C ′(1
6) groups arise by raising

relators to sufficiently high powers as follows:

Theorem 9.9. Given ⟨a, b, . . . ∣W1, . . . ,Wr⟩ with W p
i /∼W q

j (for p, q ≠ 0),
there exists M such that for ni ≥M the following presentation is C ′( 1

n):

⟨a, b, . . . ∣Wn1
1 , . . . ,Wnr

r ⟩

Sketch. Let D be an upper bound on the size of pieces between the
various W∞

i and W∞
j – we note that there are finitely many possible pieces.

Now choose M > nD. �

Figure 9.16. Some of the finitely many types of pieces il-
lustrated in the universal cover of the bouquet of circles for
⟨a, b ∣ (abb)∞, (aba−1b−1b−1)∞⟩.

Theorem 9.10. Let X be a compact nonpositively curved cube complex
with π1X hyperbolic. Let {H1, . . . ,Hr} be a malnormal collection of quasi-
convex subgroups. There exist compact based local isometries Yi → X with
Hi = π1Yi and finite subsets Si ⊂ Hi − {1} such that for any regular covers
Ŷi → Yi with Si ∩ π1Ŷi = ∅ the following cubical presentation is C ′( 1

n):

⟨X ∣ Ŷ1, . . . , Ŷr⟩

Sketch. By Lemma 3.28, let Ỹi be an Hi-cocompact superconvex core.
For any hyperplane U disjoint from Ỹi, the intersection Ỹi ∩ N(U) is has
diameter uniformly bounded by some constant R. This uses cocompactness
of Ỹi together with superconvexity. Thus R is an upper bound on the size of
any contiguous wall-piece. A key point is that non-contiguous cone-pieces
and non-contiguous wall-pieces are dominated by contiguous wall-pieces, and
so these also have size ≤ R as well. Intersections between nonequal translates
of Ỹi and Ỹj are bounded by L. This uses malnormality of {H1, . . . ,Hr}
together with the Hi-cocompactness of each Ỹi. Thus contiguous cone-pieces
have size ≤ L.

Choose Si to be representatives of conjugacy classes of closed paths
A→ Yi where Yi =Hi/Ỹi such that ∣A∣ ≤ nmax(R,L). �
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Figure 9.17. Contiguous cone-pieces and wall-pieces are
bounded in X̃ by respectively using cocompactness and mal-
normality, and using cocompactness and superconvexity.

Figure 9.18. Noncontiguous pieces are also contiguous
wall-pieces, since squares within the shards can pushed out
of the way.

9.7. Rectified Diagrams

To prove the fundamental theorem of cubical small-cancellation theory,
we will assign angles to corners of 2-cells in D. However, as a consequence of
the hexagon-move flexibility of the square part of D, there are multiple ways
of declaring the pieces within D, and this creates some technical problems.
We remedy this by fixing one specific piece structure – which concomitantly
decomposes D into “cone-cells”, “rectangles”, and “shards”. We sketch this
“rectification” D̄ of D in this subsection.

9.7.1. Admitting rectangles. We begin by declaring a linear ordering
of the cone-cells C1,C2, . . . of D with the cone-cell at infinity C∞ appearing
last. We then cyclically order the 1-cells in each ∂pCi, by choosing a first
1-cell and then proceeding counterclockwise. Together these two orderings
provide a linear ordering of all 1-cells appearing in all the cone-cell boundary
cycles.

We now admit the rectangle emanating from the ij-th 1-cell eij termi-
nating on either a cone-cell or on the side of a previously admitted rectangle.



9.7. RECTIFIED DIAGRAMS 88

Figure 9.19. Ordering the 1-cells in boundary paths of cone-cells.

If a rectangle had already terminated at eij then we ignore the rectangle em-
anating from eij (as it was already admitted) and we proceed to the next
1-cell in the ordering.

Figure 9.20. Admitting rectangles.

Admitted rectangles are of the form [−1,1] × [0, n], where the case n = 0
is degenerate, and admitted rectangles have internal part of form (−1,1) ×
[0, n]. (We regard [−1,1] as a single 1-cube but [0, n] as a string of n
1-cubes.)

Figure 9.21. The diagram D is on the left. We have indi-
cated the ordering of cone-cells and cyclic ordering of attach-
ing maps. The admitted rectangles within D are indicated
in the middle, and the rectified diagram D̄ is on the right.
(We have not highlighted 0-cell shards.)

9.7.2. Shards. Let E denote the union of the open cone-cells and
the internal parts of admitted rectangles. The components of D − E are
the shards. Under sufficient small-cancellation conditions, each shard is a
simply-connected square disk diagram.
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Figure 9.22. Five shards. Note that that two of these
shards are just 0-cells.

9.7.3. Pieces. The pieces in D are paths on cone-cells (not C∞) con-
sisting of a sequences of edges whose admitted rectangles end in parallel on
the same cone-cell (not C∞) or rectangle – hence the terms cone-piece and
wall-piece. To say the rectangles end in parallel means that only a shard
consisting of a square diagram lies between them.

Figure 9.23. Four pieces.

9.7.4. Assigning Angles. When no cone-cell C has ∂pC the concate-
nation of < 24 pieces1, then there is a nice way to assign angles at corners
of cone-cells and shards.

All admitted (non-degenerate) rectangles are assigned the “usual” an-
gles: π along the sides and π

2 at the corners. The corners of cone-cells are
assigned angles of π

2 except for the situations indicated in Figure 9.24:
π is assigned to a corner when the emerging rectangles end in parallel

on a cone-cell or rectangle, or if they “implicitly” end in parallel
on a rectangle as illustrated.

3
4π is assigned to a corner when the emerging rectangles bound a (pos-

sibly degenerate) triangular shard with two or three cone-cells at
its corners.

0 is assigned in the unusual case of two emerging rectangles ending
in parallel (a shard between them) at a singular vertex on ∂D.

The corners of shards in D are assigned the “obvious” angles so that
the vertices v at their corners have κ(v) = 0. A shard f is (almost always)
automatically nonpositively curved – i.e. ∑∢−(∣∂pf ∣−2)π ≤ 0. This assign-
ment does occasionally require negative angles and there are many cases to
consider, but in each case, the obvious choices work, and the “shards take
care of themselves”. Two cases are indicated in Figure 9.25.

1actually < 12 suffices but requires a more complex angle assignment
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Figure 9.24. Four pieces.

Figure 9.25. Choose angles so that κ(v) = 0 for each vertex
v, and the shard will be nonpositively curved.

9.7.5. The positively curved shards. The exceptional situations
of positively curved shards arise from cornsquares on cone-cells and from
monkey-tails within the diagram consisting of a rectangle that terminates
on itself bounding a shard. However neither of these arise for a reduced
diagram. Such cornsquares are explicitly prohibited in the definition of re-
duced, and monkey-tails cannot arise because there would be a square bigon
arising from a rectangle cutting through the monkey-tail.

Cornsquares terminating on ∂C∞ are (together with spurs) an important
feature of positive curvature that can arise in the diagram. In the case where
there is an actual corner of a square on ∂C∞ the 0-cell at the corner is the
entire shard and has κ = π

2 . In the general case, one could insist that the
shard be flat by assigning angles of ±π2 in which case the positive curvature
is again concentrated at v, or one could make κ(v) = 0 and have the shard
have κ = π

2 since its angles are both π
2 . I am not sure which is a more natural

viewpoint, but they lead to the same conclusion. Technically, the 0-cell at
the endpoint of a spur is a positively curved shard, and so is the isolated
0-cell arising in the case of a trivial diagram.

9.7.6. Curvatures of cone-cells with < 1
24 small-cancellation. We

now examine the curvature of a cone-cell in D̄. As in the classical case, if
C is doubly-external, we have κ(C) ≤ 0, and if C is triply-external or more
then κ(C) < 0.

For internal cone-cells we have:

Lemma 9.11. Let C be an internal cone-cell in a reduced diagram D. If
∂pC is not the concatenation of fewer than 24 pieces, the angle assignment
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Figure 9.26. The exceptional situations of positively
curved shards arise from cornsquares on cone-cells and
monkey-tails within the diagram. Neither of these arise for
a reduced diagram. Cornsquares terminating on ∂C∞ corre-
spond to a +π2 curvature.

on the rectified diagram D̄ has κ(C) ≤ 0. (Moreover 25 or more pieces
implies κ(C) < 0.)

Proof. Consider Equation (9.2):

κ(C) = 2π −∑
∢

def(∢)

We show that there is a defect of at least π
4 for every three pieces, and thus

with at least eight such defects we obtain ∑def(∢) ≥ 8π4 = 2π as needed.
Note that it is possible to have three consecutive pieces with no nonzero
defects between them as on the left in Figure 9.27. However the ordering
on the cone-cells which underlies our rectification makes it impossible to
have a sequence of four pieces with zero angle defect for the corresponding
transitional corners. See the right of Figure 9.27. �

Figure 9.27. While it is possible to have three consecutive
pieces with zero transitional defects as on the left, it is im-
possible to have more than this because, as on the right, the
rules for building rectified diagrams would be violated when
one considers the ordering of cone-cells. Both n > 4 and n < 4
lead to contradictions.



CHAPTER 10

Walls in Cubical Small-Cancellation Theory

In this chapter we describe and investigate a situation where X̃∗ has a
natural wallspace structure. We first explain these wallspaces in the classical
C ′(1

6) setting in Section 10.1. The enabling feature on X∗ = ⟨X ∣ Y1, Y2, . . .⟩
that will allow us to build a wallspace structure for X̃∗, is to hypothesize
that each Yi is itself a wallspace, and we describe this in Section 10.2. We
explain how to build Yi with a wallspace structure by passing to a finite
cover in Section 10.3. We build the walls in X̃∗ in Section 10.4. Finally, we
show that these walls are quasiconvex in Section 10.5.

10.1. Walls in Classical C ′(1
6) Small-Cancellation Complexes

LetX∗ denote the standard 2-complex of a classical C ′(1
6) small-cancellation

complex. There is a natural system of walls in X̃∗ as follows: Firstly, by
possibly subdividing all 1-cells, we assume that all attaching maps of 2-cells
have even length. The walls of X̃∗ are graphs (see Figure 10.1) that intersect
1-cells and 2-cells in midcells (see Figure 6.8) as described in Example 6.6.

Figure 10.1. The carrier of a wall in a C(1
6)-complex X̃∗.

Walls are 2-sided, embedded multi-trees with convex carriers. Being a
multi-tree and not self-crossing are consequences of Greendlinger’s lemma,
as a minimal area diagram D for a path corresponding to a self-crossing
could not have enough shells (see Figure 10.2). The ladder theorem implies
the convexity of the carriers, as a minimal area diagram between a geodesic
γ and a path σ on the carrier N(W ) of the wall W would be forced to be
a ladder L. Indeed, no shell lies on γ or σ, and then a contradiction arises
by considering how the initial or terminal 1-shell of L relates to the ladder
L′ ⊂ N(W ) containing σ.

10.2. Wallspace Cones

The key ingredients that allow us to define walls in the classical case are:

92
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Figure 10.2. Walls in the C ′(1
6) complex X̃ cannot self-

cross, and cannot contain cycles since a minimal area disk
diagram for such a situation would have at most one shell.

(1) An even length circle is a wallspace, whose walls correspond to pairs
of centers of antipodal edges

(2) Under the C ′(1
6) hypothesis, these walls are “convex” – one must

pass through many pieces to travel essentially from a wall back to
itself.

We generalize this to require that each relator Y → X is a convex
wallspace as follows:

(1) Each hyperplane in Y is 2-sided and embedded.
(2) The collection {Hi} of hyperplanes are partitioned into subcollec-

tions called walls.
(3) Two hyperplanes in the same wall are disjoint from each other.
(4) If P → Y is a path that starts and ends on the carrier N(W ) of a

wall W , and P is the concatenation of fewer than 15 pieces then
there is a disk diagram D →X between P and a path P ′ → N(W ).

Figure 10.3. The hyperplanes of the cube complex Y are
partitioned into walls.

10.3. Producing Wallspace Cones

In the classical case, we could immediately turn all relators into wallspaces
by subdividing the 1-skeleton. It is harder to do this naturally in a higher
dimensional setting. Another way to turn relators into wallspaces is to take



10.4. WALLS IN X̃∗ 94

Figure 10.4. If P → Y is the concatenation of few pieces,
then P is square-homotopic to a path P ′ → N(W ).

their double covers. This has the disadvantage that it substantially changes
the group of the presentation, but it is sufficient for our purposes (as we are
interested in producing quotients with walls).

Let W denote a partition of the hyperplanes of Y – we have in mind
the case where hyperplanes in the same equivalence class do not cross each
other. Such a partition arises by taking the preimages of hyperplanes under
a map Y →X where hyperplanes of X embed. Consider the covering space
Ÿ → Y induced by the homomorphism #W ∶ π1Y → ZW

2 that counts the
number of times a path travels through an edge dual to respective classes.

The space Ÿ has a natural wallspace structure: Each wall is the preimage
of all hyperplanes in a W class. For instance, when Y is a circle and W is
the discrete partition, Ÿ is just the usual Z2 cover. We refer the reader to
Figure 10.5.

Figure 10.5. Given a cone Y → X, we can obtain a
wallspace cone Ÿ that is the finite cover associated to a ho-
momorphism π1Y → ZW

2 .

10.4. Walls in X̃∗

Suppose each Yi in X∗ has a wallspace structure. A wall W in X̃∗ is a
collection of disjoint hyperplanes such that the intersection with each relator
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Yi ⊂X∗ is either ∅ or is a wall Vi of Yi. If we think of the universal cover X̃∗

together with its cones, and want the walls to be connected and separating,
then we can imagine extending each wall W slightly within each cone so
that W ∩Cone(Yi) = Cone(Vi) for each Yi.

Figure 10.6. A wall in X̃∗ is a collection of hyperplanes
that intersects each Yi in a wall of Yi (which generalizes a
midcell or midcube).

Theorem 10.1. Suppose X∗ = ⟨X ∣ Y1, Y2, . . . ⟩ is C ′( 1
24) and each Yi

has the structure of a wallspace which is convex with respect to the pieces of
X∗. Then each hyperplane of X̃∗ lies in a unique wall of X̃∗.

Proof. This follows from the fundamental theorem of cubical small-
cancellation theory. �

10.5. Quasiconvexity of Walls in X̃∗

For a wall W of X̃∗ its carrier N(W ) is the union of all carriers of
the hyperplanes of W and all cones intersecting W . Its thickened carrier
T (W ) is the union of N(W ) together with all minimal square ladders that
start and end on cones of N(W ) that are consecutive in the sense that some
hyperplane of W crosses both.

Figure 10.7. The thickened carrier T (W ) is the union of
N(W ) together with minimal length square ladders that
start and end on consecutive cones.

The thickened carrier T (W ) interpolates between N(W ) and X̃∗. It is
easy to see that N(W ) ⊂ T (W ) is a quasi-isometry when cones are finite,
and we show below that T (W ) isometrically embeds in X̃∗. We are thus
able to obtain the following:

Corollary 10.2. When X and the cones Yi are compact the inclusion
Stabilizer(W ) ⊂ π1X

∗ is a quasi-isometric embedding.
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Theorem 10.3 (Thickened Carrier Isometrically Embeds). Let T (W ) be
the thickened carrier of a wall W in X̃∗. Then T (W ) ⊂ X̃∗ is an isometric
embedding.

Proof. We are actually proving that there is an isometric embedding
between their 1-skeleta. Let γ be a geodesic that start and ends on T (W )
and let D be a minimal complexity disk diagram that has γ on one side and
has a path σ → T (W ) on the other side.

For each edge e of σ there is a cladder (i.e. “cone-ladder”) within D
that starts on e and travels through square ladders (like a dual curve) and
enters and leaves cone-cells along edges dual to the same wall of the cone.
Note that the cladder can bifurcate at cone-cells. We refer to Figure 10.8.

We claim that all terminal edges of the cladder end on γ. And so since
this holds for each e we have ∣σ∣ ≤ ∣γ∣. Our claim follows from the ladder
characterization in Theorem 9.3 and the minimality of D, since if a cladder
travels back to cross σ again (see Figure 10.9), we would either find that
there was a way to thicken T (W ) within D, or we would obtain a reduced
diagram with only two positively curved features that is not a ladder. �

Figure 10.8. Let D be a minimal complexity diagram be-
tween T (W ) and a geodesic γ. Each cladder in D starting
on an edge of σ ends entirely on γ. Thus ∣γ∣ ≥ ∣σ∣ and T (W )
isometrically embeds.

Figure 10.9. The cladder cannot end at another edge of σ
or it would lie in T (W ) as in the situation, or violate the
ladder theorem as in the first and second situations.



CHAPTER 11

Annular Diagrams

In this Chapter we begin by examining “annular diagrams”. These were
originally introduced to study the conjugacy problem in parallel with disk
diagrams which were introduced to study the word-problem. The fundamen-
tal theorem of small-cancellation theory asserts that a disk diagram with few
features of positive curvature has a specific structure. In parallel with this,
we explain in Section 11.1 that an annular diagram with no features of pos-
itive curvature has a restricted nature. In Section 11.2, we examine annular
diagrams reflecting a conjugacy between elements stabilizing walls in X̃∗.
In this case the annular diagrams exist with a particularly specific structure.
We apply this in Section 11.3 to conclude that under certain conditions, the
stabilizer of each wall of X̃∗ is almost malnormal in π1X

∗.

11.1. Classification of Flat Annuli

An annular diagram is a compact connected combinatorial 2-complex
A with a fixed embedding in S2 such that π1A ≅ Z. Note that A has two
boundary paths corresponding to the attaching maps of the additional 2-cells
that would be added to obtain S2. As disk diagrams are used to study the
triviality of elements of π1X

∗, annular diagrams are used to study conjugacy
between nontrivial elements.

The C(p) and C ′( 1
n) conditions are defined as for disk diagrams D.

An annular diagram in X∗ is defined as for a disk diagram, and there is
an existence theorem for annular diagrams representing conjugacy between
elements.

An annular diagram A → X∗ is reduced if there are no reductions as
for disk diagrams, however one must be a bit more careful about combining
cone-cells - since as in Figure 11.1, it is possible for a cone-cell to reach
around the annulus and touch itself along an edge in a manner that Ã
would have a reduction. Such configurations lead to “elliptic annuli” which
are studied more carefully in [76].

Figure 11.1. The cone-cell cannot be combined with itself.
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We now discuss the restrictive form of an annular diagram that does
not have features of positive curvature on its boundary. We begin with the
classical case and then move towards increasingly complicated statements
in the cubical case.

Theorem 11.1 (Classical Thin Annuli). Let A be a C(7) annular dia-
gram. Then either A has a spur or an i-shell with i ≤ 3 or A is of one of
the three forms indicated in Figure 11.2:

Figure 11.2. A C(7) annulus with no feature of positive
curvature must have width 0,1, or 2 as above.

Sketch. Using the angle assignment in the proof of Theorem 9.5, the
C(7) condition implies an internal 2-cell would be negatively curved. Hence
there would also be a positively curved feature by Theorem 9.4. If A contains
no 2-cell then A is a subdivided circle. If one A contains a separating 2-
cell C, then cutting along C one obtains a ladder, and hence regluing one
obtains a width 1 annulus. In the last case, the external 2-cells on each side
form a sequence of 3-shells which must then be staggered to yield a width 2
annulus. �

Remark 11.2. A variant of Theorem 11.1 also holds in the C(6) case:
Either there are spurs or i-shells or else A is an arbitrary width flat annulus.
We have illustrated a width 4 flat annulus in Figure 11.3.

Figure 11.3. A flat C(6) annulus can have internal 2-cells
and thus arbitrarily many rings.

We next describe a generalization of Theorem 11.1 to an annulus arising
from a cubical small-cancellation presentation. The proof is analogous to
the proof in the classical situation.

Theorem 11.3 (Cubical Thin Annuli). Let A be an annular diagram
satisfying the C ′( 1

24) cubical small-cancellation condition. Then either A
has a spur, cornsquare or shell, or else: Either A is a square annulus, or A is
an annuladder, or A is a square annulus bicollared by a pair of annuladders.
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Figure 11.4. A flat annulus in a cubical C ′( 1
24) complex

either has a positively curved feature, or else is either a square
annulus, or is “thin” and consists of a single annuladder, or
is “thick” and is bicollared by annuladders with a square
annular diagram in between.

We use the term annuladder for an annular diagram that looks “locally”
like a ladder. It is formed from a sequence of cone-cells and rectangular grids
– as one would get by taking ladder and identifying its initial and terminal
cone-cells. To say that A is bicollared by annuladders just means that there
are annuladder subdiagrams L1, L2 inA having disjoint interiors and running
along the two sides of A in the sense that the two boundary paths α1, α2 of
A are boundary paths of L1, L2.

11.2. The Doubly Collared Annulus Theorem

We now describe a result which is especially catered to understand conju-
gate elements that stabilize two walls in X̃∗. It will allow us to verify almost
malnormality of wall stabilizers under certain conditions, which plays a role
in the proof Theorem 12.3.

Theorem 11.4 (Doubly Collared Annuli). Let ⟨X ∣ Y1, . . . , Yr⟩ satisfy
C ′( 1

24) and have cones Yi that are convex wallspaces.
Let A→X∗ be an annular diagram with boundary cycles α1, α2 that are

essential in X̃∗. Suppose Ã → X̃∗ has α̃1, α̃2 lifting to wall carriers N1,N2

where each Ni = N(Wi) for some wall Wi in X̃∗.
There exists a new annular diagram B →X∗ that is reduced.
B contains two annuladders L1, L2 that are deformation retracts of B,

with each Li having (outside) boundary path βi and each L̃i ⊂ Ni.
B is in the same class as A in the sense that ∂B̃ lies on N1,N2 and βi

is conjugate to αi in Stabilizer(Ni) for each i.
Finally, B is either thick and is a bicollared annular diagram with L1, L2

on either side and ∂B = β1 ⊔ β2, or B is thin in which case B is itself an
annuladder (but the βi might not be the boundary paths of B in this case).



11.3. ALMOST MALNORMALITY 100

Figure 11.5. B is either “thick” and bicollared by two an-
nuladders L1, L2, or is “thin” and is a single annuladder with
L1, L2 wandering within B.

11.3. Almost Malnormality

We now examine a technical condition ensuring that X∗ has the property
that Stabilizer(W ) is almost malnormal for each wall W in X̃∗.

Lemma 11.5. Let X∗ = ⟨X ∣ Y1, . . . , Yr⟩ be a cubical presentation satis-
fying the following conditions. Then Stabilizer(W ) is almost malnormal for
each wall W of X̃∗.

(1) C ′( 1
24).

(2) strongly convex wallspace cones (in the sense that if P → Y is a
path that starts and ends on some wall carrier N(V ), and P is the
concatenation of fewer than 16 pieces, then P is path homotopic in
Y to a path P ′ → N(V ).)

(3) Suppose the hyperplanes of X are 2-sided and are partitioned into
families of noncrossing hyperplanes so that each family {H1, . . . ,Hk}
gives a malnormal collection {π1H1, . . . , π1Hk} in π1X.

(4) Suppose the walls in each Yj are precisely intersections of Yj with
these hyperplane families.

(5) Suppose each hyperplane family carrier ⊔iN(Hi) has empty or con-
nected intersection with each piece in each Yj.

(6) Suppose each Yi is compact.

Sketch. Let A → X∗ be an annular diagram whose boundary cycles
α1, α2 lift to translates of the same wall carrier N(W ) under the lift Ã→ X̃∗.
Applying Theorem 11.4, we can pass to B → X̃∗ which contains the same
information. Let us assume B is chosen to have minimal complexity within
its class.

If B is a square annular diagram, then since the hyperplane families of
X are already malnormal, we see (by minimality) that B is thin – it is an
annulus that is at most one square thick – and there is a map B̃ → N(W ).
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B cannot be thick and doubly collared since a cone-cell along the bound-
ary in L1 or L2 would provide a reduction because of strong convexity.

Finally, if B is thin, then since L̃1, L̃2 map to N(W1) = g1N(W ) and
N(W2) = g2N(W ), we see that two hyperplanes in the same family pass
through some piece between consecutive cones in B, and so they must be
the same hyperplane by hypothesis, so N(W1) = N(W2). �



CHAPTER 12

Virtually Special Quotients

In this chapter we show that being virtually compact special hyperbolic
is preserved by appropriate quotienting. In Section 12.1 we sketch a proof
of the “Malnormal Special Quotient Theorem”. The main idea is to arrange
things so that the quotient virtually has a malnormal quasiconvex hierarchy
and so Theorem 12.2 applies. In Section 12.2, we review this proof for an
easy motivating case: For elements W1,W2 of the free group F2, the quo-
tient F2/⟨⟨Wn1

1 ,Wn2
2 ⟩⟩ is virtually special for sufficient ni. In Section 12.3,

we describe the “Special Quotient Theorem” which shows that virtual spe-
cialness is preserved when we quotient by sufficient finite index subgroups
of arbitrary quasiconvex subgroups.

12.1. The Malnormal Special Quotient Theorem

Definition 12.1 (Almost malnormal quasiconvex hierarchy). The class
of groups MQH with a malnormal quasiconvex hierarchy is the smallest
class such that:

(1) 1 ∈ MQH
(2) A ∗C B ∈ MQH whenever A,B ∈ MQH and C is malnormal and

quasiconvex in A ∗C B
(3) A∗Ct=D ∈ MQH whenever A ∈ MQH and C is malnormal and

quasiconvex in A∗Ct=D
Note thatMQH is the class of groups that can be built from trivial groups
using finitely many HNN extension and free products with amalgamation
along subgroups that are malnormal and quasiconvex.

More generally, we obtain two other increasingly general classes of groups
by varying the base (1) and allowing almost malnormality in (2) and (3):

G has an almost malnormal quasiconvex hierarchy if G can be built
from finite groups using finitely many HNN extension and free products with
amalgamation along subgroups that are almost malnormal and quasiconvex.
Finally, in Chapter 14 we will need the slightly larger class of groups with
an almost malnormal quasiconvex hierarchy terminating in virtually compact
special hyperbolic groups. These can be built from virtually compact special
hyperbolic groups by HNN extensions and amalgamated free products along
almost malnormal quasiconvex subgroups.

The following theorem combines two key results to provide a natural
virtually special target:
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Theorem 12.2 (AMQH ⇒ VS). If G has an almost malnormal quasi-
convex hierarchy [terminating in virtually compact special hyperbolic groups]
then G is virtually compact special.

Proof. This follows by induction on the length of the hierarchy by
combining Theorem 8.2 and Theorem 5.2. We note that the edge group
walls employed in the proof of Theorem 8.2 yield the embedded 2-sided
malnormal hyperplanes needed for Theorem 5.2 to be applicable. �

The following central result is the main tool used to prove the main
result in Chapter 14:

Theorem 12.3 (Malnormal Special Quotient Theorem). Let G be hyper-
bolic and virtually compact special. Let {H1, . . . ,Hr} be an almost malnor-
mal collection of quasiconvex subgroups. There exist H ′

i with [Hi ∶ H ′
i] < ∞

such that Ḡ = G/⟨⟨H ′
1, . . . ,H

′
r⟩⟩ is virtually compact special and hyperbolic.

Remark 12.4 (Stronger form). A stronger form of Theorem 12.3 as-
serts that there exist finite index normal subgroups Ḧi ⊂ Hi such that
Ḡ = G/⟨⟨H ′

1, . . . ,H
′
r⟩⟩ is virtually compact special and hyperbolic whenever

H ′
i ⊂ Hi are finite index normal subgroups with each H ′

i ⊂ Ḧi. The proof is
similar.

Sketch. The plan is to choose H ′
i such that Ḡ has a finite index sub-

group J̄ with an almost malnormal quasiconvex hierarchy, so J̄ is virtually
compact special by Theorem 12.2.

Since G has a finite index subgroup that is the fundamental group of
a compact nonpositively curved cube complex, Lemma 7.15 implies that G
acts properly and cocompactly on a CAT(0) cube complex X̃.

Applying Lemma 3.28, let Ỹi be an Hi-cocompact superconvex subcom-
plex for each i. Let R,L be upper bounds on the diameters of contiguous
wall-pieces and cone-pieces between the translates of the Ỹi in X̃.

Choose J to be a torsion-free finite-index normal subgroup of G such
that:

(1) X = J/X̃ is a compact special cube complex.
(2) π1U ⊂ π1X is malnormal for each hyperplane U of X.
(3) Each hyperplane U of X has “high injectivity radius” in the sense

that: For any path P → X whose endpoints are on N(U), if ∣P ∣ ≤
15 max(R,L) then P is path homotopic into N(U).

(4) Yi →X embeds for each i, where Yi = (Hi ∩ J)/Ỹi.
To obtain Property (1), note that G has a torsion-free finite index sub-

groupGo by hypothesis, and the compact nonpositively curved cube complex
Go/X̃ has a finite special cover by Corollary 4.15. Of course, any further
cover is also special. Properties (2) (3) and (4) follow using separability and
quasiconvexity.

Let W denote the set of hyperplanes of X and consider the homomor-
phism #W ∶ π1X → ZW

2 that counts the number of times a path passes
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through the various hyperplanes. It induces a covering space Ẍ → X and
we let Ÿi be the induced covers. Finally we let H ′

i = π1Ÿi, and claim that
Ḡ = G/⟨⟨H ′

1, . . . ,H
′
r⟩⟩ is virtually special.

Let J̄ be the image of J . Observe that J̄ has a finite index subgroup K
with the following cubical presentation:

⟨Ẍ ∣ gŸi ∶ g ∈ G,1 ≤ i ≤ r⟩
Each hyperplane of X induces a splitting of K along an almost malnormal
quasiconvex subgroup. The almost malnormality follows from Lemma 11.5
and the quasiconvexity holds by Theorem 10.3. Taken in some order these
splittings induce an almost malnormal quasiconvex hierarchy for K. �

Figure 12.1. We pretend that G is torsion-free and let X̄ =
G/X̃ and Ȳi =Hi/Ỹi. We have partially illustrated Ẍ →X →
X̄ as well as Ÿi → Yi → Ȳi.

Figure 12.2. A hyperplane of X provides a splitting of K =
π1Ẍ

∗. We inflate conepoints of relevant Ÿi and then cut to
obtain one or two smaller cubical presentations with the same
properties that Ẍ∗ had.

12.2. Case Study: F2/⟨⟨Wn1
1 , . . . ,Wnr

r ⟩⟩
We now describe the special case of Theorem 12.3 where G is free and

each Hi is cyclic. This argument is extracted from [77] where it arose natu-
rally. We warn the reader that we have been a bit cavalier about (identifying
and ignoring) repeated 2-cells in covers – these arise from proper powers.
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Theorem 12.5. Consider the presentation ⟨a, b ∣ W1, . . . ,Wr⟩ and as-
sume that W p

i ≁ W q
j for i ≠ j unless p, q = 0. There exists ni which can be

chosen arbitrarily large such that ⟨a, b ∣ Wn1
1 , . . . ,Wnr

r ⟩ is virtually special
for all ni ≥ 1.

Echoing Remark 12.4, with a bit more work we can show that there
exists K such that ⟨a, b ∣Wn1K

1 , . . . ,WnrK
r ⟩ is virtually special.

Proof. We shift to the geometric viewpoint of ⟨X̄ ∣ Ȳ1, . . . , Ȳr⟩ where X̄
is a bouquet of circles and each Ȳi is an immersed circle. (We mostly main-
tain parallel notation with the proof of Theorem 12.3.) We will demon-
strate the proof with the following very explicit example in mind: ⟨a, b ∣
aba−1b−1, ab⟩.

Step 1: We first pass to a finite regular cover X̆ → X̄ such that each
elevation Y̆i → Ȳi embeds in X̆. Note that there might be several distinct
elevations of each such immersed circle.

Figure 12.3. We first pass to a finite cover X̆ where all
elevated circles embed.

Let X̃ denote the universal cover of X̄, and likewise Ỹi are universal
covers of Ȳi. Let M denote an upper bound on the lengths of overlaps
between the various translates of the Ỹi in X̃. While M is just 2 in our case,
in general M is bounded by twice the maximal length of a relator in the
presentation [31].

Step 2: We now pass to a further regular cover of X → X̄ factoring
through X̆ so that ⟨X ∣ gYi ∶ g ∈ Aut(X),1 ≤ i ≤ r⟩ has the property that
∣P ∣ ≤ 1

8 ∣∂Yi∣ whenever P is a piece in Yi. Here SYi denotes the elevation of
Ȳi to X. In general, one could construct X by using the residual finiteness
of π1X̄ to choose a finite index normal subgroup contained in π1X̆ that
contains no elements of length ≤ 8M . In our case the easy cover illustrated
in Figure 12.4 suffices.

Step 3: The group of ⟨X̄ ∣ Y1, . . . , Yr⟩ acts properly and cocompactly
on a CAT(0) cube complex, and likewise, so does the finite index subgroup
associated to ⟨X ∣ gYi ∶ g ∈ Aut(X), 1 ≤ i ≤ r⟩. Indeed, we can use the mid-
cell wall-structure discussed in Example 6.6, and there are sufficiently many
walls to get a proper action as described in [80]. However we seek virtual
specialness, and will obtain it by finding an almost malnormal quasiconvex
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Figure 12.4. The degree 16 cover X → X̄ above has the
property that all pieces are ≤ 1

8 when the 2-cells correspond-
ing to the elevations (ab)8 and (aba−1b−1)4 are added.

hierarchy – but this comes at the expense of further covers Ÿi → Yi corre-
sponding to multiplying the exponent mi of Wmi

i by an additional factor of
2.

Let W denote the set of hyperplanes in X – so W corresponds to the set
of edges, and consider the homomorphism #W ∶ π1X → ZW

2 that counts the
number of times a path traverses the distinct edges modulo 2. Let Ẍ → X
denote the associated finite cover, and let Ÿi → Yi denote the induced double
covers (since Yi ↪X is an embedded cycle, Ÿi is indeed a double cover.)

Our desired quotient group corresponds to the presentation

(12.1) ⟨X̄ ∣ Ÿ1, . . . , Ÿr⟩
which corresponds to the following presentation where ni = deg(Ÿi → Ȳi).

⟨a, b ∣Wn1
1 , . . . ,Wnr

r ⟩
The cover Ẍ → X̄ induces a covering space of the standard 2-complex of

Presentation (12.1), and this cover corresponds to the following presentation:

(12.2) ⟨Ẍ ∣ gŸi ∶ g ∈ Aut(Ẍ),1 ≤ i ≤ r⟩
Let Ẍ∗ denote the 2-complex associated to Presentation (12.2).

Following Definition 6.3, each edge e of X determines a (1-sided) track
Te in the 2-complex associated to the cubical presentation:

(12.3) ⟨X ∣ gŸi ∶ g ∈ Aut(X),1 ≤ i ≤ r⟩
The vertices of the track are the points at the centers of the preimages of e.
The edges of the track are midcells of the 2-cells corresponding to the gŸi,
which we emphasize are attached by double covers of the simple cycles gYi.
See Figure 12.5.

Step 4: We claim that each track T̈e in Ẍ∗ is π1-injective, 2-sided,
and malnormal in π1Ẍ

∗. Moreover, the collection of splittings along the
π1T̈e tracks provides a hierarchy. We therefore get a malnormal quasiconvex
hierarchy for π1Ẍ

∗.

Remark 12.6. We thus get a malnormal hierarchy for the cubulation
dual to the walls associated with these tracks, and so the proof of virtual
specialness relies completely on repeatedly applying Theorem 5.1 and it is
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Figure 12.5. We give a heuristic picture of Te in our exam-
ple on the left, and the track T̈e on the right. (The 2-cells
would actually be folded with each other a bit more in some
places since there are some length 2 pieces.) Note that Te has
exactly three edges since an edge e lies on the boundary of a
2-cell in three ways. Each 2-cell is attached along a double
cover of an embedded cycle Yi in X, but we have drawn each
2-cell as the cone on the boundary of a very skinny moebius
strip. An edge of the track travels from the center of e to the
conepoint of the 2-cell on the “top” layer and then travels
back to the center of e on the bottom layer. (If we collapse
multi 2-cells, then a preimage T̈e of the track Te is a 3-valent
graph that is 2-sided (without involutions) cutting through
Ẍ∗ and providing a splitting of π1Ẍ

∗.)

not necessary to invoke Theorem 12.2. I had expected similar reasoning to
hold in the higher dimensional case, but there are difficulties verifying that
the action on the dual cube complex is proper. This difficulty is side-stepped
by employing the alternate cubulation afforded by using Theorem 8.2 within
Theorem 12.2.

The π1-injectivity holds by observing that the 2-complex Ne = N(Te)
carrying the track Te immerses by a map that has no missing shells, so
we can apply Theorem 13.3, and likewise apply Theorem 13.4 to verify
quasiconvexity. The track is readily seen to have a 2-sided preimage in the
cover N̈e → Ne that is induced by Ẍ. A subtle point is that π1X

∗ acts with
inversions on the walls whereas π1Ẍ

∗ acts without inversions.
We obtain a hierarchy since each edge e will be cut by some track. How-

ever, in this case, our tracks, or rather our walls correspond precisely to those
studied in [80] since these antipodal walls are of the type considered there.
Thus π1Ẍ

∗ acts freely and cocompactly on the cube complex C̃ = C̃(X̃)
dual to the wallspace obtained from these tracks. Let C = π1Ẍ

∗/C̃. Then
C has a hierarchy obtained by repeatedly cutting along 2-sided malnormal
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hyperplanes. We thus obtain virtual specialness by repeatedly applying The-
orem 5.1. (In this case we have avoided Theorem 12.2 and in particular, we
do not need Theorem 8.2.)

Figure 12.6. Thick and thin classical annular diagrams.
Width 2 is impossible because of the four pieces. Width 1
implies that gÑe = Ñe. Width 0 implies that gÑe ∩ Ñe ≠ ∅.

We now examine the malnormality. Consider an annular diagram A →
X∗ that has both boundary cycles on the same track carrier (so Ã lifts to
have both boundary lines on translates of the same wall carrier). Since the
carrier is immersed and has no missing shells, we can choose A to have no
spurs or shells. By Theorem 11.4, we can replace A with an annular dia-
gram B in the same class such that B is either thin or is thick and contains
annuladders L1, L2 etc. However, the thick (width 2) case is excluded since
there is no essential path P → N(Te) such that P is the concatenation of
≤ 4 pieces and such that the initial and terminal edge of P is e. Indeed,
each piece is ≤ 1

8 . In the thin case, successive 2-cells of B meet along pieces,
and so the annuladders L1, L2 containing the tracks within B must “line
up” since no track Te travels twice through the same piece (as the Yi em-
bed in X). Consequently, as T̈e is a deformation retract of N̈e, the two
elements are actually conjugated by an element of π1N̈e = π1T̈e as required
by malnormality. �

12.3. The Special Quotient Theorem

We now discuss the following consequence of Theorem 12.3:

Theorem 12.7 (Special Quotient Theorem). Let G be hyperbolic and
virtually compact special. Let {H1, . . . ,Hr} be a collection of quasiconvex
subgroups. There exist H ′

i with [Hi ∶H ′
i] < ∞ such that Ḡ = G/⟨⟨H ′

1, . . . ,H
′
r⟩⟩

is virtually compact special and hyperbolic.

Sketch. Let {K1, . . . ,Ks} denote the collection of infinite maximal
intersections of conjugates given in the statement of Lemma 3.22. For
each i, let Ki denote CG(Ki), so we have the almost malnormal collection
{K1, . . . ,Ks}.

We apply Theorem 12.3 to obtain finite index subgroups K′i ⊂ Ki and
a virtually compact special hyperbolic quotient Ḡ = G/⟨⟨K′1, . . . ,K′s⟩⟩. We
choose this quotient so that HeightḠ{H̄1, . . . , H̄r} < HeightG{H1, . . . ,Hr}.
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Consequently, the theorem follows by induction on the height. The quotient
group has trivial kernel in the base case when the height is 0.

There is a computation to ensure that the height does actually decrease.
For this we must choose the K′i to avoid certain elements of Ki – they
then have sufficiently large systole so that small-cancellation methods are
applicable. The tool supporting this computation is stated in Lemma 12.8.
It is applied after passing to a finite index torsion-free subgroup of G that is
the fundamental group of a special cube complex X. The Yi correspond to
our subgroups K′i, and the Aj correspond to the Hj (and their intersections).

�

Lemma 12.8 (Controlling Intersections and Double Cosets). Let ⟨X ∣
Y1, . . . , Yk⟩ be a C ′( 1

24) cubical presentation. Let A1 → X and A2 → X be
based local isometries. Suppose that for each pair of lifts Ãj , Ỹi to X̃, we
have either Ỹi ⊂ Ãj or diam(Ỹi ∩ Ãj) < 1

8 ∣∣Yi∣∣.
Let {π1A1giπ1A2} be a collection of distinct double cosets in π1X. Sup-

pose that for each chosen representative gi and each Yj we have ∣gi∣ < 1
8 ∣∣Yj ∣∣.

Let G→ Ḡ denote the quotient π1X → π1X
∗. Then:

(1) π1A1ḡiπ1A2 and π1A1ḡjπ1A2 are distinct for i ≠ j.
Suppose now that the cosets π1A1giπ1A2 form a complete set of double

cosets with the property that π1A
gi
1 ∩ π1A2 is infinite. Then:

(2) If π1A1
ḡ ∩ π1A2 is infinite for some ḡ ∈ Ḡ, then π1A1ḡπ1A2 =

π1A1ḡiπ1A2 for some i.
(3) For each gi we have: π1A

gi
1 ∩ π1A2 = π1A1

ḡi ∩ π1A2.



CHAPTER 13

Hyperbolicity and Quasiconvexity Detection

In this Chapter we describe how to apply the cubical small-cancellation
theory developed in Chapter 9, to see that hyperbolicity is preserved under
sufficiently small-cancellation quotienting. As for classical small-cancellation
groups, we expect one could directly verify with a disk diagram argument
that the quotient has δ-thin triangles. However, the Ladder Theorem fits
neatly with Papasoglu’s “thin bigon criterion”, and so we prove hyperbolicity
following this approach in Section 13.1. Such results are proven in [62, 30]
for a general relatively hyperbolic group G, but it is interesting to find that
there is a simple approach in the cubical context.

In Section 13.2 we show that quasiconvexity of a subgroup persists in a
sufficiently small-cancellation quotient. The method employed to verify qua-
siconvexity is the “no missing shell criterion” described in Section 13.3. This
is a generalization of the notion of local isometry discussed in Section 3.12.

13.1. Cubical Version of Filling Theorem

Theorem 13.1. Let X be a compact nonpositively curved cube complex
with G = π1X hyperbolic relative to {P1, . . . , Pr}. There exist finite subsets
Si ⊂ Pi−{1} such that G/⟨⟨P ′

1, . . . , P
′
r⟩⟩ is hyperbolic whenever P ′

i are normal
subgroups with Pi/P ′

i hyperbolic and Si ∩ P ′
i = ∅.

Proof. By Lemma 3.28, let F̃i be a Pi-cocompact superconvex subcom-
plex of X̃ for each i. Let R be an upper bound on the sizes of contiguous
wall-pieces on the F̃i (as rectangular flaps hanging off F̃i are bounded using
superconvexity and cocompactness). Let M be an upper bound on the sizes
of contiguous cone-pieces between the F̃i and their translates (which exists
by cocompactness and almost malnormality).

Choose Si to represent a conjugate of each nontrivial “short” element in
Pi – i.e. those whose translation length in F̃i is ≤ 24 max(R,M).

Consider normal subgroups P ′
i such that Si ∩ P ′

i = ∅ and Pi/P ′
i is hy-

perbolic for each i. Consider the quotient G/⟨⟨P ′
1, . . . , P

′
r⟩⟩ = π1X

∗ where
X∗ = ⟨X ∣ F1, . . . , Fr⟩ and Fi = P ′

i /F̃i. Note that X∗ is C ′( 1
24).

We show that π1X
∗ is hyperbolic by verifying Papasoglu’s thin bigon cri-

terion for hyperbolicity of graphs [63]. It states that a graph is δ-hyperbolic
if there exists % such that any two combinatorial geodesics with the same
endpoints must %-fellow-travel.
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Consider a pair of geodesics γ1, γ2 in X̃∗ and a minimal complexity disk
diagram E between them. The square convex hulls of γ1, γ2 in E determine
two square subdiagrams D1,D2 with a diagram D between them such that
D has no cornsquares at the top or bottom λ1, λ2. Note that ∣λi∣ = ∣γi∣ for
each i, and in particular λi are geodesics.

Figure 13.1. E =D1 ∪λ1 D ∪λ2 D2.

By Theorem 9.3, D is a ladder (or single cone-cell or 0-cell). Indeed,
D has no cornsquares (by maximality of D1,D2) or shells along λ1, λ2 (by
short innerpaths and geodesicity of λ1, λ2).

γi, λi must σ-fellow-travel relative to parabolics for some σ > 0 by the
relative hyperbolicity of X̃. We thus have a situation as illustrated in Fig-
ure 13.2.

Figure 13.2. E consists of a ladder D sandwiched between
two parabolic fellow-traveling bigons D1,D2.

The cone-pieces in the ladder D have size ≤M and the wall-pieces have
size ≤ R. Thus λ1, λ2 R-fellow-travel along each rectangular grid and κiM -
fellow-travel along cones. Here we use that P /P ′

i is hyperbolic to see that
P ′
i /F̃i is δi-hyperbolic so geodesics that start and end within M must κi-

fellow-travel in P ′
i /F̃i. See the two diagrams at the left of Figure 13.3.

Finally, λi, γi uniformly fellow-travel since they σ-fellow-travel relative
to parabolics, and so we can break them up into a sequence of corresponding
segments that are either: images of σ-close pairs in X̃, or pairs of geodesics
in P ′

i /Nσ(F̃i) that start and end within σ of each other. They thus uniformly
fellow-travel. We refer to the diagram on the right of Figure 13.3. �
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Figure 13.3. The paths γ1, γ2 fellow-travel since their sub-
paths fellow-travel around each rectangular grid and cone.
In the latter case, the subpaths are geodesics in P ′

i /F̃i whose
endpoints are max(M,R)-close. The paths γi, λi fellow-travel
in X̃∗ since for each parabolic F̃i that they travel around,
their subpaths γ′i, λ

′
i where on either side, have σ-close end-

points, and thus fellow-travel within P ′
i /Nσ(F̃i).

13.2. Persistence of Quasiconvexity

Recall that H ⊂ G is full if H intersects each parabolic subgroup P gi
in a finite or finite index subgroup of P gi . We follow the terminology of
Theorem 13.1.

Theorem 13.2. Let G be hyperbolic relative to {P1, . . . , Pr}. Suppose
G acts freely and cocompactly on a CAT(0) cube complex X̃. Let H ⊂ G
be a full relatively quasiconvex subgroup. There exist (slightly larger) finite
sets S+i of nontrivial elements such that H̄ is quasiconvex in Ḡ whenever
P ′
i ∩ S+i = ∅.

Proof. Apply Lemma 3.29 to obtain superconvex Pi-cocompact sub-
complexes F̃i with F̃i = PiKi where Ki is compact. As H is relatively quasi-
convex, there are finitely many P gi with ∣H∩P gi ∣ = ∞. Applying Lemma 3.29
again, we choose a superconvex H-cocompact core Ã that contains gKi and
hence gF̃i whenever ∣H ∩ P gi ∣ = ∞. Let A = H/Ã. It follows that there
exists D such that diam(gjF̃j ∩ Ã) < D unless gjF̃j ⊂ Ã (by fullness and
cocompactness).

Choose S+i so that for any allowable choice of P ′
i , the induced presenta-

tion A∗ →X∗ has no missing shells and has short innerpaths. Then Ã∗ ⊂ X̃∗

is an isometric embedding. �

13.3. No Missing Shells and Quasiconvexity

Let X be a 2-complex satisfying the C ′(1
6) condition. We say Y → X

has no missing shells if for any 2-cell R → X with ∂pR = QS and ∣Q∣ > ∣S∣,
any lift of Q→ R →X to Q→ Y extends to a lift R → Y :

Q → Y
↓ ↗ ↓
R → X
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A map Y → X with no missing shells behaves very much like a local
isometry (e.g. of cube complexes). In particular, we have the following
property that was intensely exploited in [54].

Theorem 13.3. Let X be a C ′(1
6)-complex. If Y → X has no missing

shells then Ỹ → X̃ is an injection. In particular π1Y → π1X is injective.

Proof. Suppose there are two distinct 0-cells u, v of Ỹ that map to the
same 0-cell of X̃. Let D → X̃ be a minimal area diagram among all those
whose boundary path lifts to a path in Ỹ from u to v. By Theorem 9.2, D
is either trivial, or is a single 2-cell, or contains at least two spurs and/or
shells. D cannot be trivial since u ≠ v. In the remaining cases, there is a
shell R whose outerpath Q is a subpath of ∂pD. Since Y →X has no missing
shells, the path Q → Ỹ extends to R → Ỹ and this allows us to produce a
smaller area diagram D′ obtained by removing R and replacing Q by S. �

Figure 13.4. Y →X has no missing shell.

Theorem 13.4. Let X be a compact C ′(1
6)-complex. If Y → X has no

missing shells then Ỹ → X̃ is a quasiconvex subcomplex.

Proof. Let D be a minimal area diagram (and minimal number of
1-cells) between a geodesic γ → X̃ and a variable path σ → Ỹ with the
same endpoints as γ. Theorem 9.2 implies that D is a ladder. Indeed,
there is no shell or spur of D on σ by minimality and the no missing shell
hypothesis. And there is no shell or spur on γ because of the geodesic
hypothesis. Finally we see that the geodesic γ lies in Nr(Ỹ ) where r is half
the maximal circumference of a 2-cell of X. �

The no missing shell definition as well as the accompanying consequences
have natural cubical small-cancellation generalizations.

Let A∗ = ⟨A ∣ B1, . . . ⟩ and X∗ = ⟨X ∣ Y1, . . . ⟩ be cubical presentations. A
map of cubical presentations f ∶ A∗ → X∗ has the property that f ∶ A → X
is a local isometry of nonpositively curved cube complexes, and for each Bi
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Figure 13.5. Ỹ → X̃ is quasiconvex.

there is Yi′ such that Bi maps to X through Yi′ as follows:

Bi → A
↓ ↓
Yi′ → X

The map f ∶ A∗ → X∗ has no missing shells if the following holds: For
each closed essential path QS → X mapping to some Yj with ∣Q∣ > ∣S∣ and
S → X̃ a geodesic, if there is a lift Q→ A, then there exists Bi with Yi′ = Yj
and a lift of QS to Bi so that there is a commutative diagram:

Bi → A
↗ ↓ ↓

QS → Yj → X

The proof of the following is analogous to that of Theorems 13.3 and 13.4.

Theorem 13.5. Let X∗ be a cubical presentation that satisfies the C ′( 1
24)

small-cancellation condition. Let A∗ → X∗ have no missing shells. Then
Ã∗ → X̃∗ is an embedding. Moreover, if X∗ is compact then Ã∗ → X̃∗ is
quasiconvex.



CHAPTER 14

Hyperbolic groups with a quasiconvex hierarchy

Definition 14.1 (Quasiconvex Hierarchy). A quasiconvex hierarchy for
a group G is a specific way of building G by starting with trivial groups, and
then using a finite sequence of HNN extensions and/or Amalgamated Free
Products over finitely generated quasi-isometrically embedded subgroups.
The length of the hierarchy is the number of splittings used to build G.

Alternatively, we can think of the hierarchy as a way of decomposing the
group G by splitting along f.g. quasi-isometrically embedded subgroups,
and then repeating the process on the result, until one arrives at trivial
subgroups.

For many purposes, it is natural to allow these terminal subgroups to
be finite instead of trivial.

Example 14.2. The fundamental group of a closed genus 2 surface has
a quasiconvex hierarchy: Infinite cyclic groups are built as HNN extension
over a trivial groups, and then one builds free groups by taking free products
of cyclics, and finally one builds the group G using an amalgamated product
over a cyclic subgroup.

Recall that within a hyperbolic group, being a quasiconvex subgroup
is equivalent to being f.g. and quasi-isometrically embedded. The trivial
subgroup is obviously quasiconvex, and so is any infinite cyclic subgroup of
a hyperbolic group.

The main result described in these notes is:

Theorem 14.3. If G is a hyperbolic group with a quasiconvex hierarchy.
Then G is virtually special.

While generalizations of Theorem 14.3 hold under various ways of re-
laxing the hypotheses, we cannot go too far. For instance, for n ≠ ±1, the
Baumslag-Solitar group BS(1, n) presented by ⟨a, t ∣ at = an⟩ is not virtually
special as it cannot be cubulated. However BS(1, n) does have a hierarchy,
but not a quasiconvex hierarchy. There are other examples which can be
cubulated but are still not virtually special – as there is not sufficient hy-
perbolicity to enable critical points in the proof. An interesting class of
non-virtually special examples arise from complete square complexes that
are not virtual products. See Example 2.6.

Among the various ways that one could hope to generalize Theorem 14.3
is to prove the following variant omitting the quasiconvexity requirement:
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Conjecture 14.4. Let G be a hyperbolic group with a hierarchy termi-
nating in finite subgroups. Then G is virtually [compact] special.

Theorem 14.3 holds by induction on the length of the hierarchy as a
consequence of the following:

Theorem 14.5. Let G = A ∗C B or A∗Ct=D be a hyperbolic group such
that C is quasiconvex and A,B are virtually compact special. Then G is
virtually compact special.

Proof. Plan: We will separate C from its intersecting conjugators in
a finite quotient G → F . The kernel G′ splits as a graph of groups where
all edge groups are malnormal and quasiconvex. Thus G′ has a malnormal
quasiconvex hierarchy terminating at virtually compact special groups. So
G′ is virtually compact special by Theorem 12.2 and thus G is as well.

Recall that an element g ∈ G is an intersecting conjugator of C provided
that ∣Cg ∩C ∣ = ∞. We refer to Lemmas 3.20 for a motivational observation
about intersecting conjugates and separability.

Inductively achieving plan: It suffices to consider the HNN extension
case G = A∗Ct=D. By Lemma 3.19, let g1, . . . , gr ∈ G denote the finitely
many intersecting conjugators of C in G. Each gi has a normal form gi =
ai1t

±εi1ai2t
±εi2 . . . for some aij ∈ A.

Let {H1, . . . ,Hr} denote the representatives of maximal infinite inter-
sections of conjugates of C. The idea is to use Theorem 12.3 to choose finite
index subgroups {H ′

1, . . . ,H
′
r} such that there is a quotient:

G = A∗Ct=D
↓ ↓
Ḡ = Ā∗C̄t=D̄

where Ā = A/⟨⟨H ′
1, . . . ,H

′
r⟩⟩ and C̄, D̄ are the images of C,D in Ā; and

the conjugation homomorphism t ∶ C → D projects to t ∶ C̄ → D̄; and
C̄ ⊂ Ḡ is quasiconvex; and HeightḠ(C̄) < HeightG(C); and the intersecting
conjugator images ḡi are outside of C̄. As Ḡ is virtually special by induction,
we can then apply Theorem 4.13 to separate C̄ from all the ḡi in a finite
quotient Ḡ → F . The composition G → Ḡ → F yields the desired finite
quotient enabling our plan.

Most of the above are fairly natural for large systole choices of the H ′
i .

The justification requires: the normal form theorem, small-cancellation the-
ory, criteria for quasiconvexity and hyperbolicity, and a lemma to compute
the intersection of images of subgroups.

A key point is to choose A→ Ā so that it induces:

(14.1)
C

tÐ→ D
↓ ↓
C̄

tÐ→ D̄

Let T denote the Bass-Serre tree of G = A∗Ct=D. Let {Si} denote a col-
lection of representatives of G-orbits of finite maximal subtrees of T with the
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property that Stabilizer(Si) is infinite. For each i, let {Hi1, . . .Hiqi} denote
a collection of subgroups of A conjugate to the subgroups of Stabilizer(Si)
stabilizing distinct Stabilizer(Si) orbits of vertices of Si – we choose one
such subgroup for each orbit.

One checks that their commensurators {CA(Hij) ∶ 1 ≤ i ≤ r,1 ≤ j ≤ qi}
form an almost malnormal collection in A. We then apply Theorem 12.3
to A relative to {CA(Hij) ∶ 1 ≤ i ≤ r,1 ≤ j ≤ qi} to obtain the virtually
compact special hyperbolic quotient A → Ā. With some care, this can be
done so that the commutative diagram in Equation (14.1) is satisfied. A
useful point here is that for each tree Si, its vertex stabilizers form a poset
under inclusion, where the the largest element is the stabilizer of a vertex
that is fixed by all of Stabilizer(Si). For each i, these inclusions provide
corresponding embeddings between the subgroups {Hi1, . . . ,Hiqi} of A. We
refer to Example 14.6. We use these isomorphisms to “transfer” the Ḧij

constraints given by Theorem 12.3 and Remark 12.4. In addition, we transfer
the desired systole properties ensuring small-cancellation and the separation
properties to facilitate the plan.

Theorem 13.5 applies to compute the presentations for the images C̄, D̄,
of C,D in Ā. Specifically, we see that C̄ is the quotient of C by the normal
closures in C of the intersections of C with the Ḧij . The analogous statement
holds for D̄. The isomorphism between the various H ′

ij subgroups that we
are quotienting by ensures that the isomorphisms Ct = D projects to an
isomorphism C̄t = D̄.

We see that HeightḠ(C̄) < HeightG(C) by arguing that the subtrees of
T̄ with infinite stabilizer are images of subtrees of T with infinite stabilizer
under the equivariant map T → T̄ between the Bass-Serre trees of HNN
splittings of G and Ḡ. As C̄ has finite height in Ḡ, the quasiconvexity of C̄
in Ḡ = Ā∗C̄t=D̄ holds by a criterion in [57], and the hyperbolicity of Ḡ holds
by a criterion in [8]. �

Figure 14.1. The two spaces on the right immerse in the
graph of spaces corresponding to A∗Ct=D on the left. Each
corresponds to the maximal ∞-stabilizer tree S1, S2 illus-
trated above it.
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Example 14.6 (Transferring the constraints). Consider the HNN exten-
sion G ≅ A∗Ct=D depicted on the left in Figure 14.1. The group A is free
on ⟨a, b, c, x, y, z⟩ where a, b, c are the simple arrows, and x, y, z are the tri-
angled arrows. There are two G orbits of maximal finite trees with infinite
stabilizer. In this simple example, these stabilizers are infinite cyclic. The
first is associated to the subgroups {⟨ab⟩, ⟨a⟩, ⟨b⟩} of A. The second is asso-
ciated to the subgroups {⟨cyy⟩, ⟨y⟩, ⟨z⟩, ⟨x⟩, ⟨xxb⟩}. Together, these form a
malnormal collection of subgroups of A, to which we will apply Theorem 7.4.

For the sake of exposition, let us assume that virtual compact special-
ness is guaranteed when we quotient by any powers that are multiples of
{3,5,7} and {4,5,6,7,8} respectively, and moreover, assume that the other
supporting properties are achieved when we quotient by powers that are
multiples of {10,11,13} and {10,11,12,13,14}. We then transfer this infor-
mation using the trees to obtain consistent quotients. For the first tree, any
powers of the form

{n⋅(4)⋅5⋅(2⋅7)⋅10⋅11⋅13 , n⋅(3⋅4)⋅5⋅(2⋅7)⋅10⋅11⋅13 , n⋅(3⋅4)⋅5⋅(7)⋅10⋅11⋅13}
will be appropriate. The second tree is handled similarly. More generally,
in a noncyclic situation, one must transfer arbitrary finite index subgroups,
and these are not indexed by integers, but the same reasoning applies.



CHAPTER 15

The relatively hyperbolic setting

The goal of this chapter is to map out a relatively hyperbolic generaliza-
tion of Theorem 14.3. The explanations are much more sketchy than in the
chapters on other topics. We hope the reader will be able to parse the state-
ments and see how the pieces fit together, and we refer to the exposition in
[76] for the details. We refer to sparse cube complexes which were discussed
in Section 7.4, but the reader should read with the simpler compact case in
mind.

The main theme that arises in the proofs is to obtain separability infor-
mation about G using quotients G→ Ḡ where Ḡ is virtually special since it
is a hyperbolic group with a quasiconvex hierarchy. One uses separability to
pass to a finite index subgroup G′ that can be cubulated in the sense that
G′ = π1X where X is a nonpositively curved cube complex. One again uses
separability to pass to a finite cover X̂ with embedded 2-sided hyperplanes,
and thus a cubical hierarchy. One again uses the virtually compact special
quotients π1X̂ → π1X̂

∗ to verify the double hyperplane coset criterion, and
obtain virtual specialness of X̂.

Here is a more detailed description of the results and how they are
related. When Gv is virtually special and hyperbolic relative to abelian
subgroups, Lemma 15.1 permits us to quotient the parabolic subgroups to
obtain a hyperbolic virtually special quotient Ḡv. Thus if G is hyperbolic
relative to abelians and has a quasiconvex hierarchy, we inductively assume
its vertex groups Gv are virtually special, and we apply Lemma 15.1 si-
multaneously to all vertex groups of G to obtain quotients G → Ḡ. The
quotient Ḡ splits as a graph of virtually special hyperbolic groups with qua-
siconvex edge groups and so Ḡ is virtually special by Theorem 14.3. We
use this strategy in Theorem 15.4 to verify the separability of quasiconvex
subgroups H ⊂ G: for g /∈H, we find a special hyperbolic quotient Ḡ with ḡ
outside H̄ which is separable since it is quasiconvex. Separability allows us
to pass to a finite index subgroup G′ of G such that the induced splitting
of G′ has relatively malnormal edge groups. Under additional simplifying
assumptions, Theorem 8.5 cubulates G′, and we find that G′ = π1X where X
is a nonpositively curved cube complex with a hierarchy. This cube complex
is virtually special since the parabolic fillings allow us to verify the double
coset criterion for virtual specialness of Theorem 4.6.

Lemma 15.1 (Virtually Special Fillings). Let G be hyperbolic relative
to the virtually abelian subgroups {P1, . . . , Pr}, and suppose G is virtually
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sparse special. There exist finite index subgroups P oi such that for any fi-
nite index subgroups P ′

i ⊂ P oi , the quotient Ḡ = G/⟨⟨P ′
1, . . . , P

′
r⟩⟩ is virtually

compact special hyperbolic.

Sketch. This follows the same strategy as the proof of Theorem 12.3.
The subgroups P oi are chosen so that Ḡ has a finite index subgroup with a
quasiconvex hierarchy, and so Ḡ is virtually special by Theorem 14.3. We
then follow the proof of Theorem 12.3.

The proof utilizes a cubical presentation X∗ = ⟨X ∣ F1, . . . , Fr⟩ where
each Fi = P ′

i /F̃i, and F̃i is a superconvex Pi-cocompact complex afforded
by a variant of Lemma 3.29. Sufficient systole and wallspace properties are
chosen for P oi /F̃i, and these properties are preserved by the further cover
Fi = P ′

i /F̃i. The quotient Ḡ = π1X
∗ is hyperbolic by Theorem 13.1. �

The following consequence of Lemma 15.1 follows since Ḡ is virtually
torsion-free, and each P̄i = Pi/P ′

i .

Corollary 15.2 (Controlling Cusps). Let M be a hyperbolic 3-manifold
with boundary components T1, . . . , Tr. There exist finite covers T̂ oi → Ti such
that for any further finite covers T̂i → T̂ oi , there is a finite regular cover
M̂ →M such that the induced covers of the boundary components are T̂i.

Consider a nonpositively curved cube complex X with a 2-sided embed-
ded hyperplane P , and note that X−No(P ) consists of nonpositively curved
cube complexes. These are said to be obtained from X by cutting along a
hyperplane. We say X has a cubical hierarchy if we arrive at 0-cubes after
cutting along hyperplanes finitely many times.

Figure 15.1. A cubical hierarchy of length 14.

Theorem 15.3. Let X be a nonpositively curved cube complex then X
is virtually special provided:

(1) X is sparse
(2) π1X is hyperbolic relative to virtually abelian subgroups
(3) X has a cubical hierarchy

Sketch. A collection of disjoint hyperplanes of X induces a splitting of
G = π1X as a graph of groups, where the vertex groups are virtually special
by induction on the length of the cubical hierarchy. We apply Lemma 15.1
simultaneously to each of these vertex groups to get a quotient G = Ḡ that
splits as a graph of virtually special hyperbolic groups with quasiconvex
edge groups. The hyperbolicity of Ḡ follows from Theorem 13.1 and the
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quasiconvexity of the edge groups follows from a variant of Lemma 13.4.
Although a parabolic subgroup can intersect multiple vertex groups and
intersect each of these in several distinct conjugacy classes, the flexibility of
Lemma 15.1 allows us to choose the parabolic quotients of the vertex groups
so that they induce the same quotient on each parabolic subgroup of G.

A variant of Lemma 12.8 applies to ensure that double hyperplane cosets
can be separated in each such Ḡ quotient. As the images are double quasi-
convex cosets, they can be separated in a finite quotient Ḡ → F by Theo-
rem 4.16. We thus obtain virtual specialness of the cube complex by Theo-
rem 4.6. �

Theorem 15.4. Let G be hyperbolic relative to abelian subgroups and
suppose G splits as a graph of groups with virtually special vertex groups and
quasiconvex edge groups. Then quasiconvex subgroups of G are separable.

Proof. Use Lemma 15.1 to quotient the vertex groups to hyperbolic vir-
tually special groups. Note that we also quotient cyclic groups in the vertex
groups that arise as intersections of vertex groups and non-cyclic parabolic
subgroups of G. A key point is to choose the quotienting so that there is
a consistently induced manner to quotient parabolics in edge groups, but
Lemma 15.1 can accommodate this, and we obtain a quotient G→ Ḡ. Large
enough fillings ensure that the edge groups of G have quasiconvex images in
Ḡ, and that our quasiconvex subgroup H has quasiconvex image H̄ and an
element g /∈ H maps to ḡ /∈ H̄. Since Ḡ is virtually special by Theorem 14.3
(or rather, a variant of it terminating in virtually compact special hyperbolic
groups) we see that H̄ can be separated from ḡ by Theorem 4.13. �

Theorem 15.5. Let G be hyperbolic relative to abelian groups. Suppose
G splits as a graph of groups with quasiconvex edge groups. Suppose each
edge group is hyperbolic and has trivial intersection with Z2 subgroups of the
vertex groups. If each vertex group is virtually compact [sparse] special, then
so is G.

We record the following specific case of Theorem 15.5:

Corollary 15.6. Suppose G splits as a graph of groups with quasicon-
vex edge groups and hyperbolic virtually compact special vertex groups. Then
G is virtually compact special.

Sketch of proof of Theorem 15.5. We apply Theorem 15.4 and
Lemma 3.21 to each edge group of G, to obtain a torsion-free finite in-
dex subgroup G′ that splits as a graph of groups with relatively malnormal
quasiconvex edge groups. The man difficulty is to show that G′ can be co-
compactly cubulated so G′ = π1X where X is a nonpositively curved cube
complex, and we will describe how to do that below. Separability allows us
to pass to a finite cover X̂ →X where the cube complex X̂ has a hierarchy.
Theorem 15.3 then implies that X̂ is virtually special.

An expanded edge group E+ in a graph of groups is the group obtained by
combining an edge group E together with the parabolic subgroups that have
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Figure 15.2. A graph of spaces on the left (the parabolics
are highlighted immersed tori), an expanded edge space in
the middle corresponds to E+, and its associated cage on the
right corresponds to KE .

infinite intersection with it. Using separability, we can assume we passed to a
finite index subgroup so that each expanded edge group E+ is π1-injective,
quasiconvex, and malnormal, and so we assume that G′ already has this
property. The cage KE is the graph of groups obtained by “removing”
the original edge group E from the expanded edge group E+. We refer to
Figure 15.2. The group KE naturally splits as a graph of groups with two
vertex groups that are copies of E, and edge groups corresponding to the
various ways a parabolic subgroup intersects E.

We will obtain the cubulation by an induction on the number of edge
groups in the induced splitting of G′. When E is a separating edge, we
cocompactly cubulate G′ by applying Theorem 8.5 to the splitting as an
amalgamated product along E. Note that the resulting vertex groups had
splittings of the same form as G′ but with fewer edges. For a nonseparating
edge E, consideration of the mapping cylinder associated to E+ ↪ G′ shows
that G′ has another splitting as L∗KE E+ where L is the group obtained by
deleting the edge group E from G′. We apply Theorem 8.5 to L ∗KE E+ to
obtain the cubulation of G′. To support this, note that L has fewer edges,
and that E+ is more easily cubulated – and also covered by a variant of
Theorem 8.5. �

We expect that with additional effort one can prove the following conjec-
ture. The main hurdle will be to generalize the cubulation results described
in [43]. Although known generalizations of Theorem 8.2 can handle a rel-
atively hyperbolic situation, it currently requires aparabolicity of the edge
groups in the vertex groups as in Theorem 8.5. One expects that this can
be generalized to the less stringent requirement that the edge groups are full
subgroups of the vertex groups.

Conjecture 15.7. Let G be hyperbolic relative to virtually abelian groups.
Suppose G has a quasiconvex hierarchy. Then G is virtually (compact)
sparse special.



CHAPTER 16

Applications

In this chapter we describe applications to three classes of relatively
hyperbolic groups with quasiconvex hierarchies: One-relator groups with
torsion, limit groups, and fundamental groups of hyperbolic 3-manifolds
with a geometrically finite incompressible surface.

16.1. Baumslag’s Conjecture

A one-relator group is a group having a presentation ⟨a, b, . . . ∣Wn⟩ with
a single defining relation. Assuming that W is cyclically reduced and is not
a proper power, the one-relator group has torsion if and only if n ≥ 2. In this
case, all torsion is conjugate into ⟨W ⟩ ≅ Zn and the group is virtually torsion-
free (since free groups are potent). We refer to [52] for more information on
one-relator groups. A significant feature of one-relator groups with torsion
is that they are hyperbolic, since the Newman Spelling Theorem provides
very strong small-cancellation behavior. It became clear in the 60’s that
one-relator groups with torsion are better behaved than general one-relator
groups, and to test this Gilbert Baumslag posed the following:

Conjecture 16.1 ([5]). Every one-relator group with torsion is resid-
ually finite.

The main tool for studying one-relator groups is the Magnus-Moldavanskii
hierarchy (M-M hierarchy). Roughly speaking, every one-relator group G
is an HNN extension H∗Mt=M ′ of a simpler one-relator group H where M
and M ′ are free subgroups generated by subsets of the generators of the
presentation of H. The M-M hierarchy terminates at a virtually free group
of the form Zn ∗ F .

A Magnus subgroup M of the one-relator group ⟨a, b, . . . ∣Wn⟩ is a sub-
group generated by a subset of the generators omitting at least one generator
that occurs in Wn. The crucial point in the M-M hierarchy is the following
result proven by Magnus (see [52, 38]).

Theorem 16.2 (Freiheitsatz). Every Magnus subgroup of a one-relator
group is free. Moreover, its its generators form a basis.

Instead of explicitly describing the M-M hierarchy in general, we give
the following example. The reader can also refer to [52].

Example 16.3. Consider the one-relator group G1 presented by:

⟨a, s ∣ as−1a−3sas−1a2sa−1s−2asa−1sas−1a2s−1a−1s2⟩
123
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Using the notation xy = y−1xy, we prepare the next step by rewriting the
relator to suggest that s will be the stable letter in an HNN splitting, and
have the following equivalent presentation:

⟨a, s ∣ a(a−3)sa(a2)sa−1as
2(a−1)sa(a2)s(a−1)s2⟩

Treating s as the “stable letter” conjugating the Magnus subgroup M2 =
⟨a, t⟩ to the Magnus subgroup M ′

2 = ⟨t, u⟩ with as = t, ts = u, the group G1

splits as G2∗Ms
2=M

′

2
where G2 has the following presentation:

⟨a, t, u ∣ at−3at2a−1ut−1at2u−1⟩
Rewriting the relator to suggest that t will be a stable letter for the next
splitting we have:

⟨a, t, u ∣ aat3(a−1)tutat2u−1⟩
G2 splits as an HNN extension G1∗Mt

1=M
′

1
where M1 = ⟨a, b, c, u⟩ and M ′

1 =
⟨b, c, d, v⟩ with at = b, bt = c, ct = d, ut = v and where G1 is the following one-
relator group, which is obviously free since no generator occurs more than
once in the relator.

⟨a, b, c, d, u, v ∣ adb−1vcu−1⟩
A similar example with torsion arises by raising the relator to the n-th power
in the above example. In general, following Moldavanskii, it is convenient
to sometimes replace G by G ∗ Z during the above construction as this
enables the combinatorial group theory to easily deal with the case where
no generator has exponent sum zero. We refer to [52] and [76].

Remarkably, computer studies done by several researchers, most notably
Dunfield-Thurston [24], suggest that most (e.g. 94% !?) one-relator groups
are of the form Fr ⋊ Z and in particular, the M-M hierarchy terminates
quickly but is not a quasiconvex hierarchy.

For one-relator groups with torsion, the subgroups M,M ′ are quasicon-
vex at each level of the hierarchy [76]. This result is proven using a diagram-
matic argument that depends upon a variant of the Newman spelling the-
orem [41, 51]. Instead of reproducing the argument, we give a short proof
of the special case where n ≥ 6 using small-cancellation theory. We note
that ⟨a, b, . . . ∣Wn⟩ satisfies theC ′( 1

n) condition, and is hence a C ′(1
6) small-

cancellation group for n ≥ 6. We can thus use small-cancellation theory to
prove the quasiconvexity of the Magnus subgroups as well as Theorem 16.2
for high torsion:

Theorem 16.4. Let G = ⟨a1, a2, . . . ∣Wn⟩ be a one-relator group presen-
tation with n ≥ 6. Let M = ⟨ai ∶ i ∈ I⟩ be a Magnus subgroup. Then M is a
quasiconvex subgroup of G that is freely generated by its generators.

Proof. Let X be the standard 2-complex of G. Let Y be a bouquet
of circles corresponding to the generators of M . Let Y ⊂ X be the based
inclusion corresponding to M → G.
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Observe that Y →X has no missing shells. Consequently π1Y → π1X is
injective and quasiconvex by Theorem 13.3 and Theorem 13.4. �

When G is a one-relator group with torsion, and G′ is a torsion-free finite
index subgroup, the induced hierarchy for G′ is a quasiconvex hierarchy that
terminates at trivial groups (instead of finite groups) and is thus covered by
the torsion-free case of Theorem 14.3.

Theorem 16.5. Every one-relator group with torsion is virtually special.

Because of Proposition 2.12, a virtually special hyperbolic group has very
strong properties, and in particular it is residually finite, so Conjecture 16.1
follows from Theorem 16.5.

16.2. 3-Manifolds

Prior to Thurston’s work, the main tool used to study 3-manifolds is
a hierarchy which is a sequence of splittings along incompressible surfaces
until only 3-balls remain. An incompressible surfaces is a 2-sided π1-injective
surface along which π1M splits essentially as either an HNN extension or
amalgamated free product.

It is well-known that every irreducible 3-manifold with an incompress-
ible surface has a hierarchy and every irreducible 3-manifold with boundary
has an incompressible surface. It is a deeper result that for a finite volume
3-manifold with cusps, there is always an incompressible geometrically finite
surface [18]. In general, an incompressible surface in a hyperbolic 3-manifold
is either geometrically finite or virtually corresponds to a fiber (see [10]). A
fundamental result of Thurston’s about subgroups of fundamental groups of
infinite volume hyperbolic manifolds ensures that if the initial incompress-
ible surface is geometrically finite, then the further incompressible surfaces
in (any) hierarchy are geometrically finite (see the survey in [14]).1 Finally,
the geometrical finiteness of an incompressible surface where the 3-manifold
splits corresponds precisely to the quasi-isometric embedding of the corre-
sponding subgroup along which the fundamental group splits. Thus, if M
has an incompressible surface then π1M has a quasiconvex hierarchy and
hence:

Theorem 16.6. If M is a hyperbolic 3-manifold with an incompressible
geometrically finite surface then π1M is virtually special.

Proof. In view of the above discussion, this follows from Theorem 14.3
when π1M is hyperbolic. However, when M has cusps and is thus only
relatively hyperbolic, we require Lemma 16.7 and then apply Corollary 15.6.

�

1Most of this discussion is now subsumed into the dichotomy between virtual fiberness
and geometrical finiteness for finitely generated subgroups – a consequence of the Tameness
Theorem of Agol, Calegari-Gabai
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Lemma 16.7. Let M be a compact irreducible atoroidal 3-manifold. There
exists a finite cover M̂ → M and a surface S that is a disjoint union
S = S1 ⊔⋯ ⊔ Sk of incompressible surfaces such that the fundamental group
of each component M̂ − S is hyperbolic.

Corollary 16.8. If M is a hyperbolic 3-manifold with an incompress-
ible geometrically finite surface then π1M is subgroup separable.

In the 80’s Thurston suggested that perhaps every hyperbolic 3-manifold
is virtually fibered. The key to proving the virtual fibering is the follow-
ing beautiful result which weaves together several important ideas from 3-
manifold topology [2]:

Proposition 16.9 (Agol’s fibering criterion). Let M be a compact 3-
manifold, and suppose that π1M is RFRS. Then M has a finite cover that
fibers.

For a Haken hyperbolic 3-manifold M , either it virtually fibers, or the
first incompressible surface is geometrically finite. Virtual specialness then
implies that M has a finite cover with π1M̂ contained in a raag which is
RFRS and so:

Corollary 16.10. Every hyperbolic Haken 3-manifold is virtually fibered.

16.3. Limit Groups

Fully residually free groups or limit groups have been a recent focal
point of geometric group theory. These are groups G with the property that
for every finite set g1, . . . , gk of nontrivial elements, there is a free quotient
G → Ḡ such that ḡ1, . . . , ḡk are nontrivial. Among the many remarkable
properties proved for these groups is that they have a rather simple cyclic
hierarchy terminating at free groups and free abelian groups. Each splitting
in the cyclic hierarchy has one of the following forms:

(1) A ∗Z B where Z is cyclic and malnormal in A;
(2) A∗Zt=Z′ where Z is cyclic and malnormal in A and Z,Z ′ do not

have nontrivially intersecting conjugates.
(3) A ∗Z B where Z is cyclic and malnormal in A and B ≅ Z × Zn for

some n.
This hierarchy was obtained in [50], and is also implicit in Sela’s retractive
tower description of limit groups [69]. This hierarchy allows one to prove
that limit groups are hyperbolic relative to free abelian subgroups [19, 3].
Using the relative hyperbolicity, we can follow the cyclic hierarchy and re-
peatedly apply Theorem 15.5 and Corollary 8.6 to obtain:

Corollary 16.11. Every limit group is virtually compact special.

Combined with subgroup separability results for virtually special groups
that are hyperbolic relative to abelian subgroups one recovers Wilton’s result
that limit groups are subgroup separable [73].
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deep, 58
degenerate, 87
Dehn complex, 9
diagram in a complex X, 15
disk diagram, 15
disk diagram D in X∗, 77
distinct conjugates, 25
doubly-external, 81
dual, 13, 53
dual CAT(0) cube complex, 3
dual curves, 16

elevation, 41
expanded edge group, 120
extends, 69
external, 81

faces, 7
fiber-product, 35
flag complex, 8
full, 30, 111
full subcomplex, 23
Fully residually free groups, 125

geodesic, 14
graph group, 12

halfspace carriers, 24
halfspaces, 53
height, 26
hexagon move, 17
hierarchy, 3, 124
honeycomb, 63
horizontal, 11
hyperplane, 13

immersed hyperplane, 31
immersed walls, 70
in parallel, 88
incompressible surfaces, 124
innerpath, 80
internal, 81
internal part, 87
interosculate, 32
intersecting conjugator, 26, 115

length, 114
limit groups, 125
linear separation, 64
link, 8
local isometry, 23

Magnus subgroup, 122
Magnus-Moldavanskii hierarchy, 122
malnormal, 25

malnormal quasiconvex hierarchy, 101
map of cubical presentations, 112
metric small-cancellation, 75
midcells, 57
midcube, 13
missing corners of squares, 23
monkey-tails, 89
multiply-external, 81

no missing shells, 111, 113
nonpositively curved, 8
nontrivial, 80

one-relator group, 122
open cubical neighborhood, 44
open halfspaces, 53
orientation, 53
outerpath, 21, 80

parallel, 40
piece, 75, 80
pieces, 84, 88
prime, 9
profinite topology, 34
properly, 64

quasiconvex, 25
quasiconvex hierarchy, 114
quasiflats, 64

raag, 12
rectangles, 84
reduced, 82, 84, 96
relatively malnormal, 26
removed, 83
Removing bigons, 84
Replacing cone-cells, 83
residually finite, 34
right-angled Artin group, 12

self-osculates, 32
separable, 34
separating, 53
shards, 87
shell, 78
singly-external, 81
size, 84
sparse, 64
special, 31
spur, 78, 80
strongly convex, 99
superconvex, 29

thick, 98
thickened carrier, 94
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thin, 98
track, 56
triply-external, 81
trivial, 41, 80

vertical, 11

wall, 53, 93
wall partition, 53
wall-injective, 39
wall-piece, 88
walls, 92
wallspace, 53
worms, 57
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