SESSION DE 1994

concours externe de recrutement de professeurs certifiés

section : mathématiques

deuxième composition de mathématiques

Durée : 5 heures

L'usage d'instruments de calcul, en particulier d'une calculatrice électronique de poche — éventuellement programmable et alphanumérique — à fonctionnement autonome, non imprimante, est autorisé conformément à la circulaire n° 86-228 du 28 juillet 1986.

La qualité de la rédaction, la clarté et la précision des raisonnements interviendront pour une part importante dans l'appréciation des copies. Les résultats indiqués dans l'énoncé peuvent être utilisés par les candidats pour la suite du problème.

Notations et objectifs du problème

Dans tout le problème, P désigne un plan affine euclidien orienté, $\mathcal{R} = (O; \vec{i}, \vec{j})$ un repère orthonormé direct de P. Les coordonnées et les affixes des points de P (resp. des vecteurs du plan vectoriel associé) sont définies par rapport au repère \mathcal{R} (resp. à la base (\vec{i}, \vec{j})).

Soit D_1 et D_2 deux droites de P de vecteurs directeurs respectifs $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$, et θ un nombre réel. On rappelle que θ est une mesure de l'angle orienté du couple de droites (D_1,D_2) si, et seulement si, θ ou $\theta+\pi$ est une mesure de l'angle orienté du couple de vecteurs $(\overrightarrow{v_1},\overrightarrow{v_2})$.

Étant donné trois droites D, D_1, D_2 du plan P, on dit que D_1 et D_2 sont symétriquement inclinées sur D si, et seulement si, les angles orientés des couples de droites (D, D_1) et (D, D_2) ont des mesures opposées modulo π .

Le problème est consacré à quelques questions relatives à la notion de points cocycliques. La partie I la relie à la notion de deux droites symétriquement inclinées sur une même troisième. Les parties IV et V étudient plusieurs configurations associées à des points cocycliques d'une conique. Cette étude s'appuie sur la généralisation à une conique quelconque de la notion de puissance d'un point par rapport à un cercle (parties II et III).

Préliminaires

1. Soit $Q(X) = a_0 X^4 + a_1 X^3 + a_2 X^2 + a_3 X + a_4$ un polynôme de degré 4 à coefficients complexes a_j , $0 \le j \le 4$. On note x_1, x_2, x_3, x_4 ses quatre racines complexes, distinctes ou non, et on pose :

$$\sigma_1 = \sum_{1 \le j \le 4} x_j^{\cdot}, \qquad \sigma_2 = \sum_{1 \le j \le k \le 4} x_j x_k, \qquad \sigma_3 = \sum_{1 \le j \le k \le l \le 4} x_j x_k x_l, \qquad \sigma_4 = x_1 x_2 x_3 x_4.$$

Exprimer, sans démonstration, les nombres complexes σ_1 , σ_2 , σ_3 et σ_4 en fonction des coefficients a_0 , a_1 , a_2 , a_3 et a_4 .

- 2. Soit D_1 et D_2 deux droites de P de vecteurs directeurs respectifs $\vec{v_1}$ et $\vec{v_2}$. On note z_1 , z_2 , les affixes de $\vec{v_1}$ et $\vec{v_2}$. Soit θ un nombre réel.
 - 2.1. Donner, sans démonstration, une propriété du nombre complexe $\frac{z_2}{z_1}e^{-i\theta}$ qui soit équivalente à l'égalité $(\vec{v_1}, \vec{v_2}) = \theta$ (2π) .
 - 2.2. En déduire une propriété du nombre complexe $\frac{z_2}{z_1}$ $e^{-i\theta}$ qui soit équivalente à l'égalité :

$$(D_1, D_2) = \theta (\pi).$$

- 3. Soit $(\alpha, \beta, \lambda) \in \mathbb{R} \times \mathbb{R} \times (\mathbb{R} \setminus \{0\})$.
 - 3.1. Préciser, sans démonstration, la nature et les éléments de la transformation ϕ du plan P définie analytiquement dans le repère \mathscr{R} par la représentation : $x' = \lambda x + \alpha$, $y' = \lambda y + \beta$.
 - 3.2. Soit Γ une courbe d'équation, dans le repère \mathcal{R} , f(x,y)=0, où f désigne une application de $\mathbb{R}\times\mathbb{R}$ dans \mathbb{R} . Montrer que l'ensemble Γ' défini par l'équation $f(\lambda x + \alpha, \lambda y + \beta) = 0$ se déduit de Γ par une transformation qu'on exprimera au moyen de ϕ .

I. Droites symétriquement inclinées et points cocycliques.

I.1. Soit trois droites D, D₁, D₂ du plan P, \vec{v} un vecteur directeur de D d'affixe z, $\vec{v_j}$ un vecteur directeur de D_j, d'affixe z_j, $1 \le j \le 2$.

Montrer, au moyen des préliminaires que D_1 et D_2 sont symétriquement inclinées sur D si, et seulement si, $\frac{z_1 z_2}{z^2}$ est réel.

En déduire que, lorsque D_1 et D_2 sont parallèles, elles sont symétriquement inclinées sur D si, et seulement si, elles sont soit parallèles à D, soit perpendiculaires à D.

- I.2. Soit A_1 , A_2 , A_3 , A_4 , quatre points distincts d'un cercle C du plan P. Pour $1 \le j \le 4$, on note z_j l'affixe de A_j . On suppose que les droites $(A_1 A_2)$ et $(A_3 A_4)$ sont symétriquement inclinées sur une droite D de P.
 - 1.2.1. Montrer que $\frac{(z_3-z_4)(z_2-z_1)}{(z_3-z_1)(z_2-z_4)}$ est un nombre réel.
 - I.2.2. Montrer que les droites (A₁ A₃) et (A₂ A₄) sont symétriquement inclinées sur D. En est-il de même pour les droites (A₁ A₄) et (A₂ A₃)?
- I.3. Soit A_1 , A_2 , A_3 , trois points distincts d'un cercle C du plan P et T la tangente en A_1 à C. Pour $1 \le j \le 3$, on note z_j l'affixe de A_j . On note t l'affixe d'un vecteur directeur de T, et on suppose que les droites $(A_1 A_2)$ et $(A_1 A_3)$ sont symétriquement inclinées sur une droite D de P.
 - I.3.1. Montrer que $\frac{(z_3 z_2)t}{(z_3 z_1)(z_1 z_2)}$ est un nombre réel.
 - I.3.2. Montrer que les droites T et (A₂ A₃) sont symétriquement inclinées sur D.

II. Puissance d'un point par rapport à une conique.

Soit Γ une conique et S un point du plan P. On se propose de définir la notion de puissance du point S par rapport à la conique Γ en commençant par le cas où Γ est un cercle. Pour cela on considère une droite quelconque Δ passant par S, munie d'un vecteur directeur unitaire u par rapport auquel sont définies les mesures algébriques.

- II.1. On suppose, dans cette question II.1. seulement, que Γ est un cercle de centre I et de rayon R, R > 0.
 - II.1.1. On suppose que Δ coupe Γ en deux points distincts A et B et on pose $p = \overline{SA} \cdot \overline{SB}$. Soit A' le point de Γ diamétralement opposé à A. Montrer que $p = \overline{SA} \cdot \overline{SA}'$. Exprimer p en fonction de SI et de R.

Le nombre p, qui ne dépend que de S et de Γ , s'appelle la puissance du point S par rapport au cercle Γ et sera noté $\Gamma(S)$.

- II.1.2. On suppose que Δ est tangente à Γ en un point M_0 . Montrer que $\Gamma(S) = SM_0^2$.
- II.2. On suppose maintenant que Γ n'est pas un cercle. Soit e son excentricité, D son axe focal, c'est-à-dire l'axe de symétrie qui contient son (ou ses) foyer(s). On note θ une mesure de l'angle orienté du couple de droites (D, Δ) .

On se propose de montrer que, lorsque Δ coupe Γ en deux points A et B, le produit $(1 - e^2 \cos^2 \theta) \overline{SA} \cdot \overline{SB}$ ne dépend que de S et de Γ . Pour cela on suppose, dans cette question II.2., le repère \mathcal{R} choisi de façon que $D = (O, \tilde{i})$.

II.2.1. Montrer que Γ peut être définie, dans le repère \mathcal{R} , par l'équation f(x, y) = 0, avec $f(x,y) = (1-e^2) x^2 + y^2 + u_1 x + u_2$, u_1 et u_2 désignant deux constantes réelles.

Tournez la page S.V.P.

- II.2.2. On note (x_0, y_0) les coordonnées de S. Soit M un point de Δ . On pose $\lambda = \overline{SM}$. Exprimer les coordonnées x et y de M au moyen de x_0, y_0, θ et λ . En déduire que M appartient à Γ si, et seulement si, λ est racine d'une équation de la forme $(1 e^2 \cos^2 \theta) X^2 + \beta X + \gamma = 0$ où β et γ sont deux réels qu'on exprimera au moyen de θ , x_0, y_0, e , u_1 et u_2 .
- II.2.3. On suppose que Δ coupe Γ en deux points distincts Λ et B. Montrer que le réel p défini par $p = (1 e^2 \cos^2 \theta) \overline{SA} \cdot \overline{SB}$ ne dépend que de S et de Γ et en donner une expression en fonction de x_0, y_0, e, u_1 et u_2 . p s'appelle la puissance du point S par rapport à la conique Γ et sera noté $\Gamma(S)$.
- II.2.4. On suppose que Δ est tangente à Γ en un point M_0 . Montrer qu'on a alors $1 e^2 \cos^2 \theta \neq 0$, puis que $\Gamma(S) = (1 e^2 \cos^2 \theta) SM_0^2$.

III. Lignes de niveau de l'application $S \mapsto \Gamma(S)$.

Soit Γ une conique du plan P.

A tout réel r on associe l'ensemble $\Gamma_r = \{S \in P \mid \Gamma(S) = r\}$. On pose $U = \{r \in \mathbb{R} \mid \Gamma_r = \emptyset\}$, $V = \{r \in \mathbb{R} \mid \Gamma_r \text{ est réduit à un point}\}$, $W = \mathbb{R} \setminus (U \cup V)$.

- III.1. On suppose que Γ est un cercle de centre I et de rayon R. Préciser, au moyen du réel R, les trois ensembles U, V et W et décrire Γ , pour $r \in W$.
- III.2. On suppose que Γ n'est pas un cercle.
 - III.2.1. Montrer que $\Gamma = \Gamma_0$ et en déduire que $0 \in W$.
 - III.2.2. On suppose que Γ est une ellipse, d'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ dans le repère \mathcal{R} , avec 0 < b < a.

Déterminer les trois ensembles U, V et W, puis montrer que, pour tout réel r appartenant à W, Γ , est l'image de Γ par une transformation géométrique dont on précisera la nature et les éléments.

- III.2.3. Répondre aux questions III.2.2. dans le cas où Γ est la parabole d'équation $y^2 = 2 ax$ dans le repère \mathcal{R} , avec a > 0.
- III.2.4. On suppose que Γ est une hyperbole, d'équation $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ dans le repère \mathcal{R} , avec a > 0 et b > 0.
 - a. Décrire l'ensemble Γ_{h^2} .
 - b. Déterminer et construire l'ensemble $\Gamma' = \Gamma_{2h^2}$.
 - c. On suppose $r \neq b^2$. Montrer que, selon la valeur du réel r, Γ , est l'image de Γ ou de Γ' par une transformation géométrique dont on précisera la nature et les éléments.

IV. Points cocycliques sur une conique.

Dans toute cette partie, Γ désigne une conique du plan P qui n'est pas un cercle. On note D son axe focal et on considère des points distincts A_1 , A_2 , A_3 , A_4 sur Γ .

- IV.1. On suppose que les droites $(A_1 A_2)$ et $(A_3 A_4)$ sont sécantes en un point S.
 - IV.1.1. Montrer que S est différent de A₁, A₂, A₃ et A₄.
 - IV.1.2. Les mesures algébriques sur les droites $(A_1 A_2)$ et $(A_3 A_4)$ étant définies par rapport à des vecteurs unitaires, montrer que A_1 , A_2 , A_3 , A_4 sont cocycliques si, et seulement si, $\overline{SA}_1 \cdot \overline{SA}_2 = \overline{SA}_3 \cdot \overline{SA}_4$ (on pourra utiliser II.1.1.).
 - IV.1.3. Montrer que les points A_1 , A_2 , A_3 , A_4 sont cocycliques si, et seulement si, les droites (A_1, A_2) et (A_3, A_4) sont symétriquement inclinées sur la droite D.

- IV.2. On suppose les droites $(A_1 A_2)$ et $(A_3 A_4)$ parallèles.
 - IV.2.1. L'équivalence montrée en IV.1.3. est-elle encore vraie (on pourra utiliser I.2.2.)?
 - IV.2.2. Montrer que les points A_1 , A_2 , A_3 , A_4 sont cocycliques si, et seulement si, les droites (A_1, A_2) et (A_3, A_4) sont perpendiculaires à un même axe de symétrie de Γ .
- IV.3. On suppose que la tangente T_1 à Γ en A_1 et la droite $(A_2 A_3)$ sont sécantes en un point S. On appelle C le cercle circonscrit au triangle $A_1 A_2 A_3$.
 - IV.3.1. Montrer que S est différent de A_1 , A_2 et A_3 .
 - IV3.2. Les mesures algébriques sur la droite $(A_2 \ A_3)$ étant définies par rapport à un vecteur unitaire, montrer que T_1 est la tangente à C en A_1 si, et seulement si, $SA_1^2 = \overline{SA}_2 \cdot \overline{SA}_3$ (on pourra utiliser II.1.2.).
 - IV.3.3. Montrer que T_1 est la tangente à C en A_1 si, et seulement si, les droites $(A_1 \ A_2)$ et $(A_1 \ A_3)$ sont symétriquement inclinées sur la droite D.
- IV.4. On suppose que la tangente T_1 à Γ en A_1 et la tangente T_2 à Γ en A_2 sont sécantes en un point S.
 - IV.4.1. Montrer que S est différent de A₁ et A₂.
 - IV.4.2. Montrer que les propriétés suivantes sont équivalentes :
 - (i) il existe un cercle C tangent à T_1 en A_1 et à T_2 en A_2 ;
 - (ii) $SA_1 = SA_2$;
 - (iii) T₁ et T₂ sont symétriquement inclinées sur la droite D.
 - IV.4.3. On suppose que les propriétés (i), (ii) et (iii) ci-dessus sont satisfaites. On note D_1 la parallèle à D passant par S, ϕ_1 la réflexion d'axe D_1 , D_1 la perpendiculaire à D passant par S, ϕ_1 la réflexion d'axe D_1 . On pose $\phi = \phi_1 \circ \phi_1$.
 - a. Reconnaître la transformation ϕ .
 - b. Quelle est l'image de T_1 par ϕ_1 ? En déduire que ϕ_1 (A_1) appartient à l'ensemble $\{A_2, \phi(A_2)\}.$
 - c. Montrer que A_2 appartient à l'ensemble $\{\phi_1(A_1), \phi_1'(A_1)\}.$
 - IV.4.4. Montrer que les propriétés (i), (ii) et (iii) de la question IV.4.2. sont encore équivalentes à : la droite $(A_1 A_2)$ est perpendiculaire à un axe de symétrie de Γ .
- V. Cas de l'ellipse.

Dans cette partie, Γ désigne une ellipse, d'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ dans le repère \mathcal{R} , avec 0 < b < a. On pose $c = \sqrt{a^2 - b^2}$.

- . On note ici U l'ensemble des nombres complexes de module 1 et, à tout élément u de U, on associe le point M (u) du plan P de coordonnées $x = a \frac{u + \overline{u}}{2}$, $y = b \frac{u \overline{u}}{2i}$.
 - V.1. Montrer que l'application $u \longrightarrow M(u)$ est une bijection de U sur Γ .
 - V.2. C désigne un cercle d'équation $x^2 + y^2 2\alpha x 2\beta y + \gamma = 0$ dans le repère \mathcal{R} .
 - V.2.1. Déterminer un polynôme Q_C (X) de degré 4, à coefficients complexes, de coefficient dominant c², dont les autres coefficients sont des polynômes en a, b, α, β, γ qu'on précisera, et qui vérifie la propriété suivante : (∀u, u ∈ U) [(M (u) ∈ C ∩ Γ) ← Q_C(u) = 0].
 Le polynôme Q_C (X) ainsi construit est appelé polynôme associé au cercle C.
 - V.2.2. On suppose que $C \cap \Gamma$ est un ensemble de quatre points (distincts) M_1 , M_2 , M_3 et M_4 . Pour $1 \le j \le 4$, on pose $M_j = M(u_j)$, $u_j \in U$.

 Montrer que $u_1 u_2 u_3 u_4 = 1$.

- V.3. Soit $M_1 = M(u_1)$, $M_2 = M(u_2)$, $M_3 = M(u_3)$ et $M_4 = M(u_4)$, $u_j \in U$ pour $1 \le j \le 4$, quatre points distincts de Γ . Montrer que ces points sont cocycliques si, et seulement si, $u_1 u_2 u_3 u_4 = 1$.
- V.4. Soit $M_0 = M(u_0)$ un point de Γ , $u_0 \in U$.
 - V.4.1. Montrer qu'il existe un unique cercle C₀ tel que u₀ soit racine d'ordre de multiplicité au moins égal à 3 du polynôme Q_{C₀}(X) associé à C₀.
 C₀ s'appelle le cercle osculateur à l'ellipse Γ au point M₀.
 - V.4.2. Exprimer, en fonction de a, b et u_0 , les coordonnées du centre Ω_0 de C_0 .
 - V.4.3. Montrer que C_0 et Γ ont la même tangente T_0 au point M_0 .
 - V.4.4. Comment doit-on choisir M_0 sur Γ pour avoir $C_0 \cap \Gamma = \{M_0\}$?
 - V.4.5. On suppose que M_0 n'est pas choisi de cette manière.

 Montrer que C_0 recoupe Γ en un unique point M_1 (différent de M_0), et que les droites T_0 et $(M_0 M_1)$ sont symétriquement inclinées sur l'axe focal D de Γ .
 - V.4.6. On note E l'ensemble de tous les points M de $\Gamma \setminus \{M_0\}$ qui sont tels que le cercle osculateur en M à Γ passe par M_0 . Quel est le cardinal de E ? Montrer que l'ensemble $E \cup \{M_0\}$ est contenu dans un cercle (on distinguera les cas où M_0 est choisi comme en V.4.4. et ceux où il est choisi comme en V.4.5.).