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ABSTRACT. We consider a mono-dimensional two-velocities scheme used to approximate the
solutions of a scalar hyperbolic conservative partial differential equation. We prove the con-
vergence of the discrete solution towards the unique entropy solution by first estimating the
supremum norm and the total variation of the discrete solution, and second by constructing a
discrete kinetic entropy-entropy flux pair being given a continuous entropy-entropy flux pair
of the hyperbolic system. We finally illustrate our results with numerical simulations of the
advection equation and the Burgers equation.

1. INTRODUCTION

The lattice Boltzmann method is a numerical method which is largely used to simulate
fluid dynamics equations, such as Navier Stokes, heat, acoustics equations, multi-phase and
multi-component fluids (see Succi [28], Lallemand and Luo [21], and e.g. [20]). Its origin is
in a discretized velocities version of the continuous Boltzmann equation (see Broadwell [6]
and Gatignol [13]), with a specific collision kernel. The algorithm of the lattice Boltzmann
method reads then as a fully discretized Boltzmann equation on a lattice.

The lattice Boltzmann method supposes that particles progress on a discrete Cartesian lat-
tice with a finite set of speeds. In one time step, each velocity allows particles to jump from
one vertex of the lattice to another one. One iteration of the method can be described in two
steps: a relaxation step, which is local to each vertex and which corresponds to the collision of
the particles, followed by a transport step, which corresponds to the evolution of the particles
on the lattice.

Despite the fact that this method is widely used, the mathematical numerical analysis is
far from being complete. In [25], a stability analysis is proposed by Rheinländer for a two-
velocities lattice Boltzmann scheme for the linear advection equation. In [19], Junk and Yang
studied the convergence of approximation of smooth solutions for the incompressible Navier-
Stokes equations. Concerning the linear one-dimensional convection-diffusion equation, Del-
lacherie proves the convergence in L∞ norm of the solutions of a two-velocities lattice Boltz-
mann scheme [9]. We remark that in previous works studying lattice Boltzmann methods,
links between lattice Boltzmann and finite difference methods were done (see Junk [18] and
[16]). Concerning non-linear models, in [4], Boghosian, Love, and Yepez developed a two-
velocities entropic scheme for the viscous Burgers equation and studied its properties.

In this contribution we consider a two-velocities lattice Boltzmann scheme in one dimen-
sion, known in the domain as D1Q2, in order to approach a scalar conservation law. The
purpose of our paper is to prove the convergence of this lattice Boltzmann scheme towards
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Fig. 1. Representation of the schemes parameters in the plane (",Δt).

the unique entropy solution of the hyperbolic equation as the mesh size tends to zero, when
the relaxation parameter of the scheme lies between 0 and 1.

For this purpose, we make a link with the relaxation system of Jin and Xin [17] and we
use, in the context of our scheme, some techniques used to study the convergence of relaxation
schemes based on the Jin and Xin approximation. Nevertheless, we point out that the lattice
Boltzmann scheme is not constructed as a relaxation scheme, and it does not correspond to a
natural discretization of the Jin and Xin system.

The convergence of the solutions of the Jin and Xin system towards the equilibrium, de-
scribed by the scalar conservation law, was obtained independently by Natalini [23] and by
Serre [27]. Concerning the numerical approximation of the scalar conservation law, Aregba-
Driollet and Natalini in [2] and [24], and Lattanzio and Serre in [22], proved the convergence
of finite volumes relaxation schemes based on the relaxation approximation of Jin and Xin.
The relaxation schemes investigated in these works depend on two parameters (the relaxation
rate " and the mesh step Δt) and the convergence of the schemes is proven by passing to the
limit both parameters. In [2, 24], uniform L∞ and total variation estimates are obtained to
pass to the limit separately in both parameters. In [22], compensated compactness techniques
are used to study the limit of a relaxation scheme as both parameters go simultaneously to 0.

The lattice Boltzmann scheme we investigate only involves one parameter Δt. Although
this scheme is not a relaxation scheme, it can be linked to this kind of schemes, with a par-
ticular choice of the relaxation rate " proportional to Δt. As we can see in the figure 1, the
convergence of the LB scheme corresponds to a diagonal limit (a limit on " and on Δt at the
same time).

The aim of our work is to prove, by using finite volumes methods techniques such as total
variation andL∞ bounds inspired by [2], [24], and [22], that the solutions of theD1Q2 scheme
converge towards the numerical solution of a scalar hyperbolic conservation law, under a
stability condition. To the knowledge of the authors, this result is the first one of convergence
for the solution of a lattice Boltzmann scheme towards the solution of a nonlinear conservation
equation.

The plan of the paper is as follows. In section 2 we describe the D1Q2 scheme and recall
its construction, by following the framework of d’Humières [10]. In section 3 we establish
L∞ and total variation discrete estimates. By using these estimates, in section 4 we prove the
convergence of the D1Q2 scheme towards a weak solution of the scalar conservation law, in
the case where the relaxation parameter of the scheme lies between 0 and 1. In section 5, by
following Serre [27], Bouchut [5], and [12], we introduce numerical entropies for the D1Q2
scheme. Based on a L1 estimation of the equilibrium gap independent of the mesh step es-
tablished in section 3, we prove in section 6 the convergence of the D1Q2 scheme towards
the unique entropy solution of the scalar conservation law. Finally, section 7 presents several
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numerical tests that illustrate the convergence of the scheme. We also present some tests that
precise the numerical convergence rate of the scheme, however without theoretical results.

2. DESCRIPTION OF THE D1Q2 SCHEME

We consider the following mono-dimensional scalar conservation law
(1) )tu(t, x) + )x�(u)(t, x) = 0, t > 0, x ∈ ℝ,

where the flux � is a C1 function on ℝ, with the initial condition

(2) u(0, x) = u0(x), x ∈ ℝ.

It is well known that the Cauchy problem (1-2) possesses a unique entropy solution which
belongs to L∞(]0, T [×ℝ), for all T > 0, and such that u(t, ⋅) ∈ BV (ℝ), ∀t > 0, provided that
the initial data u0 ∈ L∞(ℝ) ∩ BV (ℝ) (see e.g. [26], [15]).

In this contribution, a two-velocities lattice Boltzmann scheme is used to approximate the
solution of this Cauchy problem.

2.1. The framework of d’Humières. In the contribution, we use the notations proposed by
d’Humières in [10] by consideringL = Δxℤ, a regular lattice in one dimension of space with
typical mesh size Δx. The time step Δt is determined after the specification of the velocity
scale � by the relation:

Δt = Δx
�
.

For the scheme denoted by D1Q2, we introduce v = {−�, �} the set of the two velocities.
The aim of the D1Q2 scheme is to compute a particle distributions vector f = (f−, f+)

T on the
lattice L at discrete values of time: it is a numerical scheme that is formally a discretization
in time, space and velocity, where only a finite number of velocities is considered (two, in our
contribution), of the Boltzmann equation

)tf (t, x, c) + c)xf (t, x, c) = Q(f )

(even if it cannot be used to simulate this partial differential equation), with a specific collision
operatorQ(f ), whose effect is to relax the particle distributions f towards its equilibrium value
f eq.

The scheme splits into two phases for each time iteration: first, the relaxation phase that
is local in space (corresponding to the consideration of the collision operator Q), and second,
the transport phase for which an exact characteristic method is used.

In the framework proposed by d’Humières [10], the relaxation phase reads as a linear re-
laxation towards the equilibrium that is diagonal into a peculiar base. The vectors of this base
are called “moments”, the terminology being taken from the kinetic theory. Moreover, the
equilibrium is a priori a nonlinear function of the conservative variables.

In the following, we denote bym = (u, v)T the moments defined for each space point x ∈ L

and for each time t by
u = f− + f+, v = �

(

−f− + f+
)

.

The matrix of the moments M such that m =Mf satisfies

M =
(

1 1
−� �

)

, M−1 =
(

1∕2 −1∕(2�)
1∕2 1∕(2�)

)

.

Let us now describe one time step of the scheme. The starting point is the particle distri-
butions vector f (x, t) in x ∈ L at time t, the moments being computed by
(3) m(x, t) =Mf (x, t).
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The relaxation phase then reads

(4) u⋆(x, t) = u(x, t), v⋆(x, t) = v(x, t) + s(veq(x, t) − v(x, t)),

where s is the constant relaxation parameter and veq the equilibrium of the second moment,
which is considered to be a function of u. As a consequence, the first moment u is conserved
during the relaxation phase. The relaxation parameter s is usually taken in (0, 2], for stability
reasons.

The particle distributions after the relaxation phase are then computed by

(5) f⋆(x, t) =M−1m⋆(x, t).

The transport phase finally reads

(6) f�(x, t + Δt) = f⋆� (x − �Δx, t), � ∈ {−, +}.

In order to be consistent with Eq. (1), we impose that veq = �(u) [16].

2.2. A finite volume formalism. In order to study the convergence of the scheme, we rewrite
it into a finite volume formalism in this section. We first introduce usual finite volume nota-
tions. We note (xj)j∈ℤ the sequence of the discrete points in space that make up the lattice L
and (tn)n∈ℕ the sequence of the discrete times, with

xj = jΔx, j ∈ ℤ, tn = nΔt, n ∈ ℕ.

The scheme can be described either in terms of the particle distributions variables or in terms
of the moments. It computes (fn−,j , f

n
+,j)j∈ℤ,n∈ℕ and (unj , v

n
j )j∈ℤ,n∈ℕ, which are respectively

approximations of the local averages of the particle distributions and of the moments in each
volume [xj , xj+1]×[tn, tn+1].

According to (3), the particle distributions and the moments are linked by the relations
{

unj = fn−,j + fn+,j ,

vnj = −�f
n
−,j + �f

n
+,j ,

{

fn−,j =
1
2u
n
j −

1
2�v

n
j ,

fn+,j =
1
2u
n
j +

1
2�v

n
j ,

j ∈ ℤ, n ∈ ℕ.

We denote by (fn+
1∕2

−,j , fn+
1∕2

+,j ) (resp. (un+
1∕2

j , vn+
1∕2

j )) the approximated particle distributions
functions (resp. moments) at time tn after the relaxation step. By using these notations,
according to (4) the relaxation step of the scheme reads

(7) un+
1∕2

j = unj , vn+
1∕2

j = (1 − s)vnj + s�(u
n
j ), j ∈ ℤ, n ∈ ℕ.

According to (5), the particle distributions after the relaxation step are then defined by

(8) fn+
1∕2

−,j = 1
2u
n
j −

1
2�v

n+1∕2
j , fn+

1∕2
+,j = 1

2u
n
j +

1
2�v

n+1∕2
j , j ∈ ℤ, n ∈ ℕ,

and the transport phase (6) now reads

(9) fn+1+,j = fn+
1∕2

+,j−1, fn+1−,j = fn+
1∕2

−,j+1, j ∈ ℤ, n ∈ ℕ.

We can then describe a complete step of the scheme in terms of the approximated distri-
bution functions (fn−,j , f

n
+,j) by

⎧

⎪

⎨

⎪

⎩

fn+1−,j = (1 −
s
2 )f

n
−,j+1 +

s
2 f
n
+,j+1 −

s
2��(f

n
−,j+1 + fn+,j+1),

fn+1+,j =
s
2 f
n
−,j−1 + (1 −

s
2 )f

n
+,j−1 +

s
2��(f

n
−,j−1 + fn+,j−1), j ∈ ℤ, n ∈ ℕ,
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and in terms of the approximated moments (unj , v
n
j ) by

(10)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

un+1j = 1
2 (u

n
j+1 + unj−1) −

1
2� (v

n
j+1 − vnj−1)

+ s
2�

(

(�(unj−1) − vnj−1) − (�(u
n
j+1) − vnj+1)

)

,

vn+1j = 1
2 (v

n
j+1 + vnj−1) −

�
2 (u

n
j+1 − unj−1)

+ s
2

(

(�(unj−1) − vnj−1) + (�(u
n
j+1) − vnj+1)

)

,

for j ∈ ℤ, n ∈ ℕ, the discrete initial data (u0j , v
0
j )j∈ℤ being taken as an approximation of

(u0, �(u0)) that will be specified below.
Since � = Δx

Δt , equation (10) can be rewritten as

(11)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

un+1j − unj

Δt
+

vnj+1 − vnj−1

2Δx
− �

unj+1 − 2u
n
j + unj−1

2Δx
= s
2�Δt

[

(

�(unj−1) − vnj−1
)

−
(

�(unj+1) − vnj+1
)

]

,

vn+1j − vnj

Δt
+ �2

unj+1 − unj−1

2Δx
− �

vnj+1 − 2v
n
j + vnj−1

2Δx
= s
2Δt

[

(

�(unj−1) − vnj−1
)

+
(

�(unj+1) − vnj+1
)

]

.

Let us now make a link between the D1Q2 scheme and a relaxation approximation of the
scalar conservation law. For given Λ and " > 0, let us consider the Jin and Xin relaxation
system [17]:

(12)
⎧

⎪

⎨

⎪

⎩

)tu + )xv = 0,

)tv + Λ2)xu =
1
"
(�(u) − v).

TheD1Q2 scheme can be linked to a discretization of the relaxation system (12), by a splitting
between the hyperbolic part—discretized with a Lax-Friedrichs scheme—and the relaxation
part—discretized with an explicit Euler method—where firstΛ = � and second the relaxation
parameter s, the time step Δt, and the Jin and Xin relaxation rate " are linked by the relation
" = Δt∕s.

Relaxation schemes corresponding to a discretization of (12) for fixed relaxation rate "
were widely studied in the past ([23], [2] and [22]). In the first two papers the authors study
the convergence of a discretization of (12), as the mesh step goes to 0, then as the relaxation
rate " goes to 0. In [22], the convergence of a relaxation scheme is studied as both parameters,
the mesh step and the relaxation rate ", go to 0 independently.

In the D1Q2 scheme, both parameters (mesh step and relaxation rate ") are linked via the
new parameter s. Regarding the convergence of the D1Q2 scheme can thus also be viewed as
studying the limit of the scheme as both the space mesh and the relaxation rate " = Δt∕s go
to 0 at the same time as the relaxation parameter s is constant.

We emphasise however that the D1Q2 scheme is not constructed as a discretization of the
relaxation system (12). In comparison with the previously mentioned works, in addition to
the differences concerning the role of the parameters, it introduces a different (and not natural
in a finite volume framework) discretization of the source term, the discretization of (12)
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considered in [22] being :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

un+1j − unj

Δt
+

vnj+1 − vnj−1

2Δx
− Λ

unj+1 − 2u
n
j + unj−1

2Δx
= 0

vn+1j − vnj

Δt
+ Λ2

unj+1 − unj−1

2Δx
− Λ

vnj+1 − 2v
n
j + vnj−1

2Δx
= 1
"
(

�(un+1j ) − vn+1j
)

.

2.3. Comments on the choice of the formalism. As the lattice Boltzmann method was in-
troduced as a pure algorithm and not as a specific discretization of a partial differential equa-
tion, the interpretation of the discret quantities (here unj and vnj for instance) as node or cell
informations is left up to the user.

Note that recent works manage to rewrite any lattice Boltzmann schemes as a multi-step
algorithm only on the conserved variables, that is, for instance in our case, without using the
non-conserved variable vnj [3]. It yields for the D1Q2 scheme

un+1j = 2−s
2 (u

n
j+1 + unj−1) − (1 − s)u

n−1
j − s

2�
(�(unj+1) − �(u

n
j−1)).

In our present contribution, we do not use this property because it is not really adapted to
this work where the dynamics on the particule distribution functions has to be investigated.
However, for smooth solutions, a multi-step finite difference framework can then be used to
prove that the algorithm is consistent with the target hyperbolic equation and moreover that
the equivalent equation of the scheme—in the sense of the finite difference schemes—is the
same that the one obtained by the Taylor expansion method [11, 16]. This equivalent equation
reads

(13) )tu + )x�(u) = Δt
( 1
s −

1
2

)

)x
(

(�2 − (�′(u))2))xu
)

+ O(Δt2).

It points out that, if the relaxation parameter s lies in (0, 2), the right member acts as a smooth-
ing second-order operator for large enough scheme velocity �.

However, as we are interested in discontinuous solutions that can be involved in the non-
linear hyperbolic equations, we retain a cell-centered finite volume interpretation of the discret
quantities. The finite volume formalism of the D1Q2 scheme allowed us to use specific tech-
niques of finite volume schemes for hyperbolic conservation laws, whose solutions might be
discontinuous, to prove the convergence of the discrete solution to the unique entropy solution
of the scalar conservation law. At our knowledge, we can not use the same techniques for a
general lattice Boltzmann scheme and we do not claim that the lattice Boltzmann schemes are
finite volume schemes, in the sense that they are not built as a finite volume discretisation of
a particular partial differential equation. We just interpret the discrete quantities in the finite
volume formalism in order to use the same objects and techniques of these methods to prove
our convergence result.

3. TOTAL VARIATION AND L∞ ESTIMATIONS

In this section we establishL∞ andBV estimates for the numerical scheme (10). We begin
this section by recalling the definitions of the functional spaces that we will use in the sequel
and by establishing the assumptions we make in order to get these estimates.

3.1. Notations and definitions. Let us introduce some notations useful in the sequel. If
w = (wj)j∈ℤ ∈ ℝℤ, we denote by �xw ∶= ((�xw)j+1∕2)j∈ℤ the sequence of ℝℤ defined by

(�xw)j+1∕2 = wj+1 − wj , j ∈ ℤ.

F. Caetano, F. Dubois, and B. Graille 6



A RESULT OF CONVERGENCE FOR A D1Q2 LATTICE BOLTZMANN SCHEME

If w = (wn)n∈ℕ ∈ ℝℕ, we denote by �tw ∶= ((�tw)n+1∕2)n∈ℕ the sequence of ℝℕ defined by

(�tw)n+1∕2 = wn+1 − wn, n ∈ ℕ.
In order to investigate the convergence of the numerical solution, we recall some classical

normed sub-spaces of ℝℤ and the corresponding norms.

Definition 1 (l1(ℝℤ) space, ‖ ⋅ ‖Δx,l1 norm). Let w = (wj)j∈ℤ ∈ ℝℤ and Δx > 0 being
given. We define the sequential one norm by

‖w‖Δx,l1 = Δx
∑

j∈ℤ
|wj|,

and the associated space l1(ℝℤ) as
l1(ℝZ ) =

{

w ∈ ℝℤ ∶ ‖w‖Δx,l1 < +∞
}

.

Definition 2 (sequential total variation). Let w = (wj)j∈ℤ ∈ ℝℤ. We define the total varia-
tion in space by

TV (w) =
∑

j∈ℤ
|(�xw)j+1∕2|.

We recall below the classical Banach space of functions with bounded variation and the
compactness Helly’s theorem that we will use in the proof of our main result. To more details
and to the proofs of these results, we address e.g. to [14] and to [1].

Definition 3 (Bounded variation space). Let Ω be an open set of ℝn. For g ∈ L1loc(Ω), the
total variation of g over Ω denoted by TVΩ(g) is defined by

TVΩ(g) = sup
'∈C10(Ω)
‖'‖∞≤1

∫Ω
g div'.

We denote by BV (Ω) the subspace of L1loc(Ω) of functions with bounded total variation over
Ω:

BV (Ω) =
{

g ∈ L1loc(Ω) ∶ TVΩ(g) < +∞
}

.

Proposition (Functional space). The space L1(Ω) ∩ BV (Ω) is a Banach space for the norm
‖g‖ = ‖g‖L1(Ω) + TVΩ(g).

Theorem (Helly’s sequential theorem). Let Ω ⊂ ℝn be a bounded open set with a Lipschitz
boundary and let (gn)n∈ℕ be a sequence which is bounded in L1(Ω) ∩ BV (Ω). Then there
exists a sub-sequence denoted by (g'(n))n∈ℕ and a function g ∈ L1(Ω) ∩ BV (Ω) such that

{

g'(n) ⟶ g in L1(Ω) and a.e. x ∈ Ω,
T VΩ(g) ≤ lim infn∈ℕ

TVΩ(g'(n)).

In the sequel, we use the following notations for the sequences in ℝℤ

fn± =
(

fn±,j
)

j∈ℤ, un =
(

unj
)

j∈ℤ, vn =
(

vnj
)

j∈ℤ, �(un) =
(

�(unj )
)

j∈ℤ,

for n ∈ ℕ, ± ∈ {+,−}, and we use the following notations for the sequences in ℝℕ

f±,j =
(

fn±,j
)n∈ℕ, uj =

(

unj
)n∈ℕ, vj =

(

vnj
)n∈ℕ, �(uj) =

(

�(unj )
)n∈ℕ,

for j ∈ ℤ, ± ∈ {+,−}.
Let us also introduce the functions

(14) ℎ+(�) =
�� + �(�)

2�
, ℎ−(�) =

�� − �(�)
2�

, � ∈ ℝ.
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The functions ℎ+ and ℎ− correspond to the equilibrium of the particle distribution functions
g+ and g−. From relations (7) and (8), the relaxation phase can be rewritten as

(15) fn+
1∕2

±,j = (1 − s)fn±,j + sℎ
±(unj ), j ∈ ℤ, n ∈ ℕ.

3.2. Assumptions. We suppose throughout the paper that the initial condition u0 belongs to
L∞(ℝ) ∩ BV (ℝ). We then define

� = ess inf u0, � = ess sup u0,

M = max
{

|�′(�)|, for � ≤ � ≤ �
}

.
and we make the following main assumptions concerning the numerical scheme (10).

Assumption 1. The relaxation parameter s lies in (0, 1].

Often in the applications, the value of the relaxation parameter s is chosen larger than 1
and often close to 2. In the case of the linear D1Q2, the scheme remains numerically stable
in a l2-sense for s ∈ [0, 2] and the first-order numerical diffusion term is proportional to
1∕s − 1∕2: the choice s = 2 minimises then the error and the convergence rate is equal to 2
in that case (see [16]). For general lattice Boltzmann schemes, the “optimal” choices for the
relaxation parameters are more complicated and are motivated by a combination of stability
and accuracy reasons. However, these optimal parameters are generally larger than 1. The
reason why we impose that s lies in (0, 1] is that the scheme has monotonicity properties in
this case. And these properties are essential for dealing with weak-solutions according to our
technique of estimates.

Assumption 2. The velocity of the scheme satisfies � = Δx∕Δt ≥M .

This assumption is known as the sub-characteristic condition. It states that the solutions
of the equilibrium equation propagate with a characteristic speed smaller than that of the
numerical scheme.

Assumption 3. The initial state is given by

u0j =
1
Δx ∫

xj+1

xj
u0(x) dx, v0j = �(u

0
j ), j ∈ ℤ.

This last assumption means that the initial values of the non-conserved moment are taken
to the equilibrium. This choice is done more often than not as this second moment has to be
a perturbation of the equilibrium state [21].

3.3. Preliminary lemmas. We begin by proving two lemmas that will be used throughout
the proofs of the estimates and convergence of the numerical solutions. The first one concerns
the total variation of the numerical initial data.

Lemma 1. The total variation of the discretized conserved moment at initial time u0 =
(u0j )j∈ℤ is controlled by the total variation of the initial function u0:

TV (u0) =
∑

j∈ℤ
|(�xu0)j+1∕2| ≤ TVℝ(u0).

Proof. This result is commonly used in the context of finite volumes approximation of con-
servation laws; we propose a precise proof in appendix A. ■

The second lemma concerns some properties of the functions ℎ+ and ℎ− defined by (14).

Lemma 2. Under assumption 2, the functions ℎ+ and ℎ− are non decreasing over [�, �].
Moreover, for all � ∈ ℝ, ℎ+(�) + ℎ−(�) = � and (ℎ+)′(�) + (ℎ−)′(�) = 1.
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Proof. The functions ℎ+ and ℎ− are C1(ℝ) and their derivative is non negative over [�, �],
under assumption 2. The second result of the lemma is a trivial consequence of the definition
of the functions ℎ±. ■

3.4. Uniform bound estimates. In this section we establish a maximum principle for the
numerical solutions of the scheme (10). The technique of the proof is the same as in [2] or
[22]. For the clearness of our work we present it here.

Proposition 3 (maximum principle). Under assumptions 1, 2 and 3, we have

unj ∈ [�, �], fn±,j ∈ [ℎ
±(�), ℎ±(�)], j ∈ ℤ, n ∈ ℕ.

Proof. A recursive reasoning is done. Since u0 ∈ [�, �], a.e. x ∈ ℝ, we have that u0j ∈ [�, �]
for j ∈ ℤ. By lemma 2, and since v0j = �(u

0
j ), we get

f0±,j = ℎ
±(u0j ) ∈ [ℎ

±(�), ℎ±(�)], j ∈ ℤ.

We then assume that the three inclusions are true for a certain n ∈ ℕ. As s ∈ (0, 1],
Eq. (15) implies that fn+

1∕2
−,j and fn+

1∕2
+,j are respectively convex linear combinations of fn−,j and

ℎ−(unj ), and of fn+,j and ℎ
+(unj ), so that fn+

1∕2
−,j ∈ [ℎ−(�), ℎ−(�)] and fn+

1∕2
+,j ∈ [ℎ+(�), ℎ+(�)], for

j ∈ ℤ. The transport phase just shift the distribution functions, so that the same inclusions
yield for fn+1−,j and fn+1+,j for j ∈ ℤ. Finally, we have

un+1j = fn+1−,j + fn+1+,j ∈ [ℎ
−(�) + ℎ+(�), ℎ−(�) + ℎ+(�)] = [�, �], j ∈ ℤ,

as ℎ−(�) + ℎ+(�) = � for all � ∈ ℝ, by lemma 2. ■

3.5. Total variation estimates. We establish now estimates on the total variation in space
and in time of the numerical solutions. This kind of estimates use now classical tools in the
framework of finite volume schemes for hyperbolic conservation laws (see for instance [8]),
and are similar but slightly different to the ones of [2] and of [7]. For the completeness of our
work we present the proofs here.

Proposition 4 (Spatial total variation estimations). Under assumptions 1, 2 and 3, the particle
distributions functions satisfy the total variation decreasing estimate

TV (fn+1+ ) + TV (fn+1− ) ≤ TV (fn+) + TV (f
n
−), n ∈ ℕ.

Moreover, we have

TV (fn+) + TV (f
n
−) ≤ TVℝ(u0), n ∈ ℕ,(16)

TV (un) ≤ TVℝ(u0), n ∈ ℕ,(17)

TV (vn) ≤ �TVℝ(u0), n ∈ ℕ.(18)

Proof. First we remark that we have TV (un) ≤ TV (fn−) + TV (f
n
+), as u

n
j = fn−,j + fn+,j . We

first evaluate the total variation of the approximated particle distributions functions after the
relaxation phase. We deduce from (15) that

(�xf
n+1∕2
± )j+1∕2 = (1 − s)(�xf

n
±)j+1∕2 + s

(

ℎ±(unj+1) − ℎ
±(unj )

)

.
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And we have, by performing a first order Taylor expansion,

ℎ±(unj+1) − ℎ
±(unj ) =

�(�xun)j+1∕2 ± (�(u
n
j+1) − �(u

n
j ))

2�

=
(� ± �′(�nj+1∕2))(�xu

n)j+1∕2
2�

= (ℎ±)′(�nj+1∕2)(�xu
n)j+1∕2,

where �nj+1∕2 ∈ (�, �) is such that �(u
n
j+1)−�(u

n
j ) = �

′(�nj+1∕2)(u
n
j+1−unj ). We then have, using

that (ℎ±)′ ≥ 0 over [�, �] and that s ∈ (0, 1],
|

|

|

(�xf
n+1∕2
± )j+1∕2

|

|

|

≤ (1 − s)||
|

(�xf
n
±)j+1∕2

|

|

|

+ s(ℎ±)′(�nj+1∕2)
|

|

|

(�xun)j+1∕2
|

|

|

.

Since (ℎ+)′ + (ℎ−)′ = 1, summing the above two inequalities over j ∈ ℤ, for ± ∈ {+,−},
yields

TV (fn+
1∕2

+ ) + TV (fn+1∕2− ) ≤ (1 − s)TV (fn+) + (1 − s)TV (f
n
−) + sTV (u

n),

and finally,
TV (fn+

1∕2
+ ) + TV (fn+1∕2− ) ≤ TV (fn+) + TV (f

n
−).

Concerning the transport phase, the total variation of the particle distributions functions after
this phase is unchanged as they are defined as a translation of the particle distributions before
the phase. We have thus

TV (fn+1+ ) + TV (fn+1− ) = TV (fn+
1∕2

+ ) + TV (fn+1∕2− ) ≤ TV (fn+) + TV (f
n
−),

which allow us to conclude that

(19) TV (fn+) + TV (f
n
−) ≤ TV (f0−) + TV (f

0
+), ∀n ∈ ℕ.

We also have for the total variation of the conserved moment un

(20) TV (un) ≤ TV (fn−) + TV (f
n
+) ≤ TV (f0−) + TV (f

0
+).

The definition of the initial numerical data in assumption 3 implies that
|

|

|

(�xf
0
±)j+1∕2

|

|

|

= |

|

|

ℎ±(u0j+1) − ℎ
±(u0j )

|

|

|

= (ℎ±)′(�0j+1∕2)
|

|

|

(�xu0)j+1∕2
|

|

|

.

By summing these two equalities over j ∈ ℤ, for ± ∈ {+,−}, we get TV (f0−) + TV (f
0
+) =

TV (u0), which combined with (19) and with (20) gives (16) and (17). Since |vn| ≤ �(|fn+| +
|fn−|), we also obtain (18). ■

In order to control the total variation of the numerical approximation in time and space
variables, we prove now uniform total time variation estimates for the approximated solutions.
To do so, we estimate the quantity

∑

j∈ℤ

|

|

|

(�tf+,j)
n+1∕2|

|

|

+ |

|

|

(�tf−,j)
n+1∕2|

|

|

.

Proposition 5 (total variation in time estimates). Under assumptions 1, 2 and 3, the particle
distributions functions satisfy the estimate

(21)
∑

j∈ℤ

|

|

|

(�tf+,j)
n+1∕2|

|

|

+ |

|

|

(�tf−,j)
n+1∕2|

|

|

≤
∑

j∈ℤ

|

|

|

(�tf+,j)
n−1∕2|

|

|

+ |

|

|

(�tf−,j)
n−1∕2|

|

|

≤ 2TVℝ(u0), n ∈ ℕ.
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Moreover we have
(22)

∑

j∈ℤ

|

|

|

(�tuj)
n+1∕2|

|

|

≤ 2TVℝ(u0),
∑

j∈ℤ

|

|

|

(�tvj)
n+1∕2|

|

|

≤ 2�TVℝ(u0), n ∈ ℕ.

Proof. Suppose that
∑

j∈ℤ

|

|

|

(�tf+,j)
n−1∕2|

|

|

+ |

|

|

(�tf−,j)
n−1∕2|

|

|

< +∞.

Since u = g+ + g−, then we also have
∑

j∈ℤ

|

|

|

(�tuj)
n−1∕2|

|

|

< +∞.

From (9) and (15), we have fn+1±,j = fn+
1∕2

±,j∓1 = (1 − s)f
n
±,j∓1 + sℎ

±(unj∓1). We obtain then

(�tf±,j)
n+1∕2 = (1 − s)(�tf±,j∓1)

n−1∕2 + s
(

ℎ±(unj∓1) − ℎ
±(un−1j∓1)

)

= (1 − s)(�tf±,j∓1)
n−1∕2 + s

� ± �′(�n−
1∕2

j∓1 )

2�
(�tuj∓1)

n−1∕2,

where we used that, for j ∈ ℤ,

ℎ±(unj ) − ℎ
±(un−1j ) = (ℎ±)′(�n−

1∕2
j )(�tuj)

n−1∕2 =
� ± �′(�n−

1∕2
j )

2�
(�tuj)

n−1∕2,

with �n−
1∕2

j lying between unj and un−1j .
Assumptions 1 and 2 yield

|

|

|

(�tf±,j)
n+1∕2|

|

|

≤ (1 − s) ||
|

(�tf±,j∓1)
n−1∕2|

|

|

+ s
� ± �′(�n−

1∕2
j∓1 )

2�
|

|

|

(�tuj∓1)
n−1∕2|

|

|

,

By summing the above two inequalities over j ∈ ℤ, for ± ∈ {+,−}, we get
∑

j∈ℤ

(

|

|

|

(�tf+,j)
n+1∕2|

|

|

+ |

|

|

(�tf−,j)
n+1∕2|

|

|

)

≤ (1 − s)
∑

j∈ℤ

(

|

|

|

(�tf+,j)
n−1∕2|

|

|

+ |

|

|

(�tf−,j)
n−1∕2|

|

|

)

+ s
∑

j∈ℤ

|

|

|

(�tuj)
n−1∕2|

|

|

.

Since we have |u| ≤ |f+| + |f−|, we get
∑

j∈ℤ

(

|

|

|

(�tf+,j)
n+1∕2|

|

|

+ |

|

|

(�tf−,j)
n+1∕2|

|

|

)

≤
∑

j∈ℤ

(

|

|

|

(�tf+,j)
n−1∕2|

|

|

+ |

|

|

(�tf−,j)
n−1∕2|

|

|

)

.

We conclude then, by reasoning recursively, that

(23)
∑

j∈ℤ

(

|

|

|

(�tf+,j)
n+1∕2|

|

|

+ |

|

|

(�tf−,j)
n+1∕2|

|

|

)

≤
∑

j∈ℤ

(

|

|

|

(�tf+,j)
1∕2|
|

|

+ |

|

|

(�tf−,j)
1∕2|
|

|

)

, ∀n ∈ ℕ.

Now, we have, by using assumption 3,

(�tf+,j)
1∕2 = |f1+,j − f0+,j| = |(1 − s)f0+,j−1 + sℎ

+(u0j−1) − f0+,j|

= |ℎ+(u0j−1) − ℎ
+(u0j )| ≤ |u0j−1 − u0j |,

and, in the same way,
(�tf−,j)

1∕2 ≤ |u0j+1 − u0j |,

which, combined with (23), implies (21). Since |un| ≤ |fn+| + |fn−| and |v
n
| ≤ �(|fn+| + |fn−|),

we also obtain (22). ■

F. Caetano, F. Dubois, and B. Graille 11



A RESULT OF CONVERGENCE FOR A D1Q2 LATTICE BOLTZMANN SCHEME

3.6. Estimation of the equilibrium gap. We aim to prove that, at the discrete level, the
equilibrium gap �(u) − v tends to 0, as the discretization step tends to 0. The purpose of the
next proposition is then to estimate the quantity �(unj ) − vnj .

Proposition 6 (estimation of the discrete equilibrium gap). Under assumptions 1, 2 and 3,
the equilibrium gap is bounded, that is

‖�(un) − vn‖Δx,l1 ≤
2�Δx
s

TVℝ(u0), n ∈ ℕ.

Proof. We have to estimate

‖�(un) − vn‖Δx,l1 = Δx
∑

j∈ℤ
|�(unj ) − vnj |.

For n = 0, we have ‖�(u0) − v0‖Δx,l1 = 0. Then, we use the relations

�(un+1j ) − �(unj ) = �
′(�n+

1∕2
j )(un+1j − unj )

with �n+
1∕2

j ∈ (�, �) and vn+
1∕2

j = (1 − s)vnj + s�(u
n
j ). We have

�(un+1j ) − vn+1j = �(un+1j ) − �(unj ) + �(u
n
j ) − vn+

1∕2
j + vn+

1∕2
j − vn+1j

= (1 − s)
(

�(unj ) − vnj
)

+ �′(�n+
1∕2

j )(un+1j − unj ) − (v
n+1
j − vn+

1∕2
j )

= (1 − s)
(

�(unj ) − vnj
)

+ �′(�n+
1∕2

j )
(

fn+
1∕2

+,j−1 + fn+
1∕2

−,j+1 − fn+
1∕2

+,j − fn+
1∕2

−,j
)

− �
(

fn+
1∕2

+,j−1 − fn+
1∕2

−,j+1 − fn+
1∕2

+,j + fn+
1∕2

−,j
)

= (1 − s)
(

�(unj ) − vnj
)

+
(

�′(�n+
1∕2

j ) − �
)(

fn+
1∕2

+,j−1 − fn+
1∕2

+,j
)

+
(

�′(�n+
1∕2

j ) + �
)(

fn+
1∕2

−,j+1 − fn+
1∕2

−,j
)

.

By assumptions 1 and 2, we obtain

|�(un+1j ) − vn+1j | ≤ |1 − s| |�(unj ) − vnj | + 2�
(

|fn+
1∕2

+,j−1 − fn+
1∕2

+,j | + |fn+
1∕2

−,j+1 − fn+
1∕2

−,j |

)

.

As a consequence of proposition 4, summing the above inequalities over j ∈ ℤ yields

‖�(un+1) − vn+1‖Δx,l1 ≤ |1 − s|‖�(un) − vn‖Δx,l1 + 2�ΔxTV (u
0)

as TV (fn+
1∕2

+ ) + TV (fn+1∕2− ) ≤ TV (u0). A recursive reasoning then implies that

‖�(un) − vn‖Δx,l1 ≤ 2�ΔxTV (u
0)

n
∑

k=0
|1 − s|k

≤ 2�Δx
s

TV (u0) ≤ 2�Δx
s

TVℝ(u0), n ∈ ℕ,

as s ∈ (0, 1] by assumption 1 and using lemma 1. ■

4. CONVERGENCE OF THE NUMERICAL SCHEME

This section is devoted to proving the convergence of the numerical solution towards aweak
solution of the nonlinear Cauchy problem (1-2). This result is obtained as a consequence of
the spatial and temporal estimates proved in section 3. The compactness of the numerical
sequences is used in the space of the functions with bounded variation and is obtained as a
consequence of Helly’s theorem.
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As usual in the context of finite volume schemes, we seek an approximated solution of the
form

uΔt,Δx(t, x) =
∑

j∈ℤ

∑

n∈ℕ
unj 1[tn,tn+1) 1[xj ,xj+1),

vΔt,Δx(t, x) =
∑

j∈ℤ

∑

n∈ℕ
vnj 1[tn,tn+1) 1[xj ,xj+1).

We begin by proving the convergence of the sequence (uΔt,Δx, vΔt,Δx), as the space-meshing
Δx and the time-step Δt tend to 0, towards a function (ū, v̄), where ū is a weak solution of the
Cauchy problem (1-2) and v̄ = �(ū). The main tools of the proof are classical in the context
of finite volume schemes [15], even if the treatment of the source term is specific to the D1Q2
scheme. We propose the proof in appendix B.

Theorem 7 (convergence towards a weak solution). Under assumptions 1, 2 and 3, there exist
sub-sequences of uΔt,Δx, vΔt,Δx (still denoted by uΔt,Δx, vΔt,Δx) and functions ū, v̄ with

ū, v̄ ∈ L∞(ℝ+×ℝ) ∩ BV ([0, T ]×ℝ),
for all T > 0, such that

(uΔt,Δx, vΔt,Δx) ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→Δt,Δx→0
(ū, v̄) L1loc([0,+∞[×ℝ) × L

1
loc([0,+∞[×ℝ).

We have in addition that ū is a weak solution of (1-2) in [0,+∞[×ℝ, and that v̄ = �(ū).

5. ENTROPIES AND NUMERICAL ENTROPY ESTIMATES

In this section we aim to establish discrete entropy estimates for the numerical scheme (10).
To do so, wewill use the relaxation entropies introduced in [27] in order to construct numerical
entropies for the scheme. We will also make a link between these relaxation entropies and a
kinetic decomposition of the dual entropy for the nonlinear conservation law, introduced in
[5, 12].

5.1. Entropy. Let us consider an entropy-entropy flux pair (�, q), with � strictly convex, for
the hyperbolic scalar conservation law (1),

�′(u)�′(u) = q′(u), �′′(u) > 0, u ∈ [�, �].
For given �, we introduce the homogeneous Jin and Xin relaxation system [17]:

(24)

{

)tU + )xV = 0,

)tV + �2)xU = 0,

which we can write in an equivalent way in the characteristic variables (F+, F−):

(25)

{

)tF+ + �)xF+ = 0,
)tF− − �)xF− = 0.

We remark that (24) is the homogeneous part of (12), with Λ = �, where � is the velocity
scale in the D1Q2 scheme; we consider here this choice in order to motivate the construction
of numerical entropies for our scheme.

Following Serre [27], we define an entropy-entropy flux couple (E,Q) for system (24) as
follows. Let us first define the couple (e+, e−) of the kinetic entropies by

e±(g) =
�� ± q
2�

((ℎ±)−1(g)), g ∈ [ℎ±(�), ℎ±(�)],

and the couple (�̃, q̃) by
(�̃, q̃)(g−, g+) =

(

e+(g+) + e
−(g−), �e

+(g+) − �e
−(g−)

)

, g± ∈ [ℎ
±(�), ℎ±(�)].
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We remark then that the couple (�̃, q̃) is an entropy-entropy flux pair for system (25) that lies
in the set [ℎ+(�), ℎ+(�)] × [ℎ−(�), ℎ−(�)].

Let us now define the couple (E,Q) by

E(u, v) = e+
(�u + v

2�

)

+ e−
(�u − v

2�

)

, Q(u, v) = �e+
(�u + v

2�

)

− �e−
(�u − v

2�

)

,

for (u, v) such that (�u+ v)∕(2�) ∈ [ℎ+(�), ℎ+(�)], (�u− v)∕(2�) ∈ [ℎ−(�), ℎ−(�)]. Then, the
couple (E,Q) is an entropy-entropy flux pair for the system (24), which satisfies

(E,Q)(u, �(u)) = (�, q)(u), ∀u ∈ [�, �].

Let us now state some properties of the entropies e+ and e− that are useful to establish the
entropy estimates for the numerical solutions.

Due to the assumption (2), we can easily check the following lemma.

Lemma 8. Under assumption (2), the functions e+ and e− satisfy

e±′(g) = �′((ℎ±)−1(g)), e±′′(g) > 0, g ∈ [ℎ±(�), ℎ±(�)].

Furthermore we have

e+′(ℎ+(u)) = e−′(ℎ−(u)) = �′(u), u ∈ [�, �].

Proof. The result of the lemma follows immediately from the definition of e± and from the
relation �′�′ = q′. Since ℎ±′(�) = �±�′(�)

2� , for � ∈ ℝ, we have

e±′(g) =
(

�′
� ± �′

2�

)

((ℎ±)−1(g)) 1
(ℎ±)′((ℎ±)−1(g))

= �′((ℎ±)−1(g)).

■

5.2. Dual entropy. In this paragraph we make a link between the relaxation entropies e+, e−
defined previously with the kinetic decomposition of the dual entropy introduced by Bouchut
in [5] and by one of the authors in [12] for the nonlinear conservation law (1).

Let us introduce the entropy variable # for the scalar conservation law:

# = �′(u).

We define the dual entropy #⟼ �⋆(#) according to

�⋆(#) = sup
w

(

#w − �(w)
)

.

We then have

�⋆(#) = #(�′)−1(#) − �
(

(�′)−1(#)
)

= #u − �(u),
d�⋆

d#
(#) = (�′)−1(#) = u.

The dual entropy flux #⟼ q⋆(#) is then defined according to

q⋆(#) = #�
(

(�′)−1(#)
)

− q
(

(�′)−1(#)
)

= #�(u) − q(u).

We have the following differential
dq⋆

d#
(#) = �

(

(�′)−1(#)
)

= �(u).

Following [12], let us introduce two convex functions #⟼  ⋆± (#) that satisfy the kinetic
decomposition of the dual entropy

(26)  ⋆+ (#) +  
⋆
− (#) = �

⋆(#), � ⋆+ (#) − � 
⋆
− (#) = q

⋆(#),
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and the equilibrium functions u⟼ geq± (u) according to the relation

geq± (u) =
d ⋆±
d#

(

�′(u)
)

=
d ⋆±
d#

(#).

We can then define a kinetic hyperbolic system

(27)
⎧

⎪

⎨

⎪

⎩

)tg+ + �)xg+ =
1
�
(

geq+ (g+ + g−) − g+
)

,

)tg− − �)xg− =
1
�
(

geq− (g+ + g−) − g−
)

.

We introduce the duals g ⟼  ±(g) of the functions  
⋆
± defined in (26):

 ±(g) = sup
#

(

g# −  ⋆± (#)
)

.

Then

 ′±(g) =

(

d ⋆±
d#

)−1

(g).

We know that such a framework is able to put in evidence a “H-theorem” [12]. Just multiply
each equation of (27) by  ′±(g±); then

)t
(

 +(g+) +  −(g−)
)

+ )x
(

� +(g+) − � −(g−)
)

≤ 0.

The natural question is to make a link between this framework and the tools introduced in
this contribution, id est to make a link between ℎ± and geq± and between e± and  ±. We have
the following proposition.

Proposition 9 (Duality and entropy decomposition). We have

geq± (u) = ℎ
±(u), u ∈ [�, �],

 ±(g) = e
±(g), g ∈ [ℎ±(�), ℎ±(�)].

Proof. We first have

 ⋆± (#) =
��⋆(#) ± q⋆(#)

2�
,

d ⋆±
d#

(#) =
�u ± �(u)

2�
= ℎ±(u) with # = �′(u).

Then, we can identify geq± = ℎ±.
At the optimum value # that define  ±(g), we have g =

(

 ⋆±
)′(#) = ℎ±(u) with �′(u) = #.

Then

 ±(g) = g# −
1
2

(

�⋆(#) ± 1
�
q⋆(#)

)

= g# − 1
2

(

#u − �(u) ± 1
�
(

#�(u) − q(u)
)

)

= #
(

g − 1
2

(

u ± 1
�
�(u)

))

+ 1
2

(

�(u) ± 1
�
q(u)

)

= #(g − ℎ±(u)) + 1
2

(

� ± 1
�
q
)(

(ℎ±)−1(g)
)

= e±(g),

and the proof is established. ■
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5.3. Numerical entropies estimates. In this section, we construct a numerical entropy and
the corresponding numerical entropy-flux for the numerical scheme and we prove the dissipa-
tion of this numerical entropy. Inspired by [22], let us define the numerical entropies for the
numerical scheme by

En+
1∕2

j = e+(fn+
1∕2

+,j ) + e−(fn+
1∕2

−,j ), j ∈ ℤ, n ∈ ℕ,(28)

Qn+
1∕2

j+1∕2 = �e
+(fn+

1∕2
+,j ) − �e−(fn+

1∕2
−,j+1), j ∈ ℤ, n ∈ ℕ,

where � = Δx∕Δt. Note that the numerical entropies are defined for each time step after
the relaxation phase and before the transport phase. This is essential in order to obtained the
estimates. Let us now define the numerical entropy production

(29) Enj =
En+

1∕2
j − En−

1∕2
j

Δt
+
Qn−

1∕2
j+1∕2 −Q

n−1∕2
j−1∕2

Δx
, j ∈ ℤ, n ∈ ℕ∗.

We begin by proving that the entropy production has a sign.

Proposition 10. Under assumptions 1 and 2, we have

Enj ≤ 0, j ∈ ℤ, n ∈ ℕ∗.

Proof. We develop Enj . Since we have � = Δx∕Δt, we obtain

Enj =
e+(fn+

1∕2
+,j ) − e+(fn−

1∕2
+,j−1)

Δt
+
e−(fn+

1∕2
−,j ) − e−(fn−

1∕2
−,j+1)

Δt
.

By using one time step of the scheme, we have

fn+
1∕2

±,j = fn−
1∕2

±,j∓1 ±
s
2�

(

�(un−
1∕2

j ) − vn−
1∕2

j
)

= fn−
1∕2

±,j∓1 ±
s

2�(1 − s)
(

�(un+
1∕2

j ) − vn+
1∕2

j
)

,

the convexity of e± implies that

e±(fn+
1∕2

±,j ) ∓ s
2�(1 − s)

(

�(un+
1∕2

j ) − vn+
1∕2

j
)

e±′(fn+
1∕2

±,j ) ≤ e±(fn−
1∕2

±,j∓1).

We have thus that

e±(fn+
1∕2

±,j ) − e±(fn−
1∕2

±,j∓1)

Δt
≤ ± s

2�(1 − s)
(

�(un+
1∕2

j ) − vn+
1∕2

j
)

e±′(fn+
1∕2

±,j ).

Hence we get

(30) Enj ≤ s
2�(1 − s)

(

�(un+
1∕2

j ) − vn+
1∕2

j
)(

e+′(fn+
1∕2

+,j ) − e−′(fn+
1∕2

−,j )
)

.

Now from
fn+

1∕2
±,j = ℎ±(un+

1∕2
j ) ± 1

2�
(

vn+
1∕2

j − �(un+
1∕2

j )
)

it follows that

e±′(fn+
1∕2

±,j ) = e±′(ℎ±(un+
1∕2

j )) ± 1
2�

(

vn+
1∕2

j − �(un+
1∕2

j )
)

e±′′(�±,n+
1∕2

j ),

where �±,n+
1∕2

j lie between fn+
1∕2

±,j and ℎ±(un+
1∕2

j ). Combining with (30) and using Lemma 8, we
conclude that

Enj ≤ − s
4�2(1 − s)

(

�(un+
1∕2

j ) − vn+
1∕2

j
)2(e+′′(�+,n+

1∕2
j ) + e−′′(�−,n+

1∕2
j )

)

≤ 0,

and the proof is established. ■
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6. CONVERGENCE TOWARDS THE ENTROPIC SOLUTION

In this section we establish the final convergence result, by using the discrete entropy esti-
mates obtained at the previous section. We will prove that the weak solution of the nonlinear
Cauchy problem (1-2) given by Theorem 7, obtained as the limit ū of the numerical scheme,
is indeed the unique entropic solution of the Cauchy problem (1-2).

Theorem 11 (convergence result). Let u be a weak solution of the Cauchy problem (1-2) given
by Theorem 7. Then we have that u is the unique entropic solution of (1-2).

The main tools of the proof are classical in the context of the finite volume schemes [15],
but the choice of the numerical entropies (28) being specific to the D1Q2 scheme, we present
it here.

Proof. Let (�, q) be an entropy-entropy-flux pair for (1), with � strictly convex and let Enj be
defined by (29). Let us also consider  ∈ D(]0,+∞[×ℝ),  ≥ 0 and put

 nj =  (t
n, xj), j ∈ ℤ, n ∈ ℕ,

 Δt,Δx(t, x) =
∑

n∈ℕ

∑

j∈ℤ
1[tn,tn+1)(t)1[xj ,xj+1)(x) 

n
j .

The result of Proposition 10 implies that

ΔtΔxEnj  
n
j ≤ 0, j ∈ ℤ, n ∈ ℕ∗,

and by summing over n ∈ ℕ∗ and over j ∈ ℤ, we get

ΔtΔx
∑

j∈ℤ

∑

n∈ℕ∗
 nj

⎛

⎜

⎜

⎝

En+
1∕2

j − En−
1∕2

j

Δt
+
Qn−

1∕2
j+1∕2 −Q

n−1∕2
j−1∕2

Δx

⎞

⎟

⎟

⎠

≤ 0.

We now do a discrete integration by parts. We obtain

ΔtΔx

(

∑

j∈ℤ

∑

n∈ℕ
En+

1∕2
j

 nj −  
n+1
j

Δt
+
∑

j∈ℤ

∑

n∈ℕ∗
Qn−

1∕2
j+1∕2

 nj −  
n
j+1

Δx

)

≤ 0.

By using the definition (28) of the numerical entropies En+
1∕2

j andQn−
1∕2

j+1∕2 , the above inequality
writes as

∑

j∈ℤ

∑

n∈ℕ
∫

xj+1

xj
∫

tn+1

tn

(

e+(fn+
1∕2

+,j ) + e−(fn+
1∕2

−,j )
) (tn, xj) −  (tn+1, xj)

Δt
dt dx

+
∑

j∈ℤ

∑

n∈ℕ∗
∫

xj+1

xj
∫

tn+1

tn
�
(

e+(fn+
1∕2

+,j ) − e−(fn+
1∕2

−,j+1)
) (tn, xj) −  (tn, xj+1)

Δx
dt dx ≤ 0.
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We now use that fn+1+,j = fn+
1∕2

+,j−1, f
n+1
−,j = fn+

1∕2
−,j+1, for all j ∈ ℤ and n ∈ ℕ. We obtain

∑

j∈ℤ

∑

n∈ℕ
∫

xj+1

xj
∫

tn+1

tn

(

e+(fn+
1∕2

+,j ) + e−(fn+
1∕2

−,j )
) (tn, xj) −  (tn+1, xj)

Δt
dt dx

+
∑

j∈ℤ

∑

n∈ℕ∗
∫

xj+1

xj
∫

tn+1

tn
�
(

e+(fn+
1∕2

+,j ) − e−(fn+
1∕2

−,j+1)
) (tn, xj) −  (tn, xj+1)

Δx
dt dx

= ∫

+∞

0 ∫ℝ

(

e+(f+Δt,Δx(t + Δt, x + Δx)) + e
−(f−Δt,Δx(t + Δt, x − Δx))

)

×

(

 Δt,Δx(t, x) −  Δt,Δx(t + Δt, x)
Δt

)

dt dx

+ ∫

+∞

Δt ∫ℝ

(

�e+(f+Δt,Δx(t + Δt, x + Δx)) − �e
−(f−Δt,Δx(t + Δt, x))

)

×

(

 Δt,Δx(t, x) −  Δt,Δx(t, x + Δx)
Δx

)

dt dx ≤ 0.

Following the definition of (e+, e−) and since (f+Δt,Δx, f
−
Δt,Δx) tends to (ℎ

+(u), ℎ−(u)) when Δt
and Δx vanish, by passing to the limit as Δt,Δx→ 0, we obtain

∫

+∞

0 ∫ℝ

(

�(u)
) 
)t
+ q(u)

) 
)x

)

dx dt ≥ 0,

and the result of the theorem follows. ■

7. NUMERICAL ILLUSTRATIONS

In this section, numerical simulations are given in order to illustrate the theoretical results
of the previous sections. Two models are investigated: the advection equation with a con-
stant velocity and the Burgers equation, both considering regular then discontinuous initial
conditions. In particular, the numerical rate of convergence and the entropy production are
computed in these cases.

Two initial conditions are systematically chosen: first a regular function

(IA) u0(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if x ≤ xL−�,
1
2 +

(x−xL)(3�2−(x−xL)2)
4�3 if xL−� ≤ x ≤ xL+�,

1 if xL+� ≤ x ≤ xR+�,
1
2 −

(x−xR)(3�2−(x−xR)2)
4�3 if xR−� ≤ x ≤ xR+�,

0 if xR+� ≤ x,

and second a discontinuous function

(IB) u0(x) =

⎧

⎪

⎨

⎪

⎩

0 if x ≤ xL,
1 if xL ≤ x ≤ xR,
0 if xR ≤ x.

Numerically, we took xL = 1∕4, xR = 3∕4, � = 1∕10. Note that the second case (IB) can be
obtained from the first case (IA) in the limit � goes to 0.
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Concerning the choice of the relaxation parameter, asumption 1 only imposes that s has to
be a constant value lying in (0, 1]. We have therefore chosen several values

s ∈ {0.1, 0.2, 0.5, 0.7, 0.9, 1.0}

to illustrate the asymptotic convergence of the solution.

7.1. Constant velocity advection equation. The first studied model corresponds to the ad-
vection equation at velocity a

(31)

{

)tu(t, x) + a)xu(t, x) = 0, x ∈ ℝ, t > 0,

u(0, x) = u0(x), x ∈ ℝ,

where the velocity a is taken equal to 0.75. The exact solution is well known for both initial
conditions (IA) and (IB) and reads u(t, x) = u0(x − at).

10 4 10 3 10 2

x

10 4

10 3

10 2

u
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x
u

x,
1

Convergence of the first moment

s = 0.1, p = 0.98
s = 0.2, p = 0.99
s = 0.5, p = 1.00
s = 0.7, p = 1.00
s = 0.9, p = 1.00
s = 1.0, p = 1.00
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x
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v
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x
(u

)
x,

1

Convergence of the second moment

s = 0.1, p = 0.99
s = 0.2, p = 0.99
s = 0.5, p = 1.00
s = 0.7, p = 1.00
s = 0.9, p = 1.00
s = 1.0, p = 1.00

Fig. 2. Initial condition (IA). Error in norm l1 of the numerical solution of the
advection equation (31) according to the space steps Δx for several relaxation pa-
rameter values s ∈ {0.1, 0.2, 0.5, 0.7, 0.9, 1.0}. p is the convergence rate.
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u
t,

x
u

x,
1

Convergence of the first moment

s = 0.1, p = 0.50
s = 0.2, p = 0.50
s = 0.5, p = 0.50
s = 0.7, p = 0.50
s = 0.9, p = 0.50
s = 1.0, p = 0.50
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x

10 2

10 1

v
t,

x
(u

)
x,

1

Convergence of the second moment

s = 0.1, p = 0.49
s = 0.2, p = 0.49
s = 0.5, p = 0.50
s = 0.7, p = 0.50
s = 0.9, p = 0.50
s = 1.0, p = 0.50

Fig. 3. Initial condition (IB). Error in norm l1 of the numerical solution of the
advection equation (31) according to the space steps Δx for several relaxation pa-
rameter values s ∈ {0.1, 0.2, 0.5, 0.7, 0.9, 1.0}. p is the convergence rate.

The convergence rates of the numerical solution can be read in Figure 2 for the regular
solution and in Figure 3 for the discontinuous solution: the error on the first moment u and
on the second moment v converges towards 0 with a convergence rate equal to 1 for regular
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solutions and equal to 0.5 for discontinuous solutions. As expected, the error is even larger
when the relaxation parameter s is small, this numerical results staying true for s lying in [1, 2]
as observed in [16] for the first moment in other test cases.
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n

Entropy production (t = 0.1, = 1.0, s = 0.9)
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Fig. 4. Local in space numerical entropy production of the advection equation with
initial condition (IA)for varying space steps Δx at left and for varying relation pa-
rameters s at right. The numerical and exact solutions at t = 0.1 are shown bellow
and the corresponding entropy productions above.
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Fig. 5. Local in space numerical entropy production of the advection equation with
initial condition (IB)for varying space steps Δx at left and for varying relation pa-
rameters s at right. The numerical and exact solutions at t = 0.1 are shown bellow
and the corresponding entropy productions above.

We now present the results on the numerical entropy production. As the system (31) is
linear, the exact entropy production is zero. In Figure 4, the local in space numerical entropy
production Enj , j ∈ ℤ, is shown for the regular initial condition (IA). This production is nega-
tive as proved in Proposition 10, located where the solution is not constant, and is smaller for
small space step Δx and for large relaxation parameter s. In Figure 5, the entropy production
is shown for the discontinuous initial condition (IB). This production is also negative and
located on the discontinuities. The l1-norm is decreasing when the space step Δx is lower or
when the relaxation parameter s is larger.

7.2. Burgers equation. The second studied model corresponds to the Burgers equation

(32)

{

)tu(t, x) + )x(
1
2u
2(t, x)) = 0, x ∈ ℝ, t > 0,

u(0, x) = u0(x), x ∈ ℝ.
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Fig. 6. Initial condition (IA). Error in norm l1 of the numerical solution of the
Burgers equation (32) according to the space steps Δx for several relaxation param-
eter values s ∈ {0.1, 0.2, 0.5, 0.7, 0.9, 1.0}. p is the convergence rate.

10 4 10 3 10 2

x

10 3

10 2

10 1

u
t,

x
u

x,
1

Convergence of the first moment

s = 0.1, p = 0.78
s = 0.2, p = 0.79
s = 0.5, p = 0.82
s = 0.7, p = 0.83
s = 0.9, p = 0.84
s = 1.0, p = 0.84
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Fig. 7. Initial condition (IB). Error in norm l1 of the numerical solution of the
Burgers equation (32) according to the space steps Δx for several relaxation param-
eter values s ∈ {0.1, 0.2, 0.5, 0.7, 0.9, 1.0}. p is the convergence rate.

The exact solution for both initial conditions can be computed: for the regular function (IA)
with the theory of the characteristics until the shock appears and for the discontinuous function
(IB) with the combination of a shock and a rarefaction wave.

The convergence rates of the numerical solution can be read in Figure 6 for the regular
solution and in Figure 7 for the discontinuous solution: the error on the first moment u and
on the second moment v converges towards 0. For regular solutions, the convergence rate is
equal to 1 and, for discontinuous solutions, it is about 0.8. As expected, the error is even larger
when the relaxation parameter s is small, this numerical results staying true for s lying in [1, 2]
as observed in [16] for the first moment in other test cases. Note that we cannot explain the
better convergence rate of this nonlinear equation for discontinuous solutions as previously
shown in [16].

We now present the results on the numerical entropy production. For the system (32),
the exact entropy production is zero but on the decreasing discontinuities where it is a Dirac
measure multiplied by a negative value. In Figure 8, the local in space numerical entropy
production Enj , j ∈ ℤ, is shown for the regular initial condition (IA). This production is neg-
ative as proved in Proposition 10, located where the solution is not constant, and is smaller
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Fig. 8. Local in space numerical entropy production of the Burgers equation with
initial condition (IA)for varying space steps Δx at left and for varying relation pa-
rameters s at right. The numerical and exact solutions at t = 0.1 are shown bellow
and the corresponding entropy productions above.

30

20

10

0

n

Entropy production (t = 0.1, = 1.0, s = 0.9)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

1.0

u

x = 2 07

x = 2 10

exact

12.5

10.0

7.5

5.0

2.5

0.0

n
Entropy production (t = 0.1, = 1.0, x = 2 09)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

1.0

u

s = 0.8
s = 1.0
exact

Fig. 9. Local in space numerical entropy production of the Burgers equation with
initial condition (IB)for varying space steps Δx at left and for varying relation pa-
rameters s at right. The numerical and exact solutions at t = 0.1 are shown bellow
and the corresponding entropy productions above.

for small space step Δx and for large relaxation parameter s. In Figure 9, the entropy pro-
duction is shown for the discontinuous initial condition (IB). This production is also negative
and essentially located on the discontinuity (a smaller contribution is located on the rarefac-
tion wave, this contribution being decreasing when the space step Δx is smaller or when the
relaxation parameter s is larger).

7.3. Concluding remarks. These numerical illustrations confirm the theoretical results of
the convergence of the numerical solution for the l1-norm for both moments u and v. More-
over, the discrete entropy production is non-positive and seems to converge towards the exact
entropy production.

Concerning the numerical convergence rate, we observe that it is equal to 1 for a smooth
initial condition, as long as the solution remains regular enough. By putting the two equa-
tions (1) and (13) (the target equation and the equivalent equation) side by side, this value is
compatible with a truncation error of order 1 in time. In the case of a solution with regularity
breaks, we notice a lower convergence rate. One of the authors already observed these results
without rigorous proof in [16].
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8. CONCLUSION

In this paper, we prove, by using techniques based on finite volume methods—in particular
on relaxation methods—, a convergence result for a non-linear hyperbolic one-dimensional
scalar conservation law. More precisely, we prove the convergence of the numerical solutions
of the D1Q2 scheme towards the unique entropy solution of the scalar conservation law. We
prove in addition a numerical entropy estimation. Our results are based on the convexity
properties of the scheme.

Future works could be dedicated to extend the present results to a wide range of relaxation
parameters. Moreover, other popular lattice Boltzmann schemes, like a scheme with three ve-
locities in one space dimension, should also be studied. Of course, general results concerning
the convergence of more complex lattice Boltzmann schemes remains an open question. From
a numerical point of view, we noticed different convergence rates according to whether the
solution of the conservation law is discontinuous or not. The convergence rate of the scheme
is also a subject to be investigated.
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APPENDIX A. PROOF OF LEMMA 1

Using the definition of u0j given in assumption 3, we have that

TV (u0) = 1
Δx

∑

j∈ℤ

|

|

|

|

|

∫

xj+1

xj

(

u0(x + Δx) − u0(x)
)

dx
|

|

|

|

|

≤ 1
Δx

∑

j∈ℤ
∫

xj+1

xj

|

|

|

u0(x + Δx) − u0(x)||
|

dx = 1
Δx ∫ℝ

|

|

|

u0(x + Δx) − u0(x)||
|

dx.

We will then prove that

(33) 1
Δx ∫ℝ

|

|

|

u0(x + Δx) − u0(x)||
|

dx ≤ TVℝ(u0).

Suppose first that u0 ∈ C1(ℝ). In this case we have that

TVℝ(u0) = ∫ℝ
|

|

|

(u0)′(x)||
|

dx

and we get

1
Δx ∫ℝ

|

|

|

u0(x + Δx) − u0(x)||
|

dx = 1
Δx ∫ℝ

|

|

|∫

x+Δx

x
(u0)′(y) dy||

|

dx

≤ 1
Δx ∫ℝ ∫ℝ

|

|

|

(u0)′(y)||
|

1[x,x+Δx](y) dx dy =
1
Δx ∫ℝ

|

|

|

(u0)′(y)||
|

Δx dy = TVℝ(u0).

We now prove (33) for general u0 ∈ BV (ℝ). To do so, we use the following result (see [1]):
for f ∈ BV (ℝ), there exists a sequence (fn)n ∈ C∞(ℝ) such that fn → f in L1loc(ℝ) and
TVℝ(fn)→ TVℝ(f ).

We consider then such a sequence (fn)n that converges towards u0. We have, for allM > 0,

(34) 1
Δx ∫

M

−M

|

|

|

fn(x + Δx) − fn(x)
|

|

|

dx ≤ 1
Δx ∫ℝ

|

|

|

fn(x + Δx) − fn(x)
|

|

|

dx ≤ TVℝ(fn),
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since fn ∈ C∞(ℝ). We have now, on the one hand, that

1
Δx ∫

M

−M

|

|

|

fn(x + Δx) − fn(x)
|

|

|

dx ←←←←←←←←←←←←←←←←←←←←←→
n→∞

1
Δx ∫

M

−M

|

|

|

u0(x + Δx) − u0(x)||
|

dx,

since fn → u0 in L1loc(ℝ). On the other hand, TVℝ(fn) → TVℝ(u0), so that, by passing (34)
to the limit as n→∞, we obtain

1
Δx ∫

M

−M

|

|

|

u0(x + Δx) − u0(x)||
|

dx ≤ TVℝ(u0).

By letting nowM → ∞, we obtain

1
Δx ∫ℝ

|

|

|

u0(x + Δx) − u0(x)||
|

dx ≤ TVℝ(u0),

that ends the proof.

APPENDIX B. PROOF OF THEOREM 7.

We have to prove that the families of functions uΔt,Δx and vΔt,Δx are bounded in L∞(Ω) ∩
BV (Ω) for all bounded open subset Ω of ℝ+×ℝ. Proposition 3 implies that both uΔt,Δx and
vΔt,Δx are uniformly bounded in L∞(ℝ+×ℝ).

LetΩ be a bounded open subset ofℝ+×ℝ, such thatΩ ⊆ [0, T ]×[−M,M], for some T > 0
andM > 0, and let N, J ∈ ℕ such that (N−1)Δt ≤ T < NΔt, (J−1)Δx ≤ M < JΔx. We
have then that

TV Ω(uΔt,Δx) ≤ Δt
N
∑

n=0

J
∑

j=−J

|

|

|

unj+1 − unj
|

|

|

+ Δx
N
∑

n=0

J
∑

j=−J

|

|

|

un+1j − unj
|

|

|

.

From Proposition 4 we obtain that

Δt
N
∑

n=0

J
∑

j=−J

|

|

|

unj+1 − unj
|

|

|

≤ NΔtT Vℝ(u0) ≤ (T + Δt)TVℝ(u0),

which is bounded as Δt → 0.
On the other hand, as a consequence of Proposition 5, we have

Δx
N
∑

n=0

J
∑

j=−J

|

|

|

un+1j − unj
|

|

|

≤ Δx
Δt
(N + 1)Δt2TVℝ(u0) ≤ 2�(T + Δt)TVℝ(u0),

which is also bounded as Δt → 0. We obtain for vΔt,Δx a similar result. These estimations
imply that the set {(uΔt,Δx, vΔt,Δx)}Δt,Δx remains bounded in L∞(Ω) ∩ BV (Ω), and this is
valid for any bounded set Ω ⊆ ℝ+ × ℝ. The compactness of BV (Ω) ∩ L∞(Ω) in L1(Ω)
(Helly’s theorem) implies that there exists a sub-sequence of (uΔt,Δx, vΔt,Δx) and functions
(ū, v̄) satisfying the conditions of the Theorem.

Proposition 6 now implies that
‖

‖

‖

�(uΔt,Δx) − vΔt,Δx
‖

‖

‖L∞([0,T ];L1loc (ℝ))
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
Δt,Δx→0

0.

Since (uΔt,Δx, vΔt,Δx)⟶ (ū, v̄), we get �(ū) = v̄, a.e. x ∈ ℝ, for all t > 0.
In order to prove that ū is a weak solution of (1-2), let us consider ' ∈ C∞0 (ℝ

+ × ℝ) and
put

'nj = '(t
n, xj), 'Δt,Δx(t, x) =

∑

n∈ℕ

∑

j∈ℤ
'nj 1[tn,tn+1)(t)1[xj ,xj+1)(x).
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We multiply both sides of (11) by ΔtΔx'nj , we sum over n ∈ ℕ and j ∈ ℤ, do a discrete
integration by parts, and pass to the limit as Δt,Δx → 0. The first term on the left-hand side
reads

ΔtΔx
∑

n≥1

∑

j∈ℤ
unj

'n−1j − 'nj
Δt

− ΔtΔx
∑

j∈ℤ

u0j'
0
j

Δt

= ∫

+∞

Δt ∫ℝ
uΔt,Δx(t, x)

'Δt,Δx(t−Δt, x) − 'Δt,Δx(t, x)
Δt

dx dt

− ∫ℝ
uΔt,Δx(0, x)'Δt,Δx(0, x) dx

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
Δt,Δx→0

−∫

+∞

0 ∫ℝ
ū(t, x))t'(t, x) dx dt − ∫ℝ

u0(x)'(0, x) dx.

By a similar reasoning we get for the second term on the left-hand side

ΔtΔx
∑

n≥0

∑

j∈ℤ
vnj

'nj−1 − '
n
j+1

2Δx

= ∫

+∞

0 ∫ℝ
vΔt,Δx(t, x)

'Δt,Δx(t, x−Δx) − 'Δt,Δx(t, x+Δx)
2Δx

dx dt

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
Δt,Δx→0

−∫

+∞

0 ∫ℝ
v̄(t, x))x'(t, x) dx dt = −∫

+∞

0 ∫ℝ
�(ū(t, x)))x'(t, x) dx dt.

Concerning the third term, it can be written as

∫

+∞

0 ∫ℝ
uΔt,Δx(t, x)

('Δt,Δx(t, x−Δx) − 'Δt,Δx(t, x)
2Δx

−
'Δt,Δx(t, x) − 'Δt,Δx(t, x+Δx)

2Δx

)

dx dt,

which vanishes as Δt,Δx→ 0. Let us now treat the right-hand side of (11). After integration
by parts, we get

sΔtΔx
∑

n∈ℕ

∑

j∈ℤ

(

�(unj ) − vnj
)

'nj+1 − '
n
j−1

2Δx

= s∫

+∞

0 ∫ℝ

(

�(uΔt,Δx) − vΔt,Δx
)'Δt,Δx(t, x+Δx) − 'Δt,Δx(t, x−Δx)

2Δx
dx dt.

Let T > 0,M > 0, such that supp(') ⊆ [0, T ] × [−M,M]. Since

|

|

|

|

|

∫

+∞

0 ∫ℝ

(

�(uΔt,Δx) − vΔt,Δx
)'Δt,Δx(t, x+Δx) − 'Δt,Δx(t, x−Δx)

2Δx
dx dt

|

|

|

|

|

≤ ∬supp(')
|

|

�(uΔt,Δx) − vΔt,Δx|| ‖)x'‖∞ dx dt

≤ ‖)x'‖∞‖�(uΔt,Δx) − vΔt,Δx‖L∞([0,T ];L1loc (ℝ)
,

we conclude, as a consequence of Proposition 6, that this last term tends towards 0 when Δt
and Δx go to 0. We conclude then that ū is a weak solution of (1).
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