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NUMERICAL TREATMENT OF THE NONCONSERVATIVE
PRODUCT IN A MULTISCALE FLUID MODEL FOR PLASMAS IN

THERMAL NONEQUILIBRIUM: APPLICATION TO SOLAR
PHYSICS∗

QUENTIN WARGNIER† , SYLVAIN FAURE‡ , BENJAMIN GRAILLE‡ , THIERRY MAGIN§ ,

AND MARC MASSOT†

Abstract. This contribution deals with the modeling of collisional multicomponent magnetized
plasmas in thermal and chemical nonequilibrium aiming at simulating and predicting magnetic re-
connections in the chromosphere of the sun. We focus on the numerical simulation of a simplified
fluid model in order to properly investigate the influence on shock solutions of a nonconservative
product present in the electron energy equation. Then, we derive jump conditions based on travel-
ling wave solutions and propose an original numerical treatment in order to avoid non-physical shocks
for the solution, that remains valid in the case of coarse-resolution simulations. A key element for
the numerical scheme proposed is the presence of diffusion in the electron variables, consistent with
the physically-sound scaling used in the model developed by Graille et al. following a multiscale
Chapman-Enskog expansion method [M3AS, 19 (2009) 527–599]. The numerical strategy is even-
tually assessed in the framework of a solar physics test case. The computational method is able to
capture the travelling wave solutions in both the highly- and coarsely-resolved cases.

Key words. Fluid model from kinetic theory, plasma out of thermal equilibrium, solar physics,
nonconservative product, shock wave, travelling wave, jump conditions, finite volume schemes.

AMS subject classifications. 65M08, 82D10, 76N15, 76M12, 76L05

1. Introduction. Plasmas are composed of electrons and heavy particles, such
as atoms and molecules, neutral or ionized. At the microscopic level, electrons and
heavy particles do not effectively exchange energy during collisions, due to their mass
disparity. At the macroscopic level, their respective populations of translational en-
ergy can be distributed at different temperatures. Thermal nonequilibrium is found in
a variety of plasma applications ranging from astrophysics [2] through electric propul-
sion [3] to combustion [33], as well as atmospheric entry flows [21]. This contribution
deals with the modeling of collisional multicomponent magnetized plasmas in thermal
and chemical nonequilibrium, aiming at simulating and predicting magnetic recon-
nections in the chromosphere of the sun. If multicomponent Magneto-HydroDynamic
(MHD) simulations are still scarce in solar physics, in recent years, the study of par-
tially ionized plasmas has become an important topic because solar structures, such
as prominences [27] as well as layers of the solar atmosphere (photosphere and chro-
mosphere) [37, 17], are made of partially ionized plasmas. Multicomponent plasmas
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introduce physical effects which are not described by means of models for fully ionized
mixtures, i.e., Cowling’s resistivity, isotropic thermal conduction, heating due to ion-
neutral friction, heat transfer due to collisions, charge exchange, and ionization, which
are important to better understand the behavior of plasmas in the sun chromosphere.
Multifluid MHD models [16, 17, 4] allows us to describe nonequilibrium effects based
on distinct continuity, momentum, and energy equations per species considered in the
plasma mixture. However, these models have their own limitations. For instance,
the model of Braginskii [4] is valid only for high-temperature fully-ionized plasmas.
Besides, multifluid models can lead to very stiff systems with characteristic velocities
ranging from the speed of sound of the various fluids up to the speed of light [18].

In this context, Graille et al. [14] have derived from kinetic theory a model for
multicomponent plasmas in thermal nonequilibrium accounting for the influence of the
electro-magnetic field, that can be applied to the sun chromosphere conditions. The
model is obtained by seeking a generalized Chapman-Enskog solution to the Boltz-
mann equation using a multiscale perturbation method. The main difference with the
conventional multifluid models is the scaling based on a dimensional analysis. This
leads to one single momentum conservation equation and multicomponent diffusion
species continuity equations coupled to two equations for the translational (thermal)
energy of the electrons and heavy particles. These developments provide a model
with an extended range of validity from partially- to fully-ionized plasmas, for the
non-, weakly-, and strongly- magnetized regimes, together with an entropy inequality
and Onsager reciprocity relations for the transport properties. At the zeroth order
of the expansion, this development yields a hyperbolic system of equations with a
parabolic regularization of the electron variables due to dissipative terms such as the
electron diffusion velocity and heat flux. When weak solutions (shocks) are consid-
ered, the total energy equation is used regarding its conservative form suitable for
the development of a numerical scheme. Both the electron and heavy-particle energy
equations exhibit non conservative terms leading to some numerical difficulties that
will be reviewed in the next paragraph. In this paper, the electron energy equation
is selected to close the system, allowing us to benefit from the regularization of the
electron variables. Although our model directly inspired from [14] is well identified
and applicable to the sun chromosphere conditions, it is still necessary to understand
how to treat the nonconservative term present in the hyperbolic convection part of
the system.

Indeed, solving nonconservative hyperbolic systems is a delicate problem because
of the definition of weak admissible solutions. First, from a theoretical point of view,
Dal Maso et al. have proposed in [24] a new theory to define nonconservative prod-
ucts based on the intoduction of paths, that generalizes in the sense of distributions
the notion of weak solution for conservative systems. In this context, Parès [28] have
developed path-conservative schemes for nonconservative hyperbolic systems. How-
ever, it has been proved by Abgrall and Karni [1] that these numerical schemes fail
to converge to the right solutions. In fact, even if the correct path is known, the
numerical solution obtained can be far from the expected solution, depending mainly
on the numerical dissipation of the scheme. In [7], Chalons and Coquel have proposed
a different strategy for nonconservative hyperbolic systems using Roe-type conserva-
tive schemes. They changed the common path-conservative schemes by introducing
modified cells in order to compute correctly the solution. Even if progress has been
made in the field, the design of accurate and efficient schemes for shock solutions
to nonconservative systems of equations and their numerical analysis still lacks com-
pleteness. Second, from an application point of view, several fields have encountered
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this difficulty. For example, in the community of two-phase flows, Pelanti and Shyue
[29] have proposed an alternative strategy: a Roe solver is used in order to simulate
liquid-gas flows with cavitation, neglecting the nonconservative part of the system.
Raviart and Sainsaulieu [30] have succeeded in evaluating jump conditions relying
on the fact that, in two-phase flows, the nonconservative product acts on linearly
degenerate fields. More specifically, in the field of plasma physics, the problem has
already been investigated. Coquel and Marmignon [8] have replaced the equation of
thermal energy of electrons by an equation of conservation of entropy for a model
applicable to weakly ionized hypersonic flows in thermal non-equilibrium. Candler
and MacCormack [6] have considered the nonconservative product in the equation of
thermal energy for electrons as a source term for a model applicable to weakly ionized
flows. These methods lead to conservative system of equations where the structure of
the shock waves is identified, but the link with the original system of equations is still
incomplete. More recently, in [11, 5], several numerical schemes have been proposed
for the approximation of a nonconservative compressible Euler system applied to the
modeling of fully ionized plasmas in thermal non-equilibrium, even if the question
of how to evaluate the proper physical jump conditions is not solved. In [20], [19],
Lowrie et al. have defined semi-analytic solutions for planar radiative shock waves,
which can be used for verifying codes for thermal equilibrium diffusion-radiation mod-
els. These ideas are also used by Masser et al. [25] to analyze the structure of shock
waves in a two-temperature model for fully ionized plasmas. The corresponding or-
dinary differential equations are integrated and the missing jump relation is obtained
by replacing the equation of thermal energy of electrons by a conservative equation of
entropy as in [8], thus avoiding the proper definition and evaluation of a jump condi-
tion in the presence of a nonconservative term. This is more difficult in this case, since
the nonconservative product acts directly on the genuinely nonlinear waves. Besides,
in references [31] by Shafranov, [38] by Zel'dovich and Raizer, and [26] by Mihalas
and Mihalas, the shock wave structure has been identified for a nonequilibrium fully
ionized plasma in the context of a two-fluid model without nonconservative product.
Relying on the high thermal conductivity of the electrons compared to the one of the
ions, the structure of the wave is studied and the temperature of the electrons is shown
to be smooth whereas the temperature of the ions exhibits a discontinuity. In [38], it
has been shown that the dissipative processes play a major role in the jump condi-
tions for the shock wave: it depends on both the gradients of macroscopic quantities
and the transport coefficients. Even if we know what to expect in terms of physics,
such waves structure and jump conditions have not been obtained in the framework
of a one-fluid model exhibiting a nonconservative product. In summary, no fully sat-
isfactory solution has yet been achieved to handle both theoretically and numerically
the nonconservative product appearing in a one-fluid model and it remains an open
problem.

We focus on the model derived by Graille et al. [14] at the zeroth order of the
Chapman-Enskog expansion. First, we identify a simplified model, which inherits the
same difficulty of dealing with nonconservative products and proper shock numerical
solution as the original system, but which is tractable mathematically. A decoupling
of the governing equations is proposed and we look for piecewise smooth traveling
wave solutions to the decoupled problem, as it is coherent with [38, 31]. This analysis
leads to a complete analytical solution, as well as an explicit expression of the missing
jump relation for the thermal energy of electrons, where the nonconservative term is
to be found. The ability of conducting the full analysis strongly relies on the proper
form of the system and on the presence of a regularizing effect in the electron variables
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at this order of the expansion. For the numerical solution, we first use a standard
finite volume Godunov scheme based on a consistent discretization of the nonconser-
vative product, in order to resolve the traveling wave. When the level of resolution is
too coarse, some artificial and non-physical additional shock appears in the solution,
whereas for fine resolution, the proper and expected travelling wave solution is repro-
duced. We thus identify the characteristic scales associated with the compatibility
conditions related to the analytic solution for the travelling wave in order to define
the limit between the coarse and fine resolutions. Surprisingly enough, it is proved
that the smallest diffusion scales associated with the electron mass diffusion have to
be properly resolved for the travelling wave to be correctly captured by the numerical
scheme. A new scheme based on a specific treatment of the nonconservative product
is developed to verify the compatibility equations in a discretized sense. It is able to
capture the proper travelling wave even in weakly-resolved cases without generating
unexpected additional and artificial numerical shocks. Although we focused on a finite
volume Godunov method, the numerical treatment of the nonconservative term and
the proposed numerical scheme can be generalized to many finite volume methods:
numerical experiments with a Lax-Friedrichs scheme and an upwind scheme are in
good agreements. The proposed numerical strategy is assessed for a travelling wave
test case based on the sun chromosphere conditions, for which the characteristic scales
are identified and for which the resolution of the finest diffusion scales is out of reach.
Using the new scheme combined to a Strang operator splitting technique, we obtain
an accurate resolution of the test case with two main advantages: we do not have to
resolve the smallest diffusion spatial scales in order to capture the proper travelling
wave, as expected, and the timestep is not limited by the Fourier stability condition
based on the largest diffusion coefficient. We eventually investigate the structure of
the travelling wave for the original coupled system of equations and prove that: 1-
the structure is similar to the one of the decoupled problem, which allow us to have a
precious insight on the wave structure and jump conditions; even if we have to resort
to a numerical resolution of the missing jump condition by solving a system of ordi-
nary differential equations using a Dormand-Prince (DOPRI853) method with dense
output [10, 15], we can obtain the missing jump conditions for any Mach numbers
in the general case, 2- in a regime of Mach numbers close to one, the missing jump
condition for the decoupled and coupled problems are very close to one another, thus
fully justifying our strategy to focus on a simplified problem.

The paper is organized as follows: in Section 2 the model derived by Graille et al.
[14] is presented and briefly compared to other models used by the solar physics com-
munity. Then, the decoupling of the governing equations is discussed. In Section 3,
piecewise smooth travelling wave solutions to the decoupled problem are derived, as
well as the missing jump condition associated with the equation of thermal energy of
electrons. The analytical solution calculated is then compared to the ones obtained
by solving various models found in the literature. In Section 4, a 1D finite volume
Godunov scheme with a standard discretization of the nonconservative product is de-
veloped, as well as a new scheme based on a specific treatment of the nonconservative
product. In Section 5, a test case based on the sun chromosphere conditions is fully
investigated and our numerical strategy assessed. Finally, in Section 6, we show how
the ideas developed in the decoupled system case can be extended to the general case
and highlight the validity of the decoupled approach in a reasonable Mach number
range close to one.
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2. Modeling and governing equations. In this section, we present a multi-
scale and multicomponent one-fluid model and explain its advantages and differences
compared to the conventional models that are used for describing collisional plas-
mas in thermal non-equilibrium, such as those found in the sun chromosphere. We
identify a simplified system of equations, which reproduces the difficulty due to the
nonconservative product encountered in the general model. An approximation of this
system will allow us to conduct analytical studies in Section 3 and also to highlight
the proper paths in the theoretical approach.

2.1. One simplified model for solar physics. The non-equilibrium model is
developed based on a thorough kinetic theory derivation by Graille et al. [14, 23]. It
is a generalized Chapman-Enskog solution to the Boltzmann equation by means of
a multiscale perturbation method. To achieve a fluid limit, the Knudsen number is
assumed to scale as a small parameter ε equal to the square root of the ratio of electron
mass to a characteristic heavy-particle mass, that drives thermal non-equilbrium.
The model is general (see Appendix A) and can be used for multicomponent, non-
to weakly- and strongly-ionized plasmas including reactive binary collisions between
species.

Table 2.1: Chapman-Enskog expansion and related hierarchy of timescales [14]

Order Time Heavy particles Electrons

ε−2 t0e Thermalization Te

ε−1 t0
h

Thermalization Th

ε0 t0 Euler Eqs. Zeroth-order drift-diffusion Eqs.

ε t0/ε Navier-Stokes Eqs. First-order drift-diffusion Eqs.

As shown in Table 2.1, at the ε−2 order of the expansion corresponding to the
electron kinetic timescale t0e , one gets the electron thermalization, whereas at the ε−1

order corresponding to the heavy-particle kinetic timescale t0h, the heavy-particle ther-
malization takes place. At the zeroth order corresponding to the convective timescale
t0, Euler equations are obtained for the heavy particles and first-order drift-diffusion
equations for the electrons. At the first order corresponding to the diffusive time
scale t0/ε, Navier-Stokes equations are derived for the heavy particles and second-
order drift-diffusion equations for the electrons. In the strongly magnetized regime,
the electron transport properties are anisotropic and depend on the direction of the
magnetic field, whereas the heavy transport properties do not. The governing equa-
tions for the fluid of charged particles can be coupled with Maxwell’s equations. A
multiscale perturbation method gives a sound correspondance between the scales com-
ing from the asymptotic analysis of the Chapman-Enskog expansion and the physical
timescales. This is a clear advantage compared to conventional models that are used
by the solar physics community. Indeed, for instance, Braginskii [4] has not used
an ad-hoc scaling, consequently the thermalization of electrons occurs at the same
timescale at the one of heavy particles, which is not physical.

Considering the level of complexity of the general model shown in Appendix A
that we propose to use for solar physics applications, some simplified model is now
introduced. We consider the system of equations associated to the zeroth-order of the
Chapman-Enskog expansion, where neither Soret-Dufour effects nor electromagnetic
forces have been considered. Thermal energy relaxation and chemical processes are
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assumed to be negligible. Both heavy particles (multiple species can be considered)
and electrons have a common adiabatic coefficient γ = 5/3, since the internal energy
modes are neglected. While diffusion can be anisotropic in the strongly magnetized
case, we assume isotropic diffusion since no magnetic field is present. The diffusion
structure is still nonlinear even if the electron diffusion coefficient and thermal conduc-
tivity are assumed to be constant. Under these assumptions, the simplified system
of equations is made up of the conservation equations for the heavy-particle mass,
mixture momentum and total energy, and the electron mass and thermal energy. In
nondimensional form (assuming a unit reference Mach number, see [14]), this system
reads:

(S)



































∂tρh + ∂x·(ρhvh) = 0,

∂t(ρhvh) + ∂x·(ρhvh⊗vh + pI) = 0,

∂tE + ∂x·(Evh + pvh) = ∂x·
(

λ∂xTe + γ
γ−1D∂xpe

)

,

∂tρe + ∂x·(ρevh) = ∂x·
(

D 1
Te
∂xpe

)

,

∂t(ρeee) + ∂x·(ρeeevh) = −pe∂x·vh + ∂x·
(

λ∂xTe + γ
γ−1D∂xpe

)

,

where quantity ρh stands for the heavy-particle density, vh the heavy-particle velocity,
p the mixture pressure, E the mixture total energy, λ the electron thermal conductiv-
ity, Te the electron temperature, D the electron diffusion coefficient, pe the electron
pressure, ρe the electron density, ρeee the electron thermal energy. Notice that the
mixture pressure is composed of both the electron and heavy-particle partial pres-
sures p = pe+ph, obeying the perfect gas law pe = (γ−1)ρeee, ph = (γ−1)ρheh, where

ρheh is the heavy-particle thermal energy. The mixture total energy E is defined as

E = ρh||vh||2/2 + p/(γ−1). The term −pe∂x·vh in the electron energy equation is a
nonconservative product examined in great details in this paper. The simplified model
(S) inherits the difficulty of dealing with nonconservative products and proper shock
numerical solution from the original system, but it remains mathematically tractable.

2.2. Structure of the system. System (S) is hyperbolic in the open set of
admissible states Ω = {ρh > 0, ρe > 0, vh ∈ R

3, p > 0, pe > 0} with a
parabolic regularization on the electron variables. For any direction defined by the
unit vector n, the matrix n·A, where A is the Jacobian matrix of the hyperbolic
part (removing the second order diffusion terms) is shown to be diagonalizable with
real eigenvalues and a complete set of eigenvectors. The eigenvalue vh·n is linearly
degenerate of multiplicity d+ 2, where d is the space dimension, and the eigenvalues
vh·n± c are genuinely nonlinear, where c is the sound speed defined by c =

√

γp/ρh.
Electrons participate in the momentum balance through the pressure gradient. As
a result, the sound speed includes as well the electron contribution to the pressure.
In system (S), the heavy-particle velocity is chosen as the reference frame velocity
instead of the mixture hydrodynamic velocity. Graille et al. [14] have proved that
the electron thermalization takes place in any velocity frame due to their small mass,
whereas the following processes occur in the heavy-particle velocity reference frame:
heavy-particle thermalization and electron diffusion. Finally, the structure of the
entropy is well identified, so the second law of thermodynamics is satisfied.

We recall that the equation of electron thermal energy is nonconservative in sys-
tem (S). This leads to the difficulties mentioned in the introduction when looking
for discontinuous solutions to the hyperbolic part of the problem. For shock wave
solutions, one possibility would be to transform the system (S) into a conservative
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system. For instance, the equation of electronic thermal energy can be exchanged
with a conservative equation for the electron entropy [8]. This method works only
for smooth solutions when there is no dissipation in the electron energy equation.
Another possibility would be to consider the nonconservative product as a source
term [6]. However, this strategy modifies the eigenstructure of the system and, as a
consequence, the electronic temperature remains constant through a shock wave. Our
approach is different: we want to make use of the sound structure of system (S) in
order to derive general jump conditions involving neither simplifications nor modifi-
cations of the system.

2.3. Approximate decoupled problem. This section is devoted to an ap-
proximate decoupled system obtained by removing the electronic diffusion in the con-
servation equation for the total energy. This modified system is so-called decoupled
since the first three conservation equations constitute the Euler system and the elec-
tronic equations are then solved, once the heavy part velocity vh is known. We derive
analytical expressions for travelling wave solutions. The wave structure of the decou-
pled problem obtained will be shown to be very close to the fully coupled problem of
system (S) in a Mach number regime close to 1, shedding some light on the structure
of travelling wave solutions for the fully coupled system.

The approximate decoupled system splits then into the Euler system

(S1)











∂t(ρh) + ∂x·(ρhvh) = 0,

∂t(ρhvh) + ∂x·(ρhvh⊗vh + pI) = 0,

∂tE + ∂x·(Evh + pvh) = 0,

and a nonconservative drift-diffusion system

(S2)

{

∂tρe + ∂x·(ρevh) = ∂x·
(

1
Te

D∂xpe
)

,

∂t(ρeee) + ∂x·(ρeeevh) = −pe∂x·vh + ∂x·
(

λ∂xTe + γ
γ−1D∂xpe

)

.

The mixture pressure is introduced as before, p = pe + ph, with the partial pressures

pe = (γ−1)ρeee, ph = (γ−1)ρheh. We also have pe = ρeTe . The mixture total

energy is given by E = ρh||vh||2/2 + p/(γ−1). One can find a global solution to

this decoupled problem. The first part (S1) admits discontinous solutions for which
the discontinuity is propagating with the velocity prescribed by the usual Rankine-
Hugoniot jump relations and Lax’s condition. One can then calculate a solution to the
sub-system of electron (S2) as one piecewise smooth travelling wave, and determine
the missing jump condition, with a heavy-particle velocity field previously solved from
system (S1).

3. Jump relations and travelling wave solutions to the approximate
decoupled problem. In this section, we determine travelling wave solutions for the
system (S2), being given the velocity vh as a piecewise constant function. The vari-
ables (ρh, ρhvh,E) are assumed to be a shock wave solution to the Euler System (S1)
with velocity σ, which satisfies the Rankine-Hugoniot jump relations and the Lax en-
tropy condition. We are subsequently looking for a piecewise smooth travelling wave
solution in the variables (ρe, ee), moving with the same velocity σ, solution to the sys-
tem (S2). Since the electron variables experience nonlinear heat and mass diffusion,
their profile is expected to exhibit only weak discontinuities, that is discontinuities in
their gradients. We derive boundary conditions at left and right infinities and show



8 Q. WARGNIER, S. FAURE, B. GRAILLE, T. MAGIN, M. MASSOT

that they do not depend on the (constant) diffusion coefficients λ and D, hence they
can be used as jump conditions associated with the electronic variables ρe and ρeee.
It is consistent with the work of Zel'dovich and Raizer in [38]. These jump conditions
are then compared with literature results. A onedimensional case (d=1) is considered.

3.1. Structure of the travelling wave and jump conditions. We consider
that the heavy-particle variables read as piecewise constant functions depending only
on ξ = x·n − σt where σ > 0 is the velocity of the travelling wave prescribed by
the Rankine-Hugoniot jump conditions on the heavy-particle variables, and n, a unit
vector in the first direction, such that x·n = x. The same notation is used for
functions depending on time and space and for functions depending on ξ as there is
no ambiguity. Superscript R denotes the right state and L denotes the left state. We
have

(3.1) ρh(ξ) =

{

ρLh if ξ < 0,

ρRh if ξ > 0,
vh(ξ) =

{

vL
h if ξ < 0,

vR
h if ξ > 0,

p(ξ) =

{

pL if ξ < 0,

pR if ξ > 0.

We consider a 3-shock wave that propagates at velocity σ > 0. The case of a 1-shock
wave is symmetric and can be solved in a similar way.

Based on the sub-system of electrons (S2), we look for piecewise smooth travelling
wave for the electron variables that propagate at the velocity σ. More precisely, the
functions ρe and pe solutions to (S2) are assumed to satisfy

• ρe : ξ 7→ ρe(ξ) ∈ C0(R), pe : ξ 7→ pe(ξ) ∈ C0(R),
• ρe and pe are C∞ on (−∞, 0) and (0,+∞),
• ρe and pe admit limits in ±∞ denoted by

lim
ξ→−∞

ρe(ξ) = ρLe , lim
ξ→+∞

ρe(ξ) = ρRe , lim
ξ→±∞

ρ′e(ξ) = 0,

lim
ξ→−∞

pe(ξ) = pLe , lim
ξ→+∞

pe(ξ) = pRe , lim
ξ→±∞

p′e(ξ) = 0.

The goal of this section is to exhibit the structure of these solutions in order to
understand the relations between the left and right states according to the travelling
wave velocity σ and structure of the diffusion (in particular the value of the coefficients
D and λ). We assume that the right state R is known, and we look for state L
connected to the state R.

System (S2) of partial differential equations becomes a system of ordinary differ-
ential equations:

(3.2)







− σρ′e + (ρevh)
′ = D( 1

Te
p′e)

′,

− 1
γ−1σ p′e +

1
γ−1 (pevh)

′ = −pev
′
h + λ T

′′

e + γ
γ−1D p′′e ,

where vh is a piecewise constant function given in Equation (3.1). The Mach number
MR at state R is introduced as MR = (σ−vR

h )/c
R, where cR is the speed of sound at

the right state defined by cR =
√

γpR/ρRh , and is written in such a way that MR > 1
from the Lax conditions. The system (3.2) can be solved by considering the two
domains ξ > 0 and ξ < 0 and their interface ξ = 0. For ξ > 0, after some algebra, it
reads

(3.3)

(

pe − pRe
Te − T

R

e

)′

= ηR

(

1 −ρRe
−rR γ−1

γρR
e

rR

)(

pe − pRe
Te − T

R

e

)

,
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where the thermal diffusivity κR at the right state and the coefficients ηR and rR are
defined as κR = (γ − 1)λ/(γρRe ), η

R = −cRMR/D, and rR = D/κR. The matrix of
Equation (3.3) has two negative eigenvalues δ±

(3.4) δ± = 1
2η

R
(

1 + rR ±
√

(1 + rR)2 − 4
γ r

R
)

.

Finally, for ξ > 0 one gets an analytical expression of the solution that combines
decreasing exponential functions

pe(ξ) = pRe + ρRe
(

KR+ eδ
+ξ +KR− eδ

−ξ
)

, ξ > 0,

Te (ξ) = T
R

e +
(

1− δ+

ηR

)

KR+ eδ
+ξ +

(

1− δ−

ηR

)

KR− eδ
−ξ, ξ > 0,

where KR± are two integration constants that need to be determined by using the
continuity and the jump of the derivative gradients in ξ = 0. Moreover, for ξ < 0,
similar algebraic relations as those found in Equation (3.3) are obtained by replacing
state R by state L. It leads to similar eigenvalues as those in Equation (3.4) by
replacing state R by state L. However, the only way for having a non diverging
solution is to get constant functions equal to the left constant state L by setting the
integration constants KL± = 0. Indeed, the only bounded solutions when ξ goes to
−∞ are constant solutions.

At ξ = 0, since pe and ρe (and Te ) are continuous functions, the system (3.2)
leads to

(3.5) pe(0)[vh](0) = D[p′e](0),
γ

γ−1pe(0)[vh](0) = λ[T
′

e ](0) +
γ

γ−1D[p′e](0),

where [·](0) denotes for the value of the jump in ξ = 0. The term of the left hand side
in the second equality of Equation (3.5) is the contribution of two terms: a first one
coming from the convective part and a second one coming from the nonconservative
product. Actually, since pe is continuous and the derivative v′

h has a jump at ξ = 0, the
nonconservative product in the second equation of Equation (3.2) is not ambiguous.
Finally, the second relation of Equation (3.5) can be simplified by using the first one.
Equation (3.5) then becomes

(3.6) pe(0)[vh](0) = D[p′e](0), [T
′

e ](0) = 0.

The second relation of Equation (3.6) provides the continuity of the derivative
of Te in the discontinuity (at ξ = 0). In other words, Te is a C1 function. This
result is consistent with the work of Zel'dovich and Raizer in [38], showing that the
temperature of electron is smooth in the shock wave of a nonequilibrium fully ionized
plasma. Moreover, the first relation of Equation (3.6) can be seen as a relation between
the jump of the pressure gradient in the discontinuity, the jump of the velocity and the
diffusion coefficient D. This result is also consistent with the work of Zel'dovich and
Raizer in [38], showing that the discontinuity of the shock wave in a plasma depend
on the dissipative process. Defining the two characteristic lengths of the diffusion
LD associated to the electron diffusion coefficient and Lλ associated to the thermal
conductivity by

(3.7) LD =
D

[vh](0)
, Lλ =

γ−1

γ

λ

ρRe

1

[vh](0)
=

κR

[vh](0)
, [vh](0) > 0,
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0 LD

0

pRe

pLe

ξ = x− σt

p
e

0 LD

0

T
R

e

T
L

e

ξ = x− σt

T e

Fig. 3.1: Scheme of the travelling wave with the characteristic diffusion length LD

Equation (3.6) can be rewritten as

(3.8) [p′e](0) =
1

LD
pe(0), [T

′

e ](0) = 0.

The jump compatibility relations for the pressure of electron pe and for the elec-
tron temperature Te link the states R and L at infinity. They are obtained by integrat-
ing Equation (3.2) from 0+ to ∞, then using Equation (3.6) and the jump conditions
for the heavy particle velocity vh. Finally, these relations can be combined to obtain
the density jump conditions between the states R and L at infinity. One gets

(3.9)
pLe
pRe

=
(γ + 1)M2

R

(1− γ)M2
R + 2γ

,
T

L

e

T
R

e

=
(γ − 1)M2

R + 2

(1− γ)M2
R + 2γ

,
ρLe
ρRe

=
(γ + 1)M2

R

(γ − 1)M2
R + 2

.

The state L at infinity does not depend on the diffusion coefficientsD and λ. However,
according to Equation (3.6), the jump compatibility relations depend on the variables
and their gradients in the discontinuity. This result is consistent with the work of
Zel'dovich and Raizer in [38], and Shafranov in [31]. Let us underline however that
the relations of Equation (3.9) are valid only for M2

R < 2γ/(γ − 1), and a singularity

is present when MR goes to
√

2γ/(γ − 1). Thus, the obtained relations are valid for a
Mach number range close to one. Notice that the jump condition ρLe /ρ

R
e is the same

as for ρLh/ρ
R
h and is compatible with the Rankine-Hugoniot jump relations.

3.2. Comparison with classical jump conditions in the literature. In
this section, the jump conditions proposed in Equation (3.9) are compared with other
usual jump conditions from conservative system of equations.

First, one can consider a conservative system of equations where we replace the
nonconservative equation of electron internal energy by an equation of conservation
of electron entropy (see Equation (B.1) in Appendix B). The obtained model is called
model Ment. In this case, one would get the following jump conditions:

(3.10)
pLe
pRe

:=
Ment

(

(γ + 1)M2
R

(γ − 1)M2
R + 2

)γ

,
T

L

e

T
R

e

:=
Ment

(

(γ + 1)M2
R

(γ − 1)M2
R + 2

)γ−1

.

Second, one can consider another conservative system of equations where the
nonconservative product is considered as a source term: only the conservative part
of the system is considered for getting the jump conditions (see Equation (B.2) in
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Appendix B). The model obtained in that case is called model Msrc and the jump
conditions read

(3.11)
pLe
pRe

:=
Msrc

(γ + 1)M2
R

(γ − 1)M2
R + 2

,
T

L

e

T
R

e

:=
Msrc

1.

The jump conditions for the electron pressure and electron temperature obtained
by the travelling wave method in Equation (3.9) are then compared to those obtained
by means of Equation (3.10) and Equation (3.11). In Figure 3.2, the three jump
conditions are plotted as functions of the Mach number for Mach numbers between 1
and 1.5. We observe first that the isothermal jump conditions of model Msrc rapidly
underestimates the post-jump temperature. Moreover, this model is not reasonable
since the dynamics of smooth waves, such as rarefaction waves, is modified. Second,
the jump conditions Equation (3.11) of model Ment are similar to the ones of Equa-
tion (3.9) for a Mach number regime close to 1. However, significant differences can
be observed when the Mach number is increasing.

1 1.1 1.2 1.3 1.4 1.5
0.5

1

1.5

2

2.5

3

3.5

Mach number MR

pLe
pRe

1 1.1 1.2 1.3 1.4 1.5
0.8

1

1.2

1.4

1.6

1.8

2

TL
e

TR
e

Mach number MR

Fig. 3.2: Ratio pLe /p
R
e and T

L

e /T
R

e as a function of the Mach number MR, from
Equation (3.9) in full line, from Equation (3.10) in semi-dashed line and from Equa-
tion (3.11) in dashed line.

As a conclusion, by looking for piecewise smooth travelling wave solutions, we
were able to get an analytical expression of the missing jump condition associated
with the thermal energy of electrons, and the analytical travelling wave solution of
the electron variables valid for a Mach number regime close to one. For that purpose,
we had to decouple the problem: a discontinuity propagating at velocity σ where the
jump conditions are prescribed by the usual Rankine-Hugoniot relations solution to
the sub-system (S1) and a continuous travelling wave propagating at the same veloc-
ity σ, solution to the sub-system (S2). The resulting jump conditions are valid in a
neighborhood of Mach one and then lead to a singularity for larger Mach numbers. In
the interval where they are valid, they exhibit rather important differences with the
conditions found in the literature. At the end of this contribution, we will prove that
the analytical expression obtained for the decoupled system is a very good approxi-
mation in a Mach range close to the one of the jump conditions for the fully coupled
problem (S), which does not lead to any singular behavior. The jump condition for
the fully coupled problem (S) will also be proved to be very different from the usual
jump conditions of the literature. The next step is to verify numerically the jump
conditions and if we can capture the analytical travelling waves.

4. Numerical scheme for the decoupled system (S1) and (S2). In the
previous section, we show the existence of a travelling wave for system (S2). The
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aim of this section is to develop numerical methods able to capture the dynamic of
the travelling wave. First, we introduce a standard scheme based on a finite volume
Godunov method with a standard discretization of the nonconservative product and
then a specific treatment.

Note that the proposed method to treat the nonconservative term is indepen-
dant of the chosen finite volume scheme. Numerical experiments for a Lax-Friedrichs
scheme and an upwind scheme have been performed and led to the same conclusions.

4.1. Finite volume scheme with a standard discretization for the non-
conservative product. The electron variables ρe and ρeee are initialized by using
the analytical solution found in the previous section. The heavy variables ρh, vh, and

E are discontinuities propagating at velocity σ, where the conditions are fixed by the
Rankine-Hugoniot conditions.

A monodimensional finite volume Godunov method is used to discretize the elec-
tron sub-system (S2). We consider a finite domain of length L with N cells of length
∆x = L/N . The position of each cell Cj , 1 ≤ j ≤ N is defined by its center xj at the
middle of the interfaces xj+1/2 and xj−1/2. The bounds of the domain are not taken
into account as the simulations are stopped before any interaction occurs between the
travelling wave and the boundary. Left and right Dirichlet conditions are then used.
The time is also discretized with a timestep ∆t. Figure 4.1 can be used to visualize
these standard notations.

x

t

Cj−1

xj−1/2

Cj

xj+1/2

Cj+1

∆x

∆t

Fig. 4.1: Notations for finite volume scheme.

We denote by Un
j , n ≥ 0, 1 ≤ j ≤ N , the vector of the natural variables at time

tn in the cell Cj Un
j =

(

Un
j,1, U

n
j,2

)

=
(

ρne,j, ρ
n
e,je

n
e,j

)

. The general scheme reads

(4.1) Un+1
j = Un

j − ∆t
∆x

(

Fn
j+1/2 − Fn

j−1/2

)

+ ∆t
∆x

(

Gn
j+1/2 −Gn

j−1/2

)

+Nn
j ,

where Fn
j±1/2 are the convective fluxes at interfaces j ± 1/2, Gn

j±1/2 the diffusive fluxes

at interfaces j ± 1/2, and Nn
j the value of the nonconservative term in the cell j.

The convective flux Fn
j+1/2 is computed by means of Godunov’s scheme, by solving

the Riemann problem with the left and the right values given by the cells j and
j+1 and by taking the value of the flux at the interface. Note that the solution
of the Riemann problem used by this Godunov’s solver is essentially the solution of
the transport equation with a constant velocity but at the interfaces close to the
discontinuity of the velocity vh (in these cases, the travelling wave is used).

Then, the diffusive flux is calculated by using a second-order centered scheme

Gn
j+1/2 = 1

∆x

(

D γ−1

T
n
e,j+1/2

(Un
j+1,2 − Un

j,2), λ(T
n

e,j+1 − T
n

e,j) +Dγ(Un
j+1,2 − Un

j,2)
)

,
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where T
n

e,j = (γ − 1)ene,j = (γ − 1)Un
j,2/U

n
j,1 and the interface temperature T

n

e,j+1/2

reads

T
n

e,j+1/2 =
γ − 1

2

(Un
j+1,2

Un
j+1,1

+
Un
j,2

Un
j,1

)

=
1

2

(

T
n

e,j+1 + T
n

e,j

)

.

Finally, the second composant of the nonconservative term Nn
j = (0, Nn

j,2) is computed

as an approximation (as accurate as possible) of the integral over [tn, tn+1]×Cj of the
nonconservative contribution

∫ tn+1

tn

∫

Cj

pe∂xvh dxdt ≃ (γ − 1)Un
j,2

∫ tn+1

tn

∫

Cj

∂xvh dxdt,

where the integral of ∂xvh is exactly computed as the velocity vh is prescribed. The
proposed scheme is then a consistent numerical scheme with a standard discretization
of the nonconservative product that can be tested for capturing the travelling wave.

4.2. Numerical results. In this section, we present some numerical experi-
ments, using the finite volume scheme with standard discretization for the non-
conservative product proposed in the previous section. Different resolutions of the
travelling wave are presented with a double objective: first, to capture the dynamic of
the travelling wave with a fine enough mesh; second, to visualize the behaviour with
a coarse mesh in order to understand how the scheme can capture a shock disconti-
nuity. We focus on the 3-wave with respect to the wave structure of the Euler system
(S1), so that the right state R is known. Besides, a supersonic regime is studied for a
Mach number close to one in order to guarantee the existence of the travelling wave
introduced in Section 3.

The number of nodes N and the length of the domain L are fixed: N = 2000 and
L = 10. The initial position of the travelling wave (that is the position corresponding
to ξ = 0 in the moving frame) is 0.2L. The time discretization ∆t is fixed by a Fourier
condition ∆t ≤ 1

2β∆x2 where β = max(D,κR). All the simulations are stopped at
t = tf = 1, corresponding to a displacement of the travelling wave to 0.373L. The
electron thermal conductivity λ = 0.001 is fixed, so the associated characteristic length
Lλ = 7.6× 10−2 is fixed. This value has been chosen as a good compromise between
the length of the domain, which is fixed, and the regularization of the profile of the
electron temperature. However, the electron diffusion coefficient D is going to vary
in our numerical experiments changing the resolution of the travelling wave. This
diffusion length LD is related to the diffusion coefficient D in Equation (3.7) as an
increasing function. Consequently, since the length of the domain and the number of
nodes are fixed, we improve the resolution of the travelling wave in the characteristic
length LD by increasing the diffusion coefficient D. Simulations are conducted for
diffusion coefficient D between 10−3 and 10−1 corresponding to different resolutions
of the travelling wave and lengths LD. The two extreme cases, denoted by case HD
(highly-discretized) and case WD (weakly-discretized), are reported in Table 4.1: in
case HD, LD > Lλ whereas in case WD, LD ≪ Lλ. In Section 5, we will see that
the physical test case in sun chromosphere conditions corresponds to cases where
LD ≪ Lλ.

The right state and the left state have been initialized with the values given in
Table 4.2. The left state of the travelling wave has been computed using Rankine-
Hugoniot relations for the heavy particles variables and jump conditions given in (3.9)
for the electronic variables.
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Table 4.1: Values of the diffusion coefficient D used in the numerical experiments

Case HD Case WD

D 10−1 10−3

LD 3.055×10−1 3.055×10−3

Number of nodes in LD 61.1 0.611

Table 4.2: Right and left states of the travelling wave

ρ
h

ρe p pe vh Mach number

right state R 1 0.01 1 0.1 0.2 1.1832

left state L 1.274 0.01274 1.5 0.1556 0.527 0.8563

Figures 4.2a and 4.2b show first that the travelling wave is well captured in the
case HD: the dynamic of the travelling wave is preserved if the number of nodes
in the length LD is large enough; second, that a non-expected artificial numerical
shock appears in the case WD. Two main contributions to the difference between
the numerical and analytical solutions can be exhibited: a contribution upstream
of the shock due to the numerical dissipation in the regular part of the travelling
wave; a contribution downstream of the shock due to the error on the gradients in the
discontinuity.

Figure 4.3 represents the gradient of the electron energy ∂xee = (γ−1)∂xTe close
to the discontinuity for the cases HD and WD at t = tf = nf∆t, where nf is the
total number of iterations at the final time tf . For each cell 1 ≤ j ≤ N , the gradient
is computed by means of a centered finite difference formula

(∂xee)
nf

j =
e
nf

e,j+1 − e
nf

e,j−1

2∆x
.

One can see that in the case HD, the gradient is small whereas in the case WD, a

numerical artefact appears in the discontinuity. If the equality T
′

e (0
+) = T

′

e (0
−) is

verified numerically, one gets the proper travelling wave with the right jump condition.
If not, an artefact is produced in the discontinuity, due to the poor resolution of the
gradient in the discontinuity, resulting in an artificial numerical shock.

Figure 4.4 shows the error in L2-norm of pe in function of the number of nodes in
LD, downstream and upstream of the shock. For the two areas studied, the dynamics
of the L2 norm of the error on pe is the same: when the resolution of the wave is
increasing, this norm is decreasing. Downstream of the shock, one can identify two
dynamics for the L2 norm. It can also be noted that the dynamic is changing when
the error in L2 norm downstream of the shock becomes greater than upstream of
the shock. Moreover, it is exactly at these resolutions that we begin to observe the
appearance of an artificial shock.

The conclusive remark of these numerical experiments is the following. If the gra-
dients in the discontinuity are well resolved (that is the case when the spatial mesh is
fine enough), then, the travelling wave is well captured; if not, an artificial numerical
shock is produced and, in this case, the numerical dissipation is responsible of the
dynamic of the travelling wave. While the wave is regularized, having a non-linear
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Fig. 4.2: Analytical solution (dashed line), numerical solution (full line), and relative
error (Err) for the travelling wave at t = tf = 1
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Fig. 4.3: Quantity ∂xee for case HD (full line) and case WD (dashed line) at t =
tf = 1.

model with diffusion coming from physics implies that the conditions for solving the
wave are identified. On the contrary, in systems based on general nonconservative hy-
perbolic equations, it is difficult to clearly identify how numerical dissipation impacts
the resolution of the wave [1], [11].

Since the conditions for capturing the travelling wave have been identified, one
wants to improve these results and build a new way for discretizing the nonconser-
vative product allowing us to capture properly the travelling wave, even in weakly
resolved cases. This is particularly relevant in solar physics. Indeed, it will be seen in
Section 5 that the structure of the travelling wave in the sun chromosphere conditions
corresponds to a case where the characteristic length LD is very small compared to
the characteristic length Lλ. Consequently, using the presented standard scheme with
the standard discretization of the nonconservative product, one would need a lot of
nodes in order to capture properly the travelling wave.

4.3. Specific treatment of the nonconservative product. In this section,
we develop an original method for discretizing the nonconservative term Nn

j,2. The
idea is to express in a discretized sense the compatibility conditions (3.5) for the
discontinuity, and deduce a new expression of the nonconservative term Nn

j,2 in order
to satisfy these conditions. In that way, we aim at capturing the travelling wave even
when the gradients are not fully resolved.
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Fig. 4.4: L2-norm of the error on pe with respect to the number of nodes in LD. Left:
downstream domain contribution (slopes of the lines: 0.3324 and 1.314); middle:
upstream domain contribution (slopes of the lines: 0.2541 and 0.3846); right: full
domain contribution.

We consider the general scheme written in term of finite volumes (4.1) and specify
the two vectorial coordinates by means of an index

(4.2)

{

Un+1
j,1 − Un

j,1 +
∆t
∆x

(

Fn
j+1/2,1 − Fn

j−1/2,1

)

= 0 + ∆t
∆x

(

Gn
j+1/2,1 −Gn

j−1/2,1

)

,

Un+1
j,2 − Un

j,2 +
∆t
∆x

(

Fn
j+1/2,2 − Fn

j−1/2,2

)

= Nn
j,2 +

∆t
∆x

(

Gn
j+1/2,2 −Gn

j−1/2,2

)

.

According to the relation found in Equation (3.5), the jump of the gradient of pe
in the discontinuity is the same in the electron mass and electron thermal energy equa-
tions. In the discretized sense, one can simply link these two equations by multiplying
the electron mass equation by a temperature T

n

e,j = (γ − 1)Un
j,2/U

n
j,1:

(4.3)
{

T
n

e,j(U
n+1
j,1 − Un

j,1) + T
n

e,j
∆t
∆x

(

Fn
j+1/2,1 − Fn

j−1/2,1

)

= T
n

e,j
∆t
∆x

(

Gn
j+1/2,1 −Gn

j−1/2,1

)

,

Un+1
j,2 − Un

j,2 +
∆t
∆x

(

Fn
j+1/2,2 − Fn

j−1/2,2

)

= Nn
j,2 +

∆t
∆x

(

Gn
j+1/2,2 −Gn

j−1/2,2

)

.

According to Equation (3.6), the derivative of the temperature Te is continuous in
the discontinuity so we have:

(4.4) T
n

e,j+1 − T
n

e,j = T
n

e,j − T
n

e,j−1 ⇐⇒ T
n

e,j+1 − 2T
n

e,j + T
n

e,j−1 = 0.

Consequently, the second-order terms of the electron thermal energy equation can be
simplified as

(4.5) Gn
j+1/2,2 −Gn

j−1/2,2 =
Dγ

∆x

(

Un
j+1,2 − 2Un

j,2 + Un
j−1,2

)

,

and coupled to second-order terms of the electron mass equation defined as

(4.6) Gn
j+1/2,1 −Gn

j−1/2,1 =
2D (γ − 1)

∆x





(

Un
j+1,2 − Un

j,2

)

(

T
n

e,j+1 + T
n

e,j

) −
(

Un
j,2 − Un

j−1,2

)

(

T
n

e,j + T
n

e,j−1

)



 ,
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Besides, the time derivative terms are not playing a role in the compatibility Equa-
tion (3.5). We couple the electron mass equation with the electron thermal energy
equation, providing a new expression for the nonconservative product:

(4.7) Nn
j,2 =

∆t
∆x

(

Fn
j+1/2,2 − Fn

j−1/2,2

)

− γ
γ−1T

n

e,j
∆t
∆x

(

Fn
j+1/2,1 − Fn

j−1/2,1

)

− ∆t
∆x

(

Hn
j+1/2 −Hn

j−1/2

)

,

where the second-order terms of Equation (4.7) are given by

(4.8) Hn
j±1/2 = γ

2

(

T
n

e,j±1 − T
n

e,j

)

Gn
j±1/2,1.

This expression of the nonconservative product Nn
j,2 verifies Equation (3.5) in the

discretized sense, that is to say: 1- the continuity of Te in the discontinuity of the
travelling wave verifying Equation (4.4), 2- the conditions on the jump of the gradient
of pe in the discontinuity.

However, the expression found in Equation (4.7) for Nn
j,2 makes the global scheme

not consistent. It is necessary to add correction terms in order to get the consistency
property. It is important to make sure that these additional correction terms are
not playing any role in discontinuities, which could violate Equation (3.5) in the
discretized sense. We limit the impact of these additional terms in the discontinuities
and one can show that the dynamic of the wave is not depending on the choice of the
cut-off. The main idea of this numerical scheme is to get proper compensations of the
different terms in discontinuities in order to verify Equation (3.5) in the discretized
sense, and at the same time, to add correction terms for getting the consistency in
order to capture properly the regular parts of the travelling wave. By adding first
order correction terms, the expression of the nonconservative product Equation (4.7)
reads:

(4.9) Nn
j,2

∗ = Nn
j,2 − (γ − 1)vn

h,j

Un
j,2 − Un

j−1,2

∆x
+ γvn

h,jU
n
j,1

T
n

e,j − T
n

e,j+1

∆x
.

Figure 4.5 represent the L2 norm of pe in function of the number of nodes in LD

for three different way of discretizing the nonconservative product Nn
j,2. Results are

presented for three methods: the standard way of discretizing Nn
j,2 described in Sec-

tion 3, without correction terms of Equation (4.7), and with correction terms Nn
j,2

∗ of
Equation (4.9). The formulation of the nonconservative product Nn

j,2 without correc-
tion terms is working well in the weakly discretized case for the travelling wave test
cases. However, in the regularized case, an additional numerical shock is appearing
and the L2 norm is increasing with the number of nodes in LD, because the scheme
is not consistent. By adding correction terms and using the formulation of the non-
conservative term Nn

j,2
∗ from Equation (4.9), we have built a scheme which is able to

capture the travelling wave in both the highly- and coarsely-resolved cases.
We could have built this numerical scheme because of the thorough understanding

of the travelling wave linked to a good structure of the diffusion, as well as system
allowing us to derive compatibility equations in the discontinuity.

5. Application to solar physics. In this section, we apply the previous devel-
opment to a test case chosen so as to reproduce typical scales from sun chromosphere
conditions. We study the ability of our scheme to resolve shock solutions in such
conditions and design a specific numerical strategy based on the new scheme in order
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Fig. 4.5: L2-norm of the error on pe with respect to the number of nodes in LD, ⊲ stan-
dard discretization, ◦ discretization without correction terms from Equation (4.7), and
+ discretization with correction terms from Equation (4.9). Left: downstream domain
contribution; middle: upstream domain contribution; right: full domain contribution.

to cope with the nonconservative term. A 3-wave is considered by using the sys-
tem (S2) with non-dimensional quantities for building the travelling wave in the sun
chromosphere conditions.

First, we use atmospheric parameters from the model C of Vernazza et al. [35]
where the values of these parameters are given at 52 depth in the atmosphere from
the low corona to the photosphere. For the purpose of the work, we have focused
on the photospheric level at the heigth h = 0 km. We consider pRe = pRh at the
right state, with only two species: electrons and protons H+ as heavy particles. The
transport coefficients D and λ are computed using third-order Sonine polynomials
approximation based on a spectral Galerkin method used in [22, 36] considering local
thermodynamic equilibrium for the fully ionized gas.

Then, we non-dimensionalize these quantities with reference quantities. The char-
acteristic length of diffusion L0 = LD is chosen as the reference length. The density
of heavy particle is chosen as the reference density ρ0. The reference velocity v0 is the
Alfvén velocity defined as v0 = B0/

√
µ0ρ0 where B0 is the reference magnetic field,

chosen as B0 = 100 G, and µ0 the vacuum permeability.

Table 5.1: Reference quantities at the photospheric level

ρ0 (kg.m−3) L0 (m) v0 (m.s−1) T0 (K) P0 (Pa) n0 (m−3)

1.873 × 10−4 1.747 × 10−6 6.518 × 102 6420 9927.42 1.12 × 1023

Finally, after non-dimensionalizing the governing equations with reference quan-
tities from Table 5.1, the travelling wave is investigated using values from Table 5.2
and Table 5.3. We have chosen a number of nodes of either N = 1000 or N = 5000
and a length of the domain L/L0 = 2×105.

After initializing the travelling wave, three numerical schemes are compared. The
first scheme, denoted scheme A, is the standard scheme based on a standard dis-
cretization of the nonconservative product introduced in Section 4, where the timestep,
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Table 5.2: Right and left states at infinity of the travelling wave

ρ
h

ρe p pe vh

right state R 1 5.44×10−4 0.5974 0.2987 0.07

left state L 1.6962 9.23×10−4 1.5 0.9454 0.6787

Table 5.3: Diffusion coefficients and related typical lengths

D κR LD/L0 Lλ/L0 L/L0

10.7853 121 970.96 1 11309 200 000

denoted ∆tF , is limited by a Fourier stability condition, thus involving the largest
diffusion coefficient, that is the electron thermal diffusivity κR. The second scheme,
denoted scheme B, is based on the formulation of the nonconservative product de-
scribed in Equation (4.9), where the timestep is also limited by the same Fourier
stability condition. The third scheme, denoted scheme C, is based on the formu-
lation of the nonconservative product defined in Equation (4.9), using an operator
splitting approach based on a second-order Strang formalism in order to separate the
convection and diffusion operators [32, 13, 9, 12]. The idea is to not be limited by the
small timesteps ∆tF imposed by the Fourier stability condition, due to the electron
thermal diffusivity. Concerning the scheme C, there are two possibilities for the
operators : one can 1- gather diffusive terms and the nonconservative product, or
2- gather convective terms and the nonconservative product. In this work, we have
focused on the second case. Indeed, according to Equation (4.9), the expression of
the nonconservative product depends on the thermal energy and density convective
fluxes, which makes the second case a rather more natural choice. Besides, the com-
putational time is drastically shorter in this case, since the nonconservative product is
integrated only one time during the convective timestep, whereas in the other case, the
nonconservative product is integrated several times during the dissipative timestep.

The operators are splitted: one operator X corresponds to convective terms and
the nonconservative product defined by Equation (4.9), where the convective timestep,
called ∆t, is simply limited by a CFL condition; an other operator Y regroups diffu-
sion terms, where the timestep ∆tF is computed based on the Fourier condition and
integrated over several sub-timesteps in order to reach the convective timestep. The
general scheme is summarized as follows:

Un+1 = Y
∆t
2 X∆tY

∆t
2 Un.

In the proposed schemes, the values used for the convective timestep ∆t and the
diffusive timestep ∆tF are presented in Table 5.4. In order to perform the comparison
between the timesteps used, we have compared them to the convective timestep ∆t =
C × ∆x/max(vR

h + cR,vL
h + cL) for N = 1000 and N = 5000, where the Courant

number is C = 0.2.
Results are presented in Figure 5.1a and Figure 5.1b for the electron energy ee,

comparing the three schemes, at the final time t = tf = 30000, for N = 1000 and
N = 5000. In the sun chromosphere conditions, the characteristic scales are such that
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Table 5.4: Timesteps used for the three schemes for N = 1000 and N = 5000

N ∆t ∆tF
1000 2.233× 101 4.095× 10−1

5000 4.466 1.64× 10−2
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Fig. 5.1: Electron energy (ee) and relative error (Err) for the solar test case based on
the values from Table 5.2 and Table 5.3. Exact solution at t = 0 (red dashed line)
and t = 30000 (red full line). Numerical solution for scheme A (semi-dashed line),
scheme B (dashed line), and scheme C (full line), at the final time t = 30000.

Lλ ≫ LD, because the electron diffusivity is much higher than the electron diffusion
coefficient in such conditions. In the test case, the smallest spatial scale to be resolved
is the length LD, which is the characteristic scale related to the resolution of the
travelling wave. By fixing the number of nodes N and the length of the domain L
based on Table 5.3, the test case can be identified as a very weakly-resolved travelling
wave test case.

In Figure 5.1a and Figure 5.1b, the standard scheme exhibits artificial numerical
shock since the smallest scale is not properly resolved and small timesteps ∆tF have
to be used, as expected. Switching to a proper treatment of the nonconservative term
allows to reduce by a factor of 9, for N = 5000, the amplitude of the error on the elec-
tron temperature and to reduce drastically the artificial numerical shock, thus leading
to a satisfactory level of resolution. However, using the new scheme based on Strang
splitting operator techniques combined to the new formulation of the nonconservative
product (scheme C) leads to an additional improvement of the resolution of all the
scales of the travelling wave. The travelling wave can be well captured, while using
splitting timesteps of the order of the convective CFL stability limitation, thus leading
to a minimal amount of numerical dissipation in the convective step. In fact, based
on the results obtained in the previous section, a good approximation of the travelling
wave obtained with the scheme A would require several nodes in the characteristic
length LD thus leading to about a million nodes. In this context, the corresponding
convective timestep and the diffusive timestep would be respectively ∆t = 8.94×10−2

and ∆tF = 4.01× 10−7 and the original scheme would become useless.
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Fig. 5.2: Electron energy (ee) and relative error (Err) for the solar test case based on
the values from Table 5.2 and Table 5.3. Exact solution at t = 0 (red dashed line)
and t = 30000 (red full line). Numerical solution for scheme C at the final time
t = 30000, for N = 5000 in the domain [30000, 140000] for several Courant number
C = 5 × 10−2 (semi-dashed line), C = 0.2 (full black line), C = 0.3 (dashed line),
C = 0.4 (full blue line).

In order to perform the analysis of the error generated by the splitting operation,
several splitting timestep ∆t have been tested for the presented test case, used in the
scheme C. Results for several Courant number C ∈ {0.05, 0.2, 0.3, 0.4} are shown in
Figure 5.2, for N = 5000, at t = 30000. These results show that when the splitting
timestep becomes too important (for Courant numbers C = 0.3 or C = 0.4), the
travelling wave is no longer captured with a high level of accuracy, and an additional
numerical artefact is obtained. However, for a splitting timestep where the Courant
number is C = 0.2, we notice that the numerical solution is shown to be optimal.

6. Travelling wave for the fully coupled problem (S). In this paper, we
have focused so far on the decoupled problem (S1) and (S2). In the case of the fully
coupled problem (S), the problem is in fact very similar to the decoupled problem
and one can solve for travelling wave solutions as well. However, we get a numerical
solution instead of a complete analytical solution. In this study, we also consider a
3-wave.

In the fully coupled system (S), we solve for a travelling wave where the structure
corresponds to 1- a constant state L, a weak discontinuity (smooth function with
jump of derivative) and a regularization up to a constant state R for the electron
variables (pe, ρe) and 2- a constant state L, a discontinuity connecting state L to
an intermediary state 0 and a regularization from state 0 to a constant R for the
heavy variables (E ,vh, ρh). The structure of the wave is represented in Figure 6.1.
The jump conditions are the Rankine-Hugoniot conditions, the thermal energy of
electrons requires a numerical integration and the velocity jump is coupled to the
weak jump of the electron variables. Actually, the structure of the wave for the heavy
particles is very similar to the one identified by Zel'dovich and Raizer in [38] in §3,
where the role of the heat conduction on the structure of the shock wave in gases has
been studied.

In order to get an accurate estimation of the missing jump condition for the
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electron thermal energy of as a function of the Mach number MR as well as the
structure of the travelling wave, we integrate the ordinary differential equations of
(S) using a Dormand-Prince (RKDP) method or DOPRI853 method [10]. In the
case of a 3-wave, we initialize the travelling wave from state L and, by numerical
integration, compute the corresponding state R. In order to get an accurate estimation
of the missing jump condition, a shooting method is used. The steps of the shooting
method are the following: 1- we start the numerical integration of the travelling wave
using the state L of the case A in subsection 4.2 of the decoupled problem, then 2-
a state R associated to the initial state L is computed, finally 3- a dichotomy is used
by initializing different state L until a good approximation of the expected state R is
found. The missing jump condition of the fully coupled problem as a function of the
Mach number can thus be obtained.

The results of the numerical integration are presented in Figure 6.2. The esti-
mated jump condition for the fully coupled problem is compared with the jump con-
ditions from the decoupled problem Equation (3.9), Equation (3.10) from the model
Ment, and Equation (3.11) from the model Msrc. The jump conditions of the decou-
pled problem Equation (3.9) give a very good approximation of the jump conditions
of the fully coupled problem in a reasonable Mach number range MR close to one.
Besides, in the fully coupled case, no singularities have been observed for the jump
condition of pe and Te for the whole range of Mach number. The results show that the
jump conditions from the conservative models Ment and Msrc clearly underestimated
the post-shock temperature.

Finally, if having an analytical expression of the travelling wave for the fully cou-
pled problem is not possible, relying on the same strategy designed in the study of the
decoupled problem, we are able to analyze the fully coupled case. By integrating the
ordinary differential equations of the fully coupled problem (S), we get the structure
of the travelling wave as well as an evaluation of the missing jump condition of the
internal energy of electron.

From this study, two conclusions can be drawn: 1- Relying on the missing jump
condition proposed in the literature through various approximation yields a very poor
approximation of the effective jump conditions, even in a Mach number range close
to one and the present study allows to derive the physically sound jump conditions,
2- Focusing on the decoupled problem, at least in a reasonable Mach number range
around one, is fully justified since it provides a very good approximation of the effective
jump conditions.
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Fig. 6.1: Structure of the travelling wave for the fully coupled problem (S)
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Fig. 6.2: Jump of pe and Te as a function of the Mach number MR. In full line: the
jump from the decoupled system (S2), in semi dashed-line: model Ment from the
system (B.1), in dashed line: model Msrc from the system (B.2), in dotted line:
jump from the fully coupled system from (S)

7. Conclusions. The general plasma model derived in [14] has been presented in
a simplified model, without considering the electro-magnetic forces and under several
assumptions, which inherits the difficulties of the general case in terms of evaluating
jump conditions and simulating shock solutions. We have proposed a decoupling of
the governing equations in order to derive an analytic expression of the missing jump
condition on the electron temperature. Even if valid for shock solutions in a range
of Mach number close to one, we observe that this analytic jump condition is rather
different from the jump conditions obtained in the literature and the discrepancies
get worse as the Mach number increases. In order to reproduce numerically the
structure of the travelling wave solution with the proper jump conditions, we have
used a finite volume method of Godunov type. A naive consistant treatment of the
nonconservative product proves that, for a fine resolution, the expected wave is well
reproduced. We have verified the jump condition as well as the structure of the
travelling wave obtained analytically and identified the required level of resolution in
order to prevent the appearance of an additional artificial jump due to the numerical
dissipation of the numerical scheme.

In this context, we have developed a numerical scheme with a specific treatment
of the nonconservative product. The idea is to express the compatibility equations at
the discontinuity of the travelling wave in a discretized sense. It gives the ability to
predict the proper travelling wave even when the gradients are not fully resolved. We
have thus built a scheme, which is able to capture the travelling wave in the highly- or
weakly-resolved cases. Such a scheme is important since the weakly-discretized case
is particularly relevant in the sun chromosphere conditions. We have also applied a
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Strang operator splitting technique in order to prevent the use of small time-steps
limited by the presence of large diffusion terms and a Fourier stability condition.
Eventually, a 1D travelling wave test case has been presented based on conditions
found in the sun chromosphere, which allowed us to assess the numerical scheme and
numerical strategy based on operator splitting. Such a strategy should prove very
useful for applications in solar physics in order to gain computational cost, as well as
obtain physically accurate simulations.

Furthermore, jump conditions based on our knowledge of the decoupled problem
have been derived numerically for the fully coupled system and we were able to justify
that studying the decoupled problem provides a good approximation of the original
system in a range of Mach number close to one, as well as a good insight on the
resolution of the problem for the general system of equations. The contributions
proposed in this paper should also be extended to the case where electro-magnetic
forces are present and the system is coupled to Maxwell’s equations. This is the
subject of our current research.

Appendix A. General governing equations.
Multicomponent nonequilibrium Navier-Stokes equations are obtained from the

fluid model derived in [14, 23] for the fully magnetized case and the Maxwellian regime
for reactive collisions. The general governing equations read in non dimensional form:
(A.1)






















































∂tρe + ∂x·(ρevh) = −∂x·(ρeVe )− ε
(

∂x·(ρeV (2)
e )− ω0

e

)

,

∂tρi + ∂x·(ρivh) = −ε
(

∂x·(ρiVi )−mi ω
0
i

)

, i ∈ H,

∂t(ρhvh + ε0E∧B) + ∂x·
(

ρhvh⊗vh + (p+ EEM )I− (ε0E⊗E + 1
µ0
B⊗B)

)

= −ε∂x·Πh,

∂t(ρeee) + ∂x·(ρeeevh) + pe∂x·vh = −∂x·qe + S(1) − ε
(

∂x·q(2)
e − S(2)

)

,

∂t(E + EEM ) + ∂x·(Hvh +
1
µ0
E∧B) = −∂x·qe

− ε
(

∂x·q(2)
e + ∂x·qh + ∂x·(Πh·vh)

)

,

with the same notations as in System (S). Some new quantities are introduced:

symbol V (2)
e stands for the second-order electron diffusion velocity, ω0

e the electron
chemical production rate, ρi the density of the heavy particle i ∈ H, Vi the diffusion
velocity of the heavy particle i ∈ H, mi the non-dimensional mass of the heavy particle
i ∈ H, ω0

i the chemical production rate of the heavy particle i ∈ H, ε0 the vacuum
permittivity, E the electric field, B the magnetic field, µ0 the vacuum permeability,
EEM = ε0E

2/2+B2/(2µ0) the electromagnetic energy, Πh the heavy-particle viscous
stress tensor, q

(2)
e the second-order electron heat flux, qh the heavy-particle heat flux.

The source terms S(1) and S(2) are defined as

(A.2) S(1) = Je·E′ −∆E
(1)
h , S(2) = J (2)

e ·E′ −∆E
(2)
h −∆E

(2)
chem,

where quantity Je = neqeVe is the first-order electron conduction current density
with qe the electron charge, E′ = E + vh∧B, the electric field expressed in the
heavy-particle reference frame, ∆E

(1)
h , the energy transferred from heavy particles to

electrons at order zero, J (2)
e = neqeV

(2)
e , the second-order electron conduction current

density, ∆E
(2)
h , the energy transferred from heavy particles to electrons at first order

zero, and ∆E
(2)
chem, the chemistry-energy coupling term. In solar physics applications,
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the full system of equations (A.1) can be coupled with Maxwell’s equations [34]

(A.3)























∂x·E =
nq

ε0
,

∂x·B = 0,

∂tB + ∂x∧E = 0,

µ0ε0∂tE − ∂x∧B = −µ0I,

where quantity nq is the mixture charge, and I = nqvh + Je + J(2)
e + Jh, the total

current density with Jh =
∑

i∈H niqiVi , the heavy-particle conduction current density
with qi the charge of of the heavy particle i ∈ H. The electron transport fluxes Ve
and qe appear at the convective time scale corresponding to the Euler equations for
the heavy species (zeroth order). The transport fluxes V (2)

e and q
(2)
e are obtained at

the dissipative time scale corresponding to the Navier-Stokes equations for the heavy
species. Notice that electrons participate in the momentum balance through the
pressure gradient and the Lorentz force but they do not contribute to the viscous stress
tensor due to their small mass. The electron transport properties are anisotropic and
depend on the direction of the magnetic field whereas the heavy transport properties
are isotropic. For example, the first-order electron diffusion velocity is expressed by
means of Fick’s law and Soret’s law

(A.4) Ve = − ¯̄De(de + ¯̄χe∂xlnTe ),

where ¯̄De is the electron diffusion coefficient tensor, and ¯̄χe the thermal diffusion
ratio. The electron diffusion driving force is de = ∂xpe/pe − neqeE

′/pe. The first-
order electron heat flux is expressed by means of Fourier’s law, together with Dufour’s
law and a term of diffusion of enthalpy

(A.5) qe = −¯̄λe∂xTe + pe ¯̄χeVe + ρeheVe .

Quantity ¯̄λe is the electron thermal conductivity tensor. These transport properties
can be computed at the microscopic level using a spectral Galerkin method.

Appendix B. Convervative models . We introduce two additional models.
Model Ment with a conservation equation of entropy:

(B.1)



































∂t(ρh) + ∂x(ρhvh) = 0,

∂t(ρhvh) + ∂x(ρhv
2
h + p) = 0,

∂t(E) + ∂x(Evh + pvh) = 0,

∂t(ρe) + ∂x(ρevh) = 0,

∂t(ρese) + ∂x(ρesevh) = 0,

where the electron entropy se is defined by the relation pe = (γ − 1)ρe
γ
exp(se/cv),

where cv is the electron specific heat at constant volume.
Model Msrc, with the nonconservative product as a source term:

(B.2)



































∂t(ρh) + ∂x(ρhvh) = 0,

∂t(ρhvh) + ∂x(ρhv
2
h + p) = 0,

∂t(E) + ∂x(Evh + pvh) = 0,

∂t(ρe) + ∂x(ρevh) = 0,

∂t(ρeee) + ∂x(ρeeevh) = 0.
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