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Abstract. We consider the D1Q3 lattice Boltzmann scheme with an acoustic scale for
the simulation of diffusive processes. When the mesh is refined while holding the dif-
fusivity constant, we first obtain asymptotic convergence. When the mesh size tends
to zero, however, this convergence breaks down in a curious fashion, and we observe
qualitative discrepancies from analytical solutions of the heat equation. In this work,
a new asymptotic analysis is derived to explain this phenomenon using the Taylor ex-
pansion method, and a partial differential equation of acoustic type is obtained in the
asymptotic limit. We show that the error between the D1Q3 numerical solution and a
finite-difference approximation of this acoustic-type partial differential equation tends
to zero in the asymptotic limit. In addition, a wave vector analysis of this asymptotic
regime demonstrates that the dispersion equation has nontrivial complex eigenvalues,
a sign of underlying propagation phenomena, and a portent of the unusual conver-
gence properties mentioned above.

PACS: 02.70.Ns, 05.20.Dd, 47.10.+g

Key words: Artificial compressibility method, Taylor expansion method.

∗Corresponding author. Email addresses: fran
ois.dubois�math.u-psud.fr (F. Dubois),
bru
e.boghosian�tufts.edu (B. M. Boghosian), benjamin.graille�math.u-psud.fr (B. Graille),
pierre.lallemand1�free.fr (P. Lallemand), mohamedmahdi.tekitek�fst.rnu.tn (M.-M. Tekitek)

http://www.global-sci.com/ 1263 c©2018 Global-Science Press



1264 B. M. Boghosian et al. / Commun. Comput. Phys., 23 (2018), pp. 1263-1278

1 Introduction

Lattice Boltzmann models are simplifications of the continuum Boltzmann equation ob-
tained by discretizing in both physical space and velocity space. The discrete velocities
vi retained typically correspond to lattice vectors of the discrete spatial lattice. That is,
each lattice vertex x is linked to a finite number of neighboring vertices by lattice vectors
vi∆t. A particle distribution f is therefore parametrized by its components in each of the
discrete velocities, the vertex x of the spatial lattice, and the discrete time t. A time step
of a classical lattice Boltzmann scheme [11] then contains two steps:

(i) a relaxation step where distribution f at each vertex x is locally modified into a
new distribution f ∗, and

(ii) an advection step based on the method of characteristics as an exact time-
integration operator. We employ the multiple-relaxation-time approach introduced by
d’Humières [10], wherein the local mapping f 7−→ f ∗ is described by a nonlinear diago-
nal operator in a space of moments, as detailed in Section 2.

In [5], we have studied the asymptotic expansion of various lattice Boltzmann
schemes with multiple-relaxation times for different applications. We used the so-called
acoustic scaling, in which the ratio λ≡∆x/∆t is kept fixed. In this manner, we demon-
strated the possibility of approximating diffusion processes described by the heat equa-
tion.

In his very complete work, Dellacherie [3] has described unexpected results in sim-
ulations for advection-diffusion processes. In this contribution, we endeavor to explain
those results by studying the convergence of the D1Q3 lattice Boltzmann scheme when
we try to approximate a pure diffusion process.

We begin this paper by recalling some fundamental algorithmic aspects of the D1Q3
lattice Boltzmann scheme in Section 2. Then, in Section 3 we describe a first illustrative
numerical experiment. In Section 4 we present a new convergence analysis, followed by
another numerical experiment in Section 5, in which the D1Q3 lattice Boltzmann scheme
is studied far from the usual values of its parameters. Finally, a wave vector analysis is
proposed in Section 6.

2 Diffusive D1Q3 lattice Boltzmann scheme

In this work, we consider the so-called D1Q3 lattice Boltzmann scheme in one spatial
dimension. The spatial step ∆x > 0 is given, and each node x is an integer multiple of
this spatial step : x∈Z∆x. The time step ∆t>0 is likewise given, and each discrete time
t is an integer multiple of ∆t. We adopt so-called acoustic scaling (see e.g., [12]), so the
numerical velocity associated with the mesh,

λ≡ ∆x

∆t
(2.1)
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is a constant independent of the spatial step ∆x. A particle distribution

f ≡
(

f+(x,t) f0(x,t) f−(x,t)
)

is given at the initial step t = 0. Its value at subsequent times is determined by the
multiple-relaxation-time version [10] of the lattice Boltzmann equation.

Moments are introduced at each step of space and time according to the relations

ρ= f++ f0+ f−, J=λ( f+− f−), e=λ2( f+−2 f0+ f−). (2.2)

These may be thought of as the densities of mass, momentum, and an energy-like quan-
tity, respectively. Eq. (2.2) can be recast in matrix form as follows:

m≡





ρ
J
e



=M f ≡M





f+
f0

f−



,

where M is the invertible matrix,

M=





1 1 1
λ 0 −λ
λ2 −2λ2 λ2



. (2.3)

The equilibrium values of the moments are defined by the relations:

ρeq=ρ, Jeq=0, eeq=α
λ2

2
ρ, (2.4)

where α a non-dimensional constant. Then the relaxation step transforms the pre-
collision moments m into new post-collision moments m∗ as follows:

ρ∗=ρ, J∗= J+sJ(Jeq− J), e∗= e+se(e
eq−e), (2.5)

where sJ and se are relaxation parameters. There is no analogous parameter for ρ because
the collisions are constrained to conserve mass. In our numerical experiments, we have
chosen se = 1.5, and below we shall explain in some detail how we tuned the relaxation
parameter sJ for the momentum J.

The time iteration of the scheme is defined in terms of the particle distribution. We
first transform the post-collision moments m∗ into a post-collision particle distribution:

f ∗=M−1m∗.

Second, we iterate the algorithm forward in time. The particle distribution is conserved
along the characteristic directions of velocities v+=λ, v0=0 and v−=−λ respectively:











f+(x,t+∆t)= f ∗+(x−∆x,t),

f0(x,t+∆t)= f ∗0 (x,t),

f−(x,t+∆t)= f ∗−(x+∆x,t).

(2.6)



1266 B. M. Boghosian et al. / Commun. Comput. Phys., 23 (2018), pp. 1263-1278

In [5], we have analyzed several lattice Boltzmann models with the Taylor expansion
method, including the present one defined by Eqs. (2.2), (2.3), (2.4), (2.5), (2.6). The hy-
pothesis used was that the numerical velocity λ defined in Eq. (2.1), and the relaxation
coefficients sJ and se remain constant as the spatial step ∆x tends to zero. Then the con-
served variable ρ satisfies (at least formally!) a diffusion partial differential equation:

∂ρ

∂t
−µ

∂2ρ

∂x2
=O(∆x2), (2.7)

where the diffusion coefficient µ is given by the relation

µ≡ 4+α

6
σλ∆x, σ≡

( 1

sJ
− 1

2

)

. (2.8)

The coefficient σ is known as the "Hénon parameter" in reference to the pioneering work
of Hénon [9]. This lattice Boltzmann scheme is demonstrably stable under the condition:

−4<α<2.

3 A first numerical experiment

In this section, we consider an elementary analytic test case, namely the diffusion of a
sine wave. We suppose that the initial condition for Eq. (2.7) satisfies

ρ0(x)=sin(π x), −1≤ x≤1. (3.1)

The other moments J and e are taken at equilibrium at t = 0. With periodic boundary
conditions, the exact solution of Eqs. (2.7), (3.1) is

ρ(x,t)=sin(πx)exp(−µπ2t).

We performed several numerical computations with the following choice of parameters:
λ= 1, α= 1 and µ= 0.01. The spatial step varied from ∆x= 1

4 up to ∆x= 1
32 . The results

for a final time T=5 are presented in Figs. 1 through 3.
It should be noted that the results are remarkably converged even for these relatively

coarse meshes. For the most refined mesh used (64 mesh points, ∆x= 1
32 ), the numerical

results are almost indistinguishable from the exact solution, as presented in two succes-
sive magnifications in Fig. 2.

4 An alternative convergence analysis

We now imagine that we wish to approximate the diffusion equation, Eq. (2.7), using
the D1Q3 lattice Boltzmann model described previously. We suppose that the diffusion
coefficient µ is fixed and that the mesh size ∆x tends to zero. Then from Eq. (2.8), the
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Figure 1: Sine wave at time T=5 
omputed with 64 mesh 
ells.

Figure 2: Sine wave 
omputed with 64 mesh 
ells at time T=5; detail.

relaxation parameter sJ can no longer be fixed and tends to zero according to the asymp-
totic prescription

sJ =
4+α

6µ
λ∆x+O(∆x2). (4.1)

The hypothesis used for deriving the diffusion model, Eqs. (2.7), (2.8) is now violated, be-
cause the relaxation parameter sJ is no longer a constant. Rather, it follows the asymptotic
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Figure 3: Numeri
al 
onvergen
e to the di�usion equation (2.7).

form

sJ = s0+s1∆x+O(∆x2)+··· , (4.2)

as suggested by one of us in earlier work on lattice-gas automata [2]. Moreover, we have

s0=0, s1=
4+α

6µ
, (4.3)

for the case described in Eq. (4.1). Then the differential equation obtained in the asymp-
totic limit is no longer the diffusion equation Eq. (2.7), as discussed in the following
proposition.

Proposition 4.1 (An asymptotically acoustic model). We consider the D1Q3 lattice Boltz-
mann scheme defined by Eqs. (2.2), (2.3), (2.4), (2.5), (2.6). We make the hypothesis that
the numerical velocity λ, defined in Eq. (2.1), and the relaxation coefficient se used in the
relaxation step Eq. (2.5), are constant as the spatial step ∆x tends to zero. Moreover, we
suppose that the relation between the given diffusion coefficient µ and the relaxation co-
efficient sJ follows the relation in Eq. (2.8). In other words, the relaxation coefficient sJ

admits the asymptotic hypotheses in Eqs. (4.2), (4.3) with s0=0 and s1=
4+α
6µ . Then, when

∆x tends to zero, the density ρ and the momentum after relaxation J∗ obey the following
acoustic model:

∂ρ

∂t
+

∂J∗

∂x
=O(∆x),

∂J∗

∂t
+λ2 4+α

6

∂ρ

∂x
+λ2 4+α

6µ
J∗(x,t)=O(∆x). (4.4)

The proof of this result is given in the Appendix A. The system Eq. (4.4) is an acoustic

model with sound velocity c0 =λ
√

4+α
6 . We see that we have dissipation of momentum
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with a zero-order operator. We have implemented a staggered finite-difference method
named "HaWAY", in reference to the authors Harlow and Welch [8], Arakawa [1] and
Yee [13] who invented it in the mid 1960’s, for applications to fluid flow ("marker and
cell"), geophysical sciences ("c-grid") and electromagnetism ("finite difference time do-
main"), respectively. The details of this second-order numerical scheme are given in Ap-
pendix B. This finite-difference approximation gives a correct second-order accurate so-
lution of the system obtained by replacing the corrections O(∆x) by 0 on the right-hand
side of Eqs. (4.4).

5 Additional numerical experiments

We next experiment with the diffusion of a Gaussian density profile with the D1Q3 lattice
Boltzmann model defined in this work. The initial density profile is given by the relation

ρ0(x)=exp
(

− x2

4µ

)

with x∈R. (5.1)

The other moments J and e are taken to be at equilibrium at t=0. Then the exact solution
of the diffusion equation, Eq. (2.7), is obtained without difficulty:

ρ(x,t)=
1√
1+t

exp
(

− x2

4µ(1+t)

)

, x∈R, t>0. (5.2)

We simulate this problem for µ=0.01 and 0≤t≤T=5 in a relatively large domain −16≤x≤
16 in order to avoid unwanted interactions of the diffusing Gaussian with the boundary.
This has allowed us to employ an elementary periodic boundary condition at x =±16,
where all the fields have a value inferior to the smallest number that can be represented
in floating-point arithmetic.

At the macroscopic scale, we see in Fig. 4 that the numerical solution computed with
the D1Q3 lattice Boltzmann scheme faithfully reproduces the exact solution Eq. (5.2) of
the diffusion equation. After magnification by a factor of 100 (Fig. 5), the D1Q3 model
simulates the acoustic-like system, Eq. (4.4), with better accuracy than it does the dif-
fusion equation, Eq. (2.7). Fig. 6 shows that when the mesh is refined from 26 = 64 to
216=65536 vertices, the convergence towards the acoustic model seems reasonable, with
an order of accuracy close to 1. In other terms, the difference between the discrete solu-
tion of the D1Q3 model and the finite-difference simulation of the acoustic model goes to
zero proportionally to the mesh size.

Now we have what seems like a contradiction: Our first experiments for the sine
wave show (see, e.g., Fig. 3) that the diffusion equation is a good reference mathematical
model, whereas the acoustic model Eq. (4.4) is asymptotically correct for the Gaussian
initial condition (see Fig. 6). We have performed simulations for the sine wave with much
more refined meshes, and lattice sizes up to 4096. At the macroscopic scale, no difference
is visible between the sine wave solution of the diffusion equation and the numerical
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Figure 4: Gaussian a time T=5.

Figure 5: Detail of the Gaussian a time T=5.

result proposed by the lattice Boltzmann method (again, see Fig. 1). After magnification
shown in Fig. 7, the difference between the exact solution of the diffusion equation and
the D1Q3 solution is more important than the small discrepancy between the "HaWAY"
numerical solution of the acoustic model, Eq. (4.4), and the lattice Boltzmann model.

In Fig. 8, we have plotted the quadratic and uniform errors between the numerical so-
lution obtained from the lattice Boltzmann model and the exact solution of the diffusion
equation on one hand, and of the approximate solution (with a second-order scheme)
of the acoustic model obtained after a first-order Taylor expansion analysis presented at
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Figure 6: D1Q3 latti
e Boltzmann s
heme for di�usion; Gaussian at time = 5. Non- 
onvergen
e towards the

exa
t solution of the di�usion model Eq. (2.7) and 
onvergen
e towards the a
ousti
 model Eq. (4.4).

Figure 7: Sine wave at time =5. Magni�
ation of the solution around the extremal value.

Proposition 1 on the other hand. The lattice Boltzmann method gives an excellent ap-
proximation of the heat equation with the coarse meshes, as shown in Fig. 3 in Section 2.
This good convergence quality cannot be explained by an asymptotic analysis. When the
spatial step tends to zero, the lattice Boltzmann scheme gives a correct approximation of
the acoustic model. Fig. 8 demonstrates that the convergence is first-order accurate in
both norms.
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Figure 8: D1Q3 latti
e Boltzmann s
heme for di�usion; Sine wave at time =5. Non- 
onvergen
e towards the

exa
t solution of the di�usion model Eq. (2.7) and 
onvergen
e towards the a
ousti
 model Eq. (4.4).

6 Wave vectors analysis

We may also adopt the point of view of a spectral analysis of the lattice Boltzmann model,
Eqs. (2.2), (2.3), (2.4), (2.5), (2.6). We search for a solution of the type

f (x,t)=exp
(

ikx
)

exp
(

ζt
)





ϕ+

ϕ0

ϕ−



. (6.1)

In one time step, we first transform the vector f into moments. Then we relax the mo-
ments and return to the space of particles. Finally we advect the result according to
Eq. (2.6) to recover the particle distribution. The collision step m−→m∗ can be written in
matrix form:

m∗=Rm, R=





1 0 0
0 1−sJ 0

α λ2

2 se 0 1−se



,

and the final advection step can be represented by the action of a diagonal matrix:

f (x,t+∆t)=A f ∗(x,t), A=





exp(−iξ) 0 0
0 1 0
0 0 exp(iξ)



,
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with ξ = k∆x. Then the vector ϕ introduced in Eq. (6.1) must be a nontrivial solution of
the following spectral problem:

exp
(

ζ
)

ϕ=AM−1RMϕ,

with ζ=z∆t>0. Then, denoting the identity matrix by I, the dispersion relation takes the
form

det
[

AM−1RM−exp
(

ζ
)

I
]

=0. (6.2)

We have performed an asymptotic analysis of the relation in Eq. (6.2) in the limit of
a small relaxation coefficient sJ (as in Eq. (4.1)), a small wave vector ξ and with a small
amplification factor ζ:

sJ = εs1, ξ= εκ, ζ= εω, (6.3)

where ε is a small parameter that tends to zero. After some calculation, we obtain without
difficulty

det
[

AM−1RM−exp
(

ζ
)

I
]

=−se

(

ω2+s1ω+
4+α

6
κ
)

ε2+O(ε3). (6.4)

When κ = 0, we recover the hydrodynamic mode with ω = 0 and a dissipative mode
according to ω=−s1. When κ 6=0, we have to solve an equation of degree 2 made explicit
in Eq. (6.4) at this order of accuracy. The discriminant of this equation becomes negative
when

κ≥ s1

2
√

4+α
6

. (6.5)

We observe that the asymptotics associated with the limit sJ−→0 is questionable from
a physical point of view. When establishing macroscopic partial differential equations it
is assumed that internal degrees of freedom of the system under study evolve very fast
compared to the macroscopic quantities. It is known (see, e.g., [4]) that sJ is given by
a ratio of the type ∆t

τ . In the present case, the slow internal degrees of freedom evolve

within times τ ≈ ∆t
s . So it is to be expected that the pure diffusion partial differential

equation will not be accurate for very small values of s.
In order to make this qualitative difference explicit, we have done two numerical

experiments with the initial Gaussian profile given by Eq. (5.1). We use 2048 mesh points
and a final time T = 6 after 384 iterations of the D1Q3 scheme. In the first experiment
(Fig. 9), the diffusion µ is equal to 0.15 so sJ = 0.050761 which satisfies Eq. (2.8). For the
second experiment, all parameters are unchanged, except that µ=1.5 and the relaxation
coefficient sJ = 0.005195 is much smaller. With this value of sJ the expression, Eq. (6.5),
is satisfied and the discriminant of the Eq. (6.4) is negative. The propagation effects are
evident in Fig. 10. One may interpret the result: for small values of parameter s, the
time between collisions is longer than the duration of the simulation, so particles move
"ballistically".
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Figure 9: Gaussian, µ=0.15. The heat equation is 
orre
tly approximated.

Figure 10: Gaussian, µ=1.5. The propagation e�e
ts are 
learly visible.

7 Conclusions

We have described a curious convergence property of the D1Q3 lattice Boltzmann model,
observed when trying to simulate a diffusion process with an acoustic scale. A new
asymptotic analysis has been derived for this circumstance, and we have presented evi-
dence of an asymptotic partial differential equation of acoustic type. We have observed
analogous difficulties in two spatial dimensions, both for diffusion and Stokes flows.
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Overall results and physical interpretations will be given later, with comparison made to
the phenomenon of viscoelasticity [6].

A natural question for future study is the generalization of this acoustic-type model
to two or three spatial dimensions. Another is the application of this methodology to
lattice Boltzmann models of fluid flow, using an acoustic scale while holding fixed the
value of the viscosity.

Finally, it seems plausible that there is a link between the strange "first convergence"
property noted in this work and the well known tendency of certain asymptotic series
to converge at first, followed by divergence (see e.g., [7]). This would raise the question
of exactly when the error is minimized, and what is an acceptable approximation of its
value when it is minimal.

Appendix

A Proof of Proposition 4.1

We start from the time iteration, Eq. (2.6), and transfer it to the moments:

mk(x,t+∆t)=∑
jℓ

Mkj M
−1
jℓ m∗

ℓ (x−vj∆t,t).

With the help of the tensor of momentum-velocity Λ introduced in [4], defined according
to

Λℓ
k =∑

j

Mkjvj M
−1
jℓ

and made explicit for our model as

Λ=









0 1 0

2

3
λ2 0

1

3
0 λ2 0









, (A.1)

we have

mk(x,t)+∆t
∂mk

∂t
+O(∆t2)=m∗

k (x,t)−∆x∑
ℓ

Λℓ
k

∂m∗
ℓ

∂x
+O(∆x2). (A.2)

The first moment m0≡ρ is conserved (see Eq. (2.5)) and ρ∗=ρ. We deduce from Eq. (A.2)
and the specific values of the first line of the matrix Λ in Eq. (A.1) that

∂ρ

∂t
+

∂J∗

∂x
=O(∆x) (A.3)
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and the first equation of Eq. (4.4) is established.
The third moment e is not at equilibrium and we have from the third relation of

Eqs. (2.5), (A.1), (A.2):

se

(

e−eeq
)

≡ e−e∗=−∆t
∂e

∂t
−∆xλ2 ∂J∗

∂x
+O(∆x2)=O(∆x).

The coefficient se remains constant by hypothesis as ∆x tends to zero. Then this moment
is close to the equilibrium:

e=
α

2
λ2ρ+O(∆x), e∗=

α

2
λ2ρ+O(∆x),

and

∂e∗

∂x
=λ2 α

2

∂ρ

∂x
+O(∆x). (A.4)

The analysis for the second equation differs from what has been proposed previously
in [4] because the moment J and the same moment J∗ after relaxation are now not close
to the equilibrium value Jeq = 0. More precisely, we have, due to the second relation of
Eq. (2.5):

J=
J∗

1−sJ
=
(

1+
4+α

6µ
λ∆x+O(∆x2)

)

J∗.

Then

J(x,t+∆t)=
(

1+
4+α

6µ
λ∆x+O(∆x2)

)

J∗(x,t+∆t)

=
(

1+
4+α

6µ
λ∆x

)

J∗+∆t
∂J∗

∂t
+O(∆x2)

=J∗(x,t)+∆t
∂J∗

∂t
+

4+α

6µ
λ∆xJ∗(x,t)+O(∆x2).

We report this expression in the expansion Eq. (A.2), we subtract J∗(x,t) from both sides
of the equation and we divide by ∆t. Due to the previous result Eq. (A.4), we obtain:

∂J∗

∂t
+

4+α

6µ
λ2 J∗+O(∆x)=−2

3
λ2 ∂ρ

∂x
−λ2 α

2

∂ρ

∂x
+O(∆x)

and the second equation of Eqs. (4.4) is established. �

B "HaWAY" staggered finite differences

We consider the acoustic model proposed in Eq. (4.4). With compact notation, we denote
it here according to :

∂ρ

∂t
+

∂J

∂x
=0,

∂J

∂t
+c2

0

∂ρ

∂x
+ΓJ(x,t)=0. (B.1)
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Figure 11: HaWAY grid for staggered �nite di�eren
es.

Given a spatial step ∆x and a time step ∆t, we consider integer multiples of these pa-
rameters for the discretization of space and time. The density ρ is approximated at semi-
integer vertices in space and integer points in time whereas the momentum J is approxi-
mated at integer nodes in space and semi-integer values in time:

ρ≈ρn
k+1/2, J≈ Jn+1/2

k . (B.2)

The Fig. 11 gives an illustration of this classical choice [1, 8, 13].
We discretize the first equation of Eqs. (B.1) with a two-point centered finite-difference

schemes around the vertex
(

(k+ 1
2)∆x,(n+ 1

2)∆t
)

:

1

∆t

(

ρn+1
k+1/2−ρn

k+1/2

)

+
1

∆x

(

Jn+1/2
k+1 − Jn+1/2

k

)

=0. (B.3)

We use the same approach for the discretization of the second equation of Eqs. (B.1)
around the node

(

k∆x,n∆t
)

:

1

∆t

(

Jn+1/2
k − Jn−1/2

k

)

+
1

∆x

(

ρn
k+1/2−ρn

k−1/2

)

+ΓJn
k =0. (B.4)

We interpolate the momentum at integer vertices with a simple centered mean value:

Jn
k =

1

2

(

Jn+1/2
k + Jn−1/2

k

)

.

We incorporate this expression into the relation Eq. (B.4) and we obtain

( 1

∆t
+

Γ

2

)

Jn+1/2
k +

1

∆x

(

ρn
k+1/2−ρn

k−1/2

)

=
( 1

∆t
− Γ

2

)

Jn−1/2
k . (B.5)

The numerical scheme is now entirely defined for internal nodes. We have used periodic
boundary conditions.
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