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Abstract. In this contribution, a new class of lattice Boltzmann schemes is introduced
and studied. These schemes are presented in a framework that generalizes the mul-
tiple relaxation times method of d’'Humieéres. They extend also the Geier’s cascaded
method. The relaxation phase takes place in a moving frame involving a set of mo-
ments depending on a given relative velocity field. We establish with the Taylor ex-
pansion method that the equivalent partial differential equations are identical to the
ones obtained with the multiple relaxation times method up to the second order ac-
curacy. The method is then performed to derive the equivalent equations up to third
order accuracy.
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1 Introduction

The lattice Boltzmann method (LBM) is a numerical method able to simulate many var-
ious hydrodynamic systems: fluids flows [3, 5, 15], acoustics [17], heat equation [12],
multiphase fluids [4, 21], Schrodinger equation [22], for instance. It was introduced to
overcome some drawbacks of the “lattice gas automata” [9,20]. It originates from a dis-
cretization of the Boltzmann equation [6] and comes in two successive phases: an exact
transport step and a relaxation step. The latter is determined by the choice of a simpli-
fied Boltzmann collision kernel. The Bhatnagar Gross Krook approach (BGK) [2] and the
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multiple relaxation times approach (MRT) [15] are two usual choices that lead to a diag-
onal relaxation phase with a fixed set of moments. Despite the variety of applications
and domains involving the lattice Boltzmann method, some theoretical aspects remain
debatable as the stability at low viscosities and the lack of Galilean invariance.

In 2006, Geier proposed the “cascaded Boltzmann automata” [10, 11]. According
to [10], the lack of Galilean invariance is identified as a source of instability due to the
creation of a negative numerical viscosity. Note that the equilibrium distributions are di-
rectly derived from the Maxwellian distributions, not exactly identical to the equilibrium
presented in Qian et al. [6]. Some works deal with the cascaded approach: it is written
as a MRT with a generalized equilibrium in [1, 18]; forcing terms are included in the cas-
caded framework and a Chapman-Enskog expansion is presented in [18] to recover the
Navier-Stokes equations.

The purpose of this paper is to generalize the d’"Humieres method and also the cas-
caded method by introducing moments that depend on an arbitrary velocity field. In the
following, this approach refers to scheme with relative velocities. The collision step hap-
pens in a frame moving at a velocity # and not in a fixed frame. The velocity field is here
considered in a general way: it is an arbitrary function of space and time. Taking u =0
reduces the scheme to a classical d’"Humieres scheme and taking u as the fluid velocity
yields to the cascaded Geier’s scheme. This method provides a “cascaded triangular”
structure during the transition between the fixed moments of the d’'Humieres method
and the moments depending on the given velocity field.

Formal expansions are usually performed to characterize the limit problem simulated
by the lattice Boltzmann schemes with the acoustic scaling [7], or the diffusive scaling
[13]. The Taylor expansion method has been used with the acoustic scaling to derive third
order equivalent equations for the general d’'Humieres schemes [8]. We extend this work
to the schemes with relative velocities in the general non linear case. The dependence on
space and time of the new velocity field is the main difficulty to circumvent.

In the first part of this paper we recall the lattice Boltzmann framework and the asso-
ciated notations. We generalize it and we introduce the schemes with relative velocities.
The cascaded scheme then appears as a particular scheme with relative velocities. In the
second part, we study the third order consistency with the Taylor expansion method:
we establish that the resulting hydrodynamic is identical to the one of Lallemand and
Luo [15] up to the second order accuracy. At the third order, the additional terms depend
explicitly on the given velocity field.

2 Description of the scheme

2.1 The usual framework

We consider £, a regular lattice in d dimensions with a typical mesh size Ax. The time
step At is determined by the acoustic scaling after the specification of the velocity scale A
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by the relation:
Ax
At=—. 2.1
> e
For the scheme denoted by D;Q,, we introduce v= (vo,-- ,vq_l) the set of the g velocities
and we assume that for each node x of £, and each v; in v, the point x+v;At is also a
node of the lattice £. The aim of the D;Q, scheme is to compute a particle distribution
= fq_l) on the lattice £ at discrete values of time. It is a numerical scheme to

approximate the partial differential equations

q—1 1
atj;+vj-v1;=—zr—k(fk— o), 0<j<g-1,
]

on a grid in space and time where f]-eq describes the distribution f] at the equilibrium
and [Tj] is the relaxation time matrix. The scheme splits into two phases for each time
iteration: first, the relaxation that is local in space, and second, the transport for which an
exact characteristic method is used.

We use the MRT framework: the relaxation is written into the basis of the moments
m= (mo,- -m qfl), the invertible matrix of the transformation being denoted by M, so

that m= M f. Classically, we choose M, = P (vj), where the set (P, ,qul) is a linearly

independent family of polynomials in the space R[X3, -+, X,] of polynomials with d vari-
ables. In this contribution, we restrict to d+1 conservation laws. The d-+1 first polynoms
associated with these conservation laws are chosen as 1,X3,---,X,. The first moments of
the scheme are thus conserved, they are the density and the momentum:

p=Yf, "=y of, 1<a<d. (2.2)
j j

Remark 2.1. The restriction to d+1 conservation laws is not a limitation of this method-
ology: it could be extended to an arbitrary number of conservation laws. In particu-
lar, the case of d+2 conservation laws (mass, momentum, and energy) is treated for the
d’Humieres scheme [14]. The case of one conservation law for the scheme with relative
velocities has also been derived and is going to be published in a further paper.

Let us now describe one time step of the scheme. The starting point is the density
vector f(x,t) in x € £ at time ¢. The moments are computed by

m(x,t)=Mf(x,t).
The relaxation phase then reads

(e, t) = my (e )+ (3 (0 —my (x,)),  0<k<q—1,
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where miq, 0<k<g—1,is the k™" moment at equilibrium and s;, 0<k<g—1, the relaxation
parameter associated with the k" moment. The relaxation parameters of the conserved
moments are equal to 0 by definition. The densities are then computed by

F*(x,t) =M 'm*(x,t).
The transport phase finally reads
fixt+an =f (x—vAtt),  0<j<q-1. (2.3)

2.2 Presentation of the scheme with relative velocities

The scheme we propose to investigate in this paper is a generalization of the usual scheme
presented in Section 2.1 in the spirit of a previous work of Geier [10,11]. The moments
are shifted with respect to a velocity field u. This field is assumed to be a given function
of space and time. In other words, we change the matrix M—that is a constant matrix for
the d"Humieres scheme—into M () by defining

Mkj(ﬁ) =D (vj—11), 0<kj<q—1. (24)
The moments (m,(i),- --,mqfl(ﬁ)) are then given by
m (i) =M(7) £, 25)

so that m, (i) is the k™ moment in the frame moving at the velocity i. In the following
we call them the “shifted moments” in opposition to the “fixed moments”. Let us note
that the d"Humieres scheme is enclosed in this framework by taking #=0.
The matrix M (if) is obviously invertible for each . The vector of particle distributions
is thus obtained by
f=MY)m(@).

The vector of distribution functions at the equilibrium f°? is chosen independent of the
velocity field so that we have

m®(if) = M (i) f*1 = M (i) M~ (0)m"3(0).
The relaxation phase is diagonal in the shifted moments basis
my (i) = m, (i0)+s (m ) (it) —m, (if)), 0<k<g—1. (2.6)
The densities are then computed by
fr=M""(@)m*(i).
The transport phase reads
fixt+an =f (x—vAtt),  0<j<q-1.
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2.3 Two-dimensional examples: D;Qq

In this section, we present two D2Qg schemes with relative velocities: the one associated
with the usual orthogonal set of moments [15] and the cascaded Geier scheme [11]. For
the first one, the set of nine velocities is given by

v={(0,0),(4,0),(0,A),(=A,0),(0,=A),(A,A),(=A,A),(=A,=A), (A, —A) },

where A € R is the velocity scale introduced in (2.1). The set of polynomials is the usual
orthogonal set [15]:

LXY, & (3(X*4+Y?) —41?), L (X2 -Y?), L XY,
LXB(X2+Y?)—51%), LY (3(X*+Y?)—51%), 2.7)
%(%(XZ—FYZ) 21/\ ( )+4)\4)

The associated matrix of moments M(0) then reads

1 1 1 1 1 1

0 A 0 —-A 0 A

0 0 A 0 —-XA A

4 -1 -1 -1 -1 2 2 2 2
1 -1 1 -10 0 0 o0 |. (2.8)
o 0 0 0 1
2 0 2 0 1
0o -2 0 2 1
2 -2 -2 -2 1

=~ O O O O

The matrix M (#) is obtained by the multiplication of M(0) by a triangular matrix called
the “shifting matrix” that is defined by:

This matrix converts the fixed moments m (0) into the shifted moments m (if). It can be
written as

1 0 0 0 0
A L 0 0 0

TG)=|B B, It 0 0], (2.9)
C1 C2 C3 Iz 0
Dy D, Dy Dy 1

where the matrices A, By, By, C1, C2, C3, D1, D,, D3, Dy are presented in Appendix A.
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Proposition 2.1 (Morphism of groups). For the D,Qo, the particular choice of polynomials
given by (2.7) implies that the function %~ T (i) is a morphism of groups from (R?,+)
into (R®*?,-) so that

T(i4+0)=T@)T(@)=T(3)T (&), Vi, 7cR>

Proof. This result is obtained thanks to a formal calculation software. The reader can
check it thanks to the source code given in Appendix A. O

This property reflects the fact that a change of frame with a velocity 47 would be
equivalent to two successive changes of frame with velocities # and v. It is achieved un-
der a necessary and sufficient condition between the polynomials defining the moments
and their derivatives. The D,Qg set of moments particularly verifies this condition.

We close this section by examining the case of the cascaded D,Qqg Geier’s scheme. This
scheme can be viewed as a particular scheme with relative velocities:

Proposition 2.2. The cascaded Geier’s scheme is a scheme with relative velocities. The
relaxation of the D,Qg cascaded Geier’s scheme is diagonal into the basis of moments
given by the polynomials

1,X,Y, X2 4+Y?, X2 —Y?,XY,XY?, X?Y,X?Y?, (2.10)
shifted with respect to the fluid velocity u =q/p introduced in (2.2).
Proof. The details can be found in Appendix B. O

In this sense, the schemes with relative velocities are a generalization of the cascaded
scheme. It is important to note that the set of moments is not identical to the usual D>Qqg
one. Indeed, the moments of third and fourth orders are chosen differently and according
to [11], it may have a role on the stability of the scheme.

3 Partial differential equivalent equations

The purpose of this paragraph is to make a consistency analysis of the scheme with rel-
ative velocities. A Taylor expansion method is performed [7] to derive the third order
equivalent equations for the D;Q, scheme with relative velocities, with any general equi-
librium. We explicit a formal development of the scheme when At and Ax go to zero with
A= Ax/At fixed (acoustic scaling) and with the relaxation parameters s fixed. We obtain
in this way a set of partial differential equations that are consistent with the scheme at
different orders. In the following, we do not adapt the Boltzmann scheme to a particular
partial differential equation (at first or second order) but we put in evidence the various
operators hidden inside the algorithm. The reasoning consists in a formal development
of the transport phase (2.3) at small At, assuming that all particle distributions are the
restrictions on the discretized space of a sufficiently regular distribution function. The



1094 F. Dubois, T. Fevrier and B. Graille / Commun. Comput. Phys., 17 (2015), pp. 1088-1112

Taylor formula can thus be used as much as wanted. In this section, we particularly
prove that the second order equations are the same as the ones of the D;Q; d"Humieres
scheme [7]. In particular, for fluid problems, the viscosity appears as proportional to
(1/s;—1/2)Ax [7,16,19], where s; is a relaxation parameter. In other words, the ap-
proximated physics do not depend on the velocity field u# up to the second order. The
dependence only appears at the third order on the momentum equation. In the follow-
ing, we note A=Af, and f; :fj(x,t). The velocity field is denoted by i = (i1")1<4<4. To
perform the Taylor expansion up to any order p, the transport phase (2.3) is expanded in
terms of A, with fixed relaxation parameters:

Z “aaf +0O(AP), 0<j<p, (3.1)
0§l<p ak<p
where
d
a:(all" ’ ENd H “, a—aal"'aad/
a=1

d
a':Haa!, a :Za“.
a=1 a=1

The relation (3.2) is obtained multiplying (3.1) by the matrix M, ( i) and summing on
k. We have for 0<k<g—1

Al .
0gjsg-1, 0<jsg-1,
0<I<p la|<p

Vi My, ()0 f; +O (AT, (3.2)

Taking k=0 yields to the conservation of the mass, k€ {1,---,d} to the conservation of the
momentum and k > d to the relations on the non conserved moments. In the following, a
sum over a Greek parameter goes from 1 to d and over a Latin parameter from 0 to g4—1.

3.1 Zeroth order expansion

The Taylor expansion method at zeroth order gives us the following proposition.
Proposition 3.1. The state remains close to the equilibrium
[=£1400), f=£1+0(b), 0<j<q-1.

The proof of this proposition is omitted as it does not involve the velocity field u: we
refer to [7].
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3.2 First order expansion

Definition 3.1. The momentum flux in the direction («,p) is defined by:

FP=Y otol £, 1<a,p<d.
i
The further proposition asserts that the scheme is consistent with the Euler equations
up to the first order accuracy.

Proposition 3.2. First order equivalent equations. The mass and the momentum conser-
vation equations read:

Ao+ 9pgP =0(4), (3.3)
B

" +Y pFE=0(s), 1<a<d. (3.4)
B

Proof. The expansion (3.2) up to the second order yields:
N +A2Mk] N tf'eq

=i (il AZMk] of dpf+0(A?), (3.5)

Case 1: k=0. The coefficient Moj(ﬁ) does not depend on u and the density p is
conserved by the collision step. Thus (3.5) becomes

p+Adp=p—AY of dpfI+0(A?),
B

and the mass equation (3.3) follows as v; does not depend on space and time.

Case 2: 1 <k=a <d. The momentum g is also conserved. Replacing k by « in (3.5)
then gives

3 (o) —a") tfq+Zv—u ) of 9pffi=0(n),

j

and separating the terms corresponding to v and #* yields to:
g+ 9p(0 o ;1) =" (90 +) 9pq”) = O(A).
B p

The contribution of the velocity field # only involves the first order mass equation (3.3)
and can be included in the rest O(A). O
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We give two definitions useful for the next orders: the particular derivative that is
the derivative along a given velocity—this operator naturally appears several times in
the following expansion—and the conservation default that plays an essential role in
some transition lemmas. These lemmas are the keys to increase the order in the Taylor
expansion.

Definition 3.2. Let d]; be the particular derivative operator defined by

dl=0+) 019, 0<j<q-1. (3.6)

Definition 3.3. The conservation default 6, (i) is defined by:

0c(il) =Y M, (i) d £, 0<k<q-1. (3.7)
j

The following lemma checks that the conserved moments have no conservation de-
fault up to the first order accuracy.

Lemma 3.1. The conservation defaults for the conserved moments read
O (i) =O(N), 0<k<d.

Proof. Actually this proposition is an other way to write the first order equivalent equa-
tions. We verify it with the following calculation using (3.7):

0 () =L,
j
Ga(ﬁ):Zv;?‘ d]tf]-eq—ﬁ"‘Zd]tffq, 1<a<d.
] ]
Those two quantities are exactly the equation on mass for the first one,
Y_d] fI=0rp+div(q),
]
and the equation on momentum for the second one,

Y ot djffI=0,4" + ) _0pF*.
j E

The proof is closed thanks to Proposition 3.2. O

The non conserved moments must also be expanded to derive the second order equiv-
alent equations. The conservation default presented in Definition 3.3 appears in their
expansion.
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Proposition 3.3 (Second order transition lemma). The non conserved moments before
and after the collision read

~ e ~ A o~
m, (if) :mkq(u) — §9k(u)+(’)(A2), d<k<g-1,

- - 1 -
m? (i) = m (@) + (1—5)/3 0 (i) +O(A?), d<k<g—1.
This proposition is also verified for k <d. In this case, it only hides the first order
expansion developed in Proposition 3.2.

Proof. The second order Taylor expansion of the shifted moments (3.5) yields:
(i) = mi (i) = = A (LM (1) 3£+ My, (1) of 9f7) +O(a2).
j pi

Combining this identity with the relaxation phase (2.6) gives

() = m(7) — gek(ﬁHO(AZ).

Replacing in (2.6) the post collision moments read:
X~ eqq~ 1 0, (i) + O 2
m (i) = m (@) + (1—§>A k(i) +O(A2).
The proof is complete. U

3.3 Second order expansion

We first define the momentum velocity tensor that appears associated with the conserva-
tion default in the second order equivalent equations.

Definition 3.4. The momentum velocity tensor is defined by:
kp ;~ o~ =1/~
Azp(”):ZMkj(”)ij(”)M‘ (), 0<klLp<g—1, (3.8)

with
o if 1<k=a<d,

~ )Y
M, (@) = {Mk].(ﬁ) else.

The following proposition presents the expected expansion. The mass conservation
is valid up to the second order accuracy. The momentum equation contains a first order
term that depends on the conservation defaults, the momentum velocity tensors and the
set of relaxation parameters s.
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Proposition 3.4. Second order equivalent equations. The mass and the momentum con-
servation equations read:

d0+Y_apg" =0 (A%), (3.9)
B
9+ L F P —A( 1 edp(AP(@)0,()) =0(a), 1<a<d.  (310)
B Bi>d

The proof follows the same steps as the first order case given by Proposition 3.2 and
can be found in Appendix C.

We now prove that the second order equivalent equations of the D;Q,; schemes with
relative velocities are independent of the velocity field u#. Two propositions are required.
The first one proves that the conservation defaults of the second order moments do not
depend on u up to the first order accuracy. The second asserts that the momentum veloc-
ity tensors associated with the third and fourth order moments vanish. In other words,
the only conservation defaults appearing in (3.10) are those associated with the second
order moments.The combination of those two propositions gives the expected result.

Proposition 3.5 (First order expansion of some conservation defaults). For all k corre-
sponding to a second order moment, ie degree of P, equal to 2,

0k (1) =6,(0)+O(A).

Proof. We choose k corresponding to a second order moment. The coefficients Mk].(ﬁ)
defined by (2.4) are expanded using the exact second order Taylor formula on their asso-
ciated polynom P,

P, (X—ii)= Zﬁﬁ 9pP, (X + Z P 17 93, P (X). (3.11)
Its derivatives can be also expanded in this way:

IpP(X) =aP+ Zamxﬂ, and 93 P (X)=bF", (3.12)
y=1

for any sets of real constants (a°7)1<p,<s and (bP7)1<g <4 We apply (3.11) and (3.12) to
the velocity v; to get the expression of M (i1):

Mkj(ft) = 0) —af? Z b — Z P aPv 07+ Z P v bP,
=1 pr=1 21
Multiplying by d{ f “! and summing over j, the conservation default yields:

1 d d
0 (1) = (af“’z i3 Y @ 6P 60(0)— Y @ aP7 0,(0).

ﬁ =1 Br=1



F. Dubois, T. Fevrier and B. Graille / Commun. Comput. Phys., 17 (2015), pp. 1088-1112 1099

The result is given by the Lemma 3.1 because the two last terms are a linear combination
of the conservation defaults of the conserved moments. O

Proposition 3.6. The first components of the moment velocity tensor do not depend on u
AP =AP(0), 1<a,p<d, 1¢£{0,aB}.

Proof. We compose the momentum velocity tensor (3.8) by M, p(ﬁ) forany 0<p<g—1
and sum over [

ZA"‘ﬁ i) My, (i) = v ). (3.13)
Eq. (3.13) is actually a polynomial identity evaluated on the velocity set: indeed the quan-
tity v vl; is associated with the polynomial X, X and M, ( i) with P;. It induces us to

write X, Xz into the basis of Ry[Xj,--,X |—the space of polynorns with d variables of
degree inferior to 2—chosen to build the D;Q; scheme:

3(a)f) eR, X, Xp=Y a)’Py.
l

We note that a}xﬁ =0if deg(P;) >2. We apply this relation to X=1v,—1 and expand it using
the definition of the matrix of moments (2.4):

q—1
vioh = (agﬁwﬂaﬁ)MOp(ﬁ)+ﬁ“Mﬁp(ﬁ)+ﬁﬂMw(a)+l_Zla;"ﬁMlp(a).

The momentum velocity tensors are obtained multiplying by M ;nl (it) forany 0<n<g—1
and summing over p:

q—1
AP (i) = (agP + i T0P) Sn + 180 g+ 8PS+ Y P 81
1=1
So
Vn¢{0,a,p}, Vi, AW(i)=dF,

that is a real independent of u. O

Particularly, the proof shows that A‘;ﬁ () =0 for I corresponding to a moment of order
greater than three.

Corollary 3.1. The second order equation on momentum does not depend on the velocity field u:

o1g" +ZaﬁF"‘5 A( Y oA 0) 8591(0)> =0(A?), 1<a<d.
BI>d



1100 F. Dubois, T. Fevrier and B. Graille / Commun. Comput. Phys., 17 (2015), pp. 1088-1112

Thus, the second order equivalent equations of the D;Q, scheme with relative veloci-
ties are the same as the D;Q; d'Humieres ones [5]. As a consequence, these two different
schemes are supposed to approach the same limit problem. To prepare the third order,
the expansion of the non conserved moments is needed.

Proposition 3.7. Third order transition lemma. The second order expansion of the con-
servation default for the conserved moments is,

D) =8( X o My(1) df (M (08 (i0) ) +O(82), 0<k<d. (3.14)
ji>d

The non conserved moments before and after the collision read,
_ _ 1 ~
mk(u):mzq(u)—A<§+Uk)§k(u,A,a)+(’)(A3), d<k<gq-1, (3.15)
~ ~ 1 -
(i) = miq(u)—l—A(E—Uk)ék(u,A,U)+O(A3), d<k<g—1, (3.16)

with ‘
5 (1,8,0) = 00(i) = ( Y 07 My (@) o] (M, (@)6, (1)) )

ji>d

The proof is presented in Appendix D.

3.4 Third order expansion

Proposition 3.8 (Third order equivalent equations). The mass and the momentum con-
servation equations read for all 1 <a <d,

atp+Za,;qﬁ——(Za ool d 1)) =0(a%), (3.17)
A" +285F“ﬁ:A( Z 71 95(A%(0)61(0)) )
7
—AZ(__ZU%% d] 2feq +1220] ] ] 'y(d{fjeq)

v oL ao 05 (AP ()M, () d] (M} (#)6,(7))) ) + O(A). (3.18)
,q,1>d,p>

The proof is presented in Appendix E. A second order term independent of the ve-
locity field appears in the mass conservation equation. This term can not be canceled be-
cause it does not depend on the scheme parameters. We recover the third order equations
derived in [8] for the d'Humieres scheme by taking the velocity field equal to 0. Indeed

in (3.18), the momentum velocity tensor A?ﬁ (0) does not depend on # and pass through
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the derivatives. The second line terms, that are constants of 1, are already present in [8].
The last term becomes

Y. o008 (A?‘ﬁ(o)Ml ,(0)Mz, (0) (3 +) 07 ;) (9,,(0))) ,
v

B.q,1>d,p>d

and separating the particular derivative in two sums yields:

Il
Y ot (AP 000)+ ¥ aopd, (40047 (0)6,(0)),
B.ql>d By 1>d,p>d

that gives exactly the two ¢ dependent third order terms of [8].
If we don’t make any assumption on the velocity field, there is one new second order
term in the momentum equation. It depends on 1. We also note the presence of the

particular derivative d]t‘ in all the terms of order greater than one.

4 Conclusion

The schemes with relative velocities are a generalization of the MRT approach and of the
cascaded method. They appear as MRT schemes whose relaxation happens in a moving
frame at a given velocity. This theory does not add expensive steps to the implementa-
tion. A consistency analysis shows that the second order equivalent equations are inde-
pendent of the velocity field. The velocity field only plays a role for any order greater than
three. The next step consists in studying the issue of stability and determining whether
or not, in what kind of regimes, these schemes bring some improvements.
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A Composition of the matrix (2.9)

We present here the blocks of the triangular matrix (2.9) defining the D2Qg scheme with
relative velocity presented in Section 2.3:

~1 %’1’7’2 —%ﬁl_%;ﬁ

— 1 B 3 i 3

"~ <—ﬁ2> Bi=| (@) =(@*)?) |, Ba=|—mu' &u* |,
1 152 Lo 14

i i — 3zl — 5zl
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- <—%ﬁ1(]ﬁ|2+/\2)> <%(|ﬁ|2+2(ﬁ1)2) Lt )
1= e s 2= 1 ~ o
—%u2(1u|2+)\2) %uluz %(]u|2—|—2(u2)2)
i
C3_ 2 ~ 7
e gE g

Dl:;ﬁ(’ﬂ|4+3)\2|ﬁ’2)/ D2:<—29W171()\2+2’1/~l|2) —%ﬁz()@_}_zwp))’

D3= (i|ﬁ|22((b~l1)2_(172)2)%1/71172)/ Dy= (_%ﬁl_%ﬁ2)‘

The following code is the source which allows the reader to verify the components of
the matrix T (i) just above and the Proposition 2.1.

restart:
with(LinearAlgebra):

## Scheme velocities:
u := Transpose(Matrix([[0,0],[1a,0],[0,1la]l,[-1a,0],
[0,-1la]l,[la,la],[-1la,la]l,[-1la,-1la],[la,-1al]l)):

## The moments

m:=[1, X, Y, 6/la~2%(X~2+Y~2)/2-4, (X°2-Y"2)/la~2, X*Y/la"2,
(6/1a~3*%X*(X~2+Y~2)/2-5/1a*X), (6/la~3*Y*(X~2+Y~2)/2-5/1laxY),
18/1a~4*(X~2+Y~2)~2/4+4-21/1a"~2*(X~2+Y~2) /2] ;

##The matrices of moments:
d := RowDimension(u): 1lv := ColumnDimension(u):
M := Matrix(lv,1lv):Mu := Matrix(lv,1lv):
for k from 1 to nops(m) do
for 1 from 1 to 1lv do
M[k,1] := simplify(subs({X=u[1,1],Y=u[2,1]1},0p(k,m)));
Mulk,1] := simplify(subs({X=u[1l,1]-ux,Y=ul2,1]-uy},op(k,m)));
end do:
end do:
M;
invM:=M~(-1):

#The shifting matrix :
Tu:=unapply (simplify(Mu.invM), (ux,uy)):
Tu(ux,uy) ;
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#A morphism of group is verified:
simplify(Tu(ux+vx,uy+vy)-Tu(ux,uy) .Tu(vx,vy));

B Proof of Proposition 2.2

The aim of this paragraph is to identify the Geier’s cascaded method [11] as a scheme
with relative velocities. One difference with the d’'Humieres schemes lays in the choice of
the collision operator. In the two dimensional case, for a seek of invariance by translation
and rotation, the collision operator is chosen as ‘M (0)g, where M (0) is the matrix defined
by (2.8) and g is the unknown vector leading to the post-collision state. The cascaded
relaxation step is then given by

fr=f+'M(0)g. (B.1)

We point out the fact that M(0) does not correspond to the chosen moments for which
an other set of polynomials is used:

1,X,Y,X?%,Y? XY, XY% X?Y, X?Y?.

In the cascaded framework [11], the relaxation is written into the frame moving at the
fluid velocity u =q/p. We note my(u) and M (u) the shifted vector and matrix of mo-
ments associated with this polynomial set using the same notations as in Section 2.2. The
relation (B.1) can thus be written as

mg(u) =mg(u)+C(u)g, (B.2)

where
C(u)=Mq(u) 'M(0).

To evaluate g, Geier determinates the direction to reach the equilibrium state and
relaxes it by multiplying by the relaxation parameters s; for 0<Ck<<8. The block triangular
structure of the matrix C(u) is used to invert itself. In the case of the D,Qg scheme,
this inversion begins by the resolution of a 2x2 system in order to obtain the first two
components of the vector g

(mgt(u) —mg(u)),,=C(u),.,, (SS O) <g3>

54 84
1
st s 3
_ <S_ S+> c(u),.,, @4), (B.3)
where
4+ S3+sa _ S3—54
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The other moments are successively relaxed, using the previously calculated post-collision
values of g,

M-

I
—_

si(mg (1) —mg () =) C(u), g, (B.4)
j

We gather the relations (B.2,B.3,B.4) to obtain the relaxation step:
mg (1) =mg(u)+C(u)g=mg(u)+A(mg (1) —mg(u)),
where

, st s™
A:dlag<(0 0 O),<S_ s+>’(55 S6 87 58)>-

This block diagonal matrix can be diagonalized. The relaxation of the D,Qg cascaded
scheme is diagonal into the set of moments corresponding to (2.10) shifted with respect
to the fluid velocity u. The cascaded scheme is then a lattice Boltzmann scheme with
relative velocities as defined in Section 2.2.

C Proof of Proposition 3.4

At the third order, for all 0 <k <g—1, the expansion (3.2) yields:

)+ AY My (i) a1 f + - ZMk] 0 RfI+0(A)
j

—m (i AZMk] )of dpf! +5 ZMk] ofol 33, fI+0(AY). (€1

Case 1: k=0. From (C.1), we get
K Zaﬁ@”ﬁf )+ (9% INAE B fT) =0(8%). (€2)

The proof follows what is known for the d’"Humieres scheme [7]: the first order term is
equal to d;p+div(q); due to the formal derivation of Proposition 3.2, a wave equation is

obtained,
€
70— Z v, ! 8%7]”]- 1=0(n).
B
This gives the mass conservation (3.9).

Case 2: 1<k=a<d. The identity M,;(if) = v} —u" is applied to (C.1). The term
corresponding to u* gives Eq. (C.2) and goes in the rest. Thus the momentum equation
can be written as

0"+ Y0t of 0pf +5 ( 2 —Zv"‘ of 0193, £°9) =0(8%).
67
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We set

Il :ﬂz;v? Z);5 aﬁf]-*, 12— Z Ua ‘B ,Y ,),f]-eq.
/]

To get the final equations involving only conserved and equilibrium quantities, we
need to expand f]-* up to the second order. The use of a transition lemma on the non
conserved moments is the key to reach this order.

Calculation of I;: We have
I =l;v;‘ of 9 (M (i) mij (1) ).
.

We use the second order transition lemma presented in Proposition 3.3 to replace m; (if),
and we gather terms by order to get:

o € 1 o -
2 WA >

Expanding the second sum to separate the terms with and without ¢j, the first order term
of (3.10) appears:

Il_ga,gp P2 Y (o of M (@) 0u(@)
/5]1
—8 Y o (AF(@) 61(i0)) +0(82).

Bl>d

Note that the second sum carries on all / because 6; (i) = O(A) for all I <d thanks to the
Lemma 3.1. Using the definition (3.7) of 6;(#), the second term is improved thanks to
some matricial rearrangements. The third term can not be simplified in a same manner.
Indeed the sum depends on [ via ¢; that prevents the matricial simplifications

11_§aﬁp 5+ ;aﬁ (& ‘(at+zquaw)(fjeq))
j Y

—A Y- @ 9p(A () 61() + O(A?).
BI>d

Separating the particular derivative (3.6) in two terms, the momentum flux and I, natu-
rally appears in the first order part

Il—ZaﬁPm > (o Za,;pxﬂ + Y3, (0 o o £9)

B

—A Y 0 ap(AYP (@) 6,(i0) + O (M)
Bl>d
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We replace the momentum flux using Proposition 3.2 and get the expected result

11+A(a%q D) Zaﬁzr“ﬁ A(Zalaﬁ AP (i) el(ﬁ)))+O(A2).
BI>d

D Proof of Proposition 3.7

The proof follows the same steps as for Proposition 3.3. Two different identities are used
to develop m, (if) —m; (ii): the first expression is given by the relaxation step (2.6), and
the second by the Taylor expansion (C.1). This expansion yields to:

my (i) —my (if)

A(szj(a) C f]-+;Mkj(ﬁ) of ;)
2
(sz] RS+ T M) o] ) +0@). @)

Let us note
— ol 7Y oP 9. FF
K—ZMkj(u) atfj—#ZMkj(u) v} 9pf; .
j B

the first order term in A. This term depends on the values of the distributions before and
after collision. It needs to be developed to get the quantities at the equilibrium. To do so,
we replace those distributions in the moments frame using Proposition 3.3. The term of
zeroth order is the conservation default

K=0c(@)+a (- 1 (%w,)Mk].(a) 0, (M, ()6, (i)

ji>d

+ T (o) My (o] s (M3 (@61(7) ) +O(2),

Bjl>d

We separate now the terms with and without ;. Lemma 3.1 is applied to the sums inde-
pendent of o: thus these sums carry on all /. They are completely developed using the
definition of the conservation default (3.7) and some matricial simplifications occur. The
o dependent term is expressed thanks to the particular derivative

K=t (it ( ZMk] 82f8q+ZMk] )bl 3, £°9)

—A( Y oMy (it) df (M5 (06, (i0) ) + O(A%),

ji>d
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We replace this relation in (D.1)

iy () — i (70) = — A (8(i0)— A Y o0 My (i) &} (M ()61 (1)) ) ) +O(A%).

jl>d

For k <d, this relation gives the development (3.14). For k >d, the relaxation phase gives
the final developments (3.15), (3.16) of the non conserved moments.
E Proof of Proposition 3.8

The fourth order of Eq. (3.2) reads:

ﬁ)+AZMkj( f+ ZMk] 82f+ ZMk] a3feq
]

Case 1: k=0. The same method as for the lower order expansions leads to

atp+Zaﬁq +5 (afp Zvﬂ o] 9,f)

A2
+= <3?P+ﬂ%jvf ol 053}, feq> O(AY). (E.1)

We want to replace all the non equilibrium quantities and time derivatives. We use
Proposition 3.3 on the first order term:

ZU‘B ’YaZ,Yf ZU,B ’ya’yfeq
+8 Y (5-a)of o] 93, (M7 (@6 (i)+0(aY).  (E2)
B,y.jl>d

To evaluate 9?p, the second order equation on mass (3.9) and momentum (3.10) are for-
mally derived:

==Y 0,(3g")+O(A?),
Y

:ﬁzlva; B f0-0( L @ d, (AP (e (@) +0(a2). (E.3)
V1]

By I>d
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We gather the calculations (E.2), (E.3) and use the definition of the conservation default
(3.7) to get,

?2p — Zvﬁ ol 3, Zvﬁ ol 3, (d}f79)+0(A2). (E.4)

In a same manner, 83p can be expanded usmg the tirst order equations on mass (3.3) and
momentum (3.4):

o= Lok O
As a consequence, the second order term can be written as

oo+ Z vl3 07 véa eq = Z o' (d]t‘f-eq) +0(A). (E.5)
B
Thus replacing (E.4) and (E 5) in (E.1), the expressmn of the first and second order quan-

tities is given by:

A 2 B g/ e
-5 (%jaaﬁ(vﬁ‘vj df; ))
and the expected result is proven. /

Case 2: 1 <k=a <d. The following equation on the momentum is obtained,

af‘f"*ZZ’? o] 0pf +5 ( g —Z”“ i f7)
r (329"1“‘F Z f ygfeq> O(A?). (E.6)
B.Gi

We set
h:ZU?‘ vf a,;f].*, L= Zv"‘ vﬁ zﬂ 03 7f
Bij

J1 must be expanded up to the third order and ]2 up to the second one to get the whole
third order expansion.

Calculation of J;: The third order transition lemma, presented in Proposition 3.7,
is applied and the terms with and without o; are separated. The expression is also split
between the first and second order terms,

= %aﬁF“ﬁ+%ﬁ;daﬁ (’0;‘ ’(')j Mﬁl(ﬁ) 91(17)) —A Z 0'18'3 (A?"B(ilv) 91(17))
>

Bl>d

2
— % Y 00 <v§‘ vf Mﬁl(ﬁ)Mlq(ﬁ) df (M;,}(ﬁ)ep(ﬁ)))

B.j.ql>d,p>d

+A2ﬁ Zdz 109 (AT DMy, (1) d] (M (00, (1)) ) +O(A%).
,q,p>a,l>
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We consider the second term

L= Y ap(of of My () 0,(i0)).
Bjl>d

We want to have a sum carrying on all / in order to make some matricial simplifications
using the definition of the conservation default (3.7). L is written as the difference of the
sums carrying on all / and [ <d. The first sum is completely developed and simplified
using (3.7). Using Lemma 3.1 on the second sum is inadequate: indeed L needs to be

developed up to the second order to get the expected third order. This is why we use
(3.14) on this second sum

L= Za,; (G v 95 d]tfeq))

s dapaﬁ(vﬁ‘vfMjl(mM()dq(qu(mep(ﬂ)))W(Az). (E.7)
Bial<dp>

We keep unchanged the first order term and develop the particular derivative of the

zeroth order one. The momentum flux appears in the time derivative and is replaced
using the second order equivalent equation on momentum (3.10):

Zaﬁ(v}" of 9p(d]£°))

— aq“+A(Zma (A% (i), (& )+Zv"‘vﬁzﬂa L (E.8)
Bl>d

One can now simplify J; considering the calculations (E.7), (E.8)

A e ~ ~
= ZaﬁP“ﬁ—FE (—afq“—FZv}?‘ vf v;’a%wfj q) —AY o0 (AP (@) 0, (i1))
B B.j Bl>d

AZ

‘7[5; d"p 95 (o3 of My (@M, () df (M)} (0)6,(1))
J4p>
+— ) 01 9 (A} ()6, (1)

ﬁl>d

A2 Y oy ap (AT ()M, (1) df (M (06,(0)) ) +O(A%),
B.q,p>d,1>d

We notice that the two first second order terms can be simplified: indeed after doing
some matricial rearrangements, the second term appears as a piece of the first one. We
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get the final expression of J;:

J :Zaﬁp"u?( 97q"+ 2 of of 070}, feq>

A? B

—A Y adg (A (@) 0(@) Y 019 o o]0, (M ()6, ())
B1>d B.v,jl>d
8 Y oy ap (AT @) M (1) df (M (@)6,(7) ) +O(A%). (E9)

B.q,p>d,l>d

Calculation of J,: Proposition 3.3 is used in the moments frame and the terms with
and without oy are split. The conservation default appearing in the term independent of
o is replaced by its definition (3.7). We obtain,

]z_zva B “r feq+ Zva B “r 'y(d{fjeq)

-5 Y, oo of o] ag (M Y(@)6,(ir)) + O(A?). (E.10)
Bvijd>d
All the terms are now gathered in (E.6). We recall this equation:
atq“+]1+ G ( i+ ¥ ot ol ol of 9 ff ) O(A%).
B

The first order terms are coming from the first order terms of J; (E.9) and the zeroth ones
of [ (E.10). We immediately recover the expected expression:

— Y o 9g(A) ()6, (i0)).

BI>d

The second order terms come from the second order expansion of J; (E.9), the first one of
J2 (E.10) and from the A% /6 multiplier. Two terms are immediately vanishing. It remains:

Y oy 9 (AP @M, (@) df (M, ()6, (1))

B.q.p>d,l>d

L B 3 eq) 1 B 2 4 ceq
+6(atq0¢+ ) v v U;-’ v} Opef; )_Zﬁz‘z}? v U;-’ am(dtf]. ).
V.

B1.¢.j

The first term is an expected term: we keep it unchanged. To treat 97¢%, the first order
equation on the momentum (3.4) is formally derived,

3q —32(23,3#‘#3) +O(A Zv%ﬁaﬁﬁ fI+0(n).
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The quantities independent of ¢ can be rearranged to finally obtain,

1
c (qu“—kﬁg 'v}?‘ vf ) v mgfeq> - Z ot vl3 7 8 (d]tfeq)
r'yr ’]

— p 72 ) j req
———E vf0;0p((d)°f; ) 122 v} v A (difi).
That closes the proof.
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