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We propose the derivation of acoustic-type isotropic partial differential equations that are
equivalent to linear lattice Boltzmann schemeswith a density scalar field and amomentum
vector field as conservedmoments. The corresponding linear equivalent partial differential
equations are generatedwith a new ‘‘Berliner version’’ of the Taylor expansionmethod. The
details of the implementation are presented. These ideas are applied for the D2Q9, D2Q13,
D3Q19 and D3Q27 lattice Boltzmann schemes. Some limitations associated with necessary
stability conditions are also presented.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Partial differential equations like Navier–Stokes equations are invariant by rotation and all space directions are equiva-
lent. Due to the use of a given mesh, lattice Boltzmann schemes cannot be completely invariant by rotation. This difficulty
was present in the early ages of lattice gas automata. The initial model of Hardy, de Pazzis and Pomeau [1] proposed very im-
pressive qualitative results but the associated fluid tensor was not invariant by rotation. With a triangular mesh, the second
model of Frisch, Hasslacher and Pomeau [2] gives the correct physics. The lattice Boltzmann schemewithmultiple relaxation
times is the fruit of the work of Higuera and Jiménez [3], Higuera, Succi and Benzi [4], Qian, d’Humières and Lallemand [5]
and d’Humières [6]. It uses in general square meshes and leads to isotropic physics for a second order equivalent model
as analyzed in [7]. The question of rotational invariance is still present in the lattice Boltzmann community and a detailed
analysis of moment isotropy has been proposed by Chen and Orszag [8].
• The invariance by rotation has to be kept as much as possible in order to respect the correct propagation of waves. In [9],
using the Taylor expansionmethod proposed in [10] for general applications, we have developed amethodology to enforce a
lattice Boltzmann scheme to simulate correctly the physical acousticwaves up to fourth order of accuracy. But unfortunately,
stability is in general guaranteed only if the viscosities of the waves are much higher than authorized by common physics.
In this contribution, we relax this constraint and suppose that the equivalent partial differential equation of the scheme
is invariant under rotations. The objective of this contribution is to propose a methodology to fix the parameters of lattice
Boltzmann schemes in order to ensure the invariance by rotation at a given order.
• The outline is the following. In Section 2, we consider the question of the algebraic form of linear high order ‘‘acoustic-
type’’ partial differential equations that are invariant by two dimensional and three-dimensional rotations. In Section 3, we
recall the essential properties concerningmultiple relaxation times lattice Boltzmann schemes. The equivalent equation of a
lattice Boltzmann scheme introduces naturally the notion of rotational invariance at a given order. In the following sections,
we develop a methodology to force acoustic-type lattice Boltzmann models to be invariant under rotations. We consider
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the four lattice Boltzmann schemes D2Q9, D2Q13, D3Q19 and D3Q27 in Sections 4–7. A conclusion ends our contribution.
Appendix A presents with details the implementation of the ‘‘Berliner version’’ of our algorithm to derive explicitly the
equivalent partial differential equations. Some long formulae associated to specific results for D2Q13 and D3Q27 lattice
Boltzmann schemes are presented in Appendix B.

2. Invariance by rotation of acoustic-type equations

With the help of group theory, and we refer the reader e.g. to Hermann Weyl [11] or Goodman and Wallach [12], it is
possible to write a priori the general form of systems of linear partial differential equations invariant by rotation. More
precisely, if the unknown is composed by one scalar field ρ (the invariant function under a rotation of the space) and one
vector field J (a vector valued function that is transformed in a similarway to how than cartesian coordinates are transformed
when a rotation is applied), a linear partial differential equation invariant by rotation is constrained in a strong manner.
Using some fundamental aspects of group theory and in particular the Schur lemma (see e.g. Goodman and Wallach [12]),
it is possible to prove that general linear partial differential equations of acoustic type that are invariant by rotation admit
the form described below.
• In the bidimensional case, we introduce the notation

∇
⊥

≡

 ∂
∂x
,
∂

∂y

⊥

=

 ∂
∂y
,−

∂

∂x


, J⊥ ≡ (Jx, Jy)⊥ = (Jy,−Jx). (1)

Then acoustic type partial differential equations are of the form
∂tρ +


k≥0


αk △

k ρ + βk △
k div J + γk △

k div (J⊥)


= 0,

∂t J +


k≥0


δk∇ △

k ρ + µk △
k J + ζk∇div △

k J + εk∇
⊥

△
k ρ + νk △

k J⊥ + ηk∇div △
k J⊥


= 0,

(2)

where the real coefficients αk, βk, γk, δk, µk, ζk, εk, νk and ηk are in finite number. The tridimensional case is essentially
analogous. The ‘‘acoustic type’’ linear partial differential equations invariant by rotation take necessarily the form

∂tρ +


k≥0


αk △

k ρ + βkdiv △
k J


= 0

∂t J +


k≥0


δk∇ △

k ρ + µk △
k J + ηk∇div △

k J + ϕkcurl△k J


= 0,
(3)

with an analogous convention that the sums in the relations (3) contain only a finite number of such terms.

3. Lattice Boltzmann schemes with multiple relaxation times

Each iteration of a lattice Boltzmann scheme is composed of two steps: relaxation and propagation. The relaxation is
local in space: the particle distribution f (x) ∈ Rq for x a node of the lattice L, is transformed into a ‘‘relaxed’’ distribution
f ∗(x) that is nonlinear in general. In this contribution, we restrict to linear functions Rq

∋ f −→ f ∗
∈ Rq. As usual with the

d’Humières scheme [6], we introduce an invertible matrixM with q lines and q columns. The momentsm are obtained from
the particle distribution thanks to the associated transformation

mk =

q−1
j=0

Mkjfj, 0 ≤ k ≤ q − 1. (4)

Then we consider the conserved momentsW ∈ RN :

Wi = mi, 0 ≤ i ≤ N − 1. (5)

For the usual acoustic equations for d space dimensions, we have N = d + 1. The first moment is the density and the
next ones are composed of the d components of the physical momentum. Then we define a conserved value meq

k for the
non-equilibrium momentsmk for k ≥ N . With the help of ‘‘Gaussian’’ functions Gk(•),we obtain:

meq
k = Gk(W ), N ≤ k ≤ q − 1. (6)

In the present contribution, we suppose that this equilibrium value is a linear function of the conserved variables. In other
terms, the Gaussian functions are linear:

GN+ℓ(W ) =

n−1
i=1

EℓiWi, ℓ ≥ 0 (7)

for some equilibrium coefficients Eℓi for ℓ ≥ 0 and 0 ≤ i ≤ N − 1.



A. Augier et al. / Computers and Mathematics with Applications 67 (2014) 239–255 241

• The relaxed momentsm∗

k are linear functions ofmk and meq
k :

m∗

k = mk + sk

meq

k − mk

, k ≥ N. (8)

For a stable scheme, we have

0 < sk < 2. (9)

We remark that if sk = 0, the corresponding moment is conserved. In some particular cases, the value sk = 2 can also be
used (see e.g. [13,14]). The conserved moments are not affected by the relaxation:

m∗

i = mi = Wi, 0 ≤ i ≤ N − 1.

From the momentsm∗

ℓ for 0 ≤ ℓ ≤ q − 1 we deduce the particle distribution f ∗

j by resolution of the linear system

Mf ∗
= m∗.

• The propagation step couples the node x ∈ L with his neighbours x − vj∆t for 0 ≤ j ≤ q − 1. The time iteration of the
scheme can be written as

fj(x, t +∆t) = f ∗

j (x − vj∆t, t), 0 ≤ j ≤ q − 1, x ∈ L. (10)

• From the knowledge of the previous algorithm, it is possible to derive a set of equivalent partial differential equations for
the conserved variables. If the Gaussian functions Gk are linear, this set of equations takes the form

∂W
∂t

− α1W −∆tα2W − · · · −∆t j−1αjW − · · ·− = 0, (11)

where αj is for j ≥ 1, a space derivation operator of order j. We refer the reader to [15] for the presentation of our approach
in the general case. In this contribution, we have developed an explicit algebraic linear version of the algorithm detailed in
Appendix A. Moreover, we consider that the lattice Boltzmann scheme is invariant by rotation at order ℓ if the equivalent
partial differential equation

∂W
∂t

−

ℓ
j=1

∆t j−1αjW = 0 (12)

obtained from (11) by truncation at the order ℓ is invariant by rotation. For acoustic-type models, the partial differential
equation (12) has to be identical to (2) or (3) for dimension 2 or 3. In the following, we determine the equivalent partial
differential equations for classical lattice Boltzmann schemes in the general linear case. Then we fit the equilibrium and
relaxation parameters of the scheme in order to enforce rotational invariances at all orders between 1 and 4.

4. D2Q9

The isotropy of the lattice Boltzmann scheme D2Q9 for the acoustic equations has been studied in detail in [16,17]. We
give here only a summary of our results.
• The matrix M for the D2Q9 lattice Boltzmann model is of the form

Mkj = pk(vj), 0 ≤ j, k ≤ q − 1 (13)

with polynomials pk detailed in the contribution [18]. With this choice, the moments are named according to the following
notations:

0 1 λ0

1, 2 X, Y λ1

3 ε λ2

4, 5 XX, XY λ2

6, 7 qx, qy λ3

8 ε2 λ4.

(14)

Wehave recalled in (14) the degrees of homogeneity of eachmomentmk relative to the reference numerical velocityλ ≡
∆x
∆t .

• At first order, the invariance by rotation (2) takes the form
∂tρ + div J = O(∆t)
∂t J + c20∇ρ = O(∆t) (15)

if the next moments of degree 2 follow the simple equilibrium:

εeq = αλ2ρ, XXeq
= XY eq

= 0. (16)
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Then the sound velocity c0 in Eq. (15) satisfies

c20 =
λ2

6
(4 + α). (17)

• At second order, the invariance by rotation (2) is realized under specific conditions for the third order moments q ≡

(qx, qy). This equilibrium condition is defined with the help of Hénon’s [19] parameters σk defined from the coefficients sk
according to

σk ≡
1
sk

−
1
2

when k ≥ 3. (18)

The stability condition (9) can be written as

σk > 0, for k ≥ N. (19)

We have

qeq =
σ4 − 4σ5
σ4 + 2σ5

λ2J. (20)

We obtain with these conditions the following equivalent partial differential equations
∂tρ + div J = O(∆t2)
∂t J + c20∇ρ − µ△J − ζ∇div J = O(∆t2).

(21)

The physical viscosities µ and ζ can be determined according to

µ =
σ4σ5

σ4 + 2σ5
λ∆x, ζ = σ3

(2σ4 − 2σ5 − ασ4 − 2ασ5)
6(σ4 + 2σ5)

λ∆x. (22)

We observe that the classical isotropy condition σ4 = σ5 for the second order moments XX and XY is not necessary for the
relaxation at this second order step.
• At third order, the system (2) takes the particular form

∂tρ + div J + ξ△div J = O(∆t3)
∂t J + c20∇ρ − µ△J − ζ∇div J + χ∇△ρ = O(∆t3).

(23)

This is possible if the complementary relations

σ4 = σ5, ε
eq
2 = −

λ4ρ

2


3α + 4


(24)

hold. Then the heat flux at equilibrium has an expression (20) that can be simply written as

qeq = −λ2J. (25)

The coefficients in Eq. (23) are given by the expressions
µ =

1
3
σ4λ∆x, ζ = −

1
6
σ3αλ∆x, ξ =

1
72
(α − 2)∆x2,

χ =
1

216
(α + 4)


2 + 6ασ 2

3 − α − 12σ 2
4


λ2∆x2.

(26)

We remark that the dissipation of the acoustic waves γ ≡
µ+ζ

2 (see e.g. Landau and Lifshitz [20]) is given according to

γ =
λ∆x
12


2σ4 − ασ3


. (27)

• The invariance by rotation at fourth order of the D2Q9 lattice Boltzmann scheme does not give completely satisfactory
results, as observed previously in [17]. In order to get equivalent equations at order 4 of the type

∂tρ + div J + ξ△div J + η△
2 ρ = O(∆t4)

∂t J + c20∇ρ − µ△J − ζ∇div J + χ∇△ρ + µ4 △
2 J + ζ4∇div△J = O(∆t4),

(28)

it is necessary to fix some relaxation parameters:

σ3 = σ4 = σ8, σ6 = σ7 =
1

6σ4
. (29)
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The two viscosities µ and ζ are now dependent and the dissipation of the acoustic waves introduced previously in (27)
admits now the expressions

µ =
1
3
σ4λ∆x, ζ = −

1
6
σ4αλ∆x, γ =

λσ4∆x
12

(2 − α). (30)

Observe that the dissipation γ is positive under usual conditions. If the conditions (29) are satisfied, we can specify the
coefficients of the fourth order terms in Eq. (28):

η =
λ∆x3

432
(α + 4)(α − 2), µ4 =

λ∆x3

108
(12σ 2

4 − 1),

ζ4 =
λ∆x3

216
σ4


12 − α − 2α2

+ 12σ 2
4 (α

2
− α − 4)


.

(31)

• In [17], we have conducted a set of numerical experiments that make more explicit the isotropy qualities of four different
variants of the D2Q9 lattice Boltzmann scheme for the numerical simulation of acoustic waves. The orders of isotropy
precision numerically computed are in coherence with the level of accuracy presented in this section.

5. D2Q13

Four more velocities are added to the D2Q9 scheme to construct D2Q13. The details can be found e.g. in [18]. Nine
moments are analogous to those proposed in (14) for D2Q9 and four moments (rx, ry, ε3, XXe) are new:

0 1 λ0

1, 2 X, Y λ1

3 ε λ2

4, 5 XX, XY λ2

6, 7 qx, qy λ3

8, 9 rx, ry λ5

10 ε2 λ4

11 ε3 λ6

12 XXe λ4.

(32)

•At first order, the invariance by rotation (2) takes again the form (15). The conditions (16) are essentially unchanged, except
that the sound velocity is now evaluated according to the relation

c20 =
λ2

26
(28 + α) ≡ c2s λ

2. (33)

• At second order, the equivalent partial differential equations take the isotropic form (21) when we have:

qeq = ϕλ2J, req =
1
12

20σ5 − 85σ4 − 49ϕσ4 − 14ϕσ5
σ4 + σ5


λ4J. (34)

Then the isotropy coefficients in (15) have the following expressions:

µ =
λ∆x
2

σ4σ5

σ4 + σ5
(3 + ϕ), ζ =

λ∆x
26

σ3(11 + 13ϕ − α), σk > 0 when k ≥ 3. (35)

• The invariance by rotation at third order of the mass equation is realized if we impose a unique value for the relaxation
coefficients of the second order moments XX and XY introduced in (32):

σ4 = σ5. (36)
Moreover, the attenuation of sound waves γ does not depend at first order on the advective velocity if (36) is satisfied.
For the invariance by rotation of the momentum equation, we must impose also the following equilibrium values for the
momentsm10 ≡ ε2,m11 ≡ ε3 andm12 ≡ XXe:

ε
eq
2 =


−5α +

77
26
ϕα +

1078
13

ϕ


λ4ρ

ε
eq
3 =


α

48
−

137
12

−
135
208

αϕ −
945
52
ϕ


λ4ρ, XXeq

e = 0.

(37)

Then the equivalent equations at order 3 of the D2Q13 lattice Boltzmann scheme are still given by Eq. (23). The equilibrium
condition (34) is now written as

req = −
1
24
(65 + 63ϕ)λ4J (38)
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and the coefficients in Eq. (23) can be clarified:
µ =

1
4
σ5(3 + ϕ)λ∆x, ζ =

1
26
σ4(11 + 13ϕ − α)λ∆x,

ξ =
1

624
(2α − 39ϕ − 61)∆x2,

χ =
1

8112
(28 + α)


61 + 39ϕ + 12ασ 2

3 − 2α − 78ϕσ 2
4 − 156ϕσ 2

3 − 234σ 2
4 − 132σ 2

3


λ2∆x2.

(39)

• The invariance by rotation at fourth order is satisfied if we add to the previous conditions (36)–(38) the new ones:

qeq = −
7
5
λ2J, σ6 = σ7 =

1
12σ4

,

σ8 = σ9 =
5
24

155 − a
a − 308

1
σ4

+
1
24

7a − 1391
a − 308

1
σ3
,

σ10 =
3973
45

43a − 16610
89a − 20680

5c2s − 4
1189c2s − 828

σ3 +
154
1395

7a − 1391
89a − 20680

725c2s − 418
1189c2s − 828

aσ4,

σ11 =
a

155
σ4.

(40)

If the parameters cs and α relative to the non-dimensionalized sound velocity are linked together thanks to (33) and if the
new parameter a is chosen such that

c2s <
418
25
, −28 < α ≤ −

9432
725

≃ −13, 155 < a <
1391
7

≃ 198, (41)

the coefficients σ8, σ10 and σ11 are strictly positive if it is the case for σ3 and σ4. In this case, the stability conditions (19) are
satisfied for the coefficients σ3, σ4, σ8, σ10 and σ11. With the choice (40) the nontrivial algebraic expressions of the previous
conditions (36), (37) and (38) can be written as

req =
29
30
λ4J, ε

eq
2 = −

1189
130

α +
7546
65


λ4ρ, ε

eq
3 =

547
39

+
145
156

α

λ4ρ. (42)

With the above conditions (40) and (42) the equivalent equations of the D2Q13 lattice Boltzmann scheme at fourth order
are made explicit in (28), with the associated coefficients, except ζ4, given according to:

ξ =
5α − 16
1560

∆x2, η =
α + 28
40560


36σ3 + 5σ3α − 52σ4


λ∆x3

µ =
2
5
σ4λ∆x, ζ = −

1
130

σ3(36 + 5α)λ∆x

χ =
1

20280
(28 + α)


16 − 5α + 216σ 2

3 − 312σ 2
4 + 30ασ 2

3


λ2∆x2

µ4 =
σ4λ∆x3

300σ3(a − 308)


4483σ4 − 5099σ3 − 23aσ4 + 25aσ3 − 14784σ3σ 2

4 + 48aσ3σ 2
4


.

(43)

The algebraic expression of the coefficient ζ4 is quite long. With Hénon’s coefficients σj defined according to (18), the
related moments numbered by the relations (32), the equilibrium of the energy (16) parametrized by α, and the parameter
a introduced at (40), the coefficient ζ4 for the fourth order term in (28) can be evaluated according to:

ζ4 =
σ4λ∆x3

56581200σ3(89a − 20680)


525433428aσ3σ4 + 576972000α2σ 2

3

+ 18001526400ασ 3
3 σ4 + 18001526400ασ3σ 3

4 + 65975a2ασ3σ4
+ 170558856aσ 2

4 − 334055628aσ 2
3 − 858312a2σ 2

4 − 159243217380σ3σ4
+ 75143778660σ 2

3 + 18001526400ασ 2
3 σ

2
4 − 77472720aασ 3

3 σ4

− 77472720aασ 2
3 σ

2
4 − 77472720aασ3σ 3

4 + 504042739200σ3σ 3
4

+ 129610990080σ 3
3 σ4 + 129610990080σ 2

3 σ
2
4 + 858312a2σ3σ4

+ 22940190aασ3σ4 + 17841109925ασ 2
3 − 65975a2ασ 2

4

+ 13110175aασ 2
4 − 3461832000α2σ 4

3 − 85853433600ασ 4
3

− 2483100aα2σ 2
3 − 78263065aασ 2

3 − 438683351040σ 4
3

+ 369485280aασ 4
3 + 14898600aα2σ 4

3 + 1887950592aσ 4
3

− 557803584aσ 2
3 σ

2
4 − 2169236160aσ3σ 3

4 − 557803584aσ 3
3 σ4 − 8032585925ασ3σ4


.
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6. D3Q19

For the scheme D3Q19, we have 4 conservation laws and a total of 19 moments. We refer the readers e.g. to [10] for an
algebraic expression of the polynomials pk in (13):

0 1 λ0

1, 2, 3 X, Y , Z λ1

4 ε λ2

5, 6 XX,WW λ2

7, 8, 9 XY , YZ, ZX λ2

10, 11, 12 qx, qy, qz λ3

13 ε2 λ4

14, 15 XXe,WWe λ4

16, 17, 18 antisymmetric of order 3 λ3.

(44)

The results summarized in this section have been essentially considered (quickly) in the previous contribution [9]. They have
been also used by Leriche, Lallemand and Labrosse [21] for the numerical determination of the eigenmodes of the Stokes
problem in a cubic cavity.
•Wewrite the four equivalent partial differential equations at first orderwith themethod explained in Appendix A. Thenwe
impose that the associated modes are isotropic, i.e. contain only partial differential operators that are invariant by rotation.
In Fourier space, the coefficients of the associated determinant must contain only powers of the wave vector. The associated
equations are highly nonlinear relative to the coefficients of the equilibrium matrix introduced in (7). We have obtained a
family of parameters by enforcing the linearity of the solution of the isotropic equations. With this constraint, we have to
impose a relation for the ‘‘energy’’ momentm4 ≡ ε at equilibrium:

εeq = αλ2ρ. (45)

Moreover, the equilibrium values for the momentsm5 to m9 of degree two introduced in (44) are equal to zero:

XXeq
= WW eq

= XY eq
= YZeq

= ZXeq
= 0. (46)

When the conditions (45) and (46) are realized, the isotropic equivalent system is given by the system of first order acoustic
equations (15). Moreover, the sound velocity c0 satisfies

c20 =
α + 30

57
λ2 ≡ csλ2. (47)

• Invariance by rotation at second order is realized if we impose on one hand

qeq = 2
3σ5 − 4σ7
σ5 + 2 σ7

λ2J (48)

and on the other hand

σ5 = σ6, σ7 = σ8 = σ9. (49)

Then the equivalent partial differential equations of the D3Q19 lattice Boltzmann scheme take the form (21). The associated
coefficients are given according to

µ =
σ5σ7

σ5 + 2σ7
λ∆x

ζ =
λ∆x

57(σ5 + 2σ7)


27σ4σ5 + 19σ5σ7 − 22σ4σ7 − ασ4σ5 − 2ασ7σ4α


.

(50)

• At third order, if we impose the previous relations (45), (46), (48) and (49), id est an equilibrium for the ‘‘energy square’’
ε2 given below, a null value formeq

14 and meq
15 and a supplementary condition for the relaxation coefficients, id est

ε
eq
2 =

42 + 9α
9

λ2ρ, XXeq
e = WW eq

e = 0, σ5 = σ7, (51)

the equivalent equations of the D3Q19 lattice Boltzmann scheme are exactly given by (23). We observe that the relation
(48) takes now the form

qeq = −
2
3
λ2J (52)
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and the coefficients associated to Eq. (23) can be deduced through an elementary process:
µ =

1
3
σ5λ∆x, ζ =

λ∆x
171


5σ4 + 19σ5 − 3ασ4


, ξ =

∆x2

684
(α − 27),

χ =
λ2∆x2

19494


α + 30


27 + 6ασ 2

4 − 10σ 2
4 − 152σ 2

5 − α

.

(53)

The bulk viscosity ζb ≡ 3ζ − µ (see e.g. Landau and Lifshitz [20]) is essentially a function of the relaxation parameter
associated to the energy ε:

ζb =
λσ4∆x
57


5 − 3α


. (54)

• We have found also a variant of the previous relations to enforce third order isotropy. We can replace the relations (51)
by the following ones, with an undefined parameter β:ε

eq
2 = βλ2ρ, XXeq

e = WW eq
e = 0, σ5 = σ7,

σ10 = σ11 = σ12 =
1

12σ5
, σ16 =

1
8σ5

, σ17 =
1

4σ5
, σ18 =

1
12σ5

.
(55)

The relations (52), (53) and (54) are not changed, except that the coefficient χ in the second line of (23) is now given byχ =
λ2∆x2

409374σ5


16212σ5 + 126α2σ 2

4 σ5 + 3570ασ 2
4 σ5 − 6300σ 2

4 σ5

− σ5α
2
− 234ασ5 + 361βσ4 + 171ασ4 + 798σ4 − 3192ασ 3

5 − 95760σ 3
5 − 361βσ5


.

(56)

• The invariance by rotation at fourth order has also been considered. But due to the low number of remaining parameters,
the family of Boltzmann schemes that we have obtained impose constraints between physical parameters. We must have
in particular

σ4 = σ5 (57)

and this relation induces some a priori relationship between the shear viscosity µ of relation (50) and the bulk viscosity ζb
presented in (54). Moreover, the relations (51) and (52) must be satisfied and Hénon’s parameters of themultiple relaxation
times have to follow, with an ordering proposed in (44), the complementary conditions

σ10 = σ11 = σ12 =
1

6σ5
, σ13 = σ14 = σ15 = σ5, σ16 = σ17 = σ18 =

1
6σ5

. (58)

Then the fourth order isotropic equivalent equations (28) are satisfied and the associated coefficients can be clarified:
ξ =

α − 27
684

∆x2, η =
(α + 30)(α − 27)

38988
σ5λ∆x3, µ4 =

12σ 2
5 − 1
108

σ5λ∆x3

ζ4 =
σ5λ∆x3

38988


2062 + 45α − 4α2

− 5304σ 2
5 − 612ασ 2

5 + 24α2σ 2
5


.

(59)

7. D3Q27

For the schemes D3Q27, we refer the reader e.g. to [9] for an algebraic expression of the polynomials pk of the relation
(13). The moments follow now the nomenclature

0 1 λ0

1, 2, 3 X, Y , Z λ1

4 ε λ2

5, 6 XX,WW λ2

7, 8, 9 XY , YZ, ZX λ2

10, 11, 12 qx, qy, qz λ3

13, 14, 15 rx, ry, rz λ5

16 ε2 λ4

17 ε3 λ6

18, 19 XXe,WWe λ4

20, 21, 22 XYe, YZe, ZXe λ4

23, 24, 25 antisymmetric of order 3 λ3

26 XYZ λ3.

(60)
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• At first order, we follow the same methodology as the one presented for the previous schemes. We keep the relation (45)
for the momentum m4 ≡ ε at equilibrium. As for the D3Q19 scheme, the equilibrium values for the moments m5 to m9 of
degree two introduced in (60) are equal to zero and the relation (46) still holds. Then the first order isotropic equivalent
system is given by (15). Observe that the sound velocity c0 now satisfies

c20 =
α + 2

3
λ2 ≡ csλ2. (61)

• At second order the equilibrium values have to be constrained: the ‘‘heat flux’’ at equilibrium is given by the relation

qeq = 2
σ5 − 4σ7
σ5 + 2 σ7

λ2J (62)

and a null value for the equilibrium of the third order moments is imposed:

meq
23 = meq

24 = meq
25 = meq

26 = 0. (63)

Moreover, the relations (49) between Hénon’s parameters of second order moments still have to be imposed. Then the
second order equivalent equations are isotropic and the coefficients of (21) follow the non-traditional relations

µ =
σ5σ7

σ5 + 2σ7
λ∆x, ζb ≡ 3ζ − µ =

λσ4∆x
σ5 + 2σ7


σ5 − 2σ7 − ασ5 − 2ασ5


. (64)

• At third order, we have two options as for the D3Q19 scheme. If we suppose that the heat flux at equilibrium and only one
time relaxation are fixed, id est

qeq = −2λ2J, ε
eq
2 = −(2 + 3α)λ2ρ,

XXeq
e = WW eq

e = XY eq
e = YZeq

e = ZXeq
e = 0, σ5 = σ7,

(65)

the third order equivalent equations of the D3Q27 lattice Boltzmann scheme are given by the expressions (23). The
coefficients in these equations are simple to evaluate with a software of formal calculus:

µ =
1
3
σ5λ∆x, ζb = −

1
3
σ4(1 + 3α)λ∆x, ξ =

1
36
(α − 1)∆x2,

χ =
1
54
(α + 2)


1 + α + 6ασ 2

4 − 2σ 2
4 + 8σ 2

5


λ2∆x2.

(66)

• The second solution for third order isotropy does not specify completely the ‘‘square of the energy’’ ε2 but fixes an
important number of relaxation times:

qeq = −2λ2J, ε
eq
2 = βλ2ρ, σ5 = σ7,

σ10 = σ11 = σ12 =
1

12σ5
, σ23 =

1
12σ5

, σ24 =
1

4σ5
, σ25 =

1
8σ5

,

XXeq
e = WW eq

e = XY eq
e = YZeq

e = ZXeq
e = 0.

(67)

The parameters µ, ζ , ζb and ξ are still given by the relations (66). But the value of the parameter χ is modified:
χ =

1
162σ5


4σ5 + 2σ4 + 3ασ4 − 6ασ5 − 3α2σ5 + 18α2σ 2

4 σ5 + 42ασ 2
4 σ5

+12σ 2
4 σ5 − 24ασ 3

5 − 48σ 3
5 + βσ4 − βσ5


λ2∆x2.

(68)

• The search of an isotropic form of the fourth order equivalent partial differential equations like (28) leads to a nonlinear
system of 33 equations. We have obtained a first solution with the following particular parameters:

req = 2λ4J, σ10 = σ11 = σ12, σ18 = σ19, σ23 = σ24 = σ25. (69)

It is possible to fix the other parameters of the schemewith the ratioψ of Hénon’s parameters associated with themoments
XXe and XX . With the notations proposed in (60), we set

ψ ≡
σ18

σ5
. (70)
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Fig. 1. Fourth order isotropy parameters for the D3Q27 lattice Boltzmann scheme.

When we impose the following relations between the coefficients of relaxations (all defined through their associated
Hénon’s parameter introduced in the relation (20)),

σ4 = σ5
3ψ3

− 4ψ2
− 13ψ + 32

3ψ3 − 22ψ2 + 23ψ + 14
,

σ10 = σ11 = σ12 =
1

12σ5

(3ψ − 7)(ψ − 4)
3ψ2 − 11ψ + 14

,

σ16 = σ5
6ψ5

− 24ψ4
+ 100ψ3

− 267ψ2
+ 506ψ − 364

(4ψ − 7)(3ψ3 − 22ψ2 + 23ψ + 14)
,

σ18 = σ19 ≡ ψσ5,

σ23 = σ24 = σ25 =
1

12σ5

3ψ2
− 7ψ + 16

3ψ2 − 11ψ + 14
,

σ26 =
1

18σ5

21ψ2
− 73ψ + 100

3ψ2 − 11ψ + 14
,

(71)

the equivalent partial differential equations of the D3Q27 lattice Boltzmann scheme are isotropic at fourth order of accuracy.
We can make more explicit graphically the previous result. We observe in Fig. 1 that the fundamental stability property
σ16 > 0 can be maintained only if 0 < ψ < 1.5. With this restriction, we see in Fig. 1 again that Hénon’s parameters
σ10, σ16 and σ18 remain positive only if

1 <
σ4

σ5
< 2.25. (72)

Due to the expressions (66) of the shear and the bulk viscosities, the inequality (72) imposes significant restrictions for the
physical parameters µ and ζb. The coefficients η and µ4 associated with the fourth order equations (28) can be evaluated
easily:

η =
σ5λ∆x3

108
Nη

14 + 23ψ − 22ψ2 + 3ψ3
,

Nη = (α + 2)(32α − 8 − 13αψ − 35ψ − 4αψ2
+ 28ψ2

+ 3αψ3
− 3ψ3)

µ4 =
σ5λ∆x3

108
132ψσ 2

5 − ψ + 36ψ2σ 2
5 + 168σ 2

6 + 3ψ2
− 8

3ψ2 − 11ψ + 14
.

(73)

The expression of ζ4 is quite long and is reported in the relation (114) of Appendix B.

Conclusion

In this contribution, we have presented the ‘‘Berliner version’’ of the Taylor expansion method in the linear case. This is
done with explicit algebra and allows a huge reduction of computer time for formal analysis. We have also considered in all
generality acoustic type partial differential equations that are rotationally invariant at an arbitrary order.
• The generalization of amethodology of group theory for discrete invariance groups of a lattice Boltzmann scheme remains
still under question, in the spirit of the previous study of Rubinstein and Luo [22].
• Concerning the fundamental examples considered in this contribution, the D2Q9 scheme can be invariant by rotation at
third order. At fourth order, physical parameters have to be strongly correlated. The D2Q13 scheme is invariant by rotation
at fourth order for an ad hoc fitting of the parameters. We have not explored all the possible solutions of the strongly
nonlinear set of equations that is necessary to solve in order to fit the fourth order isotropy. Numerical experiments have
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to confirm our theoretical considerations. The D3Q19 lattice Boltzmann scheme admits two sets of coefficients in order to
impose rotational invariance at third order. Particular physics has to be imposed to satisfy fourth order isotropy. The D3Q27
scheme is rotationally invariant at fourth order for a parametrized set of parameters. Our analysis imposes restrictions for
the physical parameters to guarantee the stability. A complementary numerical experiment will be welcome!
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Appendix A. Formal expansion in the linear case

We present in this appendix the ‘‘Berliner version’’ [23] of the algorithm proposed in all generality in our
contribution [10]. We suppose having defined a lattice Boltzmann scheme ‘‘DdQq’’ with d space dimensions and q discrete
velocities at each vertex. The invertible matrixM between the particles and the moments is given:

mk =

q−1
j=0

Mkjfj ≡

M • f


k, 0 ≤ k ≤ q − 1. (74)

The lattice Boltzmann scheme generates N conservation laws: the first moments

mk ≡ Wk, 0 ≤ k ≤ N − 1

are conserved during the collision step:

m∗
= mk = Wk. (75)

The q − N ‘‘slave’’ moments Y with

Yℓ ≡ mN+ℓ, 0 ≤ ℓ ≤ q − N − 1 (76)

relax towards an equilibrium value Y eq
ℓ . This equilibrium value is supposed to be a linear function of the state W . We

introduce a constant rectangular matrix E with N − q lines and N columns to represent this linear function:

Y eq
ℓ =

N−1
k=0

EℓkWk, 0 ≤ ℓ ≤ q − N − 1. (77)

The relaxation step is obtained through the usual algorithm [6] that decouples the moments:

Y ∗

ℓ = Yℓ + sℓ(Y
eq
ℓ − Yℓ), sℓ > 0, 0 ≤ ℓ ≤ q − N − 1. (78)

Observe that the numbering of the ‘‘s’’ coefficients used in (78) differs just a little from the one used for Eq. (8) and the four
examples considered previously. With a matricial notation, the relaxation can be written as:

m∗
= J0 • m (79)

with a matrix J0 of order q decomposed by blocks according to

J0 =


IN 0

S • E Iq−N − S


(80)

and a diagonal matrix S of order q − N defined by S ≡ diag

s0, s1, . . . , sq−N−1


. The discrete advection step follows the

method of characteristics:

fj(x, t +∆t) = f ∗

j (x − vj∆t, t), 0 ≤ j ≤ q − 1. (81)

• With d’Humières’s lattice Boltzmann scheme [6] previously defined, we can proceed to a formal Taylor expansion:

mk(t +∆t) =


j

Mkjf ∗

j (x − vj∆t) =


jℓ

MkjM−1
jℓ m∗

ℓ(x − vj∆t)

=


jℓ

MkjM−1
jℓ

∞
n=0

∆tn

n!


−

d
α=1

vαj ∂α

n

m∗

ℓ

=

∞
n=0

∆tn

n!


jℓp

MkjM−1
jℓ


−

d
α=1

vαj ∂α

n

(J0)ℓpmp.
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We introduce a derivation matrix of order n ≥ 0, defined by blocks of space differential operators of order n:
An Bn
Cn Dn


kp

≡
1
n!


jℓ

Mkj

M−1

jℓ


−

d
α=1

vαj ∂α

n

(J0)ℓp, n ≥ 0. (82)

We observe that in the relation (82), the blocks An and Dn are square matrices of orders N and q − N respectively. The
matrices Bn and Cn are rectangular of order N × (q − N) and (q − N) × N respectively. We remark also that at order zero,
the matrices A0, B0, C0 and D0 are known:

A0 B0
C0 D0


= J0 =


IN 0

S • E Iq−N − S


. (83)

The previous Taylor expansion can now be written under a matricial form:
W
Y


(x, t +∆t) =

∞
n=0

∆tn

An Bn
Cn Dn


•


W
Y


(x, t). (84)

• At order zero relative to∆t we have:
W
Y


(x, t)+ O(∆t) = J0 •


W
Y


+ O(∆t) =


W

S • E • W + (I − S) • Y


+ O(∆t)

and the non-conserved moments are close to the equilibrium:

Y (x, t) = E • W (x, t)+ O(∆t). (85)

• Wemake now the hypothesis of a general form for the expansion of the nonconserved moments:

Y (x, t) =


E +


n≥1

∆tnβn


• W (x, t) (86)

and the hypothesis of a formal linear partial differential system of arbitrary order for the conserved variablesW :

∂W
∂t

=


ℓ≥0

∆tℓαℓ+1


• W (x, t), (87)

where αℓ and βn are space differential operators of order ℓ and n respectively. We develop the first equation of (84) up to
first order:

W +∆t
∂W
∂t

+ O(∆t2) = W +∆t

A1W + B1Y


+ O(∆t2)

= W +∆t

A1W + B1EW


+ O(∆t2)

due to (85). Then

∂W
∂t

=

A1 + B1E


• W + O(∆t) (88)

and the relation (87) is satisfied at order one, with

α1 = A1 + B1E. (89)

The ‘‘Euler equations’’ are emerging! We have an analogous calculus for the second equation of (84):

Y +∆t
∂Y
∂t

+ O(∆t2) = SEW + (I − S)Y +∆t

C1W + D1EW


+ O(∆t2).

We clarify the time derivative ∂tY at order zero by differentiating (formally!) the relation (85) relative to time:

∂Y
∂t

= E
∂W
∂t

+ O(∆t) = Eα1W + O(∆t).

We introduce this expression inside the previous calculus. Then:

SY +∆tEα1W + O(∆t2) = SEW +∆t

C1W + D1EW


+ O(∆t2).

Consequently we have established the expansion of the nonconserved moments at order one:

Y = EW +∆tS−1C1 + D1E − Eα1

W + O(∆t2) (90)
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with

β1 = S−1C1 + D1E − Eα1

. (91)

Now, we have formally

∂2W
∂t2

=
∂

∂t


α1W + O(∆t)


= α1

∂W
∂t

+ O(∆t) = α1

α1W


+ O(∆t) = α2

1W + O(∆t)

and we recognize the ‘‘wave equation’’

∂2W
∂t2

− α2
1W = O(∆t). (92)

• We can derive a formal expansion at order two. We go one step further in the Taylor expansion of Eq. (84):

W +∆t
∂W
∂t

+
1
2
∆t2α2

1W + O(∆t3) = W +∆t

A1W + B1Y


+∆t2


A2W + B2Y


+ O(∆t3)

= W +∆t

A1W + B1(EW +∆tβ1W )


+∆t2


A2W + B2EW


+ O(∆t3)

and dividing by∆t , we obtain a ‘‘Navier–Stokes type’’ second order equivalent equation:

∂W
∂t

= α1W +∆t

B1β1 + A2 + B2E −

1
2
α2
1


W + O(∆t2).

With the notations introduced in (87), we have made explicit the partial differential equations for the conserved variables
at the order two:

∂W
∂t

= α1W +∆tα2W + O(∆t2)

with

α2 = A2 + B2E + B1β1 −
1
2
α2
1 . (93)

We remark that this Taylor expansion method can be viewed as a ‘‘numerical Chapman–Enskog expansion’’ relative to a
specific numerical parameter∆t instead of a small physical relaxation time step. For the moments Y out of equilibrium, we
expand the first order derivative of Y relative to time with a formal derivation of the relation (90):

∂Y
∂t

=
∂

∂t


EW +∆tβ1W


+ O(∆t2)

= E

α1W +∆tα2W


+∆tβ1α1W + O(∆t2)

=


Eα1 +∆t


Eα2 + β1α1


W + O(∆t2).

Then

∂Y
∂t

=


Eα1 +∆t


Eα2 + β1α1


W + O(∆t2). (94)

Analogously for the second order time derivative:

∂2Y
∂t2

= Eα2
1W + O(∆t). (95)

We re-write the second line of the expansion of Eq. (84) at second order accuracy:

Y +∆t
∂Y
∂t

+
∆t2

2
∂2Y
∂t2

+ O(∆t3) = SEW + (I − S)Y +∆t

C1W + D1Y )+∆t2


C2W + D2Y )+ O(∆t3)

and we get

SY = SEW −∆t

Eα1 +∆t(Eα2 + β1α1)


W −

∆t2

2
Eα2

1W

+∆t

C1W + D1


E +∆tβ1


W


+∆t2

C2W + D2EW )+ O(∆t3)

Y = EW +∆tS−1C1 + D1E − Eα1

W + ∆t2S−1


C2 + D2E + D1β1 − Eα2 − β1α1 −

1
2
Eα2

1


W + O(∆t3).

It is exactly the expansion (87) at second order:

Y = EW +∆tβ1W +∆t2β2W + O(∆t2)
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with

β2 = S−1

C2 + D2E + D1β1 − Eα2 − β1α1 −

1
2
Eα2

1


. (96)

• For the general case, we proceed by induction.We suppose that the developments (86) and (87) are correct up to the order
k, that is:

∂W
∂t

=


α1 +∆tα2 + · · ·∆tk−1αk


W + O(∆tk)

Y =


E +∆tβ1 +∆t2β2 + · · ·∆tkβk


W + O(∆tk+1).

(97)

We expand the relation (84) at order k + 2, we eliminate the zeroth order term and divide by∆t . We obtain

∂W
∂t

+

k+1
j=2

∆t j−1

j!


∂
j
tW

+ O(∆tk+1) =

k+1
j=1

∆t j−1AjW + BjY

+ O(∆tk+1). (98)

The term ∂
j
tW =


∞

ℓ=1∆tℓ−1αℓ
j
on the left hand side of (98) can be evaluated by taking the formal power of Eq. (87) at

the order j. We define the coefficients Γ j
m according to:

∞
ℓ=1

∆tℓ−1αℓ

j

≡

∞
ℓ=0

∆tℓΓ j
j+ℓ, j ≥ 0. (99)

They can be evaluated without difficulty from the coefficients αℓ, taking care of the non-commutativity of the product of
twomatrices.We report the corresponding terms andwe identify the coefficients in the factor of∆tk between the two sides
of Eq. (98), with the help of the induction hypothesis (97). We deduce:

αk+1 = Ak+1 +

k+1
j=1

Bjβk+1−j −

k+1
j=2

1
j!
Γ

j
k+1. (100)

We do the same operation with the second relation of (84):
Y +

k+1
j=1

∆t j

j!


∂
j
tY

+ O(∆tk+2) = SEW + (I − S)Y +

k+1
j=1

∆t j

CjW + DjY


+ O(∆tk+2). (101)

As in the previous case, we suppose that we have evaluated formally the temporal derivative

∂
j
tY = ∂

j
t


E +∆tβ1 +∆t2β2 + · · · +∆tkβk + · · ·


W


=

E +∆tβ1 +∆t2β2 + · · · +∆tkβk + · · ·


∂
j
tW


=

E +∆tβ1 +∆t2β2 + · · · +∆tkβk + · · ·


α1 +∆tα2 + · · · +∆tℓαℓ + · · ·

j
W

relatively to the space derivatives. Then with the help of the induction hypothesis
E +

∞
m=1

∆tmβm


∞
p=1

∆tp−1αp

j

≡

∞
ℓ=0

∆tℓK j
j+ℓ, j ≥ 0, (102)

we identify the two expressions of the coefficient of∆tk+1 issued from Eq. (101):

Sβk+1 = Ck+1 +

k+1
j=1

Djβk+1−j −

k+1
j=1

1
j!
K j
k+1. (103)

• The explicitation of the coefficients Γ j
j+ℓ and K j

k+1 of the matricial formal series is now easy, due to the relations (99) and
(102). We specify the coefficients Γ ℓ

j+ℓ obtained in the matricial formal series (99). For j = 0, the power in relation (99) is
the identity. Then

Γ 0
0 = I, Γ 0

ℓ = 0, ℓ ≥ 1. (104)

When j = 1, the initial series is not changed. Then

Γ 1
ℓ = αℓ, ℓ ≥ 1. (105)
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For j = 2, we have to compute the square of the initial series, paying attention that thematrix operators αℓ do not commute.
Observe that with the formal Chapman–Enskog method used e.g. in [6], non-commutation relations have also to be taken
into consideration for higher order terms in the case of several conserved moments. We have


∞
ℓ=1

∆tℓαℓ+1


∞
j=1

∆t jαj+1


=

∞
p=0

∆tp

ℓ+j=p

αℓ+1αj+1

and we have in particular

Γ 2
2 = α2

1, Γ 2
3 = α1α2 + α2α1, Γ 2

4 = α1α3 + α2
2 + α3α1. (106)

In the general case, we have


∞
ℓ=0

∆tℓαℓ+1

j

=

∞
ℓ=0

∆tp


ℓ1+···+ℓj=p

αℓ1+1 · · ·αℓj+1

and in consequence

Γ
j
p+j =


ℓ1+···+ℓj=p

αℓ1+1 · · ·αℓj+1. (107)

We have in particular for j = 3 and j = 4:

Γ 3
3 = α3

1, Γ 3
4 = α2

1α2 + α1α2α1 + α2α
2
1, Γ 4

4 = α4
1 . (108)

For the explicitation of the coefficients K j
k+1,we can replace the power of the formal series of the relation (99) in the relation

(102). We obtain, with the notation β0 ≡ E,


∞

m=0

∆tmβm


∞
ℓ=0

∆tℓΓ j
j+ℓ


≡

∞
p=0

∆tpK j
j+p

then we have by induction

K j
j+p =


m+ℓ=p

βmΓ
j
j+ℓ. (109)

For j = 0, we deduce

K 0
0 = E, K 0

p = 0, p ≥ 1 (110)

and for j = 1, we have a simple product of two formal series:

K 1
p = Eαp + β1αp−1 + · · · + βp−1α1, p ≥ 1. (111)

We specify some particular values of the coefficients K j
j+p when j = 2, j = 3 and for j = 4:


K 2
2 = EΓ 2

2 , K 2
3 = EΓ 2

3 + β1Γ
2
2 , K 2

4 = EΓ 2
4 + β1Γ

2
3 + β2Γ

2
2 ,

K 3
3 = EΓ 3

3 , K 3
4 = EΓ 3

4 + β1Γ
3
3 , K 4

4 = EΓ 4
4 .

(112)
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• It is now possible to make explicit up to fourth order to fix the ideas the matricial coefficients of the expansion (86) of the
nonconserved moments and of the associated partial differential equation (87). We have, following the natural order of the
algorithm:

β0 = E
α1 = A1 + B1E
β1 = S−1C1 + D1E − K 1

1


α2 = A2 + B2E + B1β1 −

1
2
Γ 2
2

β2 = S−1

C2 + D2E + D1β1 − K 1

2 −
1
2
K 2
2


α3 = A3 + B1β2 + B2β1 + B3E −

1
2
Γ 2
3 −

1
6
Γ 3
3

β3 = S−1

C3 + D1β2 + D2β1 + D3E − K 1

3 −
1
2
K 2
3 −

1
6
K 3
3


α4 = A4 + B1β3 + B2β2 + B3β1 + B4E −

1
2
Γ 2
4 −

1
6
Γ 3
4 −

1
24
Γ 4
4 .

(113)

Observe that with the explicit relations (113), the computer time for deriving formally the equivalent partial equation
like (97) at fourth order of accuracy has been reduced by three orders of magnitude (!) in comparison with the algorithm
presented in the contribution [10].

Appendix B. A specific algebraic coefficient

With Hénon’s coefficients σj defined according to (18), a numbering of the D3Q27 moments proposed in (60), the
equilibrium of the energy (16) parametrized by α, and the parameter ψ introduced in (70), the coefficient ζ4 for the fourth
order term in (28) can be evaluated according to:

ζ4 =
1

108
σ5λ∆x3

(4ψ − 7)(3ψ2 − 11ψ + 14)(14 + 23ψ − 22ψ2 + 3ψ3)3
N4

N4 = −526848 − 13105344σ 2
5 + 56334931ψ6α − 3413088ψ2

+ 29925576ψ3
+ 44310000σ 2

5ψ
3α2

+ 2458624α2
− 7776σ 2

5ψ
12

+ 116153808σ 2
5ψ

7
+ 16213680σ 2

5ψ
9
− 56871552σ 2

5ψ
8
− 2696976σ 2

5ψ
10

+ 803992ψα − 16250948ψ2α + 15057742ψ3α + 236520σ 2
5ψ

11

− 47554008σ 2
5ψ

5α2
+ 414648σ 2

5ψ
9α2

+ 5924856σ 2
5ψ

7α2

− 3520104σ 2
5ψ

8α2
+ 7776σ 2

5ψ
12α2

− 73224σ 2
5ψ

11α2
− 1805156ψ8α2

− 1316084ψ7α2
+ 13802956ψ6α2

− 29063324ψ5α2
+ 25708132ψ4α2

− 1230152ψ3α2
+ 3742816α2ψ + 27756ψ11α2

− 3429ψ11α

− 187851264σ 2
5 α

2ψ2
+ 198524928σ 2

5 α
2ψ + 195048σ 2

5ψ
10α2

− 12827088ψ4
+ 100016448σ 2

5ψ − 10762392σ 2
5ψ

3

− 287184σ 2
5ψ

5
− 117365232σ 2

5ψ
6
+ 102921792σ 2

5ψ
4
− 131926368σ 2

5ψ
2

− 6082272ψ + 22678777ψ4α − 58798343ψ5α + 316283520σ 2
5ψα

− 421440000σ 2
5ψ

2α + 148286280σ 2
5ψ

3α + 2458624α − 1296ψ12α2

− 324ψ12α − 12657680ψ2α2
+ 169965ψ10α − 1834629ψ9α

+ 9787591ψ8α − 30298973ψ7α − 235980ψ10α2
+ 989292ψ9α2

+ 55400808σ 2
5ψ

4α2
− 3888σ 2

5ψ
12α + 223236σ 2

5ψ
11α

− 2725812σ 2
5ψ

10α + 15619428σ 2
5ψ

9α − 48491916σ 2
5ψ

8α

+ 75338436σ 2
5ψ

7α + 8771448σ 2
5ψ

6α2
− 78989568σ 2

5 α

− 6400920ψ9
− 56568924ψ7

+ 24275088ψ8
+ 3240ψ12

− 88452ψ11

− 46884384ψ5
+ 76942908ψ6

+ 151481100σ 2
5ψ

4α − 12989436σ 2
5ψ

6α

− 141331668σ 2
5ψ

5α + 1015308ψ10
− 77070336σ 2

5 α
2.

(114)

References

[1] J. Hardy, Y. Pomeau, O. de Pazzis, Time evolution of a two-dimensional model system. I. Invariant states and time correlation functions, Journal of
Mathematical Physics 14 (1973) 1746–1759.

[2] U. Frisch, B. Hasslacher, Y. Pomeau, Lattice-gas automata for the Navier–Stokes equation, Physical Review Letters 56 (1986) 1505–1508.

http://refhub.elsevier.com/S0898-1221(13)00374-X/sbref1
http://refhub.elsevier.com/S0898-1221(13)00374-X/sbref2


A. Augier et al. / Computers and Mathematics with Applications 67 (2014) 239–255 255

[3] F.J. Higuera, J. Jiménez, Boltzmann approach to lattice gas simulations, EuroPhysics Letters 9 (1989) 663–668.
[4] F.J. Higuera, S. Succi, R. Benzi, Lattice gas dynamics with enhanced collisions, EuroPhysics Letters 9 (1989) 345–349.
[5] Y.H. Qian, D. d’Humières, P. Lallemand, Lattice BGK models for Navier–Stokes equation, EuroPhysics Letters 17 (1992) 479–484.
[6] D. d’Humières, Generalized lattice-Boltzmann equations, in: Rarefied Gas Dynamics: Theory and Simulations, in: AIAA Progress in Aeronautics and

Astronautics, vol. 159, 1992, pp. 450–458.
[7] P. Lallemand, L.-S. Luo, Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Physical Review

E 61 (2000) 6546–6562.
[8] H. Chen, S. Orszag, Moment isotropy and discrete rotational symmetry of two-dimensional lattice vectors, Philosophical Transactions of the Royal

Society of London A 369 (2011) 2176–2183.
[9] F. Dubois, P. Lallemand, Quartic parameters for acoustic applications of lattice Boltzmann scheme, Computers and Mathematics with Applications 61

(2011) 3404–3416.
[10] F. Dubois, P. Lallemand, Towards higher order lattice Boltzmann schemes, Journal of Statistical Mechanics (2009) P06006. http://dx.doi.org/10.1908/

1742-5468/2009/06/P06006.
[11] Hermann Weyl, Elementary theory of invariants, in: The Institute for Advanced Study, 1936.
[12] R.W. Goodman, N.R. Wallach, Representations and Invariants of the Classical Groups, Cambridge University Press, 1998.
[13] F. Dubois, Unpublished pedagogical experiments with the D1Q3 lattice Boltzmann scheme for the heat equation.
[14] F. Dubois, Stable lattice Boltzmann schemes with a dual entropy approach for monodimensional nonlinear waves, Computers and Mathematics with

Applications 65 (2013) 142–159.
[15] F. Dubois, Equivalent partial differential equations of a lattice Boltzmann scheme, Computers and Mathematics with Applications 55 (2008)

1441–1449.
[16] A. Augier, F. Dubois, B. Graille, Isotropy conditions for Lattice Boltzmann schemes. Application to D2Q9, in: ESAIM: Proceedings, vol. 35, 6 April 2012,

pp. 191–196. http://dx.doi.org/10.1051/proc/201235013.
[17] A. Augier, F. Dubois, B. Graille, L. Gouarin, Linear lattice boltzmann schemes for acoustic: parameter choices and isotropy properties, Computers and

Mathematics with Applications 65 (2013) 845–863.
[18] P. Lallemand, F. Dubois, Some results on energy-conserving lattice Boltzmann models, Computers and Mathematics with Applications 65 (2013)

831–844.
[19] M. Hénon, Viscosity of a lattice gas, Complex Systems 1 (1987) 763–789.
[20] L.D. Landau, E.M. Lifshitz, Fluid Mechanics’, Pergamon Press, London, 1959.
[21] E. Leriche, P. Lallemand, G. Labrosse, Stokes eigenmodes in cubic domain: primitive variable and Lattice Boltzmann formulations, Applied Numerical

Mathematics 58 (2008) 935–945.
[22] R. Rubinstein, L.S. Luo, Theory of the lattice Boltzmann equation: symmetry properties of discrete velocity sets, Physical Review E 77 (2008) 036709.
[23] F. Dubois,Méthode générale de calcul de l’équation équivalente pour un schémade Boltzmann sur réseau dans le cas linéaire, unpublishedmanuscript,

May 2011.

http://refhub.elsevier.com/S0898-1221(13)00374-X/sbref3
http://refhub.elsevier.com/S0898-1221(13)00374-X/sbref4
http://refhub.elsevier.com/S0898-1221(13)00374-X/sbref5
http://refhub.elsevier.com/S0898-1221(13)00374-X/sbref6
http://refhub.elsevier.com/S0898-1221(13)00374-X/sbref7
http://refhub.elsevier.com/S0898-1221(13)00374-X/sbref8
http://refhub.elsevier.com/S0898-1221(13)00374-X/sbref9
http://dx.doi.org/10.1908/1742-5468/2009/06/P06006
http://dx.doi.org/10.1908/1742-5468/2009/06/P06006
http://dx.doi.org/10.1908/1742-5468/2009/06/P06006
http://dx.doi.org/10.1908/1742-5468/2009/06/P06006
http://dx.doi.org/10.1908/1742-5468/2009/06/P06006
http://dx.doi.org/10.1908/1742-5468/2009/06/P06006
http://dx.doi.org/10.1908/1742-5468/2009/06/P06006
http://dx.doi.org/10.1908/1742-5468/2009/06/P06006
http://dx.doi.org/10.1908/1742-5468/2009/06/P06006
http://dx.doi.org/10.1908/1742-5468/2009/06/P06006
http://refhub.elsevier.com/S0898-1221(13)00374-X/sbref11
http://refhub.elsevier.com/S0898-1221(13)00374-X/sbref12
http://refhub.elsevier.com/S0898-1221(13)00374-X/sbref14
http://refhub.elsevier.com/S0898-1221(13)00374-X/sbref15
http://dx.doi.org/10.1051/proc/201235013
http://refhub.elsevier.com/S0898-1221(13)00374-X/sbref17
http://refhub.elsevier.com/S0898-1221(13)00374-X/sbref18
http://refhub.elsevier.com/S0898-1221(13)00374-X/sbref19
http://refhub.elsevier.com/S0898-1221(13)00374-X/sbref20
http://refhub.elsevier.com/S0898-1221(13)00374-X/sbref21
http://refhub.elsevier.com/S0898-1221(13)00374-X/sbref22

	On rotational invariance of lattice Boltzmann schemes
	Introduction
	Invariance by rotation of acoustic-type equations
	Lattice Boltzmann schemes with multiple relaxation times
	D2Q9
	D2Q13
	D3Q19
	D3Q27
	Acknowledgements
	Formal expansion in the linear case
	A specific algebraic coefficient
	References


