Variants of the Haagerup property relative to non-commutative L_p-spaces

Baptiste Olivier

TECHNION - Haifa

09th June 2014

Baptiste Olivier (TECHNION-Haifa)

Variants of property (H) relative to $L_p(\mathcal{M})$

The **Haagerup property** (H) (also called **a**-T-**menability**) appeared in 1979 in a seminal result of U. Haagerup.

It is a non-rigidity property for topological groups.

Property (H) is known to be a strong negation of Kazhdan 's property (T).

Examples of groups with property (H):

- amenable groups;
- groups acting properly on trees, spaces with walls (free groups...);
- SO(n, 1), SU(n, 1).

Applications of property (H) :

- rigidity for von Neumann algebras;
- weak amenability;
- Baum-Connes conjecture (Higson, Kasparov).

Definitions

G l.c.s.c. group, B Banach space. $\pi: G \to O(B)$ an orthogonal representation.

 π is said to have almost invariant vectors (a.i.v.) if there exists a sequence of unit vectors v_n ∈ B such that

$$\lim_{n} \sup_{g \in K} ||\pi(g)v_n - v_n|| = 0 \text{ for all } K \subset G \text{ compact.}$$

• π is said to have vanishing coefficients (or is C_0) if

$$\lim_{g\to\infty} <\pi(g)v, w> \ =0 \ \text{for all} \ v\in B, w\in B^*$$

(1) *G* is said to have property (H_B) if there exists an orthogonal representation $\pi : G \to O(B)$ which is C_0 and has a.i.v. . (2) *G* is said to be a-*F*_B-menable if there exists a proper action by affine isometries of *G* on the space *B*.

3/1

Known results for $B = L_p$

- When B = H is a Hilbert space, (1) ⇔ (2) give equivalent definitions of property (H).
- Property (H_B) is a strong negation of property (T_B) , and the a- F_B -menability is a strong negation of property (F_B) .

Theorem (Nowak/Chatterji, Drutu, Haglund)

- G has $(H) \Rightarrow G$ is a- $F_{L_{\rho}(0,1)}$ -menable for all $p \ge 1$.
- G has $(H) \Leftrightarrow G$ is a- $F_{L_p(0,1)}$ -menable for all $1 \le p \le 2$.

There exist groups G which are a- $F_{L_p(0,1)}$ -menable for p large and have property (T) :

Theorem (Yu, Nica)

For p > 2 large enough, hyperbolic groups admit a proper action by affine isometries on ℓ_p , as well as on $L_p(0, 1)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シペペ

Non-commutative L_{ρ} -spaces

For $1\leq p<\infty,~\mathcal{M}$ a von Neumann algebra, and τ a normal faithful semi-finite trace on $\mathcal{M},$ we have

$$L_p(\mathcal{M}) = \overline{\{x \in \mathcal{M} \mid \tau(|x|^p) < \infty\}}^{||\cdot||_p}$$

where $||x||_{p} = \tau (|x|^{p})^{\frac{1}{p}}$.

Basic properties :

- $L_p(\mathcal{M})$ is a u.c.u.s. Banach space if p > 1, and $L_p(\mathcal{M})^* \simeq L_{p'}(\mathcal{M})$ where $\frac{1}{p} + \frac{1}{p'} = 1$.
- L_p(M) ≃ L_p(N) isometrically if and only if the algebras M and N are Jordan-isomorphic (Sherman).

Examples :

•
$$\mathcal{M} = L^{\infty}(X, \mu)$$
 with $\tau(f) = \int f \ d\mu$:
 $L_{p}(\mathcal{M}) = L_{p}(X, \mu)$ is a classical (commutative) L_{p} -space.

•
$$\mathcal{M} = \mathcal{B}(\mathcal{H})$$
 with $\tau = \text{Tr}$ the usual trace :
 $L_p(\mathcal{M}) = \{x \in \mathcal{B}(\mathcal{H}) \mid \text{Tr}(|x|^p) < \infty\}$ is the Schatten *p*-ideal, denoted by S_p .

$O(L_{\rho}(\mathcal{M}))$ and the Mazur map

Let $1 \leq p < \infty$, $p \neq 2$.

Theorem (Yeadon)

Let $U \in O(L_p(\mathcal{M}))$. Then there exist $u \in \mathcal{U}(\mathcal{M})$, B a positive operator affiliated with \mathcal{M} with spectral projections commuting with \mathcal{M} , and $J : \mathcal{M} \to \mathcal{M}$ a Jordan-isomorphism such that

 $\mathbf{Ux=uBJ(x)} \text{ and } \tau(B^{p}J(x)) = \tau(x) \text{ for all } x \in \mathcal{M}_{+} \cap L_{p}(\mathcal{M}).$

$$O(L_{p}(\mathcal{M})) \text{ big enough } \leftrightarrow ((H_{L_{p}(\mathcal{M})}) \Leftrightarrow (H))$$
$$O(L_{p}(\mathcal{M})) \text{ not big enough } \leftrightarrow ((H_{L_{p}(\mathcal{M})}) \Leftrightarrow (H))$$

Conjugation by the Mazur map :

 $M_{p,q}(\alpha|x|) = \alpha |x|^{p/q}$ where $\alpha |x|$ is the polar decomposition of $x \in L_p$.

Consider $V = M_{q,p} \circ U \circ M_{q,p} : L_q \to L_q$. Then :

$$V = uB^{p/q}J \in O(L_q(\mathcal{M})).$$

6/11

- (G, G') has $(T_{L_p(\mathcal{M})})$, and G has $(H_{L_p(\mathcal{M})}) \Rightarrow G'$ is compact.
- Property $(H_{L_p(\mathcal{M})})$ is inherited by closed subgroups.
- Property (H_{L_p(M)}) only depends on the ||.||_p-isometric class of L_p(M).
- If \mathcal{M} is a factor (i.e. $\mathcal{M} \cap \mathcal{M}' = \mathbb{C}$), then $(H_{L_p(\mathcal{M})}) \Rightarrow (H)$.

Question : $(H_{L_{\rho}(\mathcal{M})}) \Rightarrow (H)$ for all von Neumann algebra \mathcal{M} ?

 ${\bf Question}$: Is the property of vanishing coefficients preserved by the conjugation by the Mazur map ?

Known cases :
$$\rightarrow \pi(g) = u_g J_g$$
 for all $g \in G$
 $\rightarrow \pi(g) = B_g J_g$ for all $g \in G$

7/1

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

$(H_{L_p(\mathcal{M})})$ for $\mathcal{M} = \ell_\infty$ and $\mathcal{M} = \mathcal{B}(\mathcal{H})$

Case $\mathcal{M}=\ell_\infty$:

Let $\pi^p : G \to O(\ell_p)$ be an orthogonal representation, and π^2 its conjugate by $M_{p,2}$. Then there exist unitary characters $\chi_i : H_i \to \mathbb{C}$ on open subgroups $H_i \subset G$, such that π has the form :

$$\pi^2(g)=\oplus_i(\mathrm{Ind}_{\mathrm{H}_{\mathrm{i}}}^{\mathrm{G}}\chi_{\mathrm{i}})(\mathrm{g})$$
 for all $g\in \mathcal{G}.$

Theorem

- If G is connected, then G has property $(H_{\ell_p}) \Leftrightarrow G$ is compact.
- If G is totally disconnected, then G has property $(H_{\ell_p}) \Leftrightarrow G$ is amenable.

Case $\mathcal{M} = \mathcal{B}(\mathcal{H})$:

Arazy : if $U \in O(S_p)$, then there exist $u, v \in \mathcal{U}(\mathcal{H})$ such that

$$Ux = uxv$$
 or $Ux = u^txv$ for all $x \in S_p$.

Theorem

G has property $(H_{S_p}) \Leftrightarrow G$ has property (H).

Property $(H_{L_{\rho}(0,1)})$

Connected Lie groups with property (H) were determined by Chérix, Cowling and Valette : in particular, non-compact simple connected Lie groups are the ones locally isomorphic to SO(n, 1) or SU(n, 1).

Theorem

Let $1 \le p < \infty$. Let G be a connected Lie group with Levi decomposition G = SR such that the semi-simple part S has finite center. Then TFAE : (i) G has property $(H_{L_p([0,1])})$; (ii) G has property (H); (iii) G is locally isomorphic to a product $\prod_{i \in I} S_i \times M$ where M is amenable, I is finite, and for all $i \in I$, S_i is a group $SO(n_i, 1)$ or $SU(m_i, 1)$ with $n_i \ge 2$, $m_i \ge 1$.

About the proof of (iii) \Rightarrow (i) :

- (1) deal the case of the groups SO(n, 1) and SU(n, 1);
- (2) use a finite-covering argument.

Question : Can this proof be adapted to the case of SU(n, 1) ?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Results about a- $F_{L_{\rho}(\mathcal{M})}$ -menability

Theorem : relation with property $(H_{L_p(\mathcal{M})})$

Let $\ensuremath{\mathcal{M}}$ be a von Neumann algebra.

- Then : $(H_{L_p(\mathcal{M})}) \Rightarrow a F_{L_p(\mathcal{M} \otimes \ell_\infty)}$ -menability.
- If moreover \mathcal{M} is a I_{∞} or II_{∞} factor, then we have : $(H_{L_{p}(\mathcal{M})}) \Rightarrow a - F_{L_{p}(\mathcal{M})}$ -menability.

Remark : The converse is not true. From Yu's construction, one can obtain proper actions on S_p for some Kazhdan's groups.

Theorem

Denote by R the hyperfinite II₁ factor. Then we have

$$(H) \Rightarrow \operatorname{a-}F_{L_{\rho}(\mathcal{M})}$$
-menability

for the following von Neumann algebras :

•
$$\mathcal{M} = R \otimes \ell_{\infty}$$
 ;

•
$$\mathcal{M} = R \otimes \mathcal{B}(\ell_2).$$

Question : what about results of type a- $F_{L_p(\mathcal{M})}$ -menability \Rightarrow (*H*) ?

Known method : for (X, μ) a measured space and $1 \le p \le 2$, we have

 $L_p(X,\mu)$ embeds isometrically in \mathcal{H} .

Remarks :

- The map $(x, y) \mapsto ||x y||_p^p$ is not a kernel conditionnally of negative type on $L_p(\mathcal{M}) \times L_p(\mathcal{M})$ whenever $\mathcal{M}_2(\mathbb{R}) \subset \mathcal{M}$.
- Isometric embeddings of type $L_p(\mathcal{M}) \subset L_q(\mathcal{N})$ can be used to prove a- $F_{L_n(\mathcal{M})}$ -menability \Rightarrow a- $F_{L_n(\mathcal{N})}$ -menability.

Thank you for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シペペ