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Interpolation on algebraic groups

S. Fischler

Abstract

We prove an interpolation lemma with multiplicities on a commutative algebraic group.
This statement is ‘dual’ to zero estimates used in transcendental number theory.
The special case where no multiplicities are involved has been proved by Masser.

1. Introduction

The usual sketch of a proof of transcendance or algebraic independence is to construct an ‘auxiliary
function’ which takes small algebraic values at many given points; these values are then proved to
be zero. The final step is to prove that such a function, vanishing at these points, has to be zero:
such a statement is called a zero estimate.

Another ‘dual’ approach is to construct an ‘auxiliary functional’, i.e. a linear combination of
evaluations of derivations, which takes small algebraic values (and therefore vanishes) on many
functions (see [Wal91] or [Wal00]). In this case, the final step (i.e., proving the auxiliary functional
is zero) is achieved thanks to an interpolation lemma.

In the context of commutative algebraic groups (e.g. Ga, Gm, elliptic curves, abelian varieties,
. . . ), such an interpolation lemma has been proved by Masser [Mas82] when no multiplicities are
involved. The present paper provides a proof in the general case.

This interpolation lemma can be used to provide new proofs of many known results in transcen-
dental number theory, for instance [Wal89] Schneider’s theorem on transcendance of elliptic integrals
of the first kind. This may allow one to sharpen some quantitative statements. Other applications of
this interpolation lemma to transcendental number theory may appear (see [Wal82]).

The proof given below follows the same lines as Masser’s. First, the statement is translated
in terms of functionals (§ 1.5). Then a special ‘non-degenerate’ case is studied (§ 4.1), using a
zero estimate. Finally, the general case is deduced (§ 4.2) by induction upon the dimension of the
algebraic group G.

The two main tools used in the proof are dealt with in §§ 2 and 3. The first one is how to handle
operations on functionals (projection on a quotient, translation, derivation); the Baker–Coates–
Anderson trick is used in a crucial way. The second tool is a general study of obstructing subgroups
to interpolation, and to zero estimates, which replaces the use of distribution exponents [Wal79]
which suffices in Masser’s setting.

1.1 Statement of the theorem

In this text, we let N = {0, 1, 2, . . . } denote the set of all non-negative integers.
Let G be a connected commutative algebraic group, equipped with a locally closed immer-

sion into P
N (corresponding to the choice of a very ample divisor on a compactification of G).
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The base field, in the whole text, is C (though any algebraically closed field of characteristic zero
could be considered, for instance its p-adic analog Cp; see also [Mas82, § 1]).

Let us denote by n the dimension of G, and by TG the tangent space to G at 1. We identify TG
with the space of translation-invariant vector fields on G.

For D � 0, we let R(G)D = H0(G,O(D)) be the vector space of global sections of the line
bundle O(D) on the Zariski closure G of G in P

N . By abuse of language, we shall call such a global
section homogeneous polynomial of degree D. We let also R(G) =

⊕
D�0 R(G)D ; this is a graded

algebra, the elements of which are called polynomials with the same abuse.
Let Γ be a finitely generated subgroup of G(C), spanned by (γ1, . . . , γl) with l � 0. For

S1, . . . , Sl ∈ R>0 we let Γ(S1, . . . , Sl) denote the set of all linear combinations n1γ1 + · · · + nlγl,
with integers nj such that |nj | < Sj for all j ∈ {1, . . . , l}. We assume (without loss of generality:
see [MW81, p. 492])

Γ ⊂ {X0 �= 0} ⊂ P
N . (1)

Let W be a subspace of TG, of dimension d � 0, and let (∂1, . . . , ∂d) be a basis of W . For a
family T = (T1, . . . , Td) of d positive real numbers, we let N

d
T be the set of all σ = (σ1, . . . , σd) ∈ N

d

such that σj < Tj for all j ∈ {1, . . . , d}.
We denote by OpW the set of all polynomials in ∂1, . . . , ∂d, i.e. the space of differential operators

along W . We denote by Op∂,T the subspace of OpW spanned by the monomials ∂σ = ∂σ1
1 . . . ∂σd

d for
σ ∈ N

d
T . We say that a polynomial P ∈ R(G)D vanishes up to order T along W at a point γ ∈ Γ if

∂σ(P/XD
0 )(γ) = 0 for any σ ∈ N

d
T . Of course, this depends on the basis (∂1, . . . , ∂d), and not only

on W .
The main result of this paper is the following theorem, which is best possible up to the value

of c1 (see the end of § 1.5).

Theorem 1.1. There is a positive constant c1, depending on all previous data, with the following
property. Let D, S1, . . . , Sl, T1, . . . , Td be positive integers such that, for any non-zero connected
algebraic subgroup H of G, we have

#(H ∩ Γ(S)) dim(OpW∩TH ∩ Op∂,T ) < c1D
dim(H).

For all γ ∈ Γ(S) and σ ∈ N
d
T , let aγ,σ be a complex number. Then there exists P ∈ R(G),

homogeneous of degree D, such that ∂σ(P/XD
0 )(γ) = aγ,σ for all γ ∈ Γ(S) and σ ∈ N

d
T .

Remarks. If we consider, instead of Γ(S), the set of points n1γ1 + · · ·+ nlγl with 0 � nj < Sj, then
the assumption in Theorem 1.1 has to be made with every translate of any algebraic subgroup H
of G.

If the group G is linear (i.e., isomorphic to G
�0
a × G

�1
m for some �0, �1 � 0), Theorem 1.1 can

be deduced from a zero estimate using Fourier–Borel transform (see [Wal91] or [Wal00]). This is
written, using the language of Hopf algebras, in [Fis03, Chapter 8]. The interpolation lemma proved
in this way is even more precise: bi-degrees (D0,D1) can be considered (with respect to the additive
and multiplicative parts of the group), instead of just D.

Masser’s interpolation lemma is the special case of Theorem 1.1 where no multiplicities are
involved (i.e. T1 = · · · = Td = 1 or dim(W ) = 0), and equality S1 = · · · = Sl is assumed.
Therefore, even without multiplicities, Theorem 1.1 is more precise1 than Masser’s interpolation
lemma. Theorem 1.1 should be enough for applications to transcendental number theory, but it
would be interesting to refine it anyway and obtain interpolation lemmas in the same setting as
zero estimates (see [Phi86]).

1An intermediate statement, namely Theorem 1.1 under the assumptions T1 = · · · = Td and S1 = · · · = Sl, is proved
in [Fis03, Chapter 7].
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Interpolation on algebraic groups

1.2 Cohomological interpretation
In this subsection, we state (following a suggestion of Pascal Autissier) Theorem 1.1 in terms of
vanishing of a cohomology module H1. This is the reason why Bertrand [Ber04] uses the terminology
‘ampleness lemma’ instead of ‘interpolation lemma’.

For positive integers S = (S1, . . . , Sl) and T = (T1, . . . , Td), let JS,T be the ideal sheaf whose
sections, on any open subset U of G, are given by

Γ(U,JS,T ) = {P ∈ OU , P vanishes up to order T along W at each point of Γ(S) ∩ U}.

Let YS,T be the corresponding closed subscheme of G; it consists of all points in Γ(S), thickened up
to order T along W . For any non-negative integer D, let IS,T ,D = JS,T ⊗O(D).

We have a short exact sequence of OG-modules

0 → JS,T → OG → i∗OYS,T
→ 0,

where i is the inclusion YS,T ↪→ G. Tensoring by O(D) yields an exact sequence

0 → IS,T ,D → OG(D) → kS,T ,D → 0,

and hence a long exact sequence of cohomology

0 → H0(G,IS,T ,D) → H0(G,OG(D)) α→ H0(G, kS,T ,D) → H1(G,IS,T ,D) → 0

when D is large enough in terms of G, because in this case H1(G,OG(D)) = 0 ([Har77, p. 228]).
Therefore α is surjective if and only if H1(G,IS,T ,D) = 0 (when D is large enough). This allows us
to translate Theorem 1.1 in the following way

Theorem 1.2. There is a positive constant c2 with the following property. Let D, S1, . . . , Sl,
T1, . . . , Td be positive integers such that, for any non-zero connected algebraic subgroup H of G,
we have

#(H ∩ Γ(S)) dim(OpW∩TH ∩ Op∂,T ) < c2D
dim(H).

Then H1(G,IS,T ,D) = 0.

Remark. If G is an abelian variety then H1(G,OG(D)) = 0 for any D � 1, and one can take c2 = c1.

1.3 Translation in terms of functionals
Let CΓ denote the group algebra of Γ, consisting of formal finite linear combinations (over C) of
elements of Γ. Let Sym(W ) =

⊕
k�0 SymkW denote the symmetric algebra of W . We let

F = CΓ ⊗ Sym(W )

and call functional any element of F that is any finite linear combination of elements of the shape
γ⊗ (∂(1) · · · · ·∂(k)) with γ ∈ Γ and ∂(1), . . . , ∂(k) ∈ W . In case any confusion may arise, we will write
FΓ,W instead of F . In the whole text, F is considered as a vector space, and never as an algebra.

A functional η ∈ F can be evaluated on a polynomial P ∈ R(G)D : by linearity, it suffices to
define this evaluation when η = γ ⊗ (∂(1) · · · · · ∂(k)), and in this case we let

η(P ) = ∂(1) · · · ∂(k)

(
P (X)
XD

0

)
(γ).

This makes sense thanks to (1).
Fix a basis (∂1, . . . , ∂d) of W . Then a basis of F = FΓ,W is given by the functionals evγ,σ = γ⊗∂σ

for γ ∈ Γ and σ ∈ N
d, where ∂σ = ∂σ1

1 · · · · · ∂σd
d . Accordingly, F is isomorphic to the C-algebra

of the semi-group Γ × N
d. Moreover, the evaluation of η =

∑
γ,σ λγ,σ evγ,σ ∈ F on P ∈ R(G)D is
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given by

η(P ) =
∑
γ,σ

λγ,σ ∂σ

(
P

XD
0

)
(γ). (2)

We define a filtration on F by letting, for non-negative integers S1, . . . , Sl and T1, . . . , Td

FS,T = Span{evγ,σ; γ ∈ Γ(S), σ ∈ N
d
T }. (3)

The way F is defined, and acts on R(G), depends neither on the choice of a basis of W , nor
on the choice of a generating set for Γ. However, FS,T does depend on the choice of γ1, . . . , γl

and ∂1, . . . , ∂d. For any finite subset Σ of P
N (C), contained in the open set {X0 �= 0}, we let

FΣ,W = (SpanCΣ) ⊗ Sym(W ), where the linear combinations of elements of Σ are understood
formally. The space FΣ,W is filtered by the subspaces FΣ,W

T , defined for non-negative integers T by

FΣ,W
T = (SpanCΣ) ⊗ (Span{∂σ , σ ∈ N

d
T}).

In what follows, D, S1, . . . , Sl and T1, . . . , Td are real numbers (not always integers) with D � 0
and S, T � 1. We let R(G)D be the space of homogeneous polynomials on G, of degree [D]
(the integer part of D), and FS,T = F�S1�,...,�Sl�,�T1�,...,�Td�, in such a way that (3) is satisfied even
if the components of S and T are not integers (here �x� is the least integer greater than or equal
to x).

The crucial role played by functionals in this setting is explained by the following lemma, which
is used to translate Theorem 1.1 into Theorem 1.7 stated below.

Lemma 1.3. Let D � 0 and S1, . . . , Sl, T1, . . . , Td � 1 be real numbers. The following are equivalent:

(i) for any complex numbers aγ,σ, indexed by γ ∈ Γ(S) and σ ∈ N
d
T , there is a polynomial

P ∈ R(G)D such that ∂σ(P/XD
0 )(γ) = aγ,σ for all these γ, σ;

(ii) there is no non-zero functional η ∈ FS,T such that η(P ) = 0 for all P ∈ R(G)D.

Proof. Consider the linear map from R(G)D to C
Γ(S)×Nd

T which associates to each polynomial P
the family of values ∂σ(P/XD

0 )(γ). The first statement means the map is surjective; the second one
means the image of this map is contained in no hyperplane.

Remark. For P ∈ R(G)D and k ∈ N, we have η(P ) = η(Xk
0 P ) for all η ∈ F . Accordingly, if η ∈ FS,T

vanishes identically on R(G)D, then for all S′ � S, T ′ � T and D′ � D we have η ∈ FS′,T ′ and
η vanishes identically on R(G)D′ .

1.4 Some counting lemmas
In what follows, when a group Γ is equipped with a system (γ1, . . . , γl) of generators, we denote by
Γj the subgroup of Γ generated by γ1, . . . , γj , for j ∈ {0, . . . , l} (hence Γ0 = {0}). The following
lemma will be useful (see [Mas82, Lemma 3]).

Lemma 1.4. Let Γ and Γ′ be subgroups of G(C), equipped with generators (γ1, . . . , γl) and
(γ′

1, . . . , γ
′
l′). Assume there are 0 � k1 � · · · � kl � l′ such that Γj ⊂ Γ′

kj
for all j ∈ {1, . . . , l}.

Then there is a constant c3, depending only on γ1, . . . , γl and on γ′
1, . . . , γ

′
l′ , such that for any

S1 � · · · � Sl � 1 we have

Γ(S1, . . . , Sl) ⊂ Γ′(c3S
′
1, . . . , c3S

′
l′),

where S′
k = Sj for kj−1 < k � kj and 1 � j � l + 1, with k0 = 0, kl+1 = l′ and Sl+1 = 1.

Proof. There are integers ck,j, for j ∈ {1, . . . , l} and k � kj , such that γj =
∑kj

k=1 ck,jγ
′
k.

Let M denote the maximum of all absolute values |ck,j|. Let γ =
∑l

j=1 sjγj belong to Γ(S),
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with |sj | < Sj. Then γ =
∑kl

k=1 s′kγ
′
k with s′k =

∑
j sjck,j (the sum is over all j such that kj � k).

Hence |s′k| � MlS′
k, thereby proving the lemma.

Lemma 1.5. Let Γ be a subgroup of G(C), equipped with a family (γ1, . . . , γl) of generators.
Let H be an algebraic subgroup of G. Then there are two positive constants c4 and c5, depending
on γ1, . . . , γl and on H, such that for all real numbers S1 � · · · � Sl � 1 we have

c4

l∏
j=1

S
rk

(
Γj∩H

Γj−1∩H

)
j < #(H ∩ Γ(S)) < c5

l∏
j=1

S
rk

(
Γj∩H

Γj−1∩H

)
j ,

where Γj is the subgroup of Γ generated by γ1, . . . , γj .

Proof. Let 1 � j1 < · · · < jr � l be the indices j such that rk((Γj ∩ H)/(Γj−1 ∩ H)) = 1. Consider
the subgroups Γj1 ∩ H ⊂ · · · ⊂ Γjr ∩ H. As rk(Γjt ∩ H) = t for any t ∈ {1, . . . , r}, it is possible
to find α1, . . . , αr ∈ Γ such that the subgroup generated by α1, . . . , αt is contained in Γjt ∩ H, and
of finite index, for any t ∈ {1, . . . , r}. Lemma 1.4 gives a constant c3, independent of S, such that
Γ(S) ∩ H contains A(Sj1/c3, . . . , Sjr/c3), where A is the subgroup of Γ generated by α1, . . . , αr.
This concludes the proof of the lower bound, since α1, . . . , αr are linearly independent over Z.

To prove the upper bound, we use induction on l; for l = 0 the statement is obvious. Assume it
is true for Γl−1, which is generated by γ1, . . . , γl−1. Notice that Γ(S) is the union, for |n| < Sl, of the
set nγl + Γl−1(S1, . . . , Sl−1). This proves the result if rk((Γl ∩ H)/(Γl−1 ∩ H)) = 1. Let us assume
now that Γl−1 ∩ H has finite index, say N , in Γ ∩ H. Let β1, . . . , βN ∈ Γ ∩ H be representatives
of the cosets; write βi =

∑l
j=1 λi,jγj for any i ∈ {1, . . . , N}. Let K be the smallest integer k � 1

such that kγl ∈ Γl−1, with K = ∞ if there is no such k. If K is finite, let a1, . . . , al−1 be such that
Kγl =

∑l−1
j=1 ajγj ; otherwise let a1 = · · · = al−1 = 0. Let c6 = 1 + maxi,j |λi,j |+ maxj |aj |. Then the

upper bound in the lemma follows from the claim

H ∩ Γ(S) ⊂
N⋃

i=1

βi + (Γl−1(c6S1, . . . , c6Sl−1) ∩ H).

To prove the claim, let γ =
∑l

j=1 njγj ∈ H ∩ Γ(S), with |nj| < Sj . There is an index i such that
γ − βi belongs to Γl−1. If nl = λi,l the claim is obvious. Otherwise K is finite, and nl − λi,l = mK

for some integer m. Then γ − βi =
∑l−1

j=1(nj − λi,j + maj)γj and the claim follows.

We fix a basis ∂ = (∂1, . . . , ∂d) of W . We denote by Wk the subspace of W spanned by ∂1, . . . , ∂k

for k ∈ {0, . . . , d}, with W0 = {0}. In the next lemma, we consider a quotient W = W/(W ∩ TH);
we write δ for the image in W of a vector δ ∈ W .

Lemma 1.6. For any algebraic subgroup H of G there is a basis δ = (δ1, . . . , δd) of W such that the
following hold.

(i) For any k ∈ {1, . . . , d}, we have Span(δ1, . . . , δk) = Wk.

(ii) The vectors δk, for k such that dim((Wk ∩ TH)/(Wk−1 ∩ TH)) = 1, form a basis of W ∩ TH.

(iii) The vectors δk, for k such that dim((Wk ∩ TH)/(Wk−1 ∩ TH)) = 0, form a basis of W .

(iv) For any real numbers T1 � · · · � Td � 1 we have Opδ,T1/d,...,Td/d ⊂ Op∂,T ⊂ Opδ,dT1,(d−1)T2,...,Td

and hence

d− dim(W∩TH)Π � dim(OpW∩TH ∩ Op∂,T ) � ddim(W∩TH)Π,

where

Π =
d∏

k=1

T
dim

(
Wk∩TH

Wk−1∩TH

)
k .
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Proof. We first prove, by induction on dim(W ), that there is a basis (δ1, . . . , δd) such that the first
three assertions hold. Let (δ1, . . . , δd−1) be such a basis for Wd−1 (with respect to H). If Wd∩TH =
Wd−1 ∩ TH, we let δd = ∂d. Otherwise, we choose for δd any element of Wd ∩ TH that does not
belong to Wd−1 ∩ TH.

Let us prove the last assertion now. We have ∂i =
∑i

k=1 λi,kδk with λi,i �= 0 for any i ∈ {1, . . . , d}.
Let σ ∈ N

d
T . Then ∂σ =

∏d
i=1(

∑i
k=1 λi,kδk)σi is a polynomial in δ1, . . . , δd of partial degrees less

than dT1, (d − 1)T2, . . . , Td. The lemma immediately follows.

1.5 An equivalent statement
Thanks to Lemmas 1.3, 1.5 and 1.6 it is immediately seen that Theorem 1.1 is equivalent to the
following statement.

Theorem 1.7. Let G, Γ, W , γ1, . . . , γl, ∂1, . . . , ∂d, be as in § 1.1. There is a positive constant c7 with
the following property. Let S1 � · · · � Sl � 1, T1 � · · · � Td � 1 and D � 0 be real numbers, and
η ∈ FS,T be a non-zero functional which vanishes identically on R(G)D. Then there is a non-zero
connected algebraic subgroup H of G such that

l∏
j=1

S
rk

(
Γj∩H

Γj−1∩H

)
j

d∏
k=1

T
dim

(
Wk∩TH

Wk−1∩TH

)
k � c7D

dim(H),

where Γj is generated by γ1, . . . , γj and Wk = Span(∂1, . . . , ∂k).

To prove that Theorem 1.1 is equivalent to Theorem 1.7, the crucial remark is that H appears
only through dim(H), the ranks of Γj ∩ H and the dimensions of Wk ∩ TH. Therefore we may
choose, in terms of γ1, . . . , γl and ∂1, . . . , ∂d, a finite set E of subgroups, and assume in Theorem 1.7
that H belongs to E .

Remark. It is possible to conjecture that Theorem 1.1 holds with some constant c1 depending only
on G, l and d. On the contrary, Theorem 1.7 does not hold if we ask c7 to depend only on G, l and
∂1, . . . , ∂d; this is immediately seen if G is, say, an abelian variety and Γ is the N -torsion part of
G(C), with N large.

Now we can prove that this statement is best possible, up to the value of c7. Let E be as above,
and let H ∈ E be a non-zero connected algebraic subgroup of G such that

l∏
j=1

S
rk

(
Γj∩H

Γj−1∩H

)
j

d∏
k=1

T
dim

(
Wk∩TH

Wk−1∩TH

)
k � c′7D

dim(H).

Let (δ1, . . . , δd) be a basis given by Lemma 1.6, and T ′′ be the family (Tk/d)k∈K, where K is the set
of indices such that dim((Wk∩TH)/(Wk−1∩TH)) = 1. Let Φ be the linear map which associates to
P ∈ R(G)D the family of values, at all points in Γ(S)∩H, of all derivatives of P/XD

0 along W ∩TH
up to order T ′′ with respect to the basis (δk)k∈K. Then Φ can be factored through R(H)D (which is
a quotient of R(G)D). If the constant c′7 is large enough (in terms of G, γ1, . . . , γl and ∂1, . . . , ∂d),
Lemma 1.5 allows us to compute dimensions, and show that Φ cannot be surjective. This yields
(thanks to Lemma 1.3) a non-zero functional η ∈ FΓ(S)∩H,W∩TH

T ′′ ⊂ FΓ,W
S,T which vanishes identically

on R(G)D.

2. Operations on functionals

In this section, we define the projection of a functional on a quotient (§ 2.1), and the translation
(together with derivation) of a functional (§ 2.2). The difficult point is that functionals are to be
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evaluated on homogeneous polynomials, not on ‘real’ functions on G; and this evaluation depends
on the choice of the linear form X0.

Everything is easier in the case when G is a linear commutative algebraic group. In this situ-
ation, let C[G] be the algebra of regular functions on G, and H be an algebraic subgroup of G.
The projection π : G → G/H sends Γ to Γ = Γ/(Γ ∩ H) and W to W = W/(W ∩ TH), and hence
induces a linear map πF of F = FΓ,W to F = FΓ,W . On the other hand, composition by π gives
an injective linear map i : C[G/H] → C[G]. Then we have η(i(P )) = πF (η)(P ) for all P ∈ C[G/H]
and η ∈ F : the maps i and πF are adjoint with respect to the bilinear products F ×C[G] → C and
F × C[G/H] → C.

When the algebraic group G is no longer assumed to be linear, homogeneous polynomials come
into play and the situation is more complicated. The map ιD′ : R(G/H)D′ → R(G)δHD′ depends on
the choice of a family p = (p0, . . . , pM ) of homogeneous polynomials, of the same degree δH , which
represents π on an open subset containing Γ. It is immediately seen that ιD′ and πF are not adjoint
in general: for P ∈ R(G/H)D′ and η = γ ⊗ 1 ∈ F we have

πF (η)(P ) =
P (Y )
Y D′

0

◦ π(γ) =
P (p(X))
pD′
0 (X)

(γ) =

(
XδH

0

p0(X)
(γ)

)D′

η(ιD′(P )).

In § 2.1, an adjoint map is constructed for ιD′ . In § 2.2, the same work is done for translations and
derivations.

2.1 Projection of a functional on a quotient

Let H be an algebraic subgroup of G, not necessarily connected. The quotient G/H has an algebraic
group structure, and hence admits an embedding in a projective space P

M . With respect to this
embedding, the projection π : G → G/H is given (on an open subset Ω that contains Γ) by
homogeneous polynomials p0, . . . , pM of the same degree, say δH . This means that for [x0 : · · · : xN ]
in Ω, not all polynomials p0, . . . , pM vanish at (x0, . . . , xN ), and the point [p0(x0, . . . , xN ) : · · · :
pM (x0, . . . , xN )] of G/H is the coset, modulo H, of [x0 : · · · : xN ].

Let p(X) = (p0(X), . . . , pM (X)), and let Y = (Y0, . . . , YM ) be the coordinates on P
M . Assume

that π(Γ) is contained in the open set {Y0 �= 0}, i.e. p0 does not vanish at any point of Γ.

Let P (Y ) be a homogeneous polynomial on G/H. We denote by ιP (X) = (P ◦ p)(X) =
P (p0(X), . . . , pM (X)) the homogeneous polynomial on G, of degree δH deg(P ), induced by P .

Let Γ be the image of Γ in G/H, and W be the image of W in TG/TH. Then W is canonically
isomorphic to W/(W ∩ TH) and to (W + TH)/TH. For i ∈ {1, . . . , d}, let ∂i be the image of ∂i

in W . The derivations ∂i, for i ∈ {1, . . . , d}, span W but are not linearly independent in general.
Let F = CΓ⊗Sym(W ) be the corresponding space of functionals on G/H. We have a canonical

projection πF : F → F .

In the following, given a homogeneous polynomial R ∈ R(G), we shall need to consider
(for η ∈ F) the map P �→ η(R · (P ◦ p)) of R(G/H)D′ to C. This is the reason why the following
definition is useful (see Proposition 2.2).

Definition 2.1. Let R ∈ R(G)D′′ be a homogeneous polynomial of degree D′′, and D′ be an
integer. Let PR,D′ be the linear map of F to F defined, for all γ ∈ Γ and σ ∈ N

d, by

PR,D′ evγ,σ = πF

 ∑
ν+µ+σ̃=σ

(
σ

σ̃ µ ν

)
∂ν

(
R(X)
XD′′

0

)
(γ) ∂µ

(
p0(X)D

′

XD′δH
0

)
(γ) evγ,σ̃

 .
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Proposition 2.2. Let P ∈ R(G/H)D′ be a homogeneous polynomial of degree D′, R ∈ R(G)D′′

be a homogeneous polynomial of degree D′′ and η ∈ F . Then, with ιP (X) = P (p0(X), . . . , pM (X))
we have

η(R · ιP ) = PR,D′η(P ).

Proof. We may assume η = evγ,σ. We have

ιP (X)

XD′δH
0

=
p0(X)D

′

XD′δH
0

·
((

P (Y )
Y D′

0

)
◦ π

)
as analytic functions on the open subset of G(C) defined by X0 �= 0 and p0(X) �= 0. Applying ∂σ−ν

for ν � σ yields, thanks to the Leibniz rule,

∂σ−ν

(
ιP (X)

XD′δH
0

)
(γ) =

∑
µ+σ̃=σ−ν

(
σ − ν

σ̃

)
∂µ

(
p0(X)D

′

XD′δH
0

)
(γ) ∂

σ̃
(

P (Y )
Y D′

0

)
(γ̄),

where γ̄ is the image of γ in G/H. Now the result immediately follows from the equation

η(R · ιP ) = ∂σ

(
R(X)ιP (X)

XD′δH+D′′
0

)
(γ) =

∑
ν�σ

(
σ

ν

)
∂σ−ν

(
ιP (X)

XD′δH
0

)
(γ) ∂ν

(
R(X)
XD′′

0

)
(γ).

Remark. Taking R = 1 in Proposition 2.2 yields η(ιP ) = P1,D′η(P ); therefore P1,D′ : F → F and
ι : R(G/H)D′ → R(G)δHD′ are adjoint.

Assume that (∂i)i∈I′′ is a basis of W ∩ TH, with I ′′ ⊂ {1, . . . , d}. Then FΣ,W∩TH is equipped
with a filtration coming from this basis, for any finite set Σ contained in {X0 �= 0}. Now let
I ′ = {1, . . . , d} \ I ′′; then ∂ = (∂i)i∈I′ is a basis of W . The functionals evγ̄,σ = γ̄ ⊗

∏
i∈I′ ∂

σi

i , for
γ̄ ∈ Γ and σ ∈ N

I′ , form a basis of F . The images γ̄1, . . . , γ̄l of γ1, . . . , γl in G/H span Γ. We obtain
therefore a filtration on F , for which FS,T ′ is spanned by the functionals evγ̄,σ for γ̄ ∈ Γ(S) and
σ ∈ N

I′
T ′ ; here T ′ = (Ti)i∈I′ . Obviously πF and PR,D′ send FS,T to FS,T ′ .

The following proposition will allow us (in § 4) to use induction on the dimension of G.

Proposition 2.3. Assume that (∂i)i∈I′′ is a basis of W ∩ TH, and I ′ = {1, . . . , d} \ I ′′. Let D, D′,
D′′ be integers such that D = δHD′ + D′′. Let S1, . . . , Sl, T1, . . . , Td � 1, and assume there exists
η ∈ FS,T \ {0} that vanishes identically on R(G)D. Then one of the following holds:

(i) there exists η1 ∈ FS,(Ti)i∈I′ \ {0} that vanishes identically on R(G/H)D′ ; or

(ii) there exist γ̄ ∈ Γ(S) and η2 ∈ FΓ(S)∩π−1(γ̄),W∩TH
(Ti)i∈I′′

\ {0} that vanishes identically on R(G)D′′ .

Proof. We identify N
d to N

I′ × N
I′′ . It is immediately seen that πF (evγ,σ) = evπ(γ),σ if σ ∈

N
I′ × {0}I′′ , and πF (evγ,σ) = 0 otherwise.

Now η satisfies η(R · ιP ) = PR,D′η(P ) = 0 for all R ∈ R(G)D′′ and P ∈ R(G/H)D′ . If PR,D′η
is non-zero for some R, then taking η1 = PR,D′η concludes the proof. Therefore we may assume
PR,D′η = 0 for all R ∈ R(G)D′′ .

Let us write η =
∑

γ,σ λγ,σ evγ,σ. Let σ0 ∈ N
I′ be of maximal length such that there exist γ0 ∈ Γ

and σ1 ∈ N
I′′ with λγ0,(σ0,σ1) �= 0. Define

η2 =
∑
γ∈Γ

γ≡γ0 mod H

∑
ν,µ∈NI′′

(
ν + µ

ν

)
∂(0,µ)

(
p0(X)D

′

XD′δH
0

)
(γ)λγ,(σ0,ν+µ) evγ,(0,ν).
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Then η2 belongs to FΓ(S)∩π−1(γ̄),W∩TH
(Ti)i∈I′′

with γ̄ = π(γ0). Let σ1 ∈ N
I′′ be of maximal length such

that λγ0,(σ0,σ1) �= 0. Then the coordinate of η2 on evγ0,(0,σ1) is

p0(X)D
′

XD′δH
0

(γ)λγ,(σ0,σ1) �= 0;

therefore η2 �= 0. Moreover, η2(R) is the coordinate of PR,D′η = 0 on evγ̄,σ0; accordingly it vanishes
for any R ∈ R(G)D′′ .

Remark. Another proof of this proposition can be given (see [Fis03, p. 153]), which generalizes
Masser’s arguments (see the end of § 4 in [Mas82], especially (22)).

2.2 Translation and derivation of functionals
Let a and b be integers such that there exists a complete system of addition laws on G of
bi-degree (a, b). This means that the addition on G (embedded in P

N ) is represented, on every
element of a suitable open cover, by a family of bi-homogeneous polynomials of bi-degree (a, b).
Let E0(X,Y ), . . . , EN (X,Y ) be a family of such bi-homogeneous polynomials, which represents
the addition on an open subset containing Γ (see [MW81, p. 493]); we let X = (X0, . . . ,XN ),
Y = (Y0, . . . , YN ) and E = (E0, . . . , EN ). Assumption (1) implies that E0 does not vanish at any
point (γ, δ) ∈ Γ × Γ.

Let us consider now the algebraic group G×G. We can see W ×W as a subspace of TG×TG �
T (G×G) and Γ×Γ as a finitely generated subgroup of (G×G)(C). The basis (∂1, . . . , ∂d) of W gives
2d linearly independent derivations along W ×W : we denote by ∂X,i the ones along W ×{0}, and by
∂Y ,i the ones along {0}×W , for i ∈ {1, . . . , d}. Using coordinates (X,Y ) = (X0, . . . ,XN , Y0, . . . , YN )
on G × G, ∂X,i acts only on the variables X. We are now in position to apply the ‘Baker–Coates–
Anderson trick’ in the following way.

Let P ∈ R(G) be a homogeneous polynomial of degree D′; let τ ∈ N
d and δ ∈ Γ. We consider

tδ,τ,D′P (X) = ∂τ
Y

(
P (E(X,Y ))

Y bD′
0

)
(δ), (4)

where ∂τ
Y = ∂τ1

Y ,1 . . . ∂τd
Y ,d. The polynomial P (E(X,Y )) is bi-homogeneous of bi-degree (aD′, bD′) and

∂τ
Y does not change the degree in X; therefore tδ,τ,D′P (X) is homogeneous of degree aD′. Applying

tδ,τ,D′ essentially amounts to a translation by δ and a differentiation by ∂τ ; what is important here
is that the degree of tδ,τ,D′P is controlled precisely in terms of the degree of P , independently of τ
and δ.

Proposition 2.5 below shows that the map tδ,τ,D′ : R(G)D′ → R(G)aD′ is adjoint to the map
Tδ,τ,D′ : F → F defined by the following definition.

Definition 2.4. Let δ ∈ Γ, τ ∈ N
d and D′ be an integer. We denote by Tδ,τ,D′ the linear map of F

to F defined, for all γ ∈ Γ and σ ∈ N
d, by

Tδ,τ,D′ evγ,σ =
∑

0�σ̃�σ
0�τ̃�τ

(
σ

σ̃

)(
τ

τ̃

)
∂σ−σ̃

X ∂τ−τ̃
Y

(
E0(X,Y )D

′

XaD′
0 Y bD′

0

)
(γ, δ) evγ+δ,σ̃+τ̃ .

Proposition 2.5. The linear operator Tδ,τ,D′ is injective, and maps FΓ(S),W
T to Fδ+Γ(S),W

T+τ ;

in particular if δ ∈ Γ(S′) then Tδ,τ,D′FΓ,W
S,T ⊂ FΓ,W

S+S′,T+τ
. Moreover, for any P ∈ R(G)D′ we have

η(tδ,τ,D′P ) = (Tδ,τ,D′η)(P ),

where tδ,τ,D′P (X) is defined by (4).
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Proof. Let η be a non-zero functional. Let σ ∈ N
d be of maximal length such that there exists γ ∈ Γ

with λγ,σ �= 0. The coordinate of Tδ,τ,D′η on evγ+δ,σ+τ is

λγ,σ
E0(X,Y )D

′

XaD′
0 Y bD′

0

(γ, δ) �= 0;

therefore the functional Tδ,τ,D′η is non-zero. Moreover, the relation Tδ,τ,D′FΓ(S),W
T ⊂ Fδ+Γ(S),W

T+τ is
clear. To prove that η(tδ,τ,D′P ) = Tδ,τ,D′η(P ) for any P ∈ R(G)D′ and η ∈ F , we may assume
η = evγ,σ and consider the equality

P (E(X,Y ))
XaD′

0 Y bD′
0

(g, g′) =
P (Z)
ZD′

0

(g + g′)
E0(X,Y )D

′

XaD′
0 Y bD′

0

(g, g′)

of analytic functions of (g, g′) on the open subset of (G × G)(C) defined by X0 �= 0, Y0 �= 0
and E0(X,Y ) �= 0. Applying ∂σ1

X,1 . . . ∂σd
X,d∂

τ1
Y ,1 . . . ∂τd

Y ,d to this equality, and evaluating at the point
(g, g′) = (γ, δ), yields the desired result since the derivations ∂i commute with translations.

The special case where Γ is torsion-free plays a special role in § 4 because of the following
proposition.

Proposition 2.6. Assume Γ is torsion-free. Let η ∈ F be a non-zero functional, and D′ be an
integer. Then the functionals Tδ,τ,D′η, for δ ∈ Γ and τ ∈ N

d, are linearly independent.

Proof. This means that any non-trivial linear combination of the operators Tδ,τ,D′ (with D′ fixed)
is injective. Let η =

∑
γ,σ λγ,σ evγ,σ ∈ F \{0} and T =

∑
δ,τ µδ,τTδ,τ,D′, with coefficients µδ,τ not all

zero. As Γ is a torsion-free Z-module of finite type, it is free; accordingly, there is a total ordering on
Γ×N

d compatible with addition and for which (γ, σ) is greater than (γ, 0) for any (γ, σ) ∈ Γ×N
d.

Let (γ0, σ0) be the greatest element, with respect to this ordering, such that λγ0,σ0 �= 0, and let
(δ0, τ0) be the greatest such that µδ0,τ0 �= 0. Then the coordinate of T η on evγ0+δ0,σ0+τ0 is

λγ0,σ0µδ0,τ0

E0(X,Y )D
′

XaD′
0 Y bD′

0

(γ0, δ0) �= 0,

and hence T η �= 0.

3. Distribution of (Γ∗,W)

Let G, Γ and W be as in § 1.1. We let d = dim(W ), n = dim(G) and r = rk(Γ); we assume d+r � 1.
Throughout this section, the letter H always stands for a connected algebraic subgroup of G.

In this section, we consider subgroups Γ∗
1, . . . ,Γ

∗
r of Γ such that {0} = Γ∗

0 ⊂ Γ∗
1 ⊂ · · · ⊂ Γ∗

r = Γ
and rk(Γ∗

t ) = t for any t ∈ {0, . . . , r}. We write Γ∗ for Γ equipped with such subgroups Γ∗
1, . . . ,Γ

∗
r.

In the same way, W is W equipped with subspaces {0} = W0 ⊂ W1 ⊂ · · · ⊂ Wd = W such that
dim(Wk) = k for any k ∈ {0, . . . , d}. The aim of this section is to study the distribution of (Γ∗,W).
All constructions will remain the same if Γ∗ is replaced by Γ′∗ such that r′ = r and Γ∗

t ∩ Γ′
t
∗ is

of finite index in both Γ∗
t and Γ′

t
∗, for any t ∈ {1, . . . , r}. In § 3.4, we shall associate such a pair

(Γ∗,W) to a generating set of Γ and a basis of W . All constructions (and especially names) are
more transparent in this context.

3.1 Construction and properties of the surjectivity locus

3.1.1 Definitions. We call an obstruction to interpolation (with respect to the real parameters
S1 � · · · � Sr � 1, T1 � · · · � Td � 1, D) any non-zero connected algebraic subgroup H of G such
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that
r∏

t=1

S
rk

(
Γ∗

t ∩H

Γ∗
t−1∩H

)
t

d∏
k=1

T
dim

(
Wk∩TH

Wk−1∩TH

)
k > Ddim(H).

To any connected algebraic subgroup H we associate the subset ∆H of R
d+r defined by the equation

ϕH(x, y) = 0, where

ϕH(x, y) =
r∑

t=1

xt rk
(

Γ∗
t ∩ H

Γ∗
t−1 ∩ H

)
+

d∑
k=1

yk dim
(

Wk ∩ TH

Wk−1 ∩ TH

)
− dim(H).

We have ∆0 = R
d+r, and ∆H is empty if and only if rk(Γ ∩ H) = dim(W ∩ TH) = 0 and H �= 0.

In all other cases, ∆H is a hyperplane. Given a subgroup H, the set of all points (x, y) ∈ R
d+r
�0

such that ϕH(x, y) � 0 is the product of a simplex and some number (depending on H) of copies of
R�0. For H = G, this number is zero. Therefore the intersection of all these domains is a polytope
in R

d+r. This intersection is called the surjectivity locus of (Γ∗,W). This locus is convex (since it
is an intersection of convexes). It is actually a finite intersection, since there are only finitely many
functions ϕH (though there might be infinitely many algebraic subgroups H). Moreover, for any
S1 � · · · � Sr � 1, T1 � · · · � Td � 1 and D > 1, let xt = log(St)/ log(D) and yk = log(Tk)/ log(D)
for t ∈ {1, . . . , r} and k ∈ {1, . . . , d}. Then (x, y) belongs to the surjectivity locus of (Γ∗,W) if and
only if there is no obstruction to interpolation with respect to (S, T ,D).

Let us denote by (Fp)p∈{1,...,M} the set of (d+r−1)-dimensional (closed) faces of the surjectivity
locus, omitting those faces which are already faces of R

d+r
�0 , i.e. given by the vanishing of a coordinate.

For each p ∈ {1, . . . ,M}, let Hp be a subgroup of G, of maximal dimension, such that the face Fp

spans (in the affine sense) the hyperplane ∆Hp (actually such an Hp can be shown to be unique).
This definition implies Hp �= 0 (since ∆0 = R

d+r). Moreover, by convexity H1, . . . ,HM are pairwise
distinct.

For p ∈ {1, . . . ,M}, let Cp be the cone in R
d+r
�0 spanned by the face Fp, i.e. the set of all elements

of the shape λz with λ ∈ R�0 and z ∈ Fp. Since the surjectivity locus is a convex polytope, the
cones C1, . . . , CM make up a partition of R

d+r
�0 (up to zero-measure subsets). Moreover, since

the faces Fp are convex, each cone Cp is stable under addition.
When S1 � · · · � Sr � 1, T1 � · · · � Td � 1 and (log(S), log(T )) ∈ Cp0 with Hp0 = G, (Γ∗,W) is

said to be well distributed with respect to (S, T ). In fact, when this happens, if there is an obstruction
to interpolation for (S, T ,D) then G itself is such an obstruction (see Proposition 3.1 below).

3.1.2 Obstructing nature of the subgroups H1, . . . ,HM . The reason why H1, . . . ,HM and
C1, . . . , CM are useful is the following.

Proposition 3.1. Let S1 � · · · � Sr � 1, T1 � · · · � Td � 1 and D � 0 be real numbers such that
the point (log(S), log(T )) belongs to Cp. Let c > 0 and H be a non-zero algebraic subgroup of G
such that

r∏
t=1

S
rk

(
Γ∗

t ∩H

Γ∗
t−1∩H

)
t

d∏
k=1

T
dim

(
Wk∩TH

Wk−1∩TH

)
k > cDdim(H).

Then we have

r∏
t=1

S
rk

(
Γ∗

t ∩Hp
Γ∗

t−1
∩Hp

)
t

d∏
k=1

T
dim

(
Wk∩THp

Wk−1∩THp

)
k > cdim(Hp)/ dim(H)Ddim(Hp).

Taking c = 1 shows that if there is an obstruction to interpolation for S, T ,D then Hp is such
an obstruction.
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Moreover, this proposition (along with Lemmas 1.5 and 1.6) implies that in the statement of
Theorem 1.1 it is enough to assume #(H∩Γ(S)) dim(OpW∩TH∩Op∂,T ) < c1D

dim(H) when H = Hp

(up to a suitable change of the constant c1).

Proof of Proposition 3.1. We may assume c = 1 (by replacing D by c1/ dim(H)D) and D > 1. Then

M =
(

log(S)
log(D)

,
log(T )
log(D)

)
belongs to R

d+r
�0 and ϕH is positive at that point; accordingly M does not belong to the surjectivity

locus. Now M belongs to Cp. As the border of the surjectivity locus, in Cp, is the hyperplane ∆Hp ,
we obtain that ϕHp is positive at M , thereby proving the proposition.

We shall also need (in the proof of Theorem 1.1) the following proposition.

Proposition 3.2. Let S1 � · · · � Sr � 1, T1 � · · · � Td � 1 and D � 0 be real numbers such
that the point (log(S), log(T )) belongs to Cp. Let H be a connected algebraic subgroup of G which
contains Hp, and is distinct from Hp. Let c be a positive real number. Assume that

r∏
t=1

S
rk

(
(Γ∗

t ∩H)/(Γ∗
t∩Hp)

(Γ∗
t−1

∩H)/(Γ∗
t−1

∩Hp)

)
t

d∏
k=1

T
dim

(
(Wk∩TH)/(Wk∩THp)

(Wk−1∩TH)/(Wk−1∩THp)

)
k > cDdim(H/Hp).

Then we have

r∏
t=1

S
rk

(
Γ∗

t ∩Hp
Γ∗

t−1
∩Hp

)
t

d∏
k=1

T
dim

(
Wk∩THp

Wk−1∩THp

)
k > cdim(Hp)/ dim(H/Hp)Ddim(Hp).

Proof. We may assume c = 1 and D > 1; then

(x, y) =
(

log(S)
log(D)

,
log(T )
log(D)

)
belongs to Cp. The affine function ϕH(tx, ty)−ϕHp(tx, ty) is negative at t = 0, positive at t = 1 and
non-positive at the point t = t0 > 0 such that (t0x, t0y) ∈ Fp (since ϕH is non-positive and ϕHp

is zero at this point); therefore t0 < 1. Consequently, the point (x, y) lies outside the surjectivity
locus: ϕHp(x, y) > 0. This concludes the proof of Proposition 3.2.

3.2 Construction and properties of the injectivity locus
In this subsection, we assume that if H contains a subgroup of finite index in Γ and TH contains
W then H = G. In fact, if this is not the case, then H is an obstruction to zero estimates for all
parameters S, T ,D, and the injectivity locus defined below is empty. Moreover, this assumption is
not restrictive, since if there is such a subgroup H then we may work in H instead of G.

We call an obstruction to zero estimates (with respect to S1 � · · · � Sr � 1, T1 � · · · �
Td � 1, D) any connected algebraic subgroup H of G, different from G, such that

r∏
t=1

S
rk

(
Γ∗

t /(Γ∗
t ∩H)

Γ∗
t−1

/(Γ∗
t−1

∩H)

)
t

d∏
k=1

T
dim

(
Wk/(Wk∩TH)

Wk−1/(Wk−1∩TH)

)
k < Ddim(G/H).

Let EH be the set of all points (x, y) ∈ R
d+r
�0 such that (ϕG − ϕH)(x, y) � 0, with

(ϕG −ϕH)(x, y) =
r∑

t=1

xt rk
(

Γ∗
t /(Γ

∗
t ∩ H)

Γ∗
t−1/(Γ

∗
t−1 ∩ H)

)
+

d∑
k=1

yk dim
(

Wk/(Wk ∩ TH)
Wk−1/(Wk−1 ∩ TH)

)
−dim(G/H).
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This is the complement in R
d+r
�0 of the product of a simplex and some number of copies of R�0.

Moreover, for H = 0 this number is zero. We call the intersection of all these domains EH the
injectivity locus. This locus is an infinite convex polytope with finitely many closed (d + r − 1)-
dimensional faces denoted by (F̃q)1�q�M̃

(here we omit the faces which are already faces of R
d+r
�0 ).

Let S1 � · · · � Sr � 1, T1 � · · · � Td � 1 and D > 1 be real numbers; then(
log(S)
log(D)

,
log(T )
log(D)

)
belongs to the injectivity locus if and only if there is no obstruction to zero estimates with respect
to (S, T ,D).

For each q ∈ {1, . . . , M̃}, let H̃q be the (unique) subgroup with minimal dimension such that
the affine span of the face F̃q has equation (ϕG − ϕ

H̃q
)(x, y) = 0. By convexity, all subgroups

H̃1, . . . , H̃M̃
are pairwise distinct (and distinct from G). For each q, let C̃q be the cone in R

d+r
�0

spanned by F̃q. The set of cones {C̃1, . . . , C̃M̃
} is a partition of R

d+r
�0 (up to zero-measure subsets).

The following proposition means that if there is an obstruction to zero estimates for S, T ,D
then some H̃q is such an obstruction. Accordingly we may, in the statement of a zero estimate,
assume that the obstructing subgroup is H̃q (up to a change in the constant that appears in this
zero estimate). This is what we shall do in § 3.5, in the case where H̃q = 0.

Proposition 3.3. Let S1 � · · · � Sr � 1, T1 � · · · � Td � 1 and D � 0 be real numbers such that
the point (log(S), log(T )) belongs to C̃q. Let c > 0 and H be an algebraic subgroup of G, distinct
from G, such that

r∏
t=1

S
rk

(
Γ∗

t /(Γ∗
t ∩H)

Γ∗
t−1

/(Γ∗
t−1

∩H)

)
t

d∏
k=1

T
dim

(
Wk/(Wk∩TH)

Wk−1/(Wk−1∩TH)

)
k < cDdim(G/H).

Then we have

r∏
t=1

S
rk

(
Γ∗

t /(Γ∗
t ∩H̃q)

Γ∗
t−1/(Γ∗

t−1∩H̃q)

)
t

d∏
k=1

T
dim

(
Wk/(Wk∩TH̃q)

Wk−1/(Wk−1∩TH̃q)

)
k < cdim(G/H̃q)/ dim(G/H)Ddim(G/H̃q).

Proof. We may assume c = 1 and D > 1. Then the point(
log(S)
log(D)

,
log(T )
log(D)

)
belongs to C̃q but not to the injectivity locus. Therefore ϕG−ϕ

H̃q
is negative at this point: this proves

Proposition 3.3.

3.3 Connection between injectivity and surjectivity locuses
We have defined two decompositions of R

d+r
�0 into cones: one coming from interpolation (§ 3.1), and

one from zero estimates (§ 3.2). There is a connection between these decompositions, concerning
the well-distributed case. To prove it, we need the following lemma.

Lemma 3.4. Let ∆ be a half-line from the origin in R
d+r
>0 . Let H be a connected algebraic subgroup

of G, distinct from G, such that ∆H is a hyperplane. Let PH , PG and PG/H be the points where
∆ meets ∆H , ∆G and the hyperplane of equation (ϕG −ϕH)(x, y) = 0 (respectively). Then PG lies
between PH and PG/H . Moreover, PG coincides with PH if and only if PG coincides with PG/H .

Proof. Let (u, v) ∈ R
d+r
>0 be a non-zero vector in ∆. We parametrize ∆ by letting x = tu

and y = tv for t ∈ R>0. We have ϕG(x, y) = at − dim(G) and ϕH(x, y) = aHt − dim(H)
with a > aH > 0. The points PH , PG and PG/H correspond to parameters dim(H)/aH , dim(G)/a
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and dim(G/H)/(a − aH) (respectively). The lemma is deduced immediately from the following
standard fact: if a′, a′′, b′, b′′ are positive real numbers then (b′ + b′′)/(a′ + a′′) is between b′/a′

and b′′/a′′.

Proposition 3.5. There is an integer p0 ∈ {1, . . . ,M} such that Hp0 = G if and only if there is
an integer q0 ∈ {1, . . . , M̃} such that H̃q0 = 0. When p0 and q0 exist, they are unique and we have
Cp0 = C̃q0.

Proof. Let ∆ be a half-line from the origin in R
d+r
>0 , and p0 be such that Hp0 = G. Then ∆ belongs to

the interior of Cp0 if and only if for any H such that ∆H is a hyperplane the point PH is not between
O and PG (where the notation is explained in Lemma 3.4). This is equivalent to the point PG/H

being between O and PG. Now this means there is q0 such that H̃q0 = 0, and ∆ belongs to the
interior of C̃q0. The converse can be proved in the same way. At last, p0 and q0 are obviously unique,
since H1, . . . ,HM (respectively H̃1, . . . , H̃M̃

) are pairwise distinct.

3.4 Interpretation of both locuses
Let us choose a generating set γ = (γ1, . . . , γl) of Γ and a basis ∂ = (∂1, . . . , ∂d) of W . Then we
can define Wk = Span(∂1, . . . , ∂k). Moreover let 1 � j1 < · · · < jr � l be the indices j such that
rk(Γj/Γj−1) = 1, where Γj is the subgroup generated by γ1, . . . , γj . Then r = rk(Γ), and we let
Γ∗

t = Γjt for any t ∈ {1, . . . , r}. This is how we associate (Γ∗,W) to a generating set γ = (γ1, . . . , γl)
of Γ and a basis ∂ = (∂1, . . . , ∂d) of W . In § 4, we shall use this remark several times: to study
Γ(S1, . . . , Sl) with S1 � · · · � Sl, we shall apply the results in this section to Γ∗ with parameters
Sj1 � · · · � Sjr .

Theorem 1.7 and the remarks following it give two constants c and c, depending only on G, γ
and ∂, with the following property. Let S1 � · · · � Sl � 1, T1 � · · · � Td � 1 and D > 1 be real
numbers. If (

log(S)
log(D)

,
log(T )
log(D)

)
belongs to the surjectivity locus then the evaluation map ΦcD sending any P ∈ R(G)cD to the family
of values ∂σ(P/XcD

0 )(γ) (for γ ∈ Γ(S) and σ ∈ N
d
T ) is surjective. Moreover, if ΦcD is surjective then(

log(S)
log(D)

,
log(T )
log(D)

)
belongs to the surjectivity locus.

In the same way, Philippon’s zero estimate [Phi96] yields two constants c′ and c′ such that(
log(S)
log(D)

,
log(T )
log(D)

)
belongs to the injectivity locus if (respectively only if) Φc′D (respectively Φc′D) is injective.

3.5 A zero estimate for well-distributed (Γ∗,W)
In this subsection, we write a zero estimate under the assumption that (Γ∗,W) is well distributed
with respect to the parameters we consider. Here (Γ∗,W) is associated to Γ, W , γ1, . . . , γl, ∂1, . . . , ∂d

as explained in § 3.4.
Let us recall from § 2.2 that the addition of G is given, on any sufficiently small open subset

of G, by a family of bi-homogeneous polynomials of bi-degree (a, b). Moreover we denote by deg(G)
the degree in P

N of the Zariski closure of G.

Theorem 3.6. Let G, Γ, W , γ1, . . . , γl, ∂1, . . . , ∂d be as in § 1.1. Let D � 0, S1 � · · · � Sl � 1 and
T1 � · · · � Td � 1 be real numbers such that (log(S), log(T )) belongs to the cone C̃q0, with H̃q0 = 0.
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Let P ∈ R(G)D be a non-zero homogeneous polynomial of degree [D] which vanishes up to order
T along W at any point of Γ(S). Then we have

T1 · · ·Td

l∏
j=1

S
rk(Γj/Γj−1)
j � c8D

dim(G),

with c8 = (nd+r deg(G)an)n.

Proof. Philippon’s refined zero estimate (see [Phi96, Theorem 1]) gives H such that

l∏
j=1

S
rk

(
Γj/(Γj∩H)

Γj−1/(Γj−1∩H)

)
j

d∏
k=1

T
dim

(
Wk/(Wk∩TH)

Wk−1/(Wk−1∩TH)

)
k � nd+r deg(G)anDdim(G/H),

since the vectors γj , for j such that

rk
(

Γj/(Γj ∩ H)
Γj−1/(Γj−1 ∩ H)

)
= 1,

have linearly independent images in (Γ + H)/H. Then Proposition 3.3 (applied to Γ∗, as explained
in § 3.4) allows us to conclude the proof.

4. Proof of the interpolation lemma

In this section, we prove Theorem 1.7 (which is equivalent to Theorem 1.1) using the tools introduced
in §§ 2 and 3. We follow Masser’s proof [Mas82]: a special ‘non-degenerate’ case is studied first (§ 4.1),
and then the general case is derived from it (§ 4.2).

Let G, Γ, W , γ1, . . . , γl, ∂1, . . . , ∂d be as in § 1.1. All constants that appear in this section depend
on these data. To prove Theorem 1.7, we may assume there is no connected algebraic subgroup H
of G, different from G, which contains a subgroup of finite index in Γ and such that TH contains W .

We consider the pair (Γ∗,W) associated to G, Γ, W , γ1, . . . , γl, ∂1, . . . , ∂d as explained in § 3.4.

4.1 A non-degenerate case

In this subsection, we assume that (Γ∗,W) is well distributed with respect to the parameters we
consider (as defined in § 3.1.1), and γ1, . . . , γl are linearly independent over Z.

Proposition 4.1. Assume γ1, . . . , γl are linearly independent. Let D � 0, S1 � · · · � Sl � 1
and T1 � · · · � Td � 1 be real numbers such that the point (log(S), log(T )) belongs to Cp0, with
Hp0 = G. Let η ∈ FS,T be a non-zero functional vanishing identically on R(G)D. Then

S1 · · ·SlT1 · · ·Td � c9D
dim(G)

for some constant c9.

Remark. It is possible to prove (see [Fis03, Chapter 7]) that an admissible value for c9 is
a−n(c8(n + 1)!3d+2l+2(d + l)!2)−d−l, where c8 is the constant in Theorem 3.6.

Proof of Proposition 4.1. We may assume d + l � 1. Choose a point (log(α1), . . . , log(αl), log(β1),
. . . , log(βd)) in Cp0 ∩ R

d+l
>0 such that the least component of (α1, . . . , αl, β1, . . . , βd), denoted by �,

satisfies � = c8n!2d+l+23l where c8 is the constant in Theorem 3.6.

Let f(S, T ) denote the number of elements in Γ(S) × N
d
T , that is the dimension of FS,T .

Let k = f(α1S1, . . . , αlSl, β1T1, . . . , βdTd)− f((α1 − 1)S1, . . . , (αl − 1)Sl, (β1 − 1)T1, . . . , (βd − 1)Td).
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We have f(S, T ) = (2�S1� − 1) · · · (2�Sl� − 1)�T1� · · · �Td� and hence

k �
l∏

j=1

(2αj + 1)Sj

d∏
k=1

(βk + 1)Tk −
l∏

j=1

(2αj − 3)Sj

d∏
k=1

(βk − 1)Tk

� 2
∑

J�{1,...,d+l}
(α, β)J3lS1 · · ·SlT1 · · ·Td

� 2d+l+13l�−1α1 · · ·αlβ1 · · · βdS1 · · ·SlT1 · · ·Td, (5)

where (α, β)J is the product of those coordinates of (α, β) whose indices belong to J .
Let D0 = [(n!k)1/n]. If D � aD0 then Dn � ann!k and Proposition 4.1 follows. Assume D > aD0.

Then the functional η ∈ FS,T , which vanishes identically on R(G)D, vanishes identically also on
R(G)aD0 (see the remark after Lemma 1.3). Let us write 1 = (1, . . . , 1), αS = (α1S1, . . . , αlSl)
and so on. For δ ∈ Γ((α − 1)S) and τ ∈ N

d
(β−1)T , let us consider Tδ,τ,D0η (with the notation

of § 2.2). We define in this way f((α − 1)S, (β − 1)T ) functionals, which belong to FαS,βT , are
linearly independent (by Proposition 2.6), and vanish identically on R(G)D0 (by Proposition 2.5).
Consequently, the map Ψ : FαS,βT → (R(G)D0)

∗ which associates, to any functional, the linear
form on R(G)D0 defined by (2) has a kernel of dimension at least f((α − 1)S, (β − 1)T ). Hence

rk(Ψ) � f(αS, βT ) − f((α − 1)S, (β − 1)T ) = k <
(D0 + 1)n

n!
�
(

D0 + n

n

)
� dim(R(G)D0)

∗,

where the last inequality follows from the proof of [Mas82, Lemma 2]. Therefore Ψ is not surjective:
the image of Ψ is contained in a hyperplane, which is the orthogonal subspace to a non-zero poly-
nomial P ∈ R(G)D0 . This polynomial vanishes up to order βT along W at each point of Γ(αS).
Now the point (log(S), log(T )) belongs to Cp0 = C̃q0 (thanks to Proposition 3.5), and translation by
(log(α), log(β)) sends C̃q0 to itself. Therefore Theorem 3.6 gives

α1 · · ·αlβ1 · · · βdS1 · · ·SlT1 · · ·Td � c8D
n
0

� c8n!2d+l+13l�−1α1 · · ·αlβ1 · · · βdS1 · · ·SlT1 · · · Td.

This contradicts the definition of �, thereby proving Proposition 4.1.

4.2 Proof in the general case
In this subsection, we prove Theorem 1.7; the proof goes by steps. In the first two steps, we assume
that (Γ∗,W) is well distributed with respect to the parameters we consider (and the subgroup H in
the conclusion of Theorem 1.7 can then be chosen to be G). We deduce each step from the previous
one (Step 0 is Proposition 4.1); of course, the value of c7 changes at each step.

Step 1. Theorem 1.7 holds if Γ is torsion-free and the point (log(S), log(T )) belongs to Cp0 , with
Hp0 = G.

Proof of Step 1. Let 1 � j1 < · · · < jr � l be the indices j such that rk(Γj/Γj−1) = 1. As Γ
is torsion-free, there are linearly independent vectors γ′

1, . . . , γ
′
r such that, for each t ∈ {1, . . . , r},

Γjt+1−1 is contained, and of finite index, in the group generated by γ′
1, . . . , γ

′
t (with jr+1 = l + 1).

Let Γ′ be the subgroup generated by γ′
1, . . . , γ

′
r. Then Γj ⊂ Γ′

tj for any j ∈ {1, . . . , l}, where tj is
the integer t ∈ {0, . . . , r} such that jt � j � jt+1 − 1, with j0 = 1. Lemma 1.4 gives a constant c3

(independent of S) such that Γ(S) ⊂ Γ′(c3S
′) with S′ = (Sj1, . . . , Sjr) (since tjk

= k for any k ∈
{1, . . . , r}). Therefore η belongs to FΓ′,W

c3S′,T ⊂ FΓ′,W
α1Sj1

,...,αrSjr ,β1T1,...,βdTd
, where (log(α1), . . . , log(αr),

log(β1), . . . , log(βd)) is a point in Cp0 whose least coordinate is greater than or equal to log(c3).
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Proposition 4.1 concludes the proof (since the cone Cp0 obtained from (Γ′∗,W) is the same as the
one obtained from (Γ∗,W), and the sum of two points in Cp0 belongs to Cp0).

Now we show that the assumption about torsion is not necessary.

Step 2. Theorem 1.7 holds if the point (log(S), log(T )) belongs to the cone Cp0, with Hp0 = G.

We use the following lemma, which is a ‘trivial’ form of an interpolation lemma.

Lemma 4.2. Let Σ be a finite subset of PN (C), contained in {X0 �= 0}. Let T1, . . . , Td and D be
non-negative integers, and η ∈ FΣ,W

T be a non-zero functional which vanishes identically on R(G)D .
Then #Σ > D if d = 0, and (T1 + · · · + Td)#Σ > D otherwise.

Remark. When there is no multiplicity, this is Lemma 6 of [Mas82]. This special case is enough
for proving Step 2, but multiplicities are needed in the proof of Step 3 (for the case n = 1 in the
induction).

Proof of Lemma 4.2. Let γ, δ ∈ Σ be distinct, with δ = [δ0 : · · · : δN ]. Let Lγ,δ be a linear form
in X0, . . . ,XN which vanishes at δ and not at γ (such a Lγ,δ may be chosen among the forms
δiXj − δjXi, for i, j ∈ {0, . . . , N}). If W = {0}, the polynomials

∏
δ∈Σ\{γ} Lγ,δ, for γ ∈ Σ, are

sufficient to prove Lemma 4.2.
Assume d = dim(W ) is positive. Let γ ∈ Σ and i ∈ {1, . . . , d}. Since the matrix

[∂j(Xk/X0)(γ)]1�k�N,1�j�d

has rank d, there is a linear form Mγ,i in X0, . . . ,XN such that ∂j(Mγ,i/X0)(γ) = δi,j for all
j ∈ {1, . . . , d}, where δi,j is Kronecker’s δ symbol. By adding to Mγ,i a suitable multiple of X0, we
may assume that Mγ,i vanishes at γ (thanks to assumption (1)).

For γ ∈ Σ and σ ∈ N
d
T , we consider Pγ,σ = X

|T−σ|
0 Mσ1

γ,1 · · ·M
σd
γ,d

∏
δ∈Σ\{γ} L

|T |
γ,δ. Then Pγ,σ is a

homogeneous polynomial of degree |T |#Σ, vanishes up to order T along W at any point of Σ \ {γ}
and satisfies ∂σ(Pγ,σ/X

|T |#Σ
0 )(γ) �= 0 and ∂σ̃(Pγ,σ/X

|T |#Σ
0 )(γ) = 0 for any σ̃ ∈ N

d such that
σ̃ �= σ and |σ̃| � |σ|. This concludes the proof of Lemma 4.2 (see Lemma 1.3).

Proof of Step 2. Let H denote the torsion part of Γ (i.e. the set of all elements of Γ which are torsion
in G). This is a zero-dimensional algebraic subgroup of G, of finite order. We use the notation of
§ 2.1. We may assume that D is a multiple of 2δH and D � 2(#H), and apply Proposition 2.3
with D′ = D/(2δH) and D′′ = D/2. In the second case, Lemma 4.2 gives #H > D/2, and hence
a contradiction. Let us assume now that η1 ∈ FS,T vanishes identically on R(G/H)D/2δH

, with
η1 �= 0. The surjectivity locus and the cones associated to (Γ∗

,W), where Γ = Γ/H, are the same as
the ones associated to (Γ∗,W). Moreover, the point (log(S), log(T )) belongs to the cone Cp0: Step 2
can be deduced from Step 1.

Step 3. Theorem 1.7 holds without any additional assumption.

To prove Step 3 we shall use the following lemma.

Lemma 4.3. Let (γ1, . . . , γl) be a set of generators of Γ, and ∆ be a subgroup of Γ. Then there is a
set of generators (δ1, . . . , δl) of ∆ and a constant c10 such that for any S1 � · · · � Sl � 1 we have

Γ(S) ∩ ∆ ⊂ ∆(c10S1, . . . , c10Sl)

and Γj ∩ ∆ = ∆j for any j ∈ {1, . . . , l} (here ∆j and ∆(c10S) are understood with respect to
(δ1, . . . , δl)).
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Proof of Lemma 4.3. By induction on l, we may assume that δ1, . . . , δl−1 are generators of ∆l−1 =
∆ ∩ Γl−1 such that Γl−1(S′) ∩ ∆ ⊂ ∆l−1(c11S

′) for any S′ = (S′
1, . . . , S

′
l−1). Let M be a non-zero

integer, with minimal absolute value, such that (Mγl + Γl−1) ∩ ∆ �= ∅ (if there is no such M , we
let δl = 0 and the proof is over). We choose for δl any element of (Mγl + Γl−1) ∩ ∆, and write
δl =

∑l
j=1 ajγj with al = M . Then ∆l ⊂ ∆ ∩ Γl. Now let γ ∈ ∆ ∩ Γl; write γ =

∑l
j=1 njγj.

Then nl is a multiple of M , and

γ =
l−1∑
j=1

(
nj −

nlaj

M

)
γj +

nl

M
δl

belongs to ∆l. Moreover, if |nj| < Sj for any j ∈ {1, . . . , l} then we obtain γ ∈ ∆(c10S).

Proof of Step 3. We proceed by induction on the dimension n of G. If n = 1, Step 3 follows from
Lemma 4.2. Assume Theorem 1.7 holds for any connected algebraic group G of dimension at most
n − 1, and consider the subgroups Hp defined in § 3. For each p ∈ {1, . . . ,M}, we fix a projective
embedding of G/Hp, and homogeneous polynomials of degree δHp which represent the projection
of G to G/Hp, like in § 2.1. Let p ∈ {1, . . . ,M} be such that the point (log(S), log(T )) belongs to
the cone Cp. If Hp = G we are in the special case dealt with in Step 2. Accordingly we may assume
that dim(Hp) is between 1 and n − 1 (and that D is a multiple of 2δHp). After changing the basis
(∂1, . . . , ∂d) thanks to Lemma 1.6 if necessary, we may apply Proposition 2.3 with D′ = D/(2δHp)
and D′′ = D/2.

In the first case, by induction we apply Theorem 1.7 to G/Hp, Γ = Γ/(Γ ∩ Hp) and W =
W/(W ∩ THp); we obtain in this way a connected algebraic subgroup H ′/Hp of G/Hp, where H ′ is
a connected algebraic subgroup of G which contains Hp, is distinct from Hp, and satisfies

l∏
j=1

S
rk

(
(Γj∩H′)/(Γj∩Hp)

(Γj−1∩H′)/(Γj−1∩Hp)

)
j

d∏
k=1

T
dim

(
(Wk∩TH′)/(Wk∩THp)

(Wk−1∩TH′)/(Wk−1∩THp)

)
k � c12D

dim(H′/Hp).

Proposition 3.2 completes the proof of Theorem 1.7 in this case.

In the second case, there is α ∈ Γ(S) and a non-zero functional η′ ∈ FΓ(S)∩(α+Hp),W∩THp

T ′′ which
vanishes identically on R(G)D/2, with T ′′ = (Tk)k∈K where K is the set of indices k such that

dim
(

Wk ∩ THp

Wk−1 ∩ THp

)
= 1.

Proposition 2.5 and Lemma 4.3 give a non-zero functional T−α,0,D/2aη
′ ∈ F∆,W∩THp

2c10S,T ′′ which vanishes
identically on R(G)D/2a (where ∆ = Γ ∩Hp). Applying Theorem 1.7 to Hp, ∆ and W ∩ THp gives
a non-zero connected algebraic subgroup H ′ of Hp such that

l∏
j=1

S
rk

(
∆j∩H′

∆j−1∩H′

)
j

∏
k∈K

T
dim

(
Wk∩TH′

Wk−1∩TH′

)
k � c13D

dim(H′).

This concludes the proof of Theorem 1.7 in this case.
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in Delphes, September 1989, available at http://www.math.jussieu.fr/∼miw.

Wal91 M. Waldschmidt, Fonctions auxiliaires et fonctionnelles analytiques I, II, J. Anal. Math. 56 (1991),
231–254, 255–279.

Wal00 M. Waldschmidt, Diophantine approximation on linear algebraic groups: transcendence properties of
the exponential function in several variables, Grundlehren Math. Wiss., vol. 326 (Springer, Berlin,
2000).

S. Fischler stephane.fischler@math.u-psud.fr
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