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ABSTRACT

We propose a generalized definition of the multivalued solution
of the Riemann problem for hyperbolic conservation laws. It allows a
simple presentation of the Osher numerical scheme and a natural treat-
ment of physically relevant boundary conditions for the Euler equations
of inviscid compressible fluids. A linearized implicit scheme is derived.
Numerical results on shock tube and quasimonodimensional nozzles are
presented, showing the attractive convergence properties of the schemes
in strong non-linear situations and the adequate coupling of initial

and boundary conditions realized by our formulation.



INTRODUCTION

For the numerical resolution of first order systems of conser-
vation laws, the importance of solving the Riemann problem was first
recognized by GODUNOV [18]. In recent years, Godunov-type numerical
schemes and upstream schemes have been expanded (e.g. HARTEN-LAX-VAN
LEER [26]). In particular OSHER [34] proposed a regular ( ' class)
numerical flux which extends to systems the ENGQUIST-0SHER [15,16]
scheme. On the other hand the boundary conditions for conservation
laws have been analized thanks to the resolution of Riemann problems

by DUBOIS-LE FLOCH [10,117.

In this paper we solve the Riemann problem with the use of
multivalued rarefaction waves (Section 1} and we apply this resolu-
tion to construct Godunov-type numerical fluxes that take into ac-
count internal interfaces as well as boundary faces. We derive in
Section II a compact presentation of the Osher scheme and, in Section
IIT, the treatment of physically relevant boundary conditions for the
Euler equations of gas dynamics. Monodimensional test cases involving
a first order explicit version of the scheme are presented in Section
IV. Section V describes some results for a linearized implicit version

of the scheme.




[ - MULTIVALUED SOLUTION OF THE RIEMANN PROBLEM

1 - BACKGROUND

We consider an hyperbolic system of conservation laws in one

space dimension :

3
(1.1) 3—:+33—xf(u) = 0

with u(x,t) belonging to a phase space Z'c R" and a regular flux
function f (f:Z- R") whose jacobian A(u) = df(u) admits n real

eigenvalues Ak(u) :
(1.2) >\1(U) < )tz(U) < ... < An(U) » ueEy .

The corresponding eigenvectors are denoted by rl(u),rz(u),“..,rn(u).
We define a k-cuwrve in the phase space Z7 as a solution of the ordi-

nary differential equation

(1.3) —g—g = r‘k(u(s)) * s €ER .‘_. R

and we assume that 7/ is an open set small enough to ensure, for each

choice of the initial data
(1.4) u(se) =v , VEZ , sg€R

that there is a unique solution Nk(s;so,v) to the Cauchy problem (1.3)
(1.4}. We denote by i?&(uo) the k-curve containing up. We assume that
gach k-field is either genuinely non-linear or linearly degenerated. In

the former case, the eigenvectors follow




(1.5) dlk(u). rk(u) =1

whereas in the latter case, they satisfy

(1.6) dlk(u). rk(u) =0

For more details, see LAX [29]or SMOLLER [41].

2 - SIMPLE WAVES

Given a state u, in % the k-curves allow us to build
simple waves that classically correspond to rarefactions. Shock waves
and contact discontinuities are other selfsimilar (weak) solutions of
the conservation law (1.1). In what follows, we will consider a dif-
ferent family of waves : rarefactions, compression waves, and contact

discontinuities.

(i) Rarefaction waves

- e

The rarefaction waves are obtained when we look for se}f-

similar solutions of (1.1), that is
(1.7) u(x,t) = v(g) , £=%
Then v(£) 1is either a constant state or an eigenvector of A(v(g))

thus in the following Tet k be an integer corresponding to a genui-

nely nonlinear field and we have clearly :

Loy L r )

Given the value of v in a particular £-direction :




(1.9) v(€o) = Uo
we have from (1.8) :

(1.10) v(g) = W (E3E0,Uo)
Moreover we also have a constraint on the eigenvalue A

(11) N VEN =E .

REMARK 1.1
The condition (1.5) implies that X, is increasing along the
curve iﬁg‘ orientated by the vector - Therefore, the mapping

£ Ak(v(g)) is always non-decreasing along a k-rarefaction wave.

As is well-known, a k-rarefaction is a weak solution of (1.1)

satisfying (1.7) and we have (Figure 1.1) :

v{E) = Uo £ <&
(1.12) V(g) = wk(g;gO:vuO) ‘ED < E < El
vig) = us £E= &
E=7\k(v(£)) t
rk(u°) ) lk(ul)
kk(uﬂ)
Lig u1
uy
Up
| » X
7 (uo)
phase space {x,t) space

Figure 1.1 k-rarefaction wave




(ii) Compression wave or multivalued rarefaction

e NS s e e A e R U8 e oy e

We claim that Remark 1.1 naturally introduces the necessity
of waves other than rarefactions : the classical shock waves. Given
o in Z/, each k-shock wave allows the exploration of a curve in
the phase space starting at u, with the same two first derivatives
as 2?k(uo) (e.g. LAX [29]). In this section we give a way to explo-

re the k-curve along the direction opposite to ry-

DEFINITION 1.1

We assume that the Kk° field is geruinely non-linear. Given

states Uy, and U; on the k-curve %k(u”) satisfying

(1.13) A(ur) = &1 <& = A (uo)

a k-compression wave is a continuous Functiom

(1.14) R36m (£(0),w(B)) € Rx%

verifying
/ bl a)
d—%\eﬂ = 1 8<6; ,6>8;
(1.15)
_d_%(_lee = -1 0; <6< 6,
w(o) = ug 8 <8,
(1.16) w(8) = W, (8:81,uq) 0, <6< 8,
w(8) = u; 8> 0,

for eome ad hoc real parameters 8,, 0, (Figure 1.2).

We set

(L17)  wm(E) = {u(e) /(o) = ¢




g=A, (W(8)) i
r (uo) s
d_g=i-1
e~
U #, (uo) ;-- Eo
w(6) |
e f— —
Ui | :' —p O
0, 61 .
Phase space (x,t) space (£,8) space
Figure 1.2 k-compression wave (multivalued rarefaction)
REMARK 1.2

We will also speak of a multivalued rarefaction : on the one
hand, Definition 1.1 only needs the curve ﬁﬁg(uo), which is classi-
cally called the k-rarefaction curve and, on the other hand, the set
wm(E) is a subset of 9% which contains one or three elements. WHITHAM
first proposed in [49] such multivalued solutions of conservation laws,
ac well as their averaging in a shock fitting procedure following the
old idea of Maxwell in the context of phase transitions in a Van der
Waals gas (e.g. HUANG [281). The transport-collapse method proposed in
[4]1 by BRENIER is a shock capturing way to average multivalued solutions

of scalar conservation laws, which can be extended to systems [5].

(ii1) Contact_discontinuity

- - — -

We now assume that the k° field is Tinearly degenerated. We

define the k-contact as a multivalued wave in the following sense :




DEFINITION 1.2

We suppose that the k® field is linearly degemerated. Given

Up in Z and uy on the k-curve issued from g,

eontinuity 18 a eontinucus function

(1.18) R3 6 (£(68),w(8)) € RxZ

such that
dg(8) _ 4
de
(1.19)
ds(8) _
&l -0
w(8) = ug
(1.20) w(9) = Nk(9;91suu)
W(e) = U

8<8, ,8>80;

8, <6< 6,

8 < 0,
6, € 8 < 6,

g > 0,

a k-contact dis-

for ad hoe parameters 9., 9;. The set wm{E) <& also defined by (1.17).

Aw(8))=E, 2
A / A
U1 /
w(8) / Eo
/
Uo Up [ u } !
/ o l ! —p= 0
8 :H
Phase space (x,t) space (e,£) space

Figure 1.3 k-contact discontinuity
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REMARK 1.3

The contact discontinuity is then seen as a multivalued wave
of constant eigenvalue in the (x,t) space between the states u,
-and u; (Figure 1.3) and the multivalued function wm(£) contains
a compact interval for £-= Ak(uu). Moreover, the above Definitions
1.1 and 1.2 can obviously be extended to the case (i) of rarefaction

waves by taking E£(6)=s,.

In the following, we will speak of k-multivalued waves or
k-waves when considering one of the three waves defined in the above

section,

3 - THE RIEMANN PROBLEM

We now focus on the Riemann problem, the basic Cauchy problem

in the theory of hyperbolic conservation laws :

(%‘%+3§f =0 , wix,t) €2, x€R, t>0

R(uL,uR) % < 0

ol
w(X,0) = {
-uR x>0

depending on U sYg in Z'. With the asumptions on the ivg curves
reviewed in Section 1, the Riemann problem can be solved by (at most)

n waves separated by (n-1) constant states in the following sense :

PROPOSITION AND DEFINITION 1.1

1) Let u ,up be given in ¥ such that [uL- uRl is suffi-
citently small. There exists a unique family of states Up = Ugslysenn,

un—l’unE Up satitefying
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(1.21) Uy € %Vk+1(uk) s k=0,1,...,n-1

2) The multivalued solution of R(uL,uR) 18 then a continuous
function RO 68+ (E(0),w(8)) € Rx % obtained by joining together
the constant states uj (i=0,...,n) by k-waves between the states up

and Ups1o precisely by :

] ] 1
61 <0, <...<0,<9,<0,,<...<8 <6

J J J
(1.22) e(85) = 25(u5q) BRISEREL
' g(ej) = Aj(uj) j=1,...,n
%L8) ¢ 10,1,-13
w(0) = uy 0 < 6
= s LAY S < '- s j = 300y
(1.23) w(0) NJ(e,eJ uJ_l) sJ 8 eJ j=1 n
W(9)=UJ- Sjﬁegej_},l ,J=1,--..,Tl—1
w(®) = up 9>8 .

When 6 varies between ej and eé, the branch of solution

is a k wave running from Us_1 to u, and §&(6) dis the correspon-

J
ding eigenvalue which varies from lj(uj_l) to Aj(uj)" The constant
state uj is described by the parameters 6 between 63 and 9j+1
. . dg _
and the function £(8) varies from Aj(uj) to Aj+1(uj) {then H§"1)'
REMARK 1.4

The idea of solving the Riemann problem in terms of (eventually)
multivalued functions was proposed by VAN LEER {45] for the Burgers'
equation. The above definitions rigourously precise what a multivalued

wave is in the case of systems.
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PROOF OF PROPOSITION 1.1

It is similar to the classical proof of existence (LAX [29])
for the usual Riemann problem ; we mention it briefly. We consider

the mapping ¢ defined inductively on a neighbourhood of 0 in R"

as follows :

(El,...,en)==soa ¢(e)==Nn(en;0,wn_1(en_1;0,...),Wl(s;;O,uL)...)

We obtain easily :

B(0) =u. > d6(0) = (rafup)seeeory(u)

Then the implicit function theorem ensures that a {(sub) neighbourhood

of 0 is diffeomorphic onto a neighbourhood of u . If we set

Uk = ¢(€1 805 . ’Ek’O’ .. ,0)

then the family uk(k= 0,...,n) solves (1.21).

Moreover, for k-genuinely non-Tinear waves, we have

(1.24) e = M) = A (uy_q) .

REMARK 1.5

° wave

An other path which 1inks u to Up begins with the n
and goes backwards, as proposed by OSHER-SOLOMON [35]. The relations

(1.21) are replaced by

(1.25) Uk+1 E %/n_k(uk) s k=0,1,--.,n-1

The construction proposed in (1.22).(1.23) can be extended in a straight-

forward way.
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Il - THE OSHER SCHEME AS A SPLITTING SCHEME

1 - GODUNOV-TYPE NUMERICAL SCHEMES

We briefly recall the classical notions on Godunov-type schemes.
A1l details can be found in the review of HARTEN-LAX-VAN LEER [26]. In
a finite volume presentation of 3-point schemes, time step At and
mesh size Ax are given, and the conservative variables u(x,t) are

approached by constant states ug in each control volume

Vg = ](j-—;—)::&x R (j+%)Ax[ x [nAt, (n+1)At[

of the (x,t) space (j integer, n non negative integer).

Figure 2.1 Control volume V? in the (x,t) space

The evolution of {uj} is described by :

n+l n At [.n n o\
2.1 . = gy = — N
(2.1) Y3 3 T ix (f3+% TcJ-%/
and the fg+% are computed with help of the numerical flux function ¢ :

(2.2) fg+% = ¢(U§ ,U?+1) » J integer .
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The main idea of the Godunov-type schemes is to consider the
initial-value problem formed of the partial differential equation {1.1)

and the initial-condition
2.3 u0) =l (3-g)a<x<(5+g)ex

Then the integration of (1.1) on the cell Vg implies that
the value of the function ¢{u,v) 1is exactly the flux of the solution
of the Riemann problem R(u,v) along the axis t=0. In the fundamen-
tal example due to GODUNOV [181, R(u,v) 1is solved exactly, but ap-
proached solvers have been developed and studied by ROE {39], HARTEN-
LAX [251, VILA [47], DUKOWICZ [12], BRENIER-OSHER [6] among others.
Another way to compute the numerical flux is to split algebraically
the physical flux between waves of positive speeds coming from the
left state u and negative speeds issued from v (STEGER-WARMING
[43], VAN LEER [44]). First we find f  and f satisfying

(2.4) Flu) = Fi(u) + F(u , df >0, df <0
then the numerical flux satisfies :

(2.5) o(usv) = F(u) + £ (v)

2 - NUMERICAL FLUX OF A MULTIVALUED RIEMANN PROBLEM

According to the ideas recalled previously, the multivalued
solution of a Riemann problem {Section I) leads to a numerical scheme

if its flux can be defined.
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PROPOSITION AND DEFINITION 2.1

We take the notations of Propositiom 1.1. The following

expression

. = dE
(2.6) 9{Esu sup) = ee%iﬂg) {(f(w(e)) - gw(e)} g5 (9)

is defined without ambiguity as a contirmous function of the real

variable E. We get

(2.7) ¢(UL’UR) = g(O;UL:UR)

We can develop the formula (2.7). Let Ups..ol be the inter-
mediate constant states linking u, = U to u, = Up by the k-waves

(1.21) and uL be the "sonic states" associated to each k-wave :

(2.8) up € %?L(uk_l) . Ak(ué) =0 , k=1,...,n

Consider the €, {k=0,...,n) and Eé (k=1,...,n) defined by :

1 i A u) €0 <A, ()

(2.9) g, =
" ( 0 elsewhere
1 if Ak(uk_l) <0< Ak(uk)
(2.10) eé = ¢-1 if Ak(uk) <0< Ak(uk_l)
0 elsewhere
with the convention 3, = -, An+1 =+, We clearly have
n n

(2.11) ¢(u sup) = Eg% gy Flu ) + ég% eéf(ué)
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A classic rarefaction is considered to have a positive sign and a
backward compression a negative sign, as suggested by Figure 2.2,
The contact discontinuity does not give any problem for the evalua-
tion (2.6).(2.7) when located at £=0, because the physical flux

is constant along this wave.

PROOF OF PROPOSITION 2.1

Figure 2.2 recalls the construction of the multivalued solution
of R(uo,un). The arrows follow the continuous function £(8) whose

derivatives are 0 or 1. We distinguish between two cases :

(i) wm{(g) is finite
Thus the only problem comes from the points of discontinuity

of E£(8). In that case we set
(2.12) g—'g—=%(%§_ (o") + & (e'))

(ii) wm(g) is infinite
Then wm(£) contains a branch of rarefaction wave along which

f(w)-gw s constant and thus ensures the continuity of g towards £,
|

t £
A A
A1(uo)
A
() Az{ui)=xa(U2) o contact
Ua
\ 3-wave
Ap{ur)
As{uz)
g 73] =Ly
» X 0
/ ,v V
1-wave
(x,t) space (8,£) space

Figure 2.2 Typical wave pattern of a multivalued
Riemann problem (Euler equations)
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THECOREM 2.1
The mumerical flux defined by (2.6){2.7) <s ewactly the

RAI-CHAKRAVARTHY [37] version of the Osher wpwind scheme [34] .

REMARK 2.1

A particular version of (2.6)(2.7) was given by VAN LEER [45]
in his interpretation of the Engquist-Osher scheme (see also Remark 1.4).
Afterwards, the interpretation of the Osher scheme for systems of con-
servation laws in terms of multivalued solutions of the Riemann problem
was pointed out by OSHER himself in [36]):"[ the scheme] can be inter-
preted as solving the incoming Riemann problem in phase space, using
only rarefactions, compression, or contact waves, then averaging the
resulting multivalued solution as in Godunov's method". The notions

established above state precisely this assertion.

REMARK 2.2
In the original version of the Osher scheme, OSHER-SOLOMON [351

proved that the limit solutions satisfy an entropy condition. This sche-
me corresponds to an unnatural ordering of the waves (see Remark 1.5).
However, the natural ordering was used in the numerical experiments of
RAI-CHAKRAVARTHY {371 . In the following we only consider this Tast ver-

sion of the scheme.

PROOF OF THEOREM 2.1

The numerical flux of the Osher scheme is defined by the
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of k-curves, each I‘k Tinking U -1 to u asa branch of Wk(uk_l),
and by the formula

(2.14) $(u,v) = {f(u)+-f(v) I [df(w)l.dw}

+
The definition of the matrices A-(u) and |A(u)| ds classical : the
hypothesis of strict hyperbolicity allows the diagonalization of

A(u) = df(u) :
(2.15)  A(u) = T(u).Au).T" (u)

with a diagonal matrix A(u) of eigenvalues. Given an integer Kk, the

decomposition
+ - t
{2.16) lk(u) = Ak(u)— Ak(u) , Ak(u) =0

+ + s
allows us to define A”(u) as Diag(Xi(u),....A (u)) and [A(u)| as
+ - - 1
Diag(kl(u)+-Al(u),...,A;(u)'+An(u)). Then A (u) and |A(u)| corres-

pond to the A's as in formula (2.15). We now write (2.14) as

(2.17)  o(u.v) = f(v)—[ﬁA+(w).dw

and we prove the theorem in two steps.

e First, we suppose that all the fields are genuinely noniinear and
that each sonic state u& defined by (2.8) is in the portion T, of
the k-curve. Consider the portion Fk of Fk Tinking Uy to U1
(k=1,...,n-1) and T, ({resp Pé) linking ug = u {resp u;) to

v). We clearly have

1
resp u
up pouy

(2.18)  o(uv) = f(v)- 2: f IA (W) .dw
Ty
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The computation of each term of this sum is straightforward. Setting
x(s) for the Heaviside function (x(s)=1 if s>0,0 if s<0),

we have :

(2.19) d(u,v) = F(v) = x(Aa(ue) ) (Fluy) - Flup)) +
n-1
- 2 Xy (U (P = Fu)) + X Oy () (FLUg ) = F()
= x(A (u D (Flu ) - F(u2))

Reordering the terms in (2.19) we get :
n

(2:20)  o(uv) = 3 [y () - X0y 80 | £l

n
* 2 [O ) - xy o) £igg)

which is exactly (2.11).

o Let us consider now the general case. The sonic states ué may
either not exist or be in infinite number {if a k-contact has a null
velocity). In the latter case, we simply choose a particular state
as we have just proposed. If u& does not exist on the k-curve
%ﬁ{uk_l), we consider an open portion ?k of ﬁﬁi(uk_l) containing
each compact branch Ty defined in (2.13). Then, we introduce an
extension Xk of Aklrk different from Aklr and such that

KL(ué) = 0 for some point u' of T,\T

k k
special case of a k-contact discontinuity). We then introduce the

K (see Figure 2.3 for the

portions of curve Fé exactly as above, and we have

(2.21) i J A (w).dw = j AT (w) . dw
k=b 'ty ’p
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because the contribution of E*(w) on the portion outside I vanishes
when we sum the first term of (2.21) (see Figure 2.4). Therefore the
computation (2.18)(2.20) in the first step of the proof remains unchan-

ged.

‘;k(S)

Figure 2.4 Modification of the Osher path of
‘ integration
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3 - APPLICATION TO THE EULER EQUATIONS OF GAS-DYNAMICS

The Osher scheme can therefore be viewed as a splitting of
the numerical flux in terms of some physical fluxes for states in-
volved in the resolution of the multivalued Riemann problem R(uL,uR).
We detail in this section formulae (2.2)-(2.11) in the particular
case of non-isentropic perfect fluids.

From the conservative variables of density, momentum and
total energy

t

(2.22) U= {p,q,e) = (p,pu,pE)

we compute the pressure p and sound velocity ¢ using

L

2
(2.23) E 9-2-— te , p= (Y—-]_)pe . c? = _‘Yp_p.

where u, e, y are respectively the speed, the internal energy and
the constant ratio between heat capacities. The physical flux F :

t

(2.24) F = {pu,pu? +p, puE + pu)

is then clearly seen as a function of U if we suppose p >0, ¢ > 0.
Moreover the physical entropy will be considered as a variable o

defined by

(2.25) p =02 pf

The eigenvalues of dF(U) and the associated Riemann invariants

(defined e.g. in SMOLLER [41]) are given by :
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1 2 3
eigenvalue A u-¢ u u+c
Riemann invariants o,u + 28 u,p oo - 28

M ’ My

We now consider the nonstandard nonconservative variables W :
(2.26) W = (c,u0)

naturally related to the k-curves 2”%. In terms of these variables,

the physical flux can be evaluated thanks to
1 2 2y

(2.27) o=y R

(2.28) P

It
-
g

The intermediate states U;, U, (separated by the Z2-contact} defined by

the relations :

z2c

[ up + r“;‘= b, + - E
y-1 L y-1
01=0L
ur = Uz
(2.29)
p1 = P2
. EEE i ) 2cR
2"y T R

02 =DFR

are given explicitly as :
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-t -1 Sxl
CI'T;QE[GL+TT“L+% 2 %)

1 1

(2.30) up = Uz = 13§0L/CR (y-l cL+UL) ¥ 14'0R70L ( y-1 CR4-UR)

o1 y-1 -yl )
I (CL M TS

Only two sonic points U; and U; are usefull, and satisfy :

2c, 2cL
Up HoIT s
(2.31) o, =0,
u; -c, =0
. 2, 2¢c,
Us =507 Yr ~ 5T
Y Y
(2.32) g, = op

Thus, the states U;, U,, U;, U; needed for the computation of ¢("L’UR)
are easily evaluated in terms of the W-variables (formulae (2.29)-(2.32)).
This can be done quickly on a vector-processor. Then the e-coefficients

of formulae (2.9)-(2.10) satisfy :

1 if 0< U -¢
QLEEO =
0 elsewhere
1 if uL-cL<0<u1-c1
[} .
€, =¢-1 if up-¢; €0< u -c
0 elsewhere
1 if uy-c; <0<y
€1 =

0 elsewhere
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(2.33) 1 if U €0 < uz+c¢y
E2 =
0 elsewhere
1 if uz+c:?_<0<uR+cR
sg' = (-1 if uR+cR<0<u2+c2
0 elsewhere
_ ) 1 if uR+cR<O
ER = g3 =
0 elsewhere
and the evaluation (2.11) of the numerical flux becomes :

(2.34) $(up »up) = ELf(UL)'+€{f(Ui)+€1 flup) +
+e, Flug) +e3 Fuz )+ ep Tlug) -

The relations {2.29)-(2.34) are the only ones necessary to cover all
the cases involved in the Osher scheme. We think that this presenta-

tion unifies the one usually proposed (e.g. RAI-CHAKRAVARTHY [371]).
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IT] - NUMERICAL BOUNDARY CONDITIONS FOR THE EULER EQUATIONS

1 - GENERALITIES

The numerical treatment of boundary conditions for the Euler
equations of inviscid gas dynamics is a question of major importance
in external as well as in internal aerodynamics but few rigorous mathe-
matical results have been established. More precisely, the treatment
commonly proposed in a majority of computing codes is based on a 1i-
nearized analysis (characteristics theory, e.g. VIVIAND-VEUILLOT [48],
CHAKRAVARTHY [8]). Rigorous results concerning the stability proper-
ties of this approach can be found in GUSTAFSSON-KREISS-SUNDSTROM [231],
OLIGER-SUNDSTROM [331, GOLDBERG-TADMOR [20]. Locally noniinear approaches
of initial boundary value problems were also theoretically proposed by
LIU [30], NISHIDA-SMOLLER [32], GOODMAN (21]. In[2], BARDOS-LEROQUX-
NEDELEC presented a non local approach of the problem in the case of
scalar conservation laws. This work was extended to systems by DUBOIS-
LE FLOCH [11] by the so-called boundary entropy inequality, also pro-
posed by AUDOUNET [1] and MAZET et al [31] with variational arguments .,
Moreover, in [10], DUBOIS-LE FLOCH proposed a new approach based on the
Riemann problem and proved that in linear and (not necessarily convex)
scalar cases, this approach is equivalent to the boundary entropy ine-
quality.

On the other hand, the finite volume method leads numerically
to a formulation of boundary conditions in terms of a numerical flux
at the boundary, as was early recognized by GODUNOV (e.g. Godunov et

al [19]} and RIZZI [38]. In this section we derive a stnong nonlinean
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treatment of the boundany condition, i.e. the computation of boundary

fluxes with the help of multivalued Riemann problems. We focus on
some significant physical examples as proposed in [48,81. In an exter-
nal problem, an artificial boundary defines a "numerical infinity"
and two numerical conditions are to be examined : the boundary condi-
tion at infinity and the sliding on the rigid boundary. In the case
of internal problems such as nozzles, four cases must be considered
according to inflow or outflow at the boundary and to the magnitude
of velocity (subsonic, supersonic). In the following we analyse these
cases from a physical point of view :

1) for supersonic inflow we assume that a state is entirely given ;
2) for subsonic inflow the fluid is given by its static thermodynami-
cal properties, e.g. total enthalpy and entropy ;

3) for subsonic outflow static pressure is supposed to be given, and
4) for supersonic outflow no numerical datum is required.

For each of these physical boundary conditions we give a computation
of the numerical flux ¢ at the boundary for monodimensional problems.
This analysis is valid along the normal of the boundary for muitidi-
mensional problems thanks to Galilée invariance of the Euler equations.
A state computed at time nAt din the cell number J located along

the boundary is denoted by WM=v-= t(p,pu,pE) (Figure 3.1)

J
boundary
ot
outside computational
domain
v
&

Figure 3.1 Notations
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2 ~ SUPERSONIC INFLOW, BOUNDARY CONDITION AT INFINITY

In this case, a physical state is supposed to be given. There-
fore, the analysis of DUBOIS-LE FLOCH [10] can be applied without modi-
fication. Suppose, for example, that the computational domain is on the
right, and that the given state Ug is on the Teft. The boundary flux

is then computed by
(3.1) ¢ = ¢(UBSV)

. where ¢(.,.) is the Osher flux derived in Section II.

3 - RIGID WALL BOUNDARY CONDITION

The physical boundary condition is
(3.2) u=90 on the wall

(i.e. normal velocity null in the multidimensional case). Then the boun-
dary flux takes the form :

(3.3) ¢ = £(0,p,0)

which can be obtained, in terms of the Riemann problem, by the "mirror
state” % of V, defined by

~

p=p , pU = -pu , oF = oE
Thus we have :

(3.4) ¢ = o(V,V)
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4 - SUBSONIC OUTFLOW

We only consider the case of a given static pressure P. In
the usual way, a state is computed on the boundary thanks to the con-
dition p=P and following the two outgoing characteristics from the
computational domain, eventually in a nonlinear way (e.g. CHAKRAVARTHY-
OSHER [9]). However, we could set this problem in those terms : how
to replace Ug in (3.1) ? We prefer to consider the condition on p
as a two-dimensional manifold &7 in the state space Z < R*. Then
a "partial Riemann problem" R(V,9%) (the boundary is now on the right

of V= VL) can be solved with only a l-wave issued from V intersec-

ting % at U; (Figure 3.2).

7.(V)

_@: {p:P}

Figure 3.2 Given static pressure on
the outflow {phase space)

The computation of this state is easy ; the equations of U, are

]

o
—

+

i

}

O

-

u; + 'Y% (3]
(35) dy1 = Ol.
pr =

1
o
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Then we have :

-1
1'2;1
- 2 .2 Y
(3.6) Up = Ut §:j-yﬁf o, P
gy = OL
and the boundary flux is given by
(3.7) o =& FIV)) + &1 f(U1) + &5 F(Uy)
with the epsilons given by formulae
/€ _ 1 if 0< u - ¢
L 0 elsewhere
1 if u - ¢ <0< uy;-¢;
(3.8) {ey = (-1 if m-cr <0<y -¢
0 elsewhere
1 if -1 <0
€y =
0 elsewhere
\
REMARK 3.1

This approach for initial-boundary Riemann problems is already
to be found in GODUNOV [19], and VILA [46] proposed it in the particular

case of Saint-Venant shallow water equations.

5 - SUBSONIC INFLOW

In this case, total enthalpy and physica] entropy are given :
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These conditions define a curve % in the phase space % which
is the left datum for a Riemann problem whose right datum is V (Fi-
gure 3.3). The resolution of this problem is given by a state U; on
H followed by Uz on %#5(U,) 1in such a way that V Tlies in
#3(Uz). Algebraically, we have :

ui . ¢l
7 tyr = H
0’1=E
Uy = Uz
(3.10)
P = P2
2 2 . _
U2 =31 C2 = YR T yTT R T Ry
02=O'R
Uy
Uz
Us

2 2
%9’:{-9?—+$:1-=H;0=2}

Figure 3.3 Given total enthalpy and
physical entropy on the inflow (phase space)
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Eliminating uy., p1, Uz, P2, 02 from (3.10), we get a polynomial

equation of degree 2 for c¢; :

2

{1 + I%l (g;) } cf - (y-l)(éi)z Ryc1 +

+ (15_1)2 (.%)k(aé- 2H) = 0

(3.11)

The equation (3.11)} has real solutions under the condition

_ 2 2 2 (°R\?
which can be seen as a cavitation condition. We recall that we need

such a condition to be able to solve the Riemann problem in terms of

physically acceptable states (i.e. p >0, p>0) :

. 2 2
(3.13) UR'?‘ICRéuL I+WCL

2

d
solution., If

If R, < 2H, (3.11) admits only one positive and physically acceptable

2 2_(7RYY
14} 2 . 2H{1 4 A
(3.14) _H<Rd<_..(-+Y—_T\ZH
then the equation (3.11) has two positive solutions, and the state U,
is outgoing (!). In this case, a subsonic solution is the continuation
of the unigue physically acceptable solution obtained when R; < 2H.
We also have a new outgoing supersonic solution but this is thrown out.

Then under the hypothesis (3.12) the solution of (3.10) is given by




(3.15)

a;

(3.16)

02

Those relations

in the usual case. The formulae (2.32) defining U]

no l1-wave exists for the resolution of the problem R{FH#:~,V).

nally have :
(3.17)
with
£3
€2
(3.18})
€s
R

R
y-1 (Z)? ( Y_-l(ﬁ 2) e FOR Y
T(GR)Rd+\/;1+2 o) 17T \ey) Ra
1.+_Y:_];(._§_2
? \UR
-1
[0)
=Tdc1
=U1
=0’R

and U, by (2.29)(2.30)

replace the computation of U,

are unchanged, and

We fi-

6 = €1 F(Uy) +e2 F(Uz) + e} F(UL) +ep F(Vp)

{1 if 0<U1

0 elsewhere

{1 if U2<0<U2+C2

0 elsewhere

1 if u2+<:2<0<uR+cR
=¢-1 if UR+CR<O<U2+C2

0 elsewhere
_{1 if uR+cR€=0

0 elsewhere




33

6 - SUPERSONIC OUTFLOW

No numerical data are related to this Tast case. Considering
that the initial state V 1is on the left of the boundary, we must
imagine that a state to the right of this boundary forces all the
waves to go outside. If V ds a supersonic outgoing state (i.e.

u =< > 0) this condition is automatically realized. In the other
case, a right state with high positive speed will produce a l-wave

which will contribute to the flux of the boundary Riemann problem

(Figure 3.4).

o+

=& .. l-wave

Figure 3.4 Supersonic outflow

Because we have very little information about the right state, we
only consider for the Riemann problem this I-rarefaction wave. Then,

the flux is given by

(3.19) o = e (V) + e F(U;)

L)

with U; computed thanks to (2.31) and with the epsilons verifying
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) { 1 if 0< uL— cL
g =

0 elsewhere
(3.20) 1 if u -c <0
. L
0 elsewhere

7 - CONCLUSION

A11 the numerical boundary conditions developed in Sections 2

to 6 are treated with a strong nonlinean procedure taking into account

the physical data outside the domain and the physical state of the compu-
tational domain lying near the boundary. In particular, an *inflow" bounda-
ry is not incompatible with an "outgoing flux" (i.e. ¢; = pu negative)
for very particular states of the evolution as we will see in the next

section.
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IV ~ NUMERICAL EXPERIMENTS WITH THE EXPLICIT FIRST ORDER

OSHER SCHEME

In this section we demonstrate the capability of our boundary
conditions for several classical monodimensional test cases : shock
tube and nozzles. We have implemented a first order method (in space
and time) but we choose non-standard initial conditions. We first des-
cribe the treatment of the source term for quasi-monodimensional noz-
zles, then we review the SOD shock tube [42] and test problems on the
Laval nozzle presented by GRIFFIN-ANDERSON [22] and the diverging noz-
zle of SHUBIN-STEPHENS-GLAZ [40].

1 - NUMERICAL SCHEME INCLUDING SOURCE TERMS

The quasi-monodimensional evolution of a perfect fluid in a

nozzie of section y=A(x) is given by :

(4.1) (AU), + (AF(U)), - A H(U) = 0

with conservative variables U and physical flux F(U) given in (2.22)-

(2.24) and a source term H such that
(4.2) "= (0,p,0)

We discretize the interval [0,1]1 by N cells (1.e. Ax=b%).
We denote the mean value of U (resp. A,H) on the j° cell

s X:. .0, with

3
19

Ixg

-4 +3

(4.3) X

J-lE (j'l)AX » j=1,....,N
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by Uj (resp. Aj’Hj)’ and the value of F (resp. A) at the point
X343 between cells j and (j+1) by Fj+% (resp. Aj+%)' Integra-
ting the equation (4.1) in space over each cell, we get the semi-dis-

crete version of the scheme :

(4.4)

-Ts'li(Aj+§-Aj-§)Hj=0 . d=1,...N
The flux Fj+% is computed thanks to the Osher numerical flux
¢(Uj,Uj+1) (formula (2.34)) on each internal interface (j=1;...,N-1)
and thanks to the study done in Section III (formulae (3.1), (3:4),
(3.7), (3.17), (3.19)) at the boundary (j=0 or N). The source

term Hj is finally given by :

(4.5) Hy = H(Ug)

The explicit numerical scheme is obtained when approaching the
system (4.4) of ordinary differential equations by a forward Euler sche-
me in time. The local time step At?  was chosen to satisfy a Courant-

Friedrichs-Lewy condition :

Afan

Ax 0.9

(4.6)

with a" egual to the absolute value of the greatest velocity wave
involved in the resolution of the (N+1) Riemann problems at the in-

terfaces.
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2 - STUDY OF THE SOD SHOCK TUBE

In his classical review [42], SOD compared several numerical

schemes for the particular initial conditions :

pL'_.-]_ UL-'._-O pL=1

(4.7)
pp=0.125 u, =0 Pp=0.1

and plotted results obtained with N=100 cells at time T=0.142
(the 3-shock wave is located at x=0.75). We consider there the
steady-state associated to this evolution problem, obtained on the
complete [0,1] dinterval for time > 7.112 and equal to the first
intermediate state in the resolution of the Riemann problem (Figure
4.1). During this evolution the 1l-rarefaction (resp. 2-contact and
3-shock) is going outside the computational domain to the left
(x=0) (resp. the right, x= 1). At the boundaries, we take the

condition of "state at infinity" (section I11-2) naturally associated

with that problem. t
'3
t = %".112\
/
{ t = 0.539
/
/
t = 0.423) /
/
/ 't = 0.286
/
t = 0.142
NV
e X

U UL 0.5 UR Ug

Figure 4.1 The Sod shock tube for time tending to infinity.
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The Figure 4.2 (resp. 4.3) shows the computed evolution of
velocity (resp. density) in the first (resp. Tast) cell of the tube
after a run of 2500 (resp. 200) time steps. The dotted line is the

exact solution. We insist on the fact that the Zime evolution of

velocity and density are plotted on Figures 4.2-4.3 which is rather
unusual [42) . The interest of these figures 1ies on the non-reflec-
ting evolution of waves across the boundary rather than on the (poor)

accuracy of the results (due to the use of a first-order scheme).

1“0 T T T T T 4
.9 T ]
B . |
1-rarefaction 1
¥
6 >
i 2 ]
O Q@
© - )l
o 4
> : 1 24 2-contact
3 T 1 .23
i ] .20
3 T ] 18
1 18 | 3
A4 | :
® 0123456789101 A3 T 3 3 4 5 8 7 89
time time
Figure 4.2 Evolution of velocity Figure 4.3 Evolution of density
at x=0 (dotted Tine : exact at x=1 (dotted Tine : exact

solution). Sod shock tube, N=100 solution). Sod shock tube, N=100
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3 - STUDY OF A LAVAL NOZZLE

A family of converging-diverging nozzles was introduced by
GRIFFIN-ANDERSON [22] and used for testing numerical methods by other
authors (e.g. YEE-BEAM-WARMING [501, CASIER-DECONINCK-HIRSCH [71).

We have chosen the section A(x) defined by (Figure 4.4) :

1+1.5(1-2x)*? 0<x<0.5
(4.8) A =
1+0.5(1-2x)? 0.5<xx<1

and two test cases associated with the following boundary conditions :
Test 1 : subsonic inflow and ocutflow (with a shock wave)
Test 2 : subsonic inflow and supersonic outflow.

In both cases the input data are given as in section III-5, i.e.
(4.9) H=3 R =1 (x=0)
and for test case 1, the out (static) pressure is :

(4.10) P=0.4

We now focus on the initial condition for such computations.
For tests similar to test 1, a majority of authors (e.g. YEE-BEAM-
WARMING [501, CASIER-DECONINCK-HIRSCH [7]) take a linear interpola-
tion between the exact boundary values. The situation is identical
for test 2 {7]. We have performed computations with success in these
two cases using that type of initial conditions although they are
not natural (in test 1 for example the exact knowledge of the right
boundary value is nearly equivalent to the entire exact solution).
Following CHAKRAVARTHY [8] we think that a natural initial condition
for both tests is the stagnation state (with null velocity) associated

with (4.9), along the whole channel, i.e.

(4.11) p; = 0.680 , u; = 0 , p; = 0.583
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Figure 4.4 Area variation of the Laval nozzle [22]

Mach number
o0

o .1 2 3 4 b5 8 7 8 9 1
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Figure 4.5 Mach number at convergence, test 1 (subsonic inflow
and outflow), stars : computed, line : exact. Laval nozzle, N=280.

= e W
w & o O

Mach number
. . . o o
= O o b e

o .1 .2 3 4 B 8 7 8 9 1
abscissa

Figure 4.6 Mach number at convergence, test 2 (subsonic inflow
and supersonic outflow), stars : computed, 1ine : exact. Laval nozzle, N=80
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We have taken (4.11) as the initial condition for both test-
cases, refining the mesh (N=20,40,80). The machine accuracy (32
bits computer) was obtained after 1600 time steps for test 1 and
1000 for test 2 (with N=80). Figures 4.5 and 4.6 show the conver-
ged distributions of Mach number. The residual of momentum for test

1 is displayed on Figure 4.7.

0 "400 800 1200 1600
iterations

Figure 4.7 Residual of momentum, test 1. Laval nozzle, N=80,

Typical evolution of velocity for both test cases are presented

on Figures 4.8 and 4.9 and similar curves have been obtained for

density and pressure.
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Figure 4.8 Figure 4.9

Evolution of velocity at x=0 (straight line) and at x=1 (dotted
1ine), for test 1 (subsonic inflow and outflow, Figure 4.8) and test 2
(subsonic inflow and supersonic outflow, Figure 4.9). Laval nozzle, N=80.

4 - TEST CASES INVOLVING A DIVERGING NOZZLE

The diverging channel proposed by SHUBIN-STEPHENS-GLAZ [40]

has a section A{x) displayed on Figure 4.10 and satisfying
(4.12) A(x) = 1.398+0.347 tanh(8x-4) . 0<x<1
The Teft boundary condition is a supersonic inflow :

(4.13) p = 0.502 R uL=1.299 . pL=O.381

As in the above section, test 1 is concerned with a subsonic outflow

of pressure P :

(4.14) P=0.707
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Figure 4.10 Area variation of the diverging nozzle [40].

1.8
1.7
16
1.6
14
1.3

Mach number
o % s ow v oa b bk
AR L L,

o 5 A — \‘““

¢ .1 2 83 4 5 & 7 B3 9 1
abscissa

Figure 4.11 Mach number at convergence (stars : computed, line : exact).
Test 1 (supersonic inflow, subsonic outflow). Diverging nozzle, N=80.
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Figure 4.12 Mach number at convergence (stars : computed, line : exact).
Test 2 (supersonic inflow and outflow). Diverging nozzle, N=80.
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inducing a shock wave located at x=0.5. Test 2 is related to a
supersonic outflow. We have chosen, as above, stagnation initial

conditions associated with (4.13), i.e.

il
[

(4.15) Py = 1 s u, = 0 , P;

and three meshes of N=20,40,80 cells. On the most refined mesh,
machine accuracy was obtained after 1600 iterations. The converged
isomach curves are plotted on Figures 4.11 and 4.12. The evolution
of velocity for both test cases is given on Figures 4.13 and 4.14.
No particular problem of convergence was given by these initial-

boundary value problems with our treatment of the boundary conditions.

16 | P

velocity
: b - =
© » 'S

0 100 200 300 400 500 600 700 800 0 100200:%00400?00600700300
iterations iterations

Figure 4.13 Figure 4.14

Evolution of velocity at x=0 (straight line) and at x=1 (dotted
1ine). Test 1 (supersonic inflow and subsonic outfiow, Figure 4.13)
and Test 2 (supersonic inflow and outflow, Figure 4.14). Diverging
nozzle, N=280.
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To demonstrate the robustness of our method we have computed
test case 2 (supersonic flow) ona N=20 mesh points with the same

static initial condition (4.15) but changing the treatment of boundary

conditions. In a first experiment (test 2.a) we have taken the numeri-
cal flux at supersonic inflow following the classical treatment : the
numerical flux is given by the (left) boundary data rather than by the

Riemann problem (3.1), i.e. :

(4.6)  ¢(x=0) = f(U)

On the right, we kept the treatment given by formula (3.19). In a se-
cond investigation (test 2.b), we have kept the treatment (3.1) on the
inflow and changed the outflow, replacing (3.19) by the usual lineari-

zed condition for supersonic outflow :

(4.17)  e(x=1) = f(y)

Results are very interesting and surprising. In test Z2.a, the right
supersonic solution is obtained, after a very long transient evolution
of 2400 time steps, that we can compare with the treatment using both
(3.1) and (3.19), where numerical convergence arises after 400 time
steps (Figure 4.15). With the second choice of boundary conditions
(test 2.b), the convergence is very quick {200 iterations) but we
obtain a subsonic (1) solution without any simple relation with data
(4.13) and stable under mesh refinement. The exact and computed Mach
numbers are compared on Figure 4.16. Moreover, with the same pair of
boundary conditions (3.1)-(4.17) the initial conditions (4.11) give
another subsonic solution. These unrealistic results are a conseqguence
of the "bad" choice (4.15) of initial conditions. Results become correct

once more when we start the computation with a supersonic state e.g. (4.13).
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Figure 4.15 Evolution of velocity at x=0 with classical boundary
condition (4.16) [curve 1], and new boundary condition (3.1) on inflow
(test 2.a). Diverging nozzle, N=20.
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Figure 4.16 Converged Mach number (stars) and exact solution (straight

line) for test 2.b (inflow boundary condition (3.1), classical outflow
4,17). Diverging nozzle, N=80.
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Nevertheless, we have tried to compute the same test 2 with
the treatment (3.1)(3.19) of supersonic in/out flow, but with an in-

appropriate initial condition, reversing the speed U

(4.18) Py = 0.502 R u; = -1.299 s p; = 0.381

To our surprise, the correct converged state (Figure 4.12) is obtained
after a relatively quick evolution (1600 iterations). Velocity and pres-

sure are plotted on Figures 4.17 and 4.18.

——T /S A A B A S T ¥ 2'2 I,
r ek ek

5 output ] 2.0
1.8

186

8 | input 1
. | ‘\\\\\\\\H“—— -
4 - —
2 b TS output
100 200 300 400 500 600 700 800 9 0 100 200 300 400 500 600 700 800
iterations iterations
Figure 4.17 Figure 4.18

Evolution of velocity and static pressure at x=0 (staight 1ine) and
at x=1 {dotted Tine). Test 2 (supersonic flow), initialization by
(4.18). Diverging nozzle, N=80,
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5 ~ CONCLUSION

We have proved that the numerical boundary conditions proposed
in Section III are robust. The transient evolution converges quickly
to the desired steady-state even when initial conditions are a priori
far from it. The exact nonlinear interaction between transient waves
and stationary waves in a 1D nozzle is analysed by GLAZ-LIU {171 and
the behaviour in the vicinity of the steady-state is studied in ENGQUIST-

GUSTAFSSON [13] and including references.
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V - LINEARIZED IMPLICIT VERSION OF THE SCHEME

We first study the derivability of the flux functions associated
with the internal scheme (the Osher scheme in Section II) and the bounda-
ries (Section III}. Then explicit formulae allowing an exact computation
of the above gradients are given. Empirically CFL numbers related to the
test cases of Section IV show the advantage of using a simple linearized

implicit scheme.

1 - DERIVABILITY OF THE OSHER SCHEME

The general expression of the Osher flux function given in
(2.11) is not a priori clearly derivable due to the step functions ¢
defined in (2.9)-(2.10). This is also the case for the boundary condi-
tions (3.1), (3.4), (3.7), (3.17), (3.19) related to the Euler equa-
tions. We now prove that it is easy to derive (2.11). The results are

similar for each particular boundary condition.

PROPOSITION 5.1

Under the hypotheses reviewed in Section I (fields either
genuinely nonlinear or linearly degenerated, existence of k-curves
%/k'), the Cher flux function (2.11) associated with the resolution
of the multivalued Riemann problem R{u,v) <s continuously derivable

relatively to the pair (u,v) and we have :
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n Buk Buk
d¢(U,V) = Z Ek f'(uk) . (W du + —B'T dV) +
(5.1) no, aui au& \
+k21 Ekfl(u;().(—'a"‘u— dU'*'WdV} .

PROQF OF PROPOSITION 5.1

The derivability of uk(u,v) and ué(u,v) is classical
because they are solutions of a differential equation and u,v are
the associated initial conditions. We simply focus on the disconti-
nuous functions e,e' involved in the computation of  ¢. In the

proof of Theorem 2.1, ¢(u,v) is given by the formula (2.17), i.e.

n

ousv) = F(v) = 3 Xy () (Fly) - 7)) +

- I Xy () (Pl ) - F)

(5.2)

=3
-

where y is the Heaviside function. Deriving (5.2) in the sense of
distributions, the first part obtained by deriving only the f-terms
clearly gives (5.1). The second part is a sum of f, times the deri-
vatives of Heaviside functions. But if Ak(uk) {resp. kk+1(uk)) is
null, then u&= Uy {resp. u&+1==uk) and the coefficient of the Dirac
function vanishes. Thus (5.1) is established in the case of all genui-
nely nonlinear fields. We then conclude the proof with the same argu-

ments as in Theorem 2.1.

2 - COMPUTATION OF THE FLUX GRADIENTS

We now specify the formulae associated with the interior scheme

and the boundary scheme for the particular case of the Euler equations.
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The variables W (2.26) are naturally associated with the computation
of intermediate states U;,U,,U,,U; that we denote by U. Then the
derivative of F('ﬁ) with respect to (UL’UR) is given by the chain

rule :

" F . M M
(5.3)  dF(D) = J; I W W) . T, d(u,) au,

’

with WJ=N(UJ) and W=N(§). From {2.24)-(2.28), we deduce

2 2y
=ac:':—1-cr?:1-u
2 2 2y 2y
(5.4} F(W) =] pu?+p -*occ"r_'l—oﬂY u? +E3c_lrcf—YTI
2 2 2
co v T v T s Ly o Jf
puE+pu-§c c u +m6c
with a=y Hy-1 and 8=a'
2 py _ 2y pu
v-T ¢ > P R
3F 2_pu’, 2y p s .2y pu®_ 2y p
(5.5) 3 v-1 ¢ +y-1c 2ou v-I1 0 v-1lo

(5.6)
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We only have to specify the computation of factors gﬁi (ﬁ)
~ f ] J
in (5.3), for U=U,,U,,U,,U; and J=L,R to be able to compute
(5.1). This is a consequence of elementary algebraic derivations of

(2.29)-{2.32) and we get :

—:JA-:I
+ o 4+ D
i i
bt —
Lo o

3”1 _ oW v
(5.7) . (U) = >y () =0
y-1 !
1.;GR7UL - 2T+0p/o)) o, (1+a /og)
awl 1 ~2c
5. Uy) = 1
(5.8) (Ur) (Y1M1+G/UM 140 /oq (y-1)o, (1+ 0, /op)
0 1
—(y=1 4
I"'GR; L 2(1+op/o 7 Fop
awl _ 1 2C1
(5.9) (Uy) = v-1) (1*—0R/c.) T+op/0, (y-1){o +0p)

\ 0 0 0

1 y-1 =C2
T+0 7o, 2(l1+0,/op) o +op
(5.10) - (Uz2) (Y-z)(uaL/aR) T+0, /o, (v-T){o, +op)

0 0

-(Y-l) Co
-+cL R 2(t+op/op)  op(T+ap/o))
awz ) 1 2C2
(5.11) e (U2) =} 7= 1)(1+0R/0L) T+0p/o, (v-T)op(T+ 5,70, )

0 1
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L2yl 0
v+l v+l
2 ~{y-1) 0

MWz ity L W3
(5.12) -gWL— (Us) =0, ’B'W'E (Us) = y+1 v+l
0 0 1

o We now consider the derivation of the boundary flux functions des-
cribed in Section III. In the particular cases of a given state at
infinity, wall reflection and supersonic inflow, a formula similar

to (5.1) is easily obtained by the previous considerations. In the
particular case (3.7) of subsonic outflow (resp. (3.17), subsonic
inflow) the intermediate state U; (and U for the outflow) are
computed thanks to formulae (3.6) (resp. (3.15)-(3.16}). We now give

the new formulae for the oW/oW's.

* Subsonic outgfow (P 1is given)

The state U; 1is computed thanks to (3.6). Then we have :

0 0 A3
9
2

14

ohly _ 2 _ (3%
(5.13) —B-WE (Uy) = -1 1 v-T 5,

0 0 1

+ Subsonic ingfow (H and £ are given)

The intermediate states U; and U, are given in (3.15) and

(3.16). Setting

p0 e hloo ()0 G )




we have
I u JYlIw i
Op § 2 On 8 Op 8
HS 2
oW, 1.2 e o 2 ¢
(5.15) aNR (Uy) = v-1 On 8 op $ v-1 Tp
0 0 0
Uz _ylu c_z(l_y;\
3 7 8 on 5/
(5.16) EHEE () = | -5 (Zl)z.El (lL)z €2 2 (EL\Z <o
My y-1\op/ 8 og) & Y-1 \op/ o
0 0 1

The formulae given above allow an exact derivation of both the numerical
Osher flux (internal interfaces) and the boundary fluxes. As noticed by
RAI-CHAKRAVARTHY [37], these computations are expensive but we do not
consider them as a "tedious procedure" with our presentation. All the
3x3 matrices computations have been implemented in a vectorizable compu-

ter program.

3 - NUMERICAL TESTS OF THE LINEARIZED IMPLICIT SCHEME

From the previous study, an implicit version of the numerical
scheme used in Section IV can be derived, as proposed by RAI-CHAKRAVARTHY
[37]1. Starting from the system of ODE (4.4), i.e.

du.,
J+GJ-({U}) =0 , j=1,...,N

(5.17) "
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with

. Aj+1

6,(1U3) = - [¢(Uj,Uj+1)-H(Uj)] +
(5.18) J
Aj_l _
" X ﬁj [¢(Uj-1!uj)"ﬂ(uj)} s §=2,...,N-1

The backward Euler scheme
(5.19) i%,(ug+l_ Ug) + Gj({Un+1}) - 0

is Tinearized around {U"}. Then we obtain the linearized implicit

scheme :

a6,

1 n+l .n 3 ntl_ ny _ n

3G,
The matrix 7ﬂ%- is entirely known from the computation of dcbj+l and
3

de. The term d¢j+1 has been treated in previous section. Thanks to
(4.2}, the gradient of pressure

(5.21)  dp = (y-1) (%;, v, 1) du

completely defines de.

We have tested the scheme (5.20) on two problems considered in
Section IV : The Sod shock tube and the diverging nozzle for both tests
1 and 2. We used mesh refinements, a variation of the initial conditions
and for each test case, the computations have been carried out down to
machine accuracy. Accurate results are summarized in Table 5.1. In each
case, we have determined experimentally a maximal CFL number (see condi-
tion (4.6)). The Sod shock tube is a transient problem, containing mo-

ving nonlinear waves. The CFL =7 observed in this case is worse than in
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other computations converging to a steady state. Nevertheless our CFL
numbers can be compared to the results previously given by RAI-CHAKRAVARTHY

[37] with the same basic scheme but with an other treatment of the bounda-

ry conditions [8].

Maximal CFL

Test case number {experimental)

e Sod shock tube {421, N=20,40,100 7
e Diverging nozzle [401, N=20,40,80
with supersonic inflow (boundary condition
(3.1))
1) subsonic outflow (4.14)
+ Initial condition : stagnation (4.15) 10

* Initial condition : state (4.13) 20

2) supersonic outfiow
« Initial condition : stagnation (4.15)} 10

+ Initial condition : linear interpola- 50
tion of variables (p,u,p) between

the 1imiting states of the exact

solution.

Table 5.1 HNumerical tests of the
Tinearized implicit scheme
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CONCLUSION

In this paper we have extended a proposal of VAN LEER [45]
and OSHER [36] . We have also given a new presentation of the Osher
scheme. This scheme can be viewed as a Godunov-type scheme involving
a multivalued solution of a Riemann problem as well as a splitting
scheme. The previous theoretical vision of the boundary conditions
for the Euler equations proposed in [10] by DUBOIS-LE FLOCH has lead
to a numerical treatment of the flux at the boundary. The Tatter is
computed thanks to partial Riemann problems (depending on the given
physical quantity) evaluated by multivalued solutions. The derivation
of a linearized implicit scheme following this approach is straight-
forward. Numerical experiments have proved the robustness of both
explicit and implicit schemes with respect to the dependance on 1ini-

tial condition and/or time step.

This work can be extended by both numerical and theoretical
studies. On the one hand, second order two-dimensional and nonlinear
implicit versions of the scheme are under development. On the other
hand, our boundary conditions appear as non-reflecting. The 1ink with
the previous work of HEDSTROM [271 and other classical studies on ab-
sorbing conditions (e.g. [14,3,24] and including references) is still

to be done.
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