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ABSTRACT
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on a bounded simply connected domain of IR? with a smooth boundary by

its curl and its normal component on the boundary, a mixed formulation

involving also a vector potential is proposed. The vector fields are

‘discretized with help of curved finite elements which are conforming
“in H(div) or H{curl). A discrete gauge condition is proposed-to.assume
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1 - INTROBUCTION

When we study numerical fluid dynam1cs an important task is the
dicretization of vector fields u wich are divergence free ( or

solenoidal )
(1.1) divu=0

with E defined on a domain @ of IR®. The major field of application is
incompressible hydrodynamics (TEMAM [43]); replacing E by the mass
fiux, the equation (1.1) is also important in stationary compressible
aerodynamics {COURANT-FRIEDRICHS {15]). A conforming or non-conforming
discretization which respects the conditien (1.1} f1s difficult with
the finite element method (HECHT [29], GUSTAFSON- HARTMAN [28]}. On
the other hand a natural idea to sat1sfy exactly {1.1) is to represent
u in terms of a vector potential w

-+ -+

(1.2) u = curl ¢

but the uniqueness of ¥ is never assumed and a gauge condition has to
be added. A classical way is to prescribe the Coulomb .gauge (e.g.

JACKSON [30]):

(1.3) div ¥ =

‘Moreover, different choices of the boundary conditions for 3 are
'p0531b1e The studies of BERNARDI [9] and BENDALI DOMINGUEZ-GALLIC [6]
“have given “existence and - un1queness results. Pract1ca1ly the stream
function is Jjust a tool for the. representation of. the field u and must
:be computed eas11y 1f we glve some - constra1nts on thzs field. In this
- paper, we choose to f1x the vort1c1ty w and the mass- 1nf10w g over the!_”

entire boundary

(1.4) : curl u = o in Q
{1.5) u.n =g on d{l

We remark that if the relations (1.2) and (1.5) are satisfied then the
average of the mass-inflow g on each component of the boundary of 0 is

'ﬁnu]1, This fact precludes flow problems with sinks and sources.
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With these asumptions we restrict ourselves to a simple problem.
More sophisticated models, for example, are the Stokes and Navier-Stokes
equations in (¥,s) formulation (GIRAULT-RAVIART [26]), and the potential
isentropic equations of transonic flow (COURANT-FRIEDRICHS [15]). However,
even in the Tinear case of the Stokes problem the numerical analysis of
the threedimensional case is difficult (NEDELEC [38]).

In part II, after recalling classical results on vector fields,
we split the Tinear problem in an homogeneous problem in @ (g=0) and
a problem on the boundary of @ (g#0). Then a concrete construction
method of ¥ from the only data (¢,9) is presented. In the discretized
problem, the compatibility between these two subproblems requires that
the discrete field Eh must have a tangential component on each point
of the boundary. Thus in part I1I we develop curved finite elements con-
forming in the spaces H(div) and H{curl) which coincide in the straight
case with the vectorial finite elements of degree 1 introduced by NEDELEC
[37]. Then we derive optimal interpolation errors. Part IV treats the ap-
prox1mat1on of the homogeneous problem The maaor d1ff1cu1ty is the defini-

t1on of a “good" 11near space wh1ch guarantees that the d1screte potent1a1 is

unaque._Therefore, we adapt the d1screte gauge commun1cated by-ROUX[41] to ;:
'the-case of arbitrary simply conﬁeétéd domains-in '123 * Then- we-formu1a£e "

 the discrete prob]em and obtazn the error est1mates between the velocity

field and -its approx1mat1on By ]1near1ty part V treats only the approx1ma-

't1on of an harmon1c vector f1e1d (¢=0). The boundary finite elements of

NEDELEC [34] and BENDALI [3,5], are adapted to H(curl), and a discrete

gauge is added to assume the uniqueness of the tangential component of the

discrete stream function. Then the error estimation is established.
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HYPOTHESES AND NOTATIONS

-~ is possible to find N, regu1ar surfaces 3, such that |0 \
. a simply connected éomayn of IR (FOAIS-TEMAM f221y. The ¥0110 1ng_'

We define § as a connected bounded domain of IR? with a regular
boundary 30=[, and F (3=0,1, NF) as the connected components of T.
We assume that T, is the boundary of the unbounded component of IR*\@.
Classically (e.go NEDELEC [34,35]) the structure of regular (of C?
class) manifold with boundary ensures the existence of (p+1) open sets

3 : .
ﬂo, ﬂl,..u,ﬂp of IR° covering Q :
p
Qciu [igl o, ]
Moreover the p last @.'s are covering the boundary:

T c [18191 ] I'n ﬂo = @

The local charts g, are compatible diffeomorphisms of class €2

(16) By oc 91- - (]“1,1[)3 i=0,...,p

0,1,...,p

1.7 . = fb Vi,J
(_ ) “ila, na, = &, n i )

1 H

and 0 is supposed to be locally on one side of its boundary:

1}

1,...4p
L..p

(J-1,11)2x(0) i
(J-1,1D2x10,10 i

(1.8) g (T 0oy
(1.9) B (@02

We fﬁnish this geometrical description by “introducing the normal
. projector on;the_boundary (e,g.:DE RHAM [16]): Co |

'PROPOSITION 1. 1 There ex1sts 8>0 and a neaghborhood U6 of T

U6 { X € IR3' d1st(x r) <6 } '
such that each point x of U6 admits a unique proje¢tipn Prx qn.r:
¥ xe U&’ Ay = Prx e ', xy normal to T.

We make now one hypothesis on the algebraic topology of , then
we introduce some notations relating to boundary operators. The domain

1 is supposed to have N, holes (if N,=0, Q is simply onneited) aT it
U is
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operators on the manifold T are defined in CHOQUET-BRUHAT [13] for

example:

* Surface gradient er and surface curl, cur]rw, of a scalar function

defined on I': cur]rw = er x n with n the external normal to T'.

*  Surface curl, curlrg, and surface divergence divrf of a tangeni
vectorial function defined on I'. We have : divr§ = cur1r(nx6). Finally

the Laplace-Beltrami operator Ar satisfies :

-A_ W = curl (cﬁr] w) = - div_(V_w)
T r T r'rT

By duality these operators are also defined for scalar (T) or
vectorial (U) distributions on T :

<V T, ¢ > = -
T ¢ r

FaN

T, div ¢ >
rE r

i}
A
—

<curi T, ¢ > , curl ¢ >
r ¢ I'E T

r

< curl G , W>_ =X G , cEr] W >
r T I T
< div G , W>_ =X U , Y w>
T . T . ;

In these notations, the dua]ity product <.,.> of two - vectors is the

“scalar - product accordtng to the metr1c g1J on the man1f01d (e g.
f-CHOQUET BRUHAT [13]) : | |

-+ =+

* More generally the scalar product between two vectors v,y defined
-+ - - =

in fI, or two tangent vectors on I, is denoted by ¢.¥ [or (p,T) when

is used for the image A.u of a vector u by a mapping Al, the
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-
tangential component on T of a vector o is:

-+ - - =+ -+

Mp = n x {pxn) = (nxp) x n
and we have a Green formula for regular vector fields:

-

{1.10) J $“cur1$ dx = J cur]w.a dx + J (gxn)ug dy
Q 0 a0

Moreover Span <u ,...,4 > 1is the 1linear space of all the linear
combinaisons of the vectors wu,,...,u and YA is the transpose of a

matrix A.
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[1 - THE CONTINUOUS PROBLEM

We first recall the definitions of some classical Sobolev spaces.
Then the major results concerning the decomposition of vector fields re-
viewed in BENDALI-DOMINGUEZ-GALLIC [61 and also established by FRIEDRICHS
[23], FOIAS-TEMAM [22] and GEORGESCU [24] are given. We also propose a
mixed formulation in the variables (3,3) to compute both the velocity

field U and the potential @’ in the particular case of homogeneous

. -
constraints en u :

=
1l

o
0

(2.1) div U

0 on an

1]

(2.2) u.n

In the non-homogeneous case, i.e. if

(2.3) u.n = g on 3N

we first consider a boundary problem for which we give a mixed formulation.
Then the extension Theorem of J.L. Lions (LIONS-MAGENES [32]) allows a theo-
reticgﬂ a_ppv_ro_ach .'_co_.co.mpute_the _ve_ctor_* potential. H;' wi:t_h-_ - | |
) G- e
it U.:s;tiﬁfies'bbth (2.i5 and (2;3);"

1) SOME HILBERT SPACES

' The Sobolev spaces L2(q), Hl{q), H2(a) are Hilbert spaces with

their natural norms 1 Il and Ii2 Q respectively {e.g. ADAMS
] 2 .

Q° i "1,9’
[1]). We set also :

o < e @ v )
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‘also. be used for the norms of the ¢orresﬁonding;véctor:fiélds when'théfe is

‘no ambiguity. :

Following DUVAUT-LIONS [20] , we define

H(div,2) = {V € (L2(a))’ . divve Lz(n)}

H(curl,g) = {Eﬁ € (L2(2))° , ciFl B € (Lz(n)ﬁ}
and the associated norms | uH(div) and i "H(cur])' We also consider
vector fields which are normal on the boundary :

HO(curl,q) = {fﬁ € H{curl,q) , Gx?ﬂr = 0}
The classical spaces HS(I‘) (s real) of scalar functions (and distributions)
defined on the 9-boundary are equipped with their natural norms | e pe The

duality product between H™*(r) and H(r) is denoted by <.,.>., and

THS(I‘) are tangent vector fields on T (e.g. [3])
TH3(r) = {}? e (H3(r))® , WA= o}

Consider now some particular spaces useful in this paper :

DEFINITION 2.1

W@ = e m)?, ah de (na’}

M(I‘) =.{g distribution on T , <_Q,1>P =.0,.V_i_=.0,.._.,'NI,} .

~ The notations introduced above for the _n'orrn_s of _s_i:a]ar fields will

PROPOSITION 2.1 : The norm

- - 2 . -, - 2 2
H(‘OHNZ(Q) = (Ikpitl’Q + Il curl cpl!l’ﬂ)

defines on W2(9) a structure of Hilbert space.
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(respectively J -0 dy = &
. o r _

2) DECOMPOSITION OF VECTOR FIELDS

In this paragraph, we recall general results on vector fields defined
on a regular bounded domain fn of R3. We refer to BENDALI-DOMINGUEZ-

GALLIC [6] and included references for the results.

DEFINITION 2.2 The two sets

X7(2) = {Ve (L2(2))%, divVeL2(a) , carl Ve (L2(2))’ ,V.?{eH%(r)}
Xy(®) = {Ve (L2{))?, divVeL2(a) , curl Ve (L2(0))’ , VxT€ TH’I*(r)}

are Hilbert spaces equipped with their natural norms | “T and | hy res-

pectively.

THEOREM 2.1  The spaces XT(Q) and XN(Q) are equal to (HI(Q))3 alge—

braically and topologically.

We introduce tangential and normal harmonic vector fields, related to topolo-

gical invariants of Q.

DE’FINITION 2.3
.'HT(Q)_ = {VE(L-?(Q)) dwv 0 curlv 0, |F }

Hy (2) =_{VE_(L7-_(Q)) dwv 0, curlv o, Vxn|r=-}

 THEOREM 2.2 We have -dim HT(Q) = Ny, dim H (Q) é'Nﬁ. There_emists a unique

1.

bastis (EI) S of HT(Q) (resp. (B ) - of HN(Q)) such that :
_ _ Ul<i<n, _ 31<J< Ny . .
5. fdy = V ik = 1,....N
N S g AR

i
*e"N -
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(H(@)):. We have :

~ BENDALI-GALLIC [7], let .

PROPOSITION 2.2 The orthogonal projectors PT and Py, PT : XT(Q) -+ HT(Q)

and PN : XN(Q) -+ HN(Q) with respect to the associated scalar products admit

the following expressions :

Ny
(2.5) p.v = (| V5] dx) B
T 1 i
i=l M@
v
(2.6) Py v = ( v.el dx) o
o j=1 Mg J J

for some basis E;r of Hy(Q) (resp. 3}‘ of HN(Q)). Thus the expressions
(2.5).(2.6) define Pr and Py as orthogonal projectors from (Lz(ﬂ))3 onto

Hi() and HN(Q) respectively.

PROQF OF PROPOSITION 2.2

The auxiliary basis 'é'iT and 'é'jN are constructed explicitly by

FOIAS-TEMAM [22], DOMINGUEZ [17], and BENr?AI_I-GALLIC [7] as gradients of

some harmonic functions defined on (Q\ LEI Ei) and on Q vrespectively.
i=1
The end of the proof is clear. _ .

PROPOSITION 2.3 Let v “be a solenofdal vector field (div V= 0) 1in

2.1y PV = U V.H.d_y._) LS
L j=1 r, J
_ J -
o Ny
' 5 o - = =T g _
{2.8) PTV = = Oz v.n dy) 8, if v Ir = 0

PROOF OF PROPOSITION 2.3

We only prove (2.7)_ since the proof of {2.8) is similar. Following

j be the solution of -
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(2.9) U=l B+ 2 (J a’.__’_é'iT__dx_) 8]

10

A¢j = 0 Q
"’j =0 Ty
w.i:(si‘] r} 131,»-.,Nr
We set EJN = ij and we integrate by parts. We have :
J?'é’" dx-J V.0 s dy
o 9 3% J
if div Vv =0. Thus (2.7) holds. .

THEOREM 2.3 The mappings

1
= -+ -, 2 . = 2 - 2 - 5 2 2
Xr(o)3v e |v1T = (]Icur'i vtl0,9+ Idivvi, o+ Prvilg ot llv.nll%’r)

N

3]

— -d _ -, 2 . = 2 - 2 — = \
XN(Q)BVH Iv]N = (Ilcur] vIlO’Q+ 1id1vv!l0’9+ IIPNvllo,Q+ Ilvxnll%,r)

are norms on XT(Q) and XN(Q) which are equivalent to the HY(Q) norm.

DEFINITION and PROPOSITION 2.4  We set

. e -+ o - Y
Wie) = {G € (@)’ L div B=0, exn |r=o,j G.7 dy=0,vj=1,....N|

o € R is a norm on  W!(Q) which

- s I
Then the mapping wi(e) 3 wlelicurl_wﬂo

is equivalent_to:ahe. H1- norm.'5

“PROOF Direct_-con_éeqtjence _df Propositi_o'n 2.3 and Theor‘em'_z.a. o - :

. . - . o B
THEOREM 2.4 (Decomposition of vector fields). For A  given tn (L2(R)) ,

we have the following decompositions :

(z) .N

R
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with wunique (W,9) verifying

w € Hi(a) n L2(x)

(2.10) .
© € Wi(Q)
(12)
N
2.11) T=vp+ciri T+ 2 AR A
(
j=1 b

with unique (p,$) vertfying

P € Hy(a)
(2.12)

e (H(a)’,divi=0, R -

3 -
Moreover if U belongs to (Hm(ﬂ)) (m>0) then w,p,G,w belong to

H™ ().

The decomposition (2.9) {resp (2.11)) of the field u 1s 1nto three
orthogonal components of the type Vw (resp Vp), plus cur]w ( resp

cﬁrl% ), plus some vector lying in H (@) {resp H, (Q)). However the _':'
decomposition (2.5) (resp (2.6€)) of the projector P, (resp Py) 1s ;ugL o N
sp11tted into orthogonal components in Lz(ﬂ) and the aux111ary vectors
GT (resp 9”) 1ntroduced at Propos1t1on 2. 2 const1tute the dua1 basjs--V"

of the GT (resp B")

The results of Theorem 2.4 have been used by EL DABAGHI PIRONNEAU L

in their numerical work [21]
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3) MIXED FORMULATION OF THE HOMOGENEOUS PROBLEM

If a vector field U admits a representation of the type U= curl @,

we have clearly :
(2.13) divi =0

but we also have constraints on the normal component.

-3

IEMMA 2.1 Let @ be in the space W!(Q). We have in the space H*(I)
cirl @.7 = div, ¢

— e
xn = t:ur‘]I o .

PROOF OF LEMMA 2.1

Consider a regular function w on I and a }ifting of w on Q

also denoted by w. We have
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<cdrl 8.7, w>, = J div(w curl @) dx = J Yw.curl @ dx
Q Q

= -} 6 n> <ﬁvr5xﬁ,w>

I" T

by definition of the operator div.. Moreover for an arbitrary tangent

vector field T on T, we have curl (nxt) = divrg (e.g. CHOQUET-BRUHAT

[131). .

B 3 -
PROPOSITION 2.5 (FOIAS-TEMAM[22]) Zet u € (L%(R)) and v € H{curl,q)

curl §. Then we have :

satisfying U
(2.14) PyUu=0

N 3
If u€ (H(a)). and ¥ € W2(Q), this condition can be written :

J Undy =0 for i=0,1,....N.
Ty

PROOF OF PROPOSITION 2.5

From Proposition 2.2 {equation (2.6}) we have :
J 75N ax = j car1 35N ax
e 9 e 3
= J Tocam 7N ax - J TNy
oo 3 dea PR

because E;q € H (n ~ Then P U=0. The end of the proof is a consequence
of Prop051t1on 2.3. Directly we have from (2.12) and Lemma 2. 1 u n =.div (@xn)

on o and we integrate this function on the component I, ' .'

We suppose now that the hypotheses (2.13).(2.14) are true. We

emphasize that in practice, the condition (2.14) precludes flow

problems with sinks and sources. We give in the following of part II a
| way to construct a vector potent1a1 w Me beg1n W1th the sxmp]e case_._ L

' 0 on F '
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THEOREME 2.5  The mixed problem

Ue€ LZ(Q))3 . P € Wi(a)

(
- —» - = - 3
u.v dx - J curl y.vdx =0 v v € (L2(n))
Q
T.cdrl @ dx = J 7.3 dx v 3 € W (a)
Q
admits, for © given in (Hl(ﬂ)')3, a untque solution which satisfies

div ¥ = 0. Moreover if w € (L2(2)) such that (2.13).(2.18) is satisfied,

U belongs to (Hl(n))3 and we have

(2.16) in=0 r
(2.17) carii=u @
(2.18) 1 0.0 < ol g

for some constant C.

PROOF OF THEOREM 2.5

® The existence and uniqueness are consequences of the Brezzi-Babuska
condition (BREZZI [11], BABUSKA [2]), which is satisfied because on
one hand ) _ ’ ' L .

o (L2(e))® 3 (G,V) - _J UVdx € R~ is coercive =

-and on the other haﬁd

| J ikl BV dx R
Su L ' > e @1 = Cudl |

by 2p 3 v ‘ : 0s
Ve(L2(n)® Wi, , 0

(we choose V = - curl ¢ to obtain the first inequality and we refer to
Proposition 2.4 for the second). The first equation implies U =curl g

and therefore div U = 0.
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e If o belongs to (L2(R))® and satisfies both div w =0 and PN;} = 0,

The Theorem 2.4 (i7) shows that we can write :
(2.19) o= gp + cirl J

The scalar p belonging to Hé(o), we have p=0. Besides we have aiso
e R -+
Je (HY{a))3, div J-=o0, J'nlr = 0. We demonstrate now that u - J belongs to

e A

HT(Q), i.e. that the pair (w,ZB) of the decomposition of u-dJ, by means

of Theorem 2.4 (7), is equal to zero. We have

[ & = - - - -y
(u-d).vw dx = J (u-d}.nwdy = J u.nwdy = 0
0 af afl

-y = - =~

J u.curl @ dx - J cUr] J.p dx because wxn=0
Q Q -

n

I T
(u-d).curl ¢ dx
“{

=0 due to (2.15) and (2.19).

Thus © € (H1(Q))3 and (2.16).(2.17) are clear. We choose ¢=9 1in the

second equation of (2.15). From Proposition 2.4, we deduce l[ui!é q <

ol ok < Clol i curl @l which corresponds to (2.18).

002 0,8 0sQ 0:8Q ‘ »

4) MIXED FORMULATION OF THE BOUNDARY PROBLEM L

Ne suppose in th1s paragraph that the boundary r- 1s connected.

: (1f it 1is not we Just have to replace the funct'lon - spaces b_y the'lr

(Np 1) copies for the different connected components of 1") We reca]l

fjrst general resuTt_s_ on scalar and t_angent vector fields on T.

THEOREM 2.6 Let s be a real number, ¢ an element of HS(F) n M(r).

The problem =-b.8 =g admits a unique solution € € HS+2(T) n M(r) satisfying

< C(s) Ilgll for some constant C(s) independent of 8.

s+2r sl“
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PROOF See, e.g. DE RHAM [16] or TREVES [44]. .

DEFINITION 2.5 We demote by Y{(T) the space of tangent vector fields

-4

3 on T with curl § = div.§ = 0. We define wiH(I) by

Wi(r) = {?1’ € TH%(r),divr?{ =0, J 78dy=0,v0e€ Y(r)}
r

THEOREM 2.7  (GEORGESCU [24] , TREVES [44]1) The space Y(T) <is finite-
dimensional and there exists some integer T such that dim Y(T) = 2r.
(v is diffeomorphic to the torus with r handles). Moreover for s a

given real number, the mapping

2 -
(HS*L(0) amM(r)) X Y(T) 3 (pow,8) b 7 = ¥, p+cdFl w+BETH(F)
defines an algebrafe  and topologic isomorphism.

Those important results allow to derive a Poincaré-type ineguality

in the space N%(r).

1
PROPOSITION 2.6  The mapping _HEB;;rchur1r?;H_1 1.,EIR 18 a norm on
} . 2 . )

N%(T) which is equivalent with the norm induced by :TH%(F)_:

R S SR,
3C>0,vneW(r),Ink, , <Clcurl all_, ..
e ol SRR

PROOF OF PROPOSITION 2.6

‘The field 7 € TH(r) admits a decomposition given in Theorem 2.7
: : 3 : o : . _ ' N
with p,w in HI(r) nM(r) and 6 € Y(r). We have clearly : 4.p = divpn = 0
then p=0 thanks to Theorem 2.6. Moreover, when we integrate n égainst

-+ - = =+ =+ -
8, we have J n.e dy = J 6.6 dy =0 so 6=0. Then
T T :




hal-00660366, version 1 - 16 Jan 2012

17

- -+ -
IR0, o= Der Wiy < wlg S Tl

due to (2.20), Theorem 2.6, and cur]r?{eH'%(r), with

(2.20) ~ALW = cuﬂrn .

Suppose now that the mass filux g across the boundary is given

in M(r). We have seen (Proposition 2.5) that the component E of the

vector potential satisfies :

(2.21) cur]rg =g

If we choose E in w%(r), we add the continuous gauge condition
(2.22) div £ = 0

and E can therefore be rewritten as

(2.23) % = cirls

We propose now a mixed formulation of the problem (2.21).(2.23).

-1 '
PROPOSITION 2.7 Let g be in H *(T) n M(T'). The mized problem -

Z € Wi(r) , 8 € L2(1) n M(T)
-—.(.2_24) L Jl“g -dY Fa Cuf]rﬂdY ...- SN - Vnk& H (I)
| J[ curl Twdy = _<g,w.>r _ _ ¥ wEL2T) n M) -
T R N L o

admits a unique solution (E,e) € W x (L2 n M) satisfying (2.21), (2.23),

3
8 € H(F), and

-(2.25) WEN, . <Clgh,y

_ ) 5 N 3 -
Moreover if - g € H;(P),__we_have__e € H2(r) and &£ € THE(T)., .~
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PROOF OF PROPOSITION 2.7

e Following RAVIART-THOMAS [40], we clearly see that the pair (e,cﬁrlre)
with 6 € M{(T) solution of A8 =g, is solution of (2.24) because

<w,cur1r?{>r = <cﬁ'r1rw,"r?>r for we€ H’l‘ and 7€ TH’}. The uniqueness
is established by linearity : if g=0, the second equation shows that
cur1r2'= 0, then Z=0 (Proposition 2.6). Furthermore, let p, in
H2(r) n M(r), be the solution of -hop = 6. If we set n = cﬁr]rp,
then 7€ N%(r). If we use this function in the first equation of (2.24),
we find Irez dy = 0. The estimation (2.25) is then a simple consequence

of Proposition 2.6.

e The relation (2.21) holds in the sense of distributions because both
curII,E and g are equal if they are applied to functions of L2 (T)M(T)

or to constant functions.
e If g belongs to H*(r), the regularity of & is clear. -

5) A GLOBAL RESULT

‘We consider a velocity field in.*(Hl(ﬁ))3.'Satisfying .

(2.26) divi=o 2

| j=_0,1_,...,N

i 3’ r
i _

and we suppose that both w and g satisfy

(2.28) cirl U = 0

(2.29) Uun=g r
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We propose in Proposition 2.8 a way to “compute" without ambiguity a

vector potential § of U

(2.30) U=cirl¥ Q
We recall first a Theorem of J.L. Lions (right inverse of the trace
operator):
THEOREM 2.8  {e.g. LIONS-MAGENES [32]) The trace mapping vo, defined
by +vypw = (w]r,% ) if @ s regular can be extended from H2(Q) onto
H%(F) XH%(Y) and ad;its a continuous inverse %, from H%(F)X|1%(F)
to HZ{Q) : H%(P)><H%(F) 3q b #q € H(Q)

vo(#a) = 9q vVqce HE ]

3C>0, 0Fq, <C "q“ngH% » VGE€ H%XH% .

PROPOSITION 2.8 Let U be given in (H}(Q))3 by (2.26).(2.29). There

exists a continuous vector potential ¥ which satisfies (2.30) and defines
a continuous mapping {H1(2))3 - W2(Q) computable without any use of the

harmonic functions belonging to the spaces Hi(Q) and Hy(2).

PROOF OF PROPOSITION 2.8

.. -Consider'first-the.boundary-equation-(2,29), From Proposition 2.7 there . =

3

- exists some E € IHE(F)_-verifying (2.21). Each component £, -of E - belongs .

: S o _ . - . . _ _
“to H?(r) and, by Theorem 2.8 the vector field 7 defined on o by its =

components g

iv L3 2‘5?(51,0) satisfies Cur'ir 1z = g and

3 < CIIQH%,F

HC“Z,Q < Clizl
. . _EsI‘

e Secondly, the mixed problem
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7€ (L12(a))? . X € Wi(a)

J 7.7 dx - { cirl 3.V dx v e (L2(R))3
2 Q

J Z.curl @ dx = J (@-cirl cirl 2).8 dx V& € W (R)
Q Q

admits (according to Theorem 2.5) a solution ('z',i') satisfying 7 = curl X,

cirl Z = $-clrl(curl 7) in @, 70 =0 on T, and IXI , S Ciwly o+
. w »
il?;'ll2 o) thanks to (2.18) and Proposition 2.4. By uniqueness of Z, we

90

have Z =U-curl T in @, so ¥ = X+ solves the problem. .
We end this part with a general result on harmonic vector fields.

-1
PROPOSITION 2.9 Let g be in H ?(T) N M(T). The problem

diviu =0 Q

curl 4 =0 Q
(2.31) .
n=g T
g=0

PN

has a wnique solution U € H(div,) which satisfies

(232) i o < cgl

~ for some constant € independant of .

PROOF OF PROPOSITION 2.9

e Following TEMAM [43], the auxiliary problem

0 Q

)
[
R

]

g T

H
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defines ¢ € HI(Q) N Lg(n) and the continuity of g+ ¢ :1vell, o <C I!gn_% p

i5 classical. If we take

U=

the existence of U satisfying (2.31).(2.32) is established.

e Uniqueness is a direct consequence of Theorem 2.2. =
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111 - VECTORIAL CURVED FINITE ELEMENTS IN R?

We have seen in the study of the continuous problem that the
representation of a divergence free vector field U by means of a vector
potential v leads to the internal and boundary equations curli $ =0 in
Q and C”r]r My = U.n on TI. To discretize the field ¥, we choose
finite elements conforming in the space H(curl,0) such that the boundary
T is exactly covered by the triangulation faces. We introduce here two
different curved finite elements of degree 1 which are conforming in the
spaces H(div,o)} and H(curl,) and are a natural generalization of

NEDELEC's tetrahedrons [37]. Then we show that for V in H(div,2) (resp.

@ in W2(n)) the interpolation error in the associated discrete space

Vh(Q) (resp. Nh(n)) is of optimal order. We construct in the following
a triangulation ?ﬁl covering exactly the domain 0. We denote by %Th

a
the subset of %?; formed by elements K such that the intersection

K nan is not void.

1) DEFINITION OF CURVILINEAR TETRAHEDRONS

- A S
- DEFINITION 3.1 -Let K bPe thg_"unity_tetrahedron"_: S

o . _ S
K _= {(_x1:x2!x3) 3 'R3 ) x.i 20, i=-1,2933 . X1+XZ+X3..< 1} .

A cﬁrvilinear tetrahedron is defined by the range of. Q by a regular

(class €?) one to one function F: |

.A A

x+ x = F(x) € K .

Practically, either K 1is an internal element of the triangulation

and F is assumed to be a linear mapping (this hypothesis will be implicit

~in the following) ~ , or K has at least one point on the boundary.
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In the latter, four cases can ocCcur @

(1) Knao is an edge of the tetrahedron
(i) K naq is a face of the tetrahedron
(iii) Knoaqe is reduced to one point

(iv) K n 3q contains at least two faces of K.

In the case (iii), F is also choosen 1inear, and the case (iv) can be

eliminated by a refinement of the mesh. We focus now on (i) and (i1)

(figure 3.1).

HYPOTHESIS 3.1 We assume that the triangulation %’h ig sufficiently

elements K of_?’hi

refined (i.e. h suffictently small) to be sure that the orthogonal pro-

Jection PI‘ is well defined on ‘Zh (Proposition 1.1).
1Y

DEFINITION 3.2

(i) Assume that exactly two vertices A A, of K belong to the set
—
I nQe; defined in (1.6)-(1.8). The curved edge AJA, is defined as

PI‘([ AL AsY) where [ALAz] -is the straight line between these two points.

(i2) If 3@ éontains three vertices Ay ALRy of K, the curved face

- AjAsAy  Zs exactly P_r([ Ay Ay Azl) where - [A1 Ay R3] - is the corresponding .

" plane face.

We can now describe the choice that we are making for the curved

af
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Case (i) 4 . (Case i1)
Figure 3.1
Intersection of a curvilinear tetrahedron with the boundary
As

T A
F1gure 3.2

Transformat1on of a stra1ght tetrahedron 1nto a curv111near one

Az _

Ay

Curvxtunear face (f) _common te two burV?11ﬂear tetrahedrcns {K L3;j ]f-"'
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A, ] A
DEFINITION 3.3 If X 18 a point of the unity tetrahedron K, we denote

by Aj(j =1,-,4) itg barycentric coordinates.
-
(i) If K contains a curved edge AjR;, we set

A Ay A+ A
(3.2) F(R) = (1-23- ) pr( e ) £ Az Azt Ay Ay

,"'--\
(22) If a curved face AR A5 1ig ineluded in 3R, we set

o A Ay +2a, A, +2A3A
A 151 2 Hgp T A3 A3
(3.3) FX) = (1-2) Pr( e )+ Ao Ay

(see figure 3.2).

This type of definition was first proposed by ZLAMAL {45,46], studied
by SCOTT [42], and generalized by LENOIR [31]. Geometrically we first write
a current point X of the straight tetrahedron [A;A;AsA,1 as a barycentre
of one point y on the edge '[ AjA,1  (case (i), p=2) or on the face

[AjAA5]  (case (i), p=3) and of the other vertices of K :

Then we project ¥ on 92 without changing the barycentric coordinates

relative to the set {y,Apﬂ,—,Aq} :
4

(3.5) X =y PF(S}') + 2 . A,

jepel 3 Y

_ This_ formula represents both (3.2) and (3.3).
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PROPOSITION 3.1 The edges and faces of the triangulation '-'I?’h are defined

intrinsically without any explicit reference to the element which contain

them.

PROOF OF PROPOSITION 3.1

To fix the ideas, suppose that the curvilinear elements K and L
have corresponding straight tetrahedrons ¥ and T which have one common
face f = [A;AA3] (figure 3.3). Then A;,A;,A; cannot be simultaneously

on the boundary a2 and, for example, A; and A, are on the boundary and

As; is an internal point. If 'jf belongs to [A;A;], its image y on
-~

AA, is exactly P.r(;) (thanks to (3.4).(3.5)) and does not depend on K

~

or L. And for ;f cn f we have

X =uy+azhA; + 0.A, +0.A; .

and it is clear that the corresponding x by (3.5) does not depend on the

choice of the refering finite element. -

2) INTERPOLATION SPACES

" We adapt in this paragraph the spaces proposed by NEDELEC [37] to .

' .di_scret_ize_ Sobolev space_s_'lfl(di.\'f,'_n) and H(curl ,sz'). ST AT R |

' DEFINITION 3.4 We set

© Dy =?{?: R’> R, 30€ R ,B8€R, V(i’):&’wi'}
Ry = {6: R3- R3, 33,8 € R3,$(?)=E+Ex§}

and, if K is a curvilinear tetrahedron (Definition 3.3), the corresponding

- degrees_of freedom are :
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2o(K) = {og(V) v.n dy , f face of K
f f ¢

]

I,(K) = {ca(a) Jaa.dﬁ , a edge of K}

DEFINITION 3.5 Let K bea curvilinear tetrahedron (cf. Definition 3.3).

We denote by dF(x) the tangent linear mapping of F at the point x,

and J(x) its jacobian. The genmeralizations of D, and Ry are :

pry A
D;(K) = {v : K- R3, 3 3 €Dy, ,V Sex,

A}

A
RI(K)={$:K-_’R3,3‘D€R1 ,VQEQ,

(3.6) V(F(X)

(3.7) ar ) =t S}

and we wtll also use
A
PI(K)={w:K-R,30€P1 ,v?eK,w(F(Q))=Q(Q)}

where P, denotes the set of polynomiais of degree nol greater than 1.

PROPOSITION 8. z I F is chosen accordfng to Definition 3.3, the elements

.(K Ef(K) Dl(K)) and (K,I (K) Rl(K)) are untsolvent and confbrmtng in the '.::

spaces H(cur1 K) and H(d1v K} respectzvely.

PROOF OF PROPOSITION 3.2 .
_ The proof is due to NEDELEC (Theorems 1 and 3 of [37]) when F

linear (i.e. 1(K) =D :and R;(K) = Ry). In the general case tha un1so]-

vent property is a direct consequence of the formulae

(3.8) J%V(x).ﬁ dy = J?C(Q).G &%)
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(3.9) L o(x).d5(x) = Jg SR ds(®)

obtained by the change of variable x=F(Q) and by (3.6).(3.7), and of
the previous unisolvent property. The finite element (K,zf(K),Dl(K)) is
conforming in H(div,K) 1if, and only if, for each face f of K and
each V € D;(K), og(V)=0 implies V.n=0 on f. Due to (3.8) and
the straight case, V.n=0 on f and V isa tangent field on ? which
is transformed by dF 1in a tangent vector field on f, then (dF(Q).c,n) =0
on f. |

The finite element (K,za(K),Rl(K)) is conforming in H(curl,K)
if, and only if, for each face f and each ¢ € Ry (K}, oa(zﬁ) =0 (for
each edge a of the boundary of f)} implies nxp=0 on f. As in the
previous case, axt?a =0 on ? Let T be tangent vector field on ?,
then (3.7) gives (9(x).dF.2(R)) = (8(R),%) which is null because @xn=0.

Hence ZBxK = 0 and the property is proved. ‘-

3) INTERPOLATION AND ERROR ESTIMATES

We define now interpolation spaces on the domain @ . ~due -to the

‘triangulation . We assume that ‘?h is regular, i.e. = - -

- HYPOTHESIS 3.2  There exists a fixed constant  C such that, for each

h >0 and each element K of ?’h, “we have _ﬁk_e .fol_lowing inequalities

between the diameter h(K) of K, the radius po(K) of the largest ins-

eribed sphere in K, and h :

h(K) <h<Ch(K) , h(K)<Cop(K)
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DEFINITION 3.6

vip(a) = {V € H(div,e2) , VK€ F, , V|K € Dl(K)}
Vo(e) = {V €V (a) , V.F=0 on an}
W () = {3 € H{curl,@) , vKE€ ??h , alK € Rl(K)}

] - - o
W (a) = {we W (2) » ©x7=0 on asz}

The corresponding degrees of freedom are

e() = {ofﬁ’) = L V.ndy , f face of @?h}

za(n) = {ua(a) = [ ¢.d5 , a edge of %Th}

a

We recall also the definition of scalar valued functions on
curved finite elements which extends in a straightforward way the
usual P, finite element (e.g. CIARLET [14]).

DEFINITION 3.7

H;, ()

{ w e H (D), VKel, , w]Ke P, (K) }

H,p (2) = _H,i _(n) n H}) (ﬂ)_

‘The associated degrees of . freedom are the va1ues w(p) for p vertex of
the mesh T, . We notice that the latter def1n1t1on rema1ns unchanged if

Qs a twod1mens1ona1 domain.

=_THEQREM 3.1  We assume that ﬁ?h -satisfies hypothesis.3.i-3.2._For v

in (H1(Q))3 there is one and only ome interpolation vector 'HJ)V in

Vh(ﬂ) defined by

D -
(3.10) cf(ﬂh v) = Uf(V) v f face of ﬁfh
and we have
: .. v D= . -+ .
.(37;1). _“V__3h_Y"p,g_<_9_h'PY“1,n o

. for some constant C. .
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THEOREM 3.2  Under the same hypothesis on ??h, for @ in W2(R) there

18 a unique interpolation vector HJQG in Hh(ﬂ) sattsfying
R -
(3.12) 0 (1, 9) = o, (®) Va edge of %y

We have also

(3.13) 1% - "9l <ChI3!

H{curl,q) W2(q)

The proof of these theorems needs a precise analysis of the way
we approximate functions in elements adjacent to the boundary. First
some auxiliary results. We follow NEDELEC [35]. We recall (c.f.Part I)
that the Tlocal charts u.: @ =~ I-1,1I[* (i = 1,...,p) have a
restriction to 40 n @, which satisfies

#1(39 n ﬂ-,) = ]'1:1[2 X (0)

2
Moreover it is possible to find polygonal subsets D, of ]-1,1] % (0)

which are compatible with the triangulation %, : the parts f} = p?l(Di)

of the boundary are recovered exactly by curvilinear triangles of %?h

p ~
lying on 3@ and {J T,=TI. The inverse function of.nil is denoted by
RS S UL S i, S
_ L oDy

¢ ¢ |
Dy epes(e)er;

which is an exact parameterization of T..

A :

S Figure s Pavameterizatienor R
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In practice, each polygonal set D, is obtained as follows: the
vertices of T lying on I define a set of points in ]-1,1[x(0)
according to the Tlocal charts g, . Then a plane triangulation 7.,
having those points as vertices s defined naturally inside
(1-1,1[)*x(0), due to the topology of the curvilinear triangulation
I.nr,. The union of the corresponding triangles form the subsets D,
(Figure 3.4). Moreover let ¢1h be the unique continuous mapping which
is affine in each triangle of T, ~and coincides with ¢i at the
vertices of T.. (¢1h is exactly the P interpolate of ¢1’ c.f.

Definition 3.7) :
D, 2 £~ ¢, (&) € (H(D) )

$.,.(p) = ¢, (p) V p vertex of 7., .

The range of ¢ih is denoted by fih ang is exactly the union of the
straight triangles that 7, defines onHFi. Thus we have two different
parameterizations of the surface T, (that we compare at the
proposition 3.3): on one hand the chart ¢1: Di -~ T, and on the other
hand the composite P ¢ih of ¢ih: b, » T,, and PF (restricted to
Tih)._First we have tge following property: '
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IEMMA 3.1 Let Ay,A5,A3 be three vertices of ?h“ lying on a piece ?'i

3
of the boundary, and y = E A5 A_i a point of the straight triangle [ AjAzAs]).
i=l

We can define a unique point e(y) in D, such that

(3.14) o;p((¥)) =Y

PROOF

—— i e

3
e(¥) = 2. x; @:(As) -
g T -

We specify now the relations between the exact surface ?’1., the

approximate ‘Fih’ and the normal projection Pr on the boundary 3Q.

(3.15)  sup 1DFe;(8) - Dey ()] <C T sup [DReg(e)] =01
g €D, £€D;

Ssup sup |D*(P.° 4. )(g)-o“_¢. (£)] <
ke 7 cek R 1h

(3.16) = o |
d=l,...p geD; : R
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LEMMA 3.2 Let K be a curvilinear tetrahedron of §ﬁv ad X be the

associated straight tetrahedron. The map F (Definition 3.3) is the composite

i

(3.17)  F = F (X BX+b)

A L
with K 3%k X =Bx+b €K and K3 X b X = F(x) € K. Under the hypotheses

3.1 and 3.2, we have :

(3.18) sup |dr1.j(x)-a1.j’<cr1 . i,j=1,2.3.
x € K

(3.19)  sup —--dF (x)|<c . 4,5.k=1,2,3.
XeX

for some constant C independent of K and hs &y is the Kronecker

matrix.
PROOF OF LEMMA 3.2
Due to (3.4).(3.5) and (3.14) we have :

(3.20) ?(;) =X+ U(;)(PF" ¢.ih -¢1h)(€(;))

with u(X) defined in (3.4).
e We first prove_(B.lB). By differentiation of (3.20), we have to control both

- (3.21) ﬂ;«gﬂ- (Ppe _¢1-h_-¢>_1-h)_(€(_?§)_.)

XJ ;
and
o a. ' 9y
(3.22) u(x) o (Pr° o5 ™ ¢4p) =
. - k- . 23
9y 1 '
On one hand, it is classical that l < = with p radius of the
2p

inscribed sphere in K. . .
Then according to hypothesis 3.2, we have

(3 23) |
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Moreover (3.16) with a=0 and the hypothesis 3.2 prove that the expression
(3.21) is bounded by Ch. On the other hand, let Ay be the center of gravity

of the simplex {Alw..A 1 ; then from (3.14) we have

X A A
d1p(8(X)) = 21 0 u(x)

A
d_ s a particular barycentric coordinate in [Al...Ap} . Then {3.23)

u(X) Al
is valid with u replaced by 7%. Moreover the gradient of ¢., is bounded

from below by some constant y, because b5 is a i?l-diffeomorphism and the

error (¢ih"¢i) tends to zero in %?I-norm due to (3.15). We deduce

|J¥i- <-l ph %-< C
ai& Y

This inequality joined with (3.16) {case o=1) shows that (3.22) is also

bounded by some Ch. So (3.18) holds.

e The proof of (3.19) is similar. -

PROOF OF THEOREM 3.1

B S1nce (3.11) is additive, it is 5uff1c1ent to prove it 1oca11y in

'dne element K Let ¥V € (HY{K))3 and nv 1ts 1nterpoiate 1n V (9) :

A
-cf(v) = of(nv) for f face of K. Due to (3. 6) we defxne v € (Hl(K))3

and _HV € D;. If we denote by n the 1nterpo]at1on operator conform1ng in _
H{div,K), we have 1Tv = nv because those two functions of ~D; have the
same degrees of freedom {cf. Prop051t1on 3. 2) We compute then easily by

changing variables : K 3 Xb x € K

S 2
J IV-1v] dx < sup
K

2 AA 2 A
2! Jn|v nv| dx
A

xek ) :
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(The norm IidF(Q)u2 of the operator dF(Q] is equal to the operator 12 norm
in R3). The factorization (3.17) of F and the estimates (3.18) on

dF(X) show that there exists some constant C independant of K and h

such that
5 22 A AN 2 A
(3.24) J [v-1nv| dx < - ¢ 1B 2 JA‘V—HVI dx
K |det B K
Thus from the Bramble-Hilbert lemma [10] and from the inclusion (PG(K))3c:01
it follows :
2
(3.25) M‘G-ﬁ(ﬂ dr < clv’
¥ 1.K
with 1‘$|f ‘= J sup a5 dt.
K lel<1,in] <1

We have, after resolution and derivation of (3.6) :
(abR).8) = 3R (HaF ()0 s dv(x). R ().E) +

(3.26) D —-—(J(x)dF]k(x))Vk(X)i n
1,].K axJ

The square of the first term, due to (3.18) has after integration, the

following upper bqund :
. . I .-1- , » *2 _:.
:(3.27) Cldgf BJ HB :HZ lI_B_H_2 Jvlng

" and the second term of (3.26) can be rewritten as :

mJ X

(3.28)  (det B) | 2 Bgi 8 .-——-(det dF(x)dF k)vk(x)g n

i,J,k,1,m

S .
The expression (det dF(x)dFlk) is exactly the cofactor of the element

(1,k) of the matrix d?(;) thus is polynomial of degree 2 in the variables

&F 8(;) {e,8=1,2,3). ”Wen re]at1ve1y to X , the derivatives

e dj m*
Ff, erent:ate rt

A
()
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dF (x) are bounded due to (3.19) and the factors dF ,{(x) are
3X A
also uniformly bounded (cf. (3.18)). So the integral on K of the square

of (3.28) is bounded by

- 2 2 A
(3.29)  C|det B| J,\its 1M 218817 19(x) | det B dx

-1 2 - 2
< Cldet B} 118 HZIIBH2 I[vllo.’K

Now from (3.25)~(3.27) and (3.29) we get

2 -1, 2 2
JAlC V]°dx < Cldet B| NBI2 WB™h, HVI] ¢
This last inequality combined with (3.24) and with the classical relations
between the norms of B, B~  and the real parameters h(K), o(K} (e.g.

- -, 2 - 2
CIARLET [14]) gives J |Vv-nv] dx < Ch? vl .
K »

To estahlish Theorem 3.2 we need two lemmas, one algebraical and

one analytical.

M (NEDELEC [37], Lemma 7). If @ € (P, )3 sat'l,sfzes o ((p) 0

for each edge a of K then curl !.D 0

@ ‘=f;{u o « ([ a) [ e e

R Q3

is equivalent to the usual norm on W2(Q) :

' 3
ol (uwu + fcorl 21’ )
W2(q) 1,0 1,9
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PROOF Elementary consequence of the compactness of the inclusion H! <, L2.

—_—
[ ]

PROOF OF THEOREM 3.2

e The existence of the interpolate function HJQG is not straightforward

if © belongs to W2(2). We verify that the integral ca($) = J ®.T ds
a

can be defined : the edge a is included in a face f of the triangula-

tion gzg (whose normal is denoted by ﬁ). Then the tangential component

m$ on f belongs to THi(f) (because o € (H1(2))?), so

(3.30) I$ € (L%(f))?

The same argument shows that curl ©.n € L2(f) but we have (Lemma 2.1)

curlP e = curl 3.3 and divr My = cﬁfl(ﬁ><$).ﬁ. Then, thanks to Theorem
2.7, we have :

(3.31) v (1®) € (L2(f))"

The inclusions (3.30) and (3.31) are equivalent to 1$ € (Hl(f))2 which

leads to ©.7 € Hi(a). This argument does not depend on the choice of the

face f, because it is true in the case of regular vector fields.

- We estimate now M37-H;2$H. . _The inequality
1S-ER 0N <ChIGH
b T, 1,9 . - SR .

can be derived from the proof of Theorem 3.1. The inequality

(3.32) I cUrl (@ - Tl (Sch ol
b W2(K)

. A
(with 1= H;S is what is needed to end the proof. We denote by ¢ the

element of H(cur],ﬁ) associated with ¢ due to (3.14), and ﬁ$ = ﬁ%

its interpo]ate in Ry. We also have from (3.14) the equality :.
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awﬁ 3P
- - 1 —kY) gp:l
(3.33)  ayegmger = T AR (axk ax]) )}

from which we deduce (with help of (3.17).(3.18)) :

AA. 2 A

o L = .2 -1 &
(3.34) J |curl{w-np)| dx < CIUB 1ll2 |det B J |cur1(w ne) | dx
K K

Given Q in (LZ(Q))3, the linear form
A A -
(3.35) W2K)sem Jﬁcuﬂ@-ﬁfﬁ) .y dx € R
A .
is continuous and equal to zero when ¢ € (P1)3 according to Lemma 3.3.
o (3.35) is continuous on the quotient space wz(K)/(Pl)a. Moreover,

temma 3.4 implies that the semi-norm |cﬁf] 3[1 K is norm equivalent to

the quotient-norm on wz/(Pl)a. Thus we have :

UACUH(:B-I,I\G) Cx dX| < couXi plcirl 3 ¢
! 0 1R

which gives by duality

(3.36) _,jﬁlcm (6- 0N < clcin 813 ¢

. The end of the proof is then similar to the end of the one in Theorem 3.1.

We have clearly :

: A ' 6 :
. o Ay 20 9 a2
(3.37) {A A (.Ak Al)! dX < € ——2 J [v(curl @}] dx
: Ko baxs Maxy o+ 3x, |det B| "K . 5

and (3.32) is a direct consequence of (3.34), (3.36) and (3.37).

We end this part with a useful property which is a
straightforward Corollary to Theorem 3.1:

PROPOSITION 3.4 . Let. V € H(div,2) and .-nhDV its interpolate in V. (2).
We have 'J div v dx = J div_ng) a

V dx "fbr_each element OK of Z,-
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[V - APPROXIMATION OF THE HOMOGENEOUS PROBLEM

We study in this part the approximation of a divergence-free vector

field U defined on a simply connected domain o which satisfies a homo-

geneous condition for its normal component on the boundary. More precisely,

U is solution of

4.1y  divi=0 Q
(4.2) cirl U = o Q
(4.3) u.n =0 r

and we search an approximation ﬁh of U of the form :
e d -+ -y
(4.4) u, = curl v

with Uh (resp. ﬁh) lying in Vh(ﬂ) (resp. Nh(ﬁ)) [ Definition 3.6} . In
fact the uniqueness of the potential $h will be assumed only if we add
come discrete constraints on the space wh(n). First the equation (4.3)
is automatical]y satisfied if we choose ﬁh € Ng(n) Secondly, a gauge

condition is necessary 3 rem1nd that in the cont1nuous problem, we -imposed

'the Cou]omb gauge (cf. Theorem 2. 5) d1v.w. 0. In [38] J. C Nede]ec

-e.proposed to take the weak form

(4.5) ¥y € {w € wh(n) J ®. veh dx =0 ’ ¥ eh € H h(n)}

The Definition (4.5) gives good theoretical results but an exp]icit basis .
of the corresponding linear space is not natural. In the following a linear

space for the choice of $h js proposed : we treat the gauge condition in

- an entirely algebraical way end obtain the axial gauge (GLIMM [27]).
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Then the representation (4.4) leads to a mixed discrete formulation of the

problem (4.1)-(4.3) ; moreover we obtain a velocity field Uﬁ satisfying

- - -+
Iiu--uhliﬁ’Q <CFHMHMQ

This estimation is optimal because ﬁh js polynomial of degree 1 (out of

the part ‘ near the boundary) so, following (4.4), Uh is constant
30

in each finite element.

1) DEFINITION OF THE DISCRETE GAUGE

‘We suppose that @ is simply connected, i.e. N, =0 (figure 4.1).
We assume both that the mesh ﬁZ; satisfies the hypotheses 3.1 and 3.2 and :

HYPOTHESIS 4.1  The mesh ¥, 18 sufficiently refined in order that :ZM
) 3af

admits the partition

&

U |
h = - %;ll » %.h‘ n ?hir. = ¢ with -%‘hlr

|
34 Ty i j i

formed by the elements K of Cgh‘ such that K N T, is not void.

DEFINITION 4.1 If‘ ??1 satzsfzes Hypotheszs 4.1, wve denote by N (r'esp

N

f’ N ,'.NS'.) the nwnber' of elements (resp faces, edges, vertzces) of ?’h

The part ?’hl of‘ %, admits, for i=0,1,...,N., f (resp n.ss Ngi/
I‘ h

T

*
we note f_ Z "f1 Na-Na-?:::Ona_.‘,

'faees (resp. edges,N vertzces) lying on the conponent I l\( I. Finally,

We have the Euler-Poincaré relations on the manifolds @ and T;.
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THEOREM 4.1  {Euler-Poincaré)

+1

(4.6) x(2) = N =N 4N =N

n
-
—

f

1
e

(4.7) x(?i) ELIPILE PR 3 P j =0,1,...,Nr

PROOF OF THEOREM 4.1

The domain Q@ s simply cdnnected thus for each component of its
boundary (4.7) holds (e.g. MASSEY [33]). Moreover each Ty is the boundary
of some domain whose Euler characteristic is equal to 1. So we have by addi-

tivity of the Euler-Poincaré characteristics :

Nl" NT
@+ (Z 1) - oy = ]

To construct the discrete space of the vector potential, we need

some details on the graph defined in the set of vertices of %?h by the

edges of the mesh. For a general reference on graph theory, we refer
to BERGE [8]. '

DEFINITION 4.2 Let Ph(n) (resp. P.(T.), Ph(r), p (9)) be the set of

alZ the vertices of the triangulatzon %?E (resp. Zyzng on -ri; Zyzng on F,

znternal to the domain) and Ah(Q) (resp. Ah(r ) A (r), .(B)) e graph i

'def%ned on. Ph(ﬂ) (resp P (F ) h(F), P (Q)) by the bznary relatzon B

YV P,q vertzees ef %?h in Q (Tesp Ty r, Q)
(p»a) € A (2) (resp. A (T:), AL(T), A (9)) if and only if
[p,d] is an edge of %?h R :

We identify in the following the sets Ah and the corresponding

edges of the triangulation %?%.
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Figure 4.1 Nr =2, NH =0

- 'Figure 4.2 Symbolic representation of the graph
A (R), the tree T, (2) (thick lines)
and the isolated edges of T(r) {double lines)}
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DEFINITION 4.3 The natural basis of the space Wy (@) <s denoted by ¢y

a € A (n), it satisfies ua(3b) = Ga,b for a,b € Ah(Q) and o, intro-

duced in Definition 3.6,

PROPOSITION 4.1 We have

Wp(e) = span <3, ,a € (A (aNAL(T))>

. 1] @
dim Wp(@) = N] . Card(P,(2)) = Ng

DEFINITION 4.4  Let us fix a maximal tree Th(h) in the graph Ah(ﬁ)

(Th(a) is connected without cycle, admits (N:-—l) edges, if we cut out
an edge of Th(a) it is no more connected, if we add an edge of
Ah(a)\Th(B) to Th(a) we obtain a wnique cycle). Let us also fiz (Nr-fl)
edges T(T) of Ah(r) connecting Ph(a) to each Ph(ri) for 1=0,...,N;

(cf. figure 4.2). We set Ti(R) = T (8) U T(r).

PROPOSITION 4.2 Let o be an edge of %?h which does not belong to

Ah(r) U T,(a). The union A (T) U Th(n) U {e} contains a unique cycle,

which ig the_bdundbry_of a surface of ¥p-

. PROOF OF PROPOSITION 4.2

- Two cases - are poss1b1e F1rst o E Ah( );'itheﬁ-the cycle exists.

because T (Q) is a maxqma] tree in A (Q) Secondly « € A (9)\Ah(5)

i.e. «a connects a po1nt of Ph(r ) to a poant p of P (Q) we

denote by g the point of Ph(ﬂ) connected to Ph(r ) accord1ng to
a; € T(r) and consider the path y included in Th(Q) joining p to

q. Then {a} Uy U {a;} connects two vertices of Iy and is easily ex-

o tgnded_by edges of -Ah(ri) to defjne:a cycle as proposed... . .
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We define now the discretization Kh(n) of Ho(curl.n) satisfying

the discrete axial gauge :

DEFINITION 4.5 We set

HWe denote by e,

ol(2) = {3 € Whi0) )@ =0 i b To@)}

span <$; ya € A (a0 (AL(T) v Tp(0))>

DEFINITION 4.6 U, () = {V €V, (a) , div V= 0}

h(sz) = {v € U, (2) ,van=0 on r}

We prove now that Kh(g) allows an exact representation of discrete

vector fields in UP(a) < H(div,a).

THEOREM 4.2  The mapping curl is ome to one from Kh(n) onto UE(Q) :

4 0 - - -+
(4.8) vy, € Uh(ﬂ) » 31 € Kh(Q) , curl @ =

LEMMA 4.1 curl_wh(ﬂ) < Vi(a)

PROOF OF LEMMA 4. 1

Let w be in wh( ), then c]early curl w € H(d1v,9) and it is

.enough to prove that in each e?ement K of 7., _curl ° belongs to Dl(K)."'

There ex1sts some w €R (K) (cf (3. 14)) sat1sfy1ng w(x)- taF” (x) w(x).
;jk the totally antisymmetric tensor (e.g. GERMATN-MULLER
[25]. Then, due to (3.33), | R

- - 1 - -
(4.9) (cirl @) == 2. . 97 (curl @) dF
P72 13 “ton oo
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The sum

1 -1 -1
(4.10) 3 g: €55k lmn 915 Fmk

because the following identity holds (GERMAIN-

is equal to EE‘.'%_GTT o (%)
MULLER [25] ):

IS R O -1
]Iznn €1mn dF]j dka dF . = €ika det(dF ")}

Then, replacing (4.10) in (4.9) we get

(4.11) (O @)y = T e dFy (X (cir o),
n det(dF(%))

A A A
The vector curl @ is constant in K, thus it belongs to D;(K). Moreover

the identity (4.11) shows that cirt ¢ is in Dj(K),  due to (3.6).

LEMMA 4.2 We have the following characterization of Uﬁ(ﬂ) :
(4.12) uﬁ(g) = {? € H(div,2) ,V..ﬁ’“ =0, 3VEP » (3.6) holds }

. 0 o
(4-13)  dim U(2) = Np - K + 1

"PROOF OF LEMMA 4. 2

e let V be a vector valued function .of Uh(ﬂ) In.the E1ement K _of %ﬁ]'__

"13 6) aliows us to define ¥ e D - From (3 8) we deduce easily  J-div:V dx =

A’K
A A
}Ad1v v dx Because div V=0 and d1v v is constant in K, ' v is constant

~on K and. the character1zat1on (4.12) holds.

e Inversely, if v and ¥ satisfy (3.6) we have the identity

Cooa A L AA AA A
div v(F(x)) = 3 div v(x} v x € K, J=det dF(x)
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which can be directly derived : by taking the divergence of (3.6), we get
Lo A -1 3 /1 1 ,.. A
(4.14) div V = ): Vs > daF s —% (5 dFij) + g divy
J i,k axk

The sum over i,k in {4.14) is null because we have the classical identity

on determinants :

P A -1 3
oy W) = 2. 3 dFy s 2 (dFg)
xj i,k axj

]

Then div v=0 din K. Moreover Vv.n is continuous along the faces of

the mesh, and div V=0.

e The space Ug(ﬁ) is defined by N? degrees of freedom and Ne relations

due to (4.12). But the family of linear forms

Vﬁ(ﬂ) 3Ve <:xK;V> = [ divvdx € R , K element of %?h
‘K

generates a linear space of dimension (N, -1) Dbecause we have the relation

2 J div V dx = 0, for each V€ Vﬂ(ﬂ), and if we fix an element Kg,
K o

K€ ®h
let us suppose that the following linear sum is null :

(4.15) . 2. ap xg =0
Y -"K;EKO_'K K -

Fix K1#=K,' e_-réguTar fuhctioﬁ_verifyihg

supp 6 < Kg U Ky _

6>0 in Ko 3 6<0 in K
J o dx =0 ' '
Q

We denote by ¢ a solution of the problem
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—
lo)
S
]
Low)
—

and we set : V = nhD {(wp). The vector vV belongs to Va(Q) and according
to Proposition 3.4 the integral J div v dx 1is null for K different

K
of K, and K;, and is positive for K=K;. Then testing (4.15) on v,

we get aKl = 0. So (4.13) holds. -

PROOF OF THEOREM 4.2

e From Lemma 4.1, curl is well defined Nh(ﬂ) - Uh(fz). Moreover if ©

belongs to Na(sz), we have on the boundary of @ : curl o.n = divr oxn=0,

then curl ® belongs to Ug(n)..

e The mapping curl : Kh(sz) - Uﬁ'(n) is injective. Let ¢ be a vector
lying in K (e) satisfying cirl =0, and o be an edge of A, (@)\
(Ah(r) 3 Th(Q)). Following Proposition 4.2, there exists some discrete
surface from the triangulation %’h with a boundary v, composed
only by edges of {a} U A (T) U T (). When we integrate cirl ¢ on £,
we find I $.d5 = o_(¢), which is null because cur 6= 0.

The linear. spaces. K (52) and Uh(ﬂ) Nhave the same.dimension On one |
'hand ‘we have cleaﬂy dim Kh(ﬂ) = N Z noi " (N -1) - (N +1) _an_c!_-"_

on the other hand, thanks to Lemma. 4. 2 duﬁ Uh(n) - N + 1 Moréovéf

| T.he.orfem 4.1 shows that .N;- N; + N’; - Ng = =(N._+1). _SO_ (4.8) ho]ds;

PROPOSITION 4.3  Suppose that ?h satisfies Hypothesis 3.1, 3.2, 4.1. Then

for @€ (W(Q) nW (D)), there exists ¢, € K () such that
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- -+ - - -
ficurl © -~ curl Q)hilo’n <Ch "‘p”wz(n)
for gome C independent of h.

PROOF OF PROPOSITION 4.3

From Theorem 3.2, the H(curl) interpolate nhRZE in wh(n)

satisfies

R=

—-+ —-
e - I wuH(curl,Q) <Ch Hwﬂwz(g)

Moreover nth'ﬁewg(n) since ¢xn=0 on 32. So cﬁr'l(nth'E) belongs

to Uf}(n) and verifies

- - - R-» -
fleurl @ - curl Iy ‘””o,g <Ch Itmlth(n)

Theorem 4.2 gives @ 1in K (@) satisfying

cirl @, (x) = curl HhRG(x) VXEQ

and the Proposition is established. : _ o

: 2) MIXED APPROXIMATION AND ERROR ESTIMATE

‘We are now allowed to formu]ate a m1xed discrete approx1mat1on of

- ..the contmuous pr‘ob1em (4. 1) (4 3) in. terms of 2 pa1r (uh,zph) in Uh(ﬂ) x

h(sz)

 PROPOSITION 4.4 Let ¥ and g be two functions in (L2(Q)) . The problem

Find (U ¥y) € Up () x Ky (2)

5.3 dx-Jc”ﬁr?@'.V dx:{'f’.? dx vV e U@
(.16) Jﬂh h o h-Vh AR AR

Jﬂuh..c_g_r]_gph dx =_._J.Qg.cu_.r:]_ @y dx o Y@, € Kh(n) -
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._'T__hus_ (4.17) is obtained by adding (4.19) and (4.20).

49

admits a unique solution. Moreover we have

— - -5 -+ -
(4.17) Nplg o * hedrl Yplly o < BFlg o AL,

PROOF OF PROPOSITION 4.4

e To prove that (4.16) admits a unique solution we just have to consider

the inf-sup property ([2,11]):
[ i .9, ox

-+ Q -3
(4.18) 3¢, >0,V & €K(a) S e > C, 1, K, ()
vheug(n) h' Ul ()

From Theorem 4.2, we can define a norm on K (o) by Nl = {cdrl @l
h Kh(s'z) 00

and we choose 1in Uﬁ(ﬂ) the norm L2. Then, given @ in Ky, let us set

Vi = -curl @« We get [
- - = — - =
Jchr] G-V, dx J curl @ Vi, dx L.
sup - = = - — = llcurl @
0 IV, 1%, 1 LI
vheuh(n) h"o0,0 h"o,0

that demonstrates (4.18).

« e establish now the stability (4.17). Recall that we denote by (Up.¥p)

“the solution _of'(4.16). ':I_n the second ._equa__tipr_!_.-o.f_-_(4._1__6_)._'tal-_ce_, Gh verifying

curl ?ph = [ We, (i_}_ga_\rly'dedgce

‘Make now the choice V, = curl ¥, in the first equation, we get

- -y 2 - -» - - o - .
heur® vl o = Lzuh.cur-] by, dx - sz.curl ¥y, dx
(4.20) i curl vply g < lluhtlo’Q + !Ifllo’Q
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REMARK 4.1 The mixed problem (4.16) has always one and only one solution

for each choice of the (small) parameter h. The stability property (4.17)
gives a good control of both U~ and cirl 3), which have a real physical
meaning, but we have no control independent of h on the LZ norm of the
vector potential 3h and this is natural : for each value of h, the Defi-
nition 4.5 of K (o) holds in itself the choice of an arbitrary tree Th(ﬁ)
and arbitrary edges of Th(r). Therefore it is hopeless to improve the L2
estimation with that kind of discrete gauge. Nevertheless, we recall that

algebraically the linear system defined by (4.16) has a unique solution ;

the numerical tests we have achieved ({c.f. the Annex below) show that for a given

mesh the change of Th(n) have had little impact on the difficulty to solve
the 1inear system.

We establish now the main result of this part. Let w be a given
vorticity function on @ :

se(L2a)’, diva=0 , P =0

Consider the velocity field U E_(H?(Q))3 satisfying (4.1)-(4.3) (cf Theorem

2.5). Consider also the L2 projection -mh of ® over U (Q)

| e o
(4.21) gh_g.uh(g) 7 ngh“o,ﬂ < '““”o,ﬂ

R R 4
(4.22) : Jn(m-mh) . dx = 0. : A Uh(n)

and the following discrete problem :
0 -
U, € U (a) . Yy € Kyp()

- i - - = - —- 0
(4.23) Jg h Y dx Jncurl ¥V, dx = 0 Vv, € Uh(n)

JQ he curT mh dx = ngh.¢h Qx__..... _ V.wh € thﬁ)
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We have :

THEOREM 4.3 Let @, I.Ih, U, E:'h be given as above. If ¥, satisfies

the hypotheses 3.1, 3.2, 4.1, there exists some constant C (independent

of h) such that

5 - -
(4.28) I1u--uhlI0’Q <C hihuﬂo’n

REMARK 4.2

The practical computation of Gh is not easy (it requires the
inversion of the mass-matrix defined by the degrees of freedom in Uﬁ)

and we note that w, is not the H(div) interpolate of ©. However,

the estimate (4.24) is of optimal order as we noticed in the introduction.

PROOF OF THEOREM 4.3

We divide the proof in two parts.

e First, we consider the continuous solution Eh of

div Hh =0 Q
(4.25) clrl Gy =dy B 8
qh..n:.—... O :_. . . . ...T |

Let & 6_WI(Q);' I;s in;erpQ1ate._né)$ be]qhgs_toz'Uﬂ(R)' ‘due  to Propo- - .

‘sition 3.4;'tﬁu5 we have"'

[ @3 .cir 3 ax = | @-5). &
R : ' Q

1

J (3-3h)-(5‘-ﬂé)$) dx  (thanks to (4.22))
£l ' '

< N@-dply o-C N UBH, o (cf. Th. 3.1)

<2¢C h_ﬂru’u.o.’

0 u_r_ﬁnl,g (cf. _(_4'.21))

@i B o< e S, g el B g
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according to Proposition 2.4. We choose now © as the vector-potential of

(T-d,) thanks to Theorem 2.5 ; we get :

- = -+
(4.26) llu-thlo’n <Ch Ilmil0 Q

e Secondly, the field ah introduced above in (4.25) admits a continuous

potential ;h (according to Theorem 2.5) satisfying:

[ 87 ax - | i 5.9 ox = 0 vi e (2(a)’
Q Q h

[ dgecirt & ox = | 3, ox v e ()

1Y) Q

tet us fix for a time ('Jh,?p'h) € ngKh. Because UE(Q) < (LZ(Q))3, we have :

J (4, -4, v, dx - J curl (a’h-'Jh) dx =
(4.27) & |
— ~ -+ . - —- ~ - - 1]
= Jg(qh-uh).vh dx - JQCUF](Xh‘ﬂJh).Vh dx s A4 Vh € Uh(Q)

Since Kh(Q) is not included in Wi(g), we must proceed otherwise with
the second equation. We multiply the second line of (4.25) by Eﬁh € Kh(rz),

we integrate by parts (cf. (1.21)) and the boundary term vanishes because

-

@, x% = 0. Thus we have
__(4.28)_ _ J'Qq curl ‘Dh dx = j “’h (ph dx
We subtract (4. 28) from the second equatmn of (4 23), and we obtam ':'

(4.29) '.jg(ﬁh-a‘h).cﬁﬂ @, dx = Jn(qh-'uh) cirl g dx , Vv @h € Kh(sz) |

Then the pair (?J'h—'ifh s ¥y, - Fp,) s solution ( due to (4.27) and (4.29))

of a mixed discrete problem (4.16) ; the Proposition 4.4 gives stability :
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) ~~ L d ~ - - -
i up - uh“o,ﬂ < (Ilqh- uh“g,n + iIcur](xh - “’h)"o,n>
Then using the triangle inequality we get

I up, - qh”o,n < inf {Ilqh- uhl!0 ot Il cur'l(xh- ‘”h)”o,n}

"~ 0 ~ ¥
uheuh,whel(h

Take now for 'Jh (resp. 'th) the interpolate in Uﬁ(ﬂ) (resp. Kh(Q)) defined

according to Theorem 3.1 (resp. Proposition 4.3) of E;'h (resp. Xp)- We deduce

- -> -+ -+

<Ch ”E’.h”o,fz (cf. Theorem 2.5)
(4.30) ”ﬁh'ah“o,g <Ch uzua,Q (cf. (4.21)) .

The conclusion of the Theorem is consequence of both (4.26) and (4.30).
L |
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V - THE DIRICHLET BOUNDARY CONDITION

We focus in this last paragraph on the approximation of an harmonic

vector field U with given mass inflow and outflow on the boundary :

(5.1) divi=0 Q
(5.2) . cirli=0 2
(5.3) un=g T

We suppose that

(5.4) J gdy =0 v i=0,1,...5N;
Ty
to be sure that U admits a representation in terms of a vector potential

v (cf. Proposition 2.5) : T=cirl §. Moreover a boundary equation is

satisfied by the tangential component Y on 3% :
(5.5) cirl, 1§ = g on T
We first study an approximation of (5.5) : we recall the results of BENDALI

[3,5] and NEDELEC [36] for. construct1ng vector1a1 f1n1te e!ements on the

boundary, and we propose 2 d1screte gauge cond1t1on to 1nsure the un1queness

of the tangent1a1 component in a d1screte vers1on of:. (5 5) Second]y, we

use-a discrete ‘extension to replace ourselives ‘in the homogeneous case stud1ed

in part IV

The boundary I admits (N +1) simply connected components Tis
and the equation (5.5) is thus decoupled in (Nr+-1) different boundary

equations. Therefore in paragraphs 1 and 2 we look at a connected manifold

Ty and in the paragraph 3, we study the boundary T. of «q.
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1) FINITE ELEMENTS ON THE BOUNDARY

We have developed in the part I1I curved finite elements in order
to insure that the approached domain g is exactly . Moreover, the
boundary 82 1is exactly covered by curved faces of the triangulation %?h.
We will denote by C?Th(r) the mesh defined on T by %‘{h (i.e. the points
Ph(r), the edges Ah(r) and the curvilinear triangles which are the faces
of T). We can suppose that each triangle k of ?i](r) is the range of
K = {(Ql,ﬁz,O) € R3, Ql =0 ,QZ =0, Ql +Q2 < 1} by the mapping F defined
in (3.1). Moreover as k s a face of /IE (befinition 3.1), the triangle
k s a face of some curved tetrahedron K of %,., and we denote by Fk
the restriction of F to ":2 The straight tetrahedron K defined by the
vertices of K, and parameterized by Q 3 Qi—v (B§+b) € ¥ defines a piane
triangle ¥ whose union recover an approximated surface Ty of Tr. On
Figure 5.1, we show that k 1is parameterized by X due to the normal

projection P, on the surface k 3 xt+ X = Pr(x) € k as it was first pro-

posed by NEDELEC [34].

g A
Moreover let (ei) be. the canomceﬂ bas1s of . R3 The
i=1,2,3 |

x=F(x) of k  admit the expresswns ':_

G(x) = |dF(x) e1 x dF(x ez|
n(x) = G(x) (dF(x) ey x dF(x) ez)
n{x) = ] (dFk(x) e x dFk(x) ez)

v G{x)

PEFINITION 5.1 (NEDELEC [36])

S AN A AN A M
R =_{“ tk- R?*, 30,8,y ER, M(X) = a+yXp.ma(x) = 'B'Yxl}
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n(x)

Figure 5.1

Curvilinear triangle on the boundary

" Figure 5.2

| AdSQCEht-trfénglés on the bodndéky_-
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DEFINITION 5.2 [Local spaces for the approximation of tangent vectors

R(k)={n:k-’R3,3r’1\ERi/VQEQ

i
1 dF(Q).S} .

A
F =
n{F(x)) T='FG(F(><))

The global finite element spaces for the interpolation of densities

(which belong to M(r)) and currents {lying in TH%(I‘)) are given now :

DEFINITION 5.3

Mh(r)={weL2(r),vke%’r‘l(r),aﬁeR,V'QEQ,
F)y - , dy = 0
MER) < L”* }

For k,1 two triangles of EZH(F) intersecting themselves in an edge 4,
we denote by ?k and ?} the two tangent vectors which are compatible with
the orientation defined on K and 1 by the external normal to T (figure

5.8). We set

RACESCERES ST T ACPLMCENDP

' .iijé:= k h.1 "e&ye:of'%?h(r)_y :"'.":

The degrees -of freedom in Mh(r) ‘and 'Xh(r) are respectively :

a
a edge of ’?;1(1“)} . We define now interpolation operators in Mh(r) and

X, ().

o (W) = jkw(g) .dy-(x), K element of Z(r) and 1= {aa(?{) = J?{.&%,
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THEOREM 5.1 (NEDELEC[34])  There existe an operator Phs : L2(r) n M(T) -
Mh(I‘) defined by J Phs w dy = J wdy , YkE€ %"h(r) and if ?}1 ig

k k i
regular (Hypothesis 3.1, 3.2) we have

S 3
(5.7) Il\«{—Ph wlt_%’r <Ch !leI%’r s w € H*(T)

for some constant C.

THEOREM 5.2 (BENDALI [S5]) Let s be real, s> —;— There exists an

interpolation operator Phc : THS(I‘) - Xh(l") defined by J Phc?;.c?g = I n.ds,
a a
a edge on %h, we have :

In-P hc??:z < ¢ R ;:T{nsr %<s<1,?§em5

PROPOSITION 5.1 We have the following relations between Xh(I‘), Mh(r)

and the curl operator on T : S

(5.8) curl Xh(l‘) < Mh(r)

S - C- s 1
(5.9) Ph (CLIH"].I, n) = curlr(Ph n) Vo € TH(T) , s_>-2—

PROOF OF PROPOSITION 5.1

* The inclusion cur]r he LZ(I‘) is a direct copsequence of the Continuity

of. the tangent1a1 component . Ta “of the 'fu'n'ction.s n € X (1“) on the edges

a of ?‘h(r]accordmgto (5.6). Moreover the 1ntegra] of cur} n on 'r is

' aiways null and  curl thMh(r). In each tr1angle k of ? (r) we have

the general 1dent1ty :_

1 A 1 A
curl {\—/_—- dF.n} = — (curlgsn) .
T G VG R
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Thus if 7 belongs to Rl (k), n lies in R, and curlg,n is a

constant function, which implies (5.8).
e The proof of {5.9) is standard : integrate PhS (curlr?{) on k :
S - . - -
J Ph (cur]rn) dy = J cur]rndy = J[ d1v1.,(nxn) dy
k k k
= f Axn. Y ds (cf. figure 5.3)
3K

—

I 7.5 -_-J P 7.d5 = J curl (P 7 dy
2K 3K K

Thus the two functions of the equality (5.9) have the same degrees of freedom

in Mh(l").. Then they are equal. -

2) APPROXIMATION OF THE BOUNDARY PROBLEM

We first define a discrete subspace of Xh(r) in which the cur‘]F

operator is one to one onto Mh(r).

DEFINITION 5.4 We define n

by the graph Ah(r) of the edggs_of %?g(r)_; da(ﬁb) =-6a.b. f@r :d,b edges _:”

of Fn:

IwTTNITION 5.5  Let us.cons?der-a ingn tree T (I) in ?he graph Ah(r)._
We set | R -

..Yh(r) = span <?{a »a € AT\ Ty (1)>

THEOREM 5.3  The operator cur1P 18 one to one from Yh(r) onto Mh(r) :

VM € My(r) 5 3 LR € Vy(r)  curly =y

as the natural basts of Xh(P), parameterized - |
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PROOF OF THEOREM 5.3

e First the spaces Y, (r) and M.(T) have dimensions n, - (ng-1) and
e~ 1 respectively ; those numbers are equal according to Theorem 4.1 on
Euler characteristic.

e Secondly cur‘]r is injective on Yh(r). The proof given for the Theorem
4.2 is the same. Let o« be an edge of Ah(r)\ Th(r) ; the cycle y_ gene-
rated by o« and T (r) is the boundary of some discrete surface L~ over
which we integrate the null scalar curl 7 (7 € ¥ (r)). We find

JE curlr?;dy = oa(ﬁ) = 0. This statement is true for each edge o of Ah(r),

o -p
=0 .

Let now g be a given scalar function of H¥(r) n M(r) and ©
the {(unique) solution lying in w%(r) of the continuous problem (cf. Pro-

position 2.7)

1}

(5.10) curl T =g , div, € = 0

whose mixed variational formulation is.(see (2.28))

£ € W3(r) , o€ L2(r) n M(r) | |
' - ng-“w"]ecuﬂ Tdy=0  vrew(r)
(5,11) o r.. R _F__ . : R L '  : . L .
e .J'curIT wdy - I g dy o vwelr)aMmr)

We denote also by 9, the 1nterpolate of g in Mh(F). We have, according

to Theorem 5.1 :

(5.12) IIg-ghn_%,r < hllgH%,r
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DEFINITION 5.5 We will denote in the following by Eh the unique vector

valued function of Yh(I‘) such that
(5.13) cur1r & = 9y
Due to (5.10) and (5.12) we have

(5.14) I curl . € - curl, gl < Chlgly ;

-% oI

REMARK 5.1
The discrete gauge on the boundary gives a solution gh of (5.13)

which is very easy to compute ; there indeed exists an enumeration of the

edges (related to the tree Th(r)) such that (5.13) is reduced to a trian-
gular system. The idea of decoupling the discrete gauge in the domain (part

IV) and on the boundary was first proposed by ROUX [41] in a particular case.

3) EXTENSION OF THE BOUNDARY PROBLEM

We now solve the part of the original problem (5.1)-(5.4)
corresponding to zero prescribed vorticity in Q@ and a given nonzero

mass flow g on the boundary I' of 2. The spaces X (r;) and Y (r;) - introduced

previously can be _viewed as -subspace_s of -wh(g) (_cf.__ Dgfi_niti__qn_ 3._4)_ :

DEFINITION 5 6 Let ¢ , - @ € Ah(ﬂ), be the baszs of W (Q) 1ntroduﬂed

in Definztton 4.3, and let Th(r ) be given trees on the subgraphs A (F ).

We set

span <_Ea’a ,é € Ah(ri) ,1‘=0,.§.,N >

X (@) ;

- g
——
2
—
L]

span <5’a ,a € Ah(ri)\ T.h(ri) »1=0,...,N.>
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PROPOSITION 5.2 If G belongs to Xh(n) (resp. Yh(n)), tte tangential

component ¢ belongs to xh(r‘i) {resp. Yh(ri)) for some 1.

PROOF QF PROPOSITION 5.2

This is a consequence of the H(curl,2) unisolvence of (K,za,Rl(K))
proved in Proposition 3.2 : the tangential components of @ on the face k
is only function of the degrees of freedom ca(a) for the edges a of 3k.
Moreover we see easily that the spaces R;(k) are exactly the sets of the

tangential components on k of the functions of R,(K). The statement is

thus established. .

PROPOSITION 5.3 Suppose that ¥, satisfies the Hypothesis 3.1, 3.2, 4.1.

Let us give now 9 1in H%(I‘) N M(r) verifying J gdy =0 for
r‘.

i=0,1,...,NT. We consider the solution E of (5.11], the interpolate
N
I -
& Mh(ri)‘ There exists Zy, € Yh(Q) satisfying
i=0

1l

9, of 9 in M(TF)
(5.15) cur"lr e, = 9y

(5.16) ﬂ;ur}r £ - aurl, th":%,r -S_C.h:ngﬂ%’r

for some constant - C._ -

——

" .PROOF . Direct consequence of (5.14) and of Proposition 5.2.

' _PROPOSITION 5.4 Let G, 9 Eh be defined as above, and_ U be the

solution of {5.1)-(5.3). The vector HhDU - cur Eh belongs to. UE(Q),

and we set

N—_D-»a—) -
(5.17) u, = I curl T
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PROOF OF PROPOSITION 5.4

The scalar function div nhD

U is equal to zero according to Proposition
3.4, Moreover, due to Lemma 4.1, curl c-;} belongs to Uh(n). We deduce
that Uh belongs also to Uh(Q) . Then we just have to prove that the normal
component (nhDD’ - cur] 'z;’h).ﬁ is null on T, i.e. that its integral on

each face is null, according to Lemma 4.2. But we have

| mPdd oy = [ .7 a (cf. (3.10))
k k
= | gdy (cf. (5.3))
g 3
= | g, & (cf. (5.7))
‘k
= | curl ng, dy (cf. (5.15))
Jk r
[ o - —
= | curl Lol dy (cf. Lemma 2.1) .
7k

THEOREM 5.4 Let q, u, 9y, Eh’ Uh be defined in Proposition 5.4. Constider

represented as 'Uh = cﬁ’r] 'Eh + Vh with Vh solution of the discrete

% €G- € o

0

. L [_,.;, f > .o E o :
vo.W, dx - | curl W, dx =10 ¥.w, €U
LVh._cﬁ'r] Gons-[AnToan o v ek

Then, 1f %h satisfies the Hypothesis 3.1, 3.2, 4.1, we have :

-

e I
- <
i u uhllo’Q Chig "%,r
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PROOF OF THEOREM 5.4

® We consider first the solution V of the continuous problem

divv =0

curl v = - curl Eh Q

-+ —

v.n =0
or

Ve (L2(e))’ , T € wi{n)

J V. dx - j curl Tw dx = 0 v W e (L2(2))3
(5.19) Q Q

| V.l § ax = - [ i 7. § ox v 3K (o)

JQ Q

The field U - (V+curl zy,) 1is harmonic (its divergence and curl are null)
and its normal component on T 1is exactly (g-gh). Due to Proposition

2.9 and (5.12) we have
(5.20) llu—(\.v+cur]c:h)i!0,Q < Chlgl

3T

® We just have to establish a similar inequality for the vector Uh-—?-—

O] T = V- V. Let @, be in K (). Then crl ¢, € (L2(2))’ - and

Theorem 2.4 (i) gives  ':"'

(5.21) clirl g =vwp+cirlg

with p € Hl n Lys ®€W. Because @ =0 if G €K (2) we have

 divT $B><ﬁ = 0 ‘and finally 'p=0. We insert the function ¢ defined

in (5.21) as a test function in the second equation of (5.19). We get

V.curl @ dx = - J curl Z,.curl @ dx , v @ € K (2) and by
JQ h o h “h * V% & Py
subtracting from (5.18) we deduce, due to Theorem 4.2, the equality:
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(5.22) JQ(‘J- V)W, dx =0 v W € Up(0)
But we have
(5.23) V-w, = (V+rot g, -U) + (U- (rot T, +w))

We chose Wh = U of (5.17). According to (5.22) and (5.23)

h
V-V, o < 19Tl o
< 1T~ (V4 cirl aﬂuoﬂz+uﬁ-n$ﬁuoﬁ
<Chlgn, (+Chidn o
then
(5.24) "V‘Vh“o,n <Chugl, .

due to Theorem 2.4 (i). The inequalities (5.20) and (5.24) prove the

Theorem.
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CONCLUSION

In this paper, we have studied the discretization of a solenoidal
vector field through the curl of a vector potential. We have recalled
that two gauge conditions have to be prescribed for this potential,
which are both written with divergence operators. We have seen in
parts IV and V that these conditions have a discrete analogy in terms
of trees in the graph defined by the edges of the mesh. The error
estimates obtained only concern the solenoidal field because the
arbitrary choice induced by the discrete gauges does not insure any a
priori simple L? stability fer th potential.

A direct application of this work is the numerical study of
compressible  flow and  incompressible Navier-Stokes equations
developped in Ecole Polytechnique at Palaiseau (DUBOIS-DUPUY [18,19],
ROUX [41]). This study of the numerical error order could be followed
in different fields: first to treat approximations of arbitrary order
with help of the H(curl) conforming elements proposed by NEDELEC [37]
and more recently by BREZZI-DOUGLAS-MARINI [12] and NEDELEC [39]. On
the other hand, the hypothesis of smooth boundary could be avoided and

one could study more realistic physical problems of fiuid dynamics
like the Stokes problem in IR® in (¥,w) formulation (GIRAULT-RAVIART
[26], NEDELEC [38]). Finally the discrete gauge could be generalized

to non simply connected domains of IR®.
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ANNEX. A NUMERICAL EXPERIMENT

The matter presented above explains rigorously how to approximate
a divergence free vector field in IR?* with a vector potential
conforming in H{curl) when the domain admits a smooth (eventually non
connected) boundary. In practice, most of the computational domains
have a polyhedral boundary and the analysis is not applicable.
Nevertheless, the numerical procedure developped in parts IV and V can
be applied without any modification when 40 is poiyhedral. In this
annex, we show that the numerical algorithms described previously can
be implemented without any trouble in the case of a very simple
problem. More precisely, the discrete spaces K, (8) (resp Y, (Q))
introduced at the definition 4.5 (resp definition 5.6) can be
constructed without any help to curved finite elements. However the
practical construction of the trees T, (0) and T, (T') gives to the wuser
a great number of degrees of freedom in the choice of the spaces K, (@)
and Y, (Q).

In the following we present the practical solution of a very
simple problem posed on @ = (10,1[)°. We have used prismatic finite
elements instead of tetrahedrons and we describe quickly the
associated discrete function spaces. The choice of the tree T () on

the boundary is the one done .by ROUX [41]1. The threedimensional stream

funct1on is computed by 'solving a deF1n1te symmetric ]1near system
with a conJugate ‘gradient method “We present a]so two different

~choices -of the 1nterna1 tree T, Q) and their: reiat1ve Tnf]uence on the SR
'pract1ca1 so?ut1on of the linear: system

_ 1) The test cése

The domain @ is the square (]0,1[)%. The face (]0,1[)*x(0) corresponds
to the inflow and the opposite face corresponds to the outflow. We
solve the problem: '
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(A1) div u=0 o
(A2) curl u = 0 0
(A3) un o= -l I, = (10,10)2x(0)
(A4) wn =4l I = (10,10)2x(1)
(A5) un =0 I, = aa \ (T,ur,)

The exact solution of the system (Al)-{A5) can be obtained in a
straightforward manner and we have:

-+

U o= (0,0,1) = e,

The mesh is structured , contains 5%*5*7 vertices equally reparted on
each edge. The finite elements are prisms whose triangular basis is
parallel to x,0x, and they are obtained by cutting each square of the
5*5 bidimensional mesh into two parts (cf. Figure Al).

2} Prismatic finite element conforming in H{curl).

We detail now the .choice of the function space proposed by -
'NEDELEC [unpublished], that p]ays re]ative1y to the prism the same.
“role than the space R, for tetrahedrons (cf Def1n1t1on 3.4).

_ restrict. ourse1ves to the “un1ty pr1sm“ K

A ' T
K = { (X, 1%, ,%,) € IR? , ngigl , X, +X, <1 }
Then the pkocedure exp]ained_in (3.7) (Definition 3.5) can.be dhp]ied S

without modification for —any given prism. The interpolate vector
potential admits the folling form:
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a+CX, -{e+fx, )X,
A A
p(x) = | bdxy | + | (e+fx)x | +
0 0 a+ﬁx1+7x2
A
for x = (x;,%,,%;) € K

and depends on the nine real paremeters a,b,c,d,e,f,a,8,y. The
corresponding degrees of freedom are the circulations

o, (p) = J w.ds , a edge of the mesh
a

as previously and it is an exercice to show that the corresponding
finite element associated with that choice of geometry, degrees of
freedom and function space is unisolvent and conforming in H{curl).

3) Surfacic gauge.

Due to the particularity of the boundary conditions (A3)-(A5),
F.X. ROUX [41] developped a procedure to construct a parﬁicu]ar tree
T,(T) and consequently the space Y, (f) of the functions ¢, such that

(A6) 'cur]r SpeN =un = onal

This choice ensures _that_the:homogenequs__boqndanyﬁcondjﬁipn (A5) is

‘always satisfied. The result is presented on Figure Al: the tree T, (T)

is composed by two sub-trees on. each face T, and T . The edges a such
that o, (w) is'not ‘null a priori-are represented with- a doub]e 11ne

~ For more details, we refer to [41,19]. The computat1on of gh

satisfying (AB) ° (of (5.15)) is easy after finding ~an - optimal

enumeration of  the edges  that transforms (A6) into a tr1angu1ar -

system. Due to the (relatively) low cost of this step of the algorithm
(compared with the next step; the order of the systems (A6) and (A7)

are respectively 69 and 249 for our test problem) this procedure has

not been compared with a direct Gaussian elimination.
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X5
Z \
T
.
-
/
<
._’(’ S _ S _...___” .3_ _} :_fjf—jvf—f?_ X1.

Figure Al. View of the surface tree T (I") on the boundary of the'cube .
- 10,1[3.  The boundary edges, associated with the degrees of
"freedbm that are.a priori not null, are représented_with_ a -
_double Tine. |
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4) Solution of the internal probiem.

We focus now on the computation of the stream function Eh+$h of
the discrete velocity field, with Eh given at the preceding section
and EheKh(Q) determined by solving the problem (5.18). We remark that
this mixed problem can be rewritted in terms of the only vector
potential gh according to Theorem 4.2 (but this is not the case for a
general system such as (4.16)). Then the problem (5.18) is equivalent
to

v e K (Q)

- - = E -+ -+
J curl¥, .curlg, dx = - J curic, .curly  dx Vi, K, (3).
Q )

(A7)

We recover {as in [18]) a classical conforming variational
formuTation. The matrix associated with (A7) is symmetric positive
definite. We have used a conjugate gradient method (see e.g.
LASCAUX-THEODOR [Al]) for solving the problem (A7). We have tested
two preconditioners: the incomplete Cholesky factorization and the
SSOR factorization of EVANS (see e.g. [Al]). The first has given
negative roots during the algorithm with the choice of the internal
tree T, (Q) pictured on the Figure AZ. This fact proves that the matrix
defined by (A7) is a priori not a M-matrix, according to MEIJERINK-VAN

- DER VORST [A2]. A performing choice for the preconditioner is finally
the SSOR factorization that we retain in gur:prgsgnt- computation as

well as for more cdmp1icated.'prob]ems [18]. The discrete velocity

. field

=

. -+ - o
u, = ;ur? (5, +¥,)

- is in fact the exact solution e, because the latter is belonging into
the ‘affine space curl (5 +K (@)) as we verified numerically. We

emphasize that the discrete wvector potential ¢ +¥, has not any

elementary anologous and in particular it has no simple relation with
i

the foilowing family of the polynomial vector potentials @p:
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"Figtir'e AZ. Fj'rst choice for th_e'i'n'te.r.nél tr‘éé?h.(.ﬂ) in.side fh'e do.m'_a.ir.l. -




hal-00660366, version 1 - 16 Jan 2012

73

L]
*
4

> 2

| /
9%9%%

Figure AS;

Second choice for 'the' internal tree T, (@) inside .t_h'_e doméin_.
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-5

-+ -+ -
¥ =-exx +gradd , ¢ polynomial.

p

[ ]

We end this Annex with a comparison between the use of the two
internal trees of Figures A2 and A3. The first tree is composed with a
majority of horizontal edges when the second contains essentially
vertical edges. The first (Figure A2) Tleads to a better performance
for the conjugate gradient algorithm (40 iterations with the SSOR
preconditioner to reach a relative error of 10°% relatively to the
operator 12 norm, 74 with the second tree). Curiously the condition
numbers A S, of the two matrices are respectively 14150 (first
tree) and 6811 (second tree). This Tast numerical result shows the
great complexity of the repartition of the eigenvalues in the
spectrum, according to JENNINGS [A3]. We heve also tested in [19]
other possililities for the tree T (@) but no simple correlation
appears between the geometrical Tocation of the edges in T, (Q) and the
performance of the conjugate gradient algorithm. (cf. also Remark
4.1). Nevertheless in all the practical situations that we have been
confronted with ([18,19,41]1), the 1linear system (A7) has been solved

~efficiently with the SSOR preconditioner.
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