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Abstract
We present the mixed collocation method for numerical integration of frac-
tional differential equations of the type Dβu = Φ(u, t) . Given a regular
mesh with constant discretization step, the unknown u(t) is considered as
continuous and affine in each cell, and the dynamics Φ(u, t) as a constant.
After a fractional integration, the equation is written strongly at the mesh
vertices and the dynamics weakly in each cell. The “Semidif” software has
been developed for the particular case of numerical integration of order 1

2 .
The validation for analytical results and published solutions is established and
experimental convergence as the mesh size tends to zero is obtained. Good
results are obtained for a nonlinear model with a strong singularity.
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1) Introduction

• Let β be a real number, 0 < β < 1, Γ(•) the classical Euler function,
and IR × [0, ∞[ ∋ (u , t) 7−→ Φ(u , t) ∈ IR a regular mapping. Following
for example the now classical work of Caputo [Ca67], we define the fractional
differential operator Dβ(•) by

(1) (Dβu) (t) ≡ 1

Γ (1 − β)

∫ t

0

du

dθ

dθ

(t − θ)
β

.

We wish to approximate the “initial value problem” for the fractional ordinary
differential equation of order β :

(2)

{

Dβ (u − u0) = Φ (u (t) , t) , t > 0
u − u0 = 0 , t ≤ 0 .

• We introduce a discretization step h, and denote by Kh
j+ 1

2

the interval of
the form Kh

j+ 1

2

≡ ] tj , tj+1 [ = ] jh , (j + 1)h [ for j ∈ IN. We use the dis-

crete spaces P h
1 and Qh

0 defined as follows. The linear space P h
1 is composed

by functions that are continuous and affine in each mesh element Kh
j+ 1

2

. A
function v ∈ P h

1 can be expanded on the basis
(

ϕh
k

)

k ∈ IN
of classical “hat”

functions :

ϕh
0 (θ) =

{

1 − θ

h
, 0 ≤ θ ≤ h

0 , θ ≥ h

ϕh
k (θ) =



















1 − 1

h

(

θ − tk
)

, tk ≤ θ ≤ tk+1 ,

1 +
1

h

(

θ − tk
)

, tk−1 ≤ θ ≤ tk , k ≥ 1 ,

0 , | θ − tk | ≥ h

and by using the nodal values vk ≡ v
(

tk
)

at the grid vertices, we have :

v =
∑∞

k=0 vk ϕh
k for v ∈ P h

1 .

• The discrete space Qh
0 is composed by functions that take a constant

value in each element Kh
j+ 1

2

. The basis functions of the discrete space Qh
0

are null everywhere except inside the interval Kh
j+ 1

2

where it is equal to the
unity. Then, w ∈ Qh

0 can be expanded on the χh
k+ 1

2

basis according to the

relation w =
∑∞

k=0 wk+ 1

2

χh
k+ 1

2

.

2) Mixed collocation scheme

• We integrate the differential equation (2) with the fractional integrator
Iβ of order β defined by


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Iβ (v (•) , t) ≡ 1

Γ (β)

∫ t

0
(t − θ)β−1

v (θ) dθ

and satisfying the functional equation Iβ
◦ Dβ ≡ Id when applied for a

regular function u satisfying u(0) = 0. The relation (2) can therefore be
rewritten as

(3) u (t) − u0 = Iβ (Φ (u (•) , t)) , t ≥ 0 .

• The P1Q0 mixed collocation method consists in choosing a discrete state
uh (•) satisfying

(4) uh =

∞
∑

j=0

uh
j ϕh

j , uh ∈ P h
1 ,

and the so-called “flux” Φ (u (•) , t) by a discontinuous time function fh(•)
that is constant in each cell Kh

j+ 1

2

:

(5) fh =

∞
∑

j=0

fh
j+ 1

2

χh
j+ 1

2

, fh ∈ Qh
0 .

• On one hand, the equation (3) is written strongly at the mesh vertices
jh (j ∈ IN) and we can speak of a collocation method :

(6) uh (jh) − u0 = Iβ
(

fh (•) , jh
)

, j ∈ IN .

On the other hand, it is a method inspired from mixed finite elements. We
can not impose that for each time value t, we have fh(t) = Φ(uh(t), t).
Then the P1Q0 mixed collocation method claims only that for the mean
values, the approached flux fh (•) and the exact flux Φ

(

uh (•) , •
)

of the
approached solution have the same mean value in each interval ]jh, (j+1)h[.
We impose :
∫ (j+1)h

jh

fh (θ) dθ =

∫ (j+1)h

jh

Φ
(

uh (θ) , θ
)

dθ , j ∈ IN .

This “projection step” on the discrete space Qh
0 can be written as :

(7) fh
j+ 1

2

=

∫ 1

0

Φ
(

uh
j (1 − θ) + θuh

j+1, jh + θh
)

dθ , j ∈ IN .

Proposition 1. State-flux constraint for the P1Q0 scheme
With the choice (4) (5), the relation (6) can be written in the following way :

(8) uh
j+1 −

hβ

Γ (β + 1)
fh

j+ 1

2

= u0 +
hβ

Γ (β + 1)

j−1
∑

k=0

αj−k fh
k+ 1

2

, j ∈ IN ,


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with

(9) αk ≡ (k + 1)
β − kβ , k ∈ IN .

Proof of proposition 1.
We evaluate the right hand side of relation (6) for the discrete time tj+1. We
have :

Iβ
(

fh (•) , tj+1
)

=
1

Γ (β)

∫ tj+1

0

(

tj+1 − θ
)β−1

fh (θ) dθ

=
1

Γ (β)

j
∑

k=0

∫ (k+1)h

kh

(tj+1 − θ)β−1 fh (θ) dθ

=
1

Γ (β)

j
∑

k=0

fh
k+ 1

2

∫ 1

0

[(j + 1)h − (kh + hξ)]β−1h dξ

=
1

Γ (β)

j
∑

k=0

fh
k+ 1

2

hβ

(−1

β

)

[

(j + 1 − k − ξ)β
]ξ=1

ξ=0

=
1

Γ (β + 1)

j
∑

k=0

fh
k+ 1

2

hβ
[

(j + 1 − k)β − (j − k)β
]

=
hβ

Γ (β + 1)

j
∑

k=0

fh
k+ 1

2

αj−k taking into account (9)

and the relation (8) is a direct consequence of (6).

3) First numerical tests

• We have compared in [DM2k] several numerical schemes i.e. two and
three point Grünwald-Letnikov scheme, Msallam scheme and P1 finite element
scheme and we have also compared in [DM01] thoses schemes with the mixed
collocation method. These tests are done for a semi-derivation, i.e. β = 0.5.
The dynamics (u, t) 7−→ Φ(u , t) is parameterized by the functions u 7−→ f (u)
and t 7−→ g (t) and by the real numbers θf and θg : Φ (u , t) ≡ θf f (u) +
θg g (t) . The parameters θf and θg are chosen in order to obtain as solution
the following particular functions :

(10) uj(t) ≡
(√

t
)j

, j = 1, · · · , 5 .

In a first approach, we consider θf = 0 and θg = 1 ; a simple semi-quadrature
has to be done. The equation (2) corresponds to the following t 7−→ g (t)
choice : g1 (t) = 1

2

√
π, g2 (t) = 2√

π

√
t, , g3 (t) = 3

4

√
π t , g4 (t) =

8
3
√

π
t
√

t and g5 (t) = 15
16

√
π t2.


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In a second approach, we take θf ≡ 1 and θg ≡ 0. This dynamics is associ-
ated to the following functions :

(11)















f1 (u) =
1

2

√
π , f2 (u) =

2√
π

√
u , f3 (u) =

3

4

√
π u

2

3 ,

f4 (u) =
8

3
√

π
u

3

4 , f5 (t) =
15

16

√
π u

4

5 .

In a third approach, whave also considered the following numerical test cases
previously proposed by K. Diethelm [Di97], Diethelm and Ford [DF02], Diet-
helm and Luchko [DL03], Blank [Bl96] and Lubich [Lu86] :

(12) u = 0 , t ≤ 0 , D1/2u = −u +
8

3
√

π
t

3

2 , t > 0 : u (t) = t2

(13) u = 1 , t ≤ 0 , D1/2u = u , t > 0 : u (t) = et
(

erf
√

t + 1
)

(14) u = 1 , t ≤ 0 , D1/2u = −u , t > 0 : u (t) = et
(

1 − erf
√

t
)

(15) u = 0 , t ≤ 0 , D1/2u =
1√
π

sin
√

t , t > 0 : u (t) =
√

t J1

(√
t
)

.

• We remark that for the nonlinear cases proposed in (11), the sufficient
Lipschitz continuity condition for the function Φ(•, •), revisited by Nagumo
and presented e.g. the book [GV91] of Gorenflo and Vessela, that assumes that
the nonlinear Abel-Volterra equation (3) has a unique continuous solution, is a
priori not satisfied. Nevertheless, the functions presented at the relations (10)
are clearly solution of problem (3) and our numerical results have captured this
fact. The numerical simulation is done with our Fortran software “Semidif”.
We have computed systematically the orders of convergence for mesh step
sizes h of the type 1

2n for 3 ≤ n ≤ 13. We have measured the L2 and L∞

errors denotes respectively by en
2 and en

∞ and defined according to : en
∞ ≡

max{|u(jh) − uj |, j = 0, · · · , 2n} and

en
2 ≡

√
h

√

√

√

√

1

2
|u (0) − u0|2 +

2n−1
∑

j=1

∣

∣

∣

∣

u

(

j

2n

)

− uj

∣

∣

∣

∣

2

+
1

2
|u (1) − u2n|2 .

The orders of convergence are summarized in the following table :

g1(t) g2(t) g3(t) g4(t) g5(t) (12) (13) (14)

L∞ ∞ 1.00 1.48 1.47 1.46 1.00 1.51 1.23

L2 ∞ 1.40 1.47 1.46 1.45 1.00 1.50 1.42


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Our results show a good agreement with the studies done by these authors.
We refer to our report [DM01] for the details.

4) Nonlinear model with a singularity

• We explain in this section how to consider the P1Q0 method when we
study the Joulin model [Jo85] for spherical flammes :

(16)

{

D1/2(u) = Φ (u (t) , t) , t > 0
u = 0 , t ≤ 0

(17) Φ (u (t) , t) = log u +
E tγ (1 − t)

u
H(1 − t) ,

where E and γ = 0.3 are positive constants and θ 7−→ H(θ) the Heaviside
fonction equal to 0 if θ < 0 end to 1 if θ > 0.

Proposition 2. Computation of the first point for Joulin equation
For the equation (16), and the representation (8) of the unknown uh, the
first unknown point uh

1 is solution of the following equation whose unknown
is denoted by x :

(18) x = 2

√

h

π

{

log x − 1 +
E hγ

x

(

1

γ
− h

γ + 1

)}

.

Proof of proposition 2.
We integration the equation (16) “one half” time on the interval [0, h] :

(19) uh
1 =

∫ h

0

1
√

π (h − θ)
Φ
(

uh (θ) , θ
)

dθ .

Then we make the hypothesis that the flux Φ (• , •) is equal to a constant fh
1

2

on

the interval [0, h] : fh
1

2

= 1
h

∫ h

0
Φ
(

uh (θ) , θ
)

dθ. We inject this hypothesis
at the right hand side of equation (19) :

(20) uh
1 = 2

√

1

π

1√
h

∫ h

0

Φ
(

uh (θ) , θ
)

dθ

and we compute the term on the right of (20) by using the function Φ (• , •)
of the relation (17). We note the singularity in the vincinity of zero. The
hypothesis of affine representation of u between 0 and h, show the following
expression :

Φ
(

uh (θ) , θ
)

= log

(

uh
1

θ

h

)

+ E θγ (1 − θ)
1

uh
1

θ
h

if h ≤ 1

= log
(

uh
1

)

+ log
θ

h
+ E h

θγ−1 (1 − θ)

uh
1

.


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Then after integration, we obtain
∫ h

0

Φ
(

uh (θ) , θ
) dθ

h
= log

(

uh
1

)

+

∫ 1

0

log tdt +
E

uh
1

hγ

∫ 1

0

tγ−1 (1 − h t) dt

= log
(

uh
1

)

+ [t log t − t]10 +
E

uh
1

[

1

γ
− h

γ + 1

]

= log
(

uh
1

)

− 1 +
E

uh
1

(

1

γ
− h

γ + 1

)

.

and the proposition 2 is established.

• The equation (18) is solved with the Newton algorithm. For the other grid
points, some algebra and a numerical integration (see the details in [DM01])
show that we have to solve the system composed by (8) and the following
representation :

fh
j+ 1

2

=



















1

uh
j+1 − uh

j

[

uh
j+1 log uh

j+1 − uh
j+1

]

− 1

+
E hγ−1

2

(

jγ−1 (1 − jh)

uh
j

+
(j + 1)

γ−1
(1 − (j + 1)h)

uh
j+1

)

.
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0 5 10 15 20 25 30

Simulations with E=7.6

and tmax=40

Change of comportment

between np=3930 and np=3931

mesh points

5000 points
4000 points
3940 points
3931 points
3930 points
3900 points
3800 points
3000 points
 500 points

Figure 1. Qualitative change of the solution
according to various discretizations.

• We have followed in [DM01] the working plan proposed by Audounet and
Roquejoffre [AR98] for their simulations of the semidifferential equation (16)


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(17) : γ = 0.3 and 7.6 ≤ E ≤ 7.7. According to these authors, a bifurcation in
the asymptotic comportment occurs for the solution of model (16)(17) with
γ = 0.3. For E ≤ 7.7, we have extinction of the flamme in a finite time
whereas for E ≥ 7.8, its radius tends to infinity as time tends to infinity.

• We first observe that we have to control very precisely the discretization
step h, as proposed in the following experiment. We consider the parameter
value E = 7.6 and tmax = 40. When we use less than N = 3930 mesh
points, the comportment of the discrete solution is to tends to infinity and for
more than N = 3931 mesh points, we observe an extinction in a finite time
(see the figure 1) !

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E=7.67

  1000 points
  2500 points
  5000 points
 10000 points
 25000 points
 50000 points
100000 points

Figure 2. Numerical solution of the model (16) (17), E = 7.67.

• In what follows, we systematically refine the mesh in order to make
in evidence the independence of the numerical solution with the number
of grid points. When we use sufficiently refined meshes, we observe (see
[DM01]) an extinction in finite time for E = 7.6 and a diverging process
for E = 7.7. We have experimentally determined the value of bifurcation
parameter E. We use a number of mesh points N according to the rule
N = · · · , 10k, 2.5 10k, 5 10k, 10k+1, · · · . The same conclusions hold
for the extinction parameter E = 7.66 and we have a diverging flame for
E = 7.67 (Figure 2), but the numerical proof needs meshes that use up to
250000 points. The case E = 7.665 (Figure 3) shows an extinction of the
flamme in a finite time, but the high cost of computer ressources (more than


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two millions mesh points to observe asymptotically numerical convergence
with the time discretization !) makes in evidence the actual limitations of the
method. Therefore, according to our numerical results, the bifurcation param-
eter E for the model (16) (17) satisfies the inequalities : 7.665 < E < 7.67
with γ = 0.3.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E=7.665

   1000 points
   2500 points
   5000 points
  10000 points
  25000 points
  50000 points
 100000 points
 250000 points
 500000 points
1000000 points
2500000 points

Figure 3. Numerical solution of the model (16) (17), E = 7.665.

5) Conclusion and aknowledgments

• In our “Semidif” software, the system of equations (7) (8) that charac-
terizes the P 1Q0 mixed collocation method is solved with a Newton method.
We have validated our approach with exact solutions and recent published nu-
merical approximations about fractional differential equations. For a difficult
test case issued from combustion modelling, we show that our mixed colloca-
tion method is relevant and conducts to significative results. We have noticed
an accuracy of order 1 for nonlinear test problems whereas the interpolation
process is of order 2. The natural question is therefore to obtain second order
accuracy in the future. Last but not least, we thank the unknown referee for
helpful scientific comments on the first version of this article.
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