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Cellular Automaton

Cellular automa were introduced by John von Neumann in the
1940s and are defined on a regular grid by:

the space dimension D,
an internal state S(t),
a neigborhood N,
a transition rule T (S,SN), such that
S(t + 1) = T (S,SN)(t).

Usual neighborhoods: von Neuman (first neighbors on a
square grid) and Moore (first and secon neighbors).
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Game of life of John Conway in 1970.
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In the 1980s a lot of interest: S. Kaufmann, IMAG group,
S. Wolfram,

and T. Toffoli and N. Margolus and their “wonderful machine”:
"Cellular Automata Machines", by Tommaso Toffoli and Norman
Margolus (MIT Press, 1987).
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Cellular Automaton
HPP model: CA FEDCB59876A43210

[N,W ,S,E ]t+1
ij = T ([Ni,j+1,Wi−1,j ,Si,j−1,Ei+1,j ]

t ),

with T (S = S if S 6= 0101 nor 1010,
and T (0101) = 1010 and T (1010) = 0101.
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This CA is now known as HPP for J. Hardy, Y. Pomeau, and O.
de Pazzis, “Time evolution of two-dimensional model system. I.
Invariant states and time correlation functions”, J. Math. Phys.
14, 1746-1759 (1973).

Denoting the four velocities ~c1 = (1,0), ~c2 = (0,1),
~c3 = (−1,0), and ~c4 = (0,−1), the evolution equation can be
written:

bi(~r + ~ci , t + 1)− bi(~r , t) =

(−1)i [b1b3(1− b2)(1− b4)− b2b4(1− b1)(1− b3)](~r , t),

with the conservation of mass and momentum:

ρ =
∑

i

bi and ~ = ρ~u =
∑

i

bi~ci .
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Denoting fi = 〈bi〉 and neglecting the correlations, one gets:

fi(~r + ~ci , t + 1)− fi(~r , t) =

(−1)i [f1f3(1− f2)(1− f4)− f2f4(1− f1)(1− f3)](~r , t),

with

ρ =
∑

i

fi and ~ = ρ~u =
∑

i

fi~ci .

To be compared to the Boltzmann equation:

∂t f (~r ,~c, t) + ~c · ∇f (~r ,~c, t) = C(f ).

Then the standard techniques developped for the Boltzmann
equation and the discrete velocity models (Broadwell in the
1960s, Cabannes, Gatignol, from the mid 1970s) were adapted
to the lattice gases.
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1 It exists an equilibrium distribution {f eq
i } such that

C(f eq
i ) = 0 given by

f eq
i =

1
1 + exp(h + ~q · ~ci)

,

with
∑

i

f eq
i = ρ and

∑
i

f eq
i ~ci = ~.

2 C is linearized in the neighborhood of {f eq
i }.

3 {f eq
i } is Taylor expanded around ~u = 0.

4 Then a Chapman-Enskog expansion of the evolution
equation is performed.
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These steps give the following macroscopic equations:

∂tρ+∇ · ~ = 0,

∂t jα + ∂β(ρG(ρ)Tαβγδuγuδ) =
c2

D
∂αρ+ ∂β(ψ(ρ)Tαβγδ∂γρuδ),

with Tαβγδ =
∑

i

ciαciβ(ciγciδ −
c2

D
δγδ).

Isotropy is recovered iff∑
i ciαciβciγciδ ∼ δαβδγδ + δαγδβδ + δαδδβγ . For HPP the sum is

proportional to δαβγδ and its hydrodynamics is not isotropic.
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U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-gas automata
for the Navier-Stokes equation”, Phys. Rev. Lett. 56,
1505-1508 (1986).
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D. d’Humières, P. Lalle-
mand, and U. Frisch,
“Lattice gas models for
3D hydrodynamics”, Eu-
rophys. Lett. 2, 291-297
(1986).
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Problems with lattice gases

1 complexity of building the collision table for FCHC:
- HPP: 16 states,
- FHP: 64 or 128 states,
- FCHC: over 16 million states.

2 Lack of flexibility of the transport coefficients.
3 No Galilean invariance: recovered in the incompressible

limit by rescaling time and viscosities by some term g(ρ0).
4 Spurious conserved quantites.
5 Noise.
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First attempt: G. McNamara and G. Zanetti, “Use of the
Boltzmann equation to simulate lattice- gas automata”, Phys.
Rev. Lett. 61, 2332–2335 (1988).

fi(~r + ~ci , t + 1)− fi(~r , t) =

(−1)i [f1f3(1− f2)(1− f4)− f2f4(1− f1)(1− f3)](~r , t).

Second attempt in the line of the Broadwell model: J.E.
Broadwell, “Shock structure in a simple discrete velocity gas”,
Phys. Fluids 7, 1243–1247 (1964).

fi(~r + ~ci , t + 1)− fi(~r , t) = (−1)i [f1f3 − f2f4](~r , t).
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Third attempt: F.J. Higuera, J. Jiménez, “Boltzmann approach
to lattice gas simulations”, Europhys. Lett., 9, 663–668 (1989).

fi(~r + ~ci , t + 1)− fi(~r , t) = −[(A · (f− feq))i ](~r , t).

In the original paper A and feq were derived from the lattice
gases models. Then the BGK model A = I/τ was developed
followed by more sophisticated models.
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LB models.
General framework.

a cubic lattice in D dimensions,
a set of Q velocities (~cqδx/δt) connecting nodes of the
lattice and such that, for any ~cq in the set, ~cq̄ = −~cq is also
in the set,
an associated set of particle densities fq(~r , t) (f = (fq)),
an evolution equation for these particle densities:

fq(~r + ~cqδx , t + δt) = f ∗q (~r , t) ≡ fq(~r , t) + Cq(f(~r , t)),

where C is a collision term function of f.
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LB models.
Some velocity sets.

D1Q3: {−1,0,1},
D2Q5: {(0,−1), (−1,0), (0,0), (1,0), (0,1)},
D2Q9: D2Q5 ∪ {(−1,−1), (−1,1), (1,−1), (1,1)},
D3Q7: {(0,0,0), (±1,0,0), (0,±1,0), (0,0,±1)},
D3Q9: {(0,0,0), (±1,±1,±1)},
D3Q13: {(0,0,0), (±1,±1,0), (±1,0,±1), (0,±1,±1)},
D3Q15: D3Q7 ∪ D3Q9,
D3Q19: D3Q7 ∪ D3Q13,
D3Q27: D3Q7 ∪ D3Q9 ∪ D3Q13,

d’Humières From CA to LBE



LB models.
Collisions through relaxation.

Following Higuera et al. (1989), the collision term is done
through a relaxation toward a given “attractor” e function of f:
C(f) = −A · (f− e(f)), where A is a given collision operator.

BGK (Bhatnagar-Gross-Krook) or SRT
(Single-Relaxation-Time): A = λI (λ = 1/τ ).
MRT (Multiple-Relaxation-Time): A is defined by its
eigenvalues (relaxation times) and its eigenvectors.

“Kinetic” models: eigenvectors based on the velocity set,
bmnp = (cm

qxcn
qy cp

qz).
L-models (I. Ginzburg): based on the symmetric and
antisymmetric components of f.
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LB models.
Two-Relaxation-Time (TRT) LBE.

Splitting the particle densities in their symmetric and
antisymmetric components:

f +
q =

(fq + fq̄)

2
, f−q =

(fq − fq̄)

2
,

fq = f +
q + f−q , fq̄ = f +

q − f−q .

the TRT evolution is given by

fq(~r + ~cqδx , t + δt) = [fq − λ+
(
f +
q − e+

q
)
− λ−

(
f−q − e−q

)
](~r , t),

or with λ∗ = (λ+ + λ−)/2 and δλ = (λ+ − λ−)/2

fq(~r + ~cqδx , t + δt) = [(1− λ∗)fq − δλ fq̄ + λ∗eq + δλ eq̄](~r , t),
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LB models.
Conserved quantities

The fundamental ingredient of the LB models is the existence of
quantities conserved during the collision, for instance the mass:

ρ =
∑

q

fq =
∑

q

f ∗q ,

the momentum

ρ~u =
∑

q

fq~cq =
∑

q

f ∗q~cq,

energy ...
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LB models.
equilibrium

The “attractor” of the relaxation (also called equilibrium) is
restricted to be functions of the conserved quantities only. To
satisfy the conservation laws, the equilibrium must be chosen
such that: ∑

q

eq = ρ,

for the mass, ∑
q

eq~cq = ρ~u.

for the momentum ...
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Dispersion Equation.

In a periodic domain, the solutions of the linearized evolution
equations have the form:

f(~r , t) = Ωt/δt exp(i~k ·~r/δx)f0,

The population f after advection is given by

f(~r + ~cqδx , t + δt) = Ωeikq f(~r , t),

with kq = ~k · ~cq. Using K = diag(eikq ) and e = Ef, it comes

(I − A · (I − E)) · f0 = ΩK · f0.
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Dispersion Equation.
The Swiss Army knife

Writing the system:

Ω f0 = K−1 · (I − A · (I − E)) · f0,

the growth rates Ω are the eigenvalue of the matrix
K−1 · (I − A · (I − E)).
When k = 0, Ω = 1 for the conserved quantities. The expansion
of Ω in power series of k around k = 0 gives the transport
coefficients of the model and their errors as a function of k .
The LB model will be stable for a set of parameters defining A
and E iff all the Ω are |Ω| ≤ 1 for all the values of 0 ≤ ~k ≤ π).
Taking Ω = 1 and replacing k with ik , the roots of

Det(K − (I − A · (I − E)))

for ~k perpendicular to a given boundary plane correspond to
the Knudsen modes.
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BGK model for λ = 1.
Finite-difference equivalent scheme.

For the BGK models the evolution equation is given by

fq(~r + ~cqδx , t + δt) = [fq − λ(fq − eq)](~r , t),

For λ = 1 this equation becomes

fq(~r + ~cqδx , t + δt) = eq(~r , t),

or

fq(~r , t + δt) = eq(~r − ~cqδx , t),

Projecting this equation on the conserved quantities, it comes

ρ(~r , t + δt)− ρ(~r , t) =
∑

q

(eq(~r − ~cqδx , t)− eq(~r , t)),
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Co-BGK LBE.
Evolution equation for λ∗ = 1.

The TRT evolution equation is given by

fq(~r + ~cqδx , t + δt) = [(1− λ∗)fq − δλ fq̄ + λ∗eq + δλ eq̄](~r , t),
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Co-BGK LBE.
Evolution equation for λ∗ = 1.

For λ∗ = 1 the TRT evolution equation becomes

fq(~r + ~cqδx , t + δt) = [−δλ fq̄ + eq + δλ eq̄](~r , t),
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Co-BGK LBE.
Evolution equation for λ∗ = 1.

For λ∗ = 1 the TRT evolution equation can also be written

fq(~r , t + δt) = [−δλ fq̄ + eq + δλ eq̄](~r − ~cqδx , t),
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Co-BGK LBE.
Evolution equation for λ∗ = 1.

For λ∗ = 1 the TRT evolution equation can also be written

fq(~r , t + δt) = [−δλ fq̄ + eq + δλ eq̄](~r − ~cqδx , t),

or

fq̄(~r − ~cqδx , t) = [−δλ fq + eq̄ + δλ eq](~r , t − δt),

then

fq(~r , t + δt) = [eq + δλ eq̄](~r − ~cqδx , t)
− δλ [−δλ fq + eq̄ + δλ eq](~r , t − δt),
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Co-BGK LBE.
Evolution equation for λ∗ = 1.

Summing over q the equation

fq(~r , t + δt) = [eq + δλ eq̄](~r − ~cqδx , t)
− δλ [−δλ fq + eq̄ + δλ eq](~r , t − δt),

gives

ρ(~r , t + δt) =
∑

q

[eq + δλ eq̄](~r − ~cqδx , t)

− δλ
∑

q

[−δλ fq + eq̄ + δλ eq](~r , t − δt),
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Co-BGK LBE.
Evolution equation for λ∗ = 1.

Summing over q the equation

fq(~r , t + δt) = [eq + δλ eq̄](~r − ~cqδx , t)
− δλ [−δλ fq + eq̄ + δλ eq](~r , t − δt),

gives also

ρ(~r , t + δt) = −δλ ρ(~r , t − δt) +
∑

q

[eq + δλ eq̄](~r − ~cqδx , t),
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Co-BGK LBE.
Evolution equation for λ∗ = 1.

Summing over q the equation

fq(~r , t + δt) = [eq + δλ eq̄](~r − ~cqδx , t)
− δλ [−δλ fq + eq̄ + δλ eq](~r , t − δt),

gives also

ρ(~r , t + δt) = −δλ ρ(~r , t − dt)

+
∑

q

[(1 + δλ )e+
q + (1− δλ )e−q ](~r − ~cqδx , t),
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Co-BGK LBE.
Evolution equation for λ∗ = 1.

Summing over q the equation

fq(~r , t + δt) = [eq + δλ eq̄](~r − ~cqδx , t)
− δλ [−δλ fq + eq̄ + δλ eq](~r , t − δt),

gives finally a du Fort-Frankel scheme
((1 + δλ )/(1− δλ ) = 2Λ−)

1
2

(ρ(~r , t + δt)− ρ(~r , t − δt))−
∑

q

e−q (~r − ~cqδx , t) =

2Λ−
∑

q

(e+
q (~r − ~cqδx , t)−

1
2

(e+
q (~r , t + δt) + e+

q (~r , t − δt))),
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Summary

The lattice Boltzmann method is based on standard tools
of kinetic.
LBM for hydrodynamics are compressible, but not
“restricted to low Mach numbers”.
Some LBEs are finite-difference schemes.
The known results for convergence, stability, consistency
apply for this class of LBE.

Open Questions.
Interfaces.
Clean inclusion of source terms.
Have we found all the LBEs being FD schemes?
If it exists a class of LBE not being a FD scheme, does it
change the LBE properties?
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