Application of Lattice Boltzmann Method in automotive industry with focus on aeroacoustic simulations

Denis Ricot

Research, Advanced Eng. and Materials Dpt.

with contributions of :

Jean-Luc Adam, Olivier Bailly, Sylvain Parpais, Renault Simon Marié, Renault & Paris 6 Pierre Sagaut, Paris 6

Outline

- Some aeroacoustic problems in automotive industry
- LB schemes for computational aeroacoutics
- Example of aeroacoustic simulations with EXA/PowerFLOW
- Aerodynamic drag simulations

Aeroacoustic problems

Interior noise aeroacoustics

- Broadband noise with, sometimes, unwanted frequency peaks
- Relevant frequency range : all the audible spectrum (20 Hz \rightarrow 10 kHz)

Noise generated by HVAC outlet vent

Automotive aeroacoustics

"External" aeroacoustics

- Both aerodynamic (incompressible) and acoustic (compressible) pressure fluctuations contribute to interior wind noise
- Acoustic wall pressure fluctuations are much less energetic than aerodynamic pressure but much more efficient in term of panel excitation

"Internal" aeroacoustics

- Source and propagation in ducts (HVAC, inlet and exhaust engine ducts)
- Fan noise, aerodynamic noise generated by flow through ventilation outlets

C

Automotive aeroacoustics : cavity noise

Sunroof buffeting

 Strong acoustic/aerodynamic coupling between vortex shedding in the opening and acoustic resonance of the passenger compartment

Helmholtz cavity resonance

Door gap noise

- Door gap : small slots between car body and doors
- Weak coupling between the broadband external turbulent excitation and the cavity resonance

Example : cavity between the hatchback and the roof

Inst. H. Poincaré, 19 January 2010

8

DREAM/DTAA

RENAL

Example of direct noise calculation with LBM

- In-house D2Q9 model (BGK)
- Non-reflecting boundary conditions
- Selective viscosity filter for stability control

Ricot D., Maillard V., Bailly C., AIAA paper 2002-2532

Mach = 0.25 $Re_{L} = 8 \cdot 10^{3}$ $St = fL/U_{0} = 0.89$ (Rossiter mode 2)

In agreement with other CAA simulations performed with optimized finite difference Navier-Stokes codes (Gloerfelt, 2001, Rowley, 2002)

13

Other examples :

- A. Lafitte, F. Perot, Investigation of the Noise Generated by Cylinder Flows Using a Direct Lattice-Boltzmann Approach, 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference), 11 - 13 May 2009, Miami, Florida, AIAA 2009-3268
- → Wilde, A., Application of the Lattice-Boltzmann method in flow acoustics. In 4th SWING Aeroacoustic Workshop, Aachen (2004)

von Neumann analysis

Linearization of the equilibrium function around a uniform mean flow :

$$f_{\alpha}^{eq} \left(f_{\alpha}^{(0)} + f_{\alpha}^{'} \right) \qquad \qquad f_{\alpha}^{eq} = \rho \omega_{\alpha} \left(1 + 3\mathbf{u} \cdot \mathbf{c}_{\alpha} + \frac{9(\mathbf{u} \cdot \mathbf{c}_{\alpha})^2}{2} - \frac{3|\mathbf{u}|^2}{2} \right)$$

Search for the plane wave solutions of the linearized equation : $f'_{\alpha} = \hat{A}_{\alpha} exp[i(\mathbf{k}.\mathbf{x} - \omega t)]$

Eigenvalue/eigenvector problem :

$$\frac{\mathsf{DVBE} - \mathsf{BGK}:}{\mathsf{DKE}} \quad \frac{\partial f_{\alpha}}{\partial t} + c_{\alpha,i} \frac{\partial f_{\alpha}}{\partial x_{i}} = -\frac{1}{\tau} [f_{\alpha} - f_{\alpha}^{eq}] \qquad \longrightarrow i\omega \mathbf{f}' = \mathbf{M}^{\mathsf{DVBE}} \mathbf{f}'$$

$$\underline{\mathsf{LBM}} - \underline{\mathsf{BGK}:} \quad g_{\alpha}(x+c,t+1) = g_{\alpha}(x,t) - \frac{1}{\tau_{g}} (g_{\alpha}(x,t) - g_{\alpha}^{eq}(x,t)) \qquad \longrightarrow e^{-i\omega} \mathbf{g}' = \mathbf{M}^{\mathsf{BGK}} \mathbf{g}'$$

$$\underline{\mathsf{LBM}} - \underline{\mathsf{MRT}:} \quad \mathbf{g}(\mathbf{x} + \mathbf{c}, t+1) = \mathbf{g}(\mathbf{x}, t) - P^{-1}S[\mathbf{m}(\mathbf{x}, t) - \mathbf{m}^{eq}(\mathbf{x}, t)] \qquad \longrightarrow e^{-i\omega} \mathbf{g}' = \mathbf{M}^{\mathsf{MRT}} \mathbf{g}'$$

Velocity model : D3Q19

Discrete Velocity Boltzmann Equation

LBM-BGK and LBM-MRT

Von Neumann analysis applied to Navier-Stokes schemes

Linearized Navier-Stokes equations :

$$\frac{\partial \mathbf{U}'}{\partial t} + \frac{\partial}{\partial x_1} [\mathbf{E}'_{\mathbf{e}} - \mathbf{E}'_{\mathbf{v}}] + \frac{\partial}{\partial x_2} [\mathbf{F}'_{\mathbf{e}} - \mathbf{F}'_{\mathbf{v}}] + \frac{\partial}{\partial x_3} [\mathbf{G}'_{\mathbf{e}} - \mathbf{G}'_{\mathbf{v}}] = 0 \qquad \mathbf{U}' = \begin{pmatrix} \rho' \\ \rho_0 \hat{u'} \\ \rho_0 \hat{v'} \\ \rho_0 \hat{w'} \\ \hat{p'} \end{pmatrix} exp[i(\mathbf{k}.\mathbf{x} - \omega t)]$$

Euler terms viscous terms

Finite difference schemes :

$$\frac{\partial \mathbf{U}}{\partial x_i}(x_i^0) = D_i(x_i^0) = \frac{1}{\Delta x_i} \sum_{j=-N}^N a_j \mathbf{U}(x_i^0 + j\Delta x_i)$$

Runge-Kutta time marching schemes:

$$\mathbf{U}^{n+1} = \mathbf{U}^n + \sum_{j=1}^p \gamma_j \Delta t^j F^j(\mathbf{U}^n)$$

Eigenvalue/eigenvector problem:

$$e^{-i\omega}\mathbf{U}^{\mathbf{n}} = \mathbf{M}_{\mathbf{d}}^{\mathrm{NS}}\mathbf{U}^{\mathbf{n}}$$

Comparison LBM vs finite difference Navier-Stokes schemes

LBM has

- lower numerical dissipation than all aeroacoustic-optimized schemes
- lower dispersion error than FD of order 2 in space and 3 in time (Runge-Kutta)
- higher dispersion error than FD of order 3 in space and 4 in time (Runge-Kutta) and DRP (Dispersion Relation Preserving) optimized 6th order schemes

Comparison LBM vs finite difference Navier-Stokes schemes

- DRP Navier-Stokes schemes need lower number of points per wavelength than LBM to achieve a given accuracy... but their computational cost is much higher
 - Number of floating point operations per time-step of LBM is lower than that of 2th order FD schemes...
- For a given problem (target accuracy and given simulated physical time), the computational cost of Navier-Stokes schemes strongly depends on the CFL (time-step)
- For CFL ~ 1 (explicit schemes), the total simulation cost of Navier-Stokes schemes is higher than LBM

Marié, S., Ricot, D., Sagaut, P. (2009), J. Comput. Phys., 228

- Same conclusions with industrial Navier-Stokes (Finite volume) code :
 - → Industrial comparison of PowerFLOW vs Fluent-DES at PSA Peugeot-Citroen (see <u>http://www.gdr2493.cnrs-mrs.fr/IMG/pdf/M-Pachebat-PSA.pdf</u>)
 - Academic comparison of in-house LBM vs CFD++ : Geller, S., Krafczyk, M., Tölke, J., Turek, S., Hron, J. (2006): "Benchmark computations based on Lattice-Boltzmann, Finite Element and Finite Volume Methods for laminar Flows", Computers and Fluids, 35

How to use LBM in an industrial framework ?

In-house / academic LBM codes

- VirtualFluids, TU Braunschweig
- waLBerla, Univ. Erlangen, Nuremberg
- International Lattice Boltzmann Software Development Consortium, Univ. Of Amsterdam, NEC, HLRS Stuttgart,...
- HemeLB, Center of Comput. Science, Univ. College London
- ...

Open Sources LBM codes

- OpenLB-Palabos, lead by EPF Lausanne, Switzerland
- EI-Beem (used in Blender for free surface flows), ETH Zurich, Switzerland
- ...

Commercial LBM sofware

- PowerFLOW, EXA Corp.
- MetaCFD, MetaHeuristics, USA (consulting only ?)

Industrial sofware

LaBS (Lattice Boltzmann Solver), French industrial and academic Consortium

Flow in human blood vessels

LaBS : Lattice Boltzmann Solver

Partners :

 Three-year project (2009-2012) funded by the french ministry of industry and the region lles de France with support of competitiveness clusters:

- Lattice Boltzmann Method
- Large Eddy Simulation approach
- Optimization for massively parallel computing
- Simultaneous simulation of aerodynamic noise sources and their acoustic propagation

PowerFLOW – current version

- LBM D3Q19 BGK with some adaptations
- Immersed frontiers for complex geometry (volumetric formulation)
- Turbulence model
 - Modified (Yakhot & Orszag, not published) $k \varepsilon$ RNG model (Yakhot & Orszag, 1986)
 - Modified (adverse pressure gradient effects) log-law wall model
- Stability control with turbulence model + threshold numerical viscosity
- Parallel computations
 - Tens of millions of cells calculated for <u>hundreds of thousands of time-steps</u> on <u>tens of CPU</u> in a <u>few days</u>

Acoustic impedance of outlets, without mean flow

- Simulation without mean flow (only "acoustics")
- Validation of the acoustic behavior of the HVAC outlet

(J.-L. Adam et al., Acoustics'08, Paris)

Aerodynamic noise generated by HVAC vents

Direct aeroacoustic source identification based on LBM and beamforming technique

(J.-L. Adam et al., 2009, AIAA paper 2009-3182)

- Measurements in the aeroacoustic wind tunnel S2A
- Source detection with microphone array associated with beamforming algorithm

- Maximum mesh resolution around side mirror and A-pillar
 - Complete fine mesh around the whole car is impossible with our CPU capabilities
 - Coarser mesh around wheel house, rear of the car,...
 only very low frequency turbulent structures are simulated in these regions
- Source detection with "virtual" microphone array measurements associated with the same beamforming algorithm as that used in wind tunnel

Direct aeroacoustic source identification based on LBM and beamforming technique

Aerodynamic drag simulation

Objectives

- Drag and lift coefficient calculation \rightarrow design choice to minimize CO₂ emission
- Shape and detail optimizations

"3D" wake (strong longitudinal vortices)
→ High drag

"2D" wake → Low drag

S. Parpais, Renault R&D mag., 2003

Validation of aerodynamic drag simulation

- First validations on simplified car (2002)
 - No underhood
 - Flat underbody

PowerFLOW

Total pressure loss 10 mm downstream the simplified car

28

DREAM/DTAA

Validation of aerodynamic drag simulation

Validation on Megane CC

- No underhood flow
- Fully detailed underbody

29

PowerFLOW

Measurements

Normalized (Ux / U0) longitudinal mean velocity in the symetry plane

Validation of aerodynamic drag simulation

Validation on Megane CC

Drag and lift coefficients are well recovered within few percents

Total pressure loss in the Megane CC wake

Underhood flow

- Heat exhanger are modeled with equivalent porous media
- Fan model
 - Fixed fan .
 - Rotating fan using Multiple Reference Frame approach

Experimental validation based on PIV measurements

Validation of aerodynamic drag simulation with underhood flow

DREAM/DTAA

Concluding remarks

- LBM errors only come from space and time discretizations : velocity discretization is (nearly) exact
- In its standard form, MRT models seem to not improve the dispersion accuracy
 - Be careful with the bulk viscosity increase that allows better stability but that overdamps acoustic waves
- Even if the convergence rate of LBM is only second order, the absolute error of LBM for a given mesh is much lower than that of second order Navier-Stokes schemes
- LBM is competitive with high-order and optimized DPR Navier-Stokes schemes because the same accuracy can be obtained with lower computational cost
- Very encouraging results are obtained with LBM/PowerFLOW on real industrial configurations for direct simulation of aeroacoustics problems
 - Direct Noise Calculation is the ideal strategy to simulate all automotive aeroacoutic problems
 - Simulations are still limited in term of frequency range : optimized turbulence / stability control models associated with improvement of numerical efficiency are needed in order to achieve higher frequency components
- Thanks to its numerical efficiency and low dissipation, LBM is a "perfect" scheme for LES / DES approaches
 - Full unsteady simulations performed for aerodynamic drag calculation with PowerFLOW seem to be a key point to obtain good results on a wide class of vehicle configurations

