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Outline

! Some aeroacoustic problems in automotive industry
! LB schemes for computational aeroacoutics
! Example of aeroacoustic simulations with

EXA/PowerFLOW
! Aerodynamic drag simulations
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Aeroacoustic problems

! Interior noise aeroacoustics
! Broadband noise with, sometimes, unwanted frequency peaks 
! Relevant frequency range : all the audible spectrum (20 Hz " 10 kHz)

Example of interior aeroacoutic
noise spectra Noise generated by HVAC outlet vent
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Automotive aeroacoustics

! “External” aeroacoustics
! Both aerodynamic (incompressible) and acoustic 

(compressible) pressure fluctuations contribute to interior 
wind noise

! Acoustic wall pressure fluctuations are much less energetic 
than aerodynamic pressure but much more efficient in term 
of panel excitation

! “Internal” aeroacoustics
! Source and propagation in ducts (HVAC, inlet and exhaust engine ducts)
! Fan noise, aerodynamic noise generated by flow through ventilation outlets
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M
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Example : cavity between the hatchback
and the roof 

! Sunroof buffeting
! Strong acoustic/aerodynamic coupling between vortex shedding in the opening and acoustic 

resonance of the passenger compartment

! Door gap noise
! Door gap : small slots between car body and doors 
! Weak coupling between the broadband external 

turbulent excitation and the cavity resonance
slot

cavity
roof

hatchback

Helmholtz 
cavity 
resonance

seal

Automotive aeroacoustics : cavity noise

+

U0
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Direct Noise Computation :
unsteady compressible flow 

with « high-order » schemes : 
aerodynamic + acoustic fields

Unsteady CFD for 
incompressible flows : 
aerodynamic field only

Steady CFD : mean
aerodynamic field only

Acoustics pressure field

Turbulent field models
(synthetic turbulence, semi-

empirical models)

Acoustic source models (Lighthill analogy,…)

Propagation model or solver (integral methods, linear
acoustics solver (FEM/BEM), linearized Euler equations solver

(mean flow effect on propagation)

Computational AeroAcoustics : hybrid and direct approaches



7DREAM/DTAA Inst. H. Poincaré, 19 January 2010 Lattice Boltzmann scheme tutorial

Steady CFD : mean
aerodynamic field only

Acoustics pressure field

Turbulent field models
(synthetic turbulence, semi-

empirical models)

Acoustic source models (Lighthill analogy,…)

Propagation model or solver (integral methods, linear
acoustics solver (FEM/BEM), linearized Euler equations solver

(mean flow effect on propagation)

Computational AeroAcoustics : hybrid and direct approaches

?
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Steady CFD : mean
aerodynamic field only

Acoustics pressure field

Turbulent field models
(synthetic turbulence, semi-

empirical models)

Acoustic source models (Lighthill analogy,…)

Propagation model or solver (integral methods, linear
acoustics solver (FEM/BEM), linearized Euler equations solver

(mean flow effect on propagation)

Computational AeroAcoustics : hybrid and direct approaches

?
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Steady CFD : mean
aerodynamic field only

Acoustics pressure field

Turbulent field models
(synthetic turbulence, semi-

empirical models)

Acoustic source models (Lighthill analogy,…)

Propagation model or solver (integral methods, linear
acoustics solver (FEM/BEM), linearized Euler equations solver

(mean flow effect on propagation)

Computational AeroAcoustics : hybrid and direct approaches

Very difficult for real (complex) 
flows (OK for homogeneous 

turbulence, axi-symetric jets,...) ?
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Unsteady CFD for 
incompressible flows : 
aerodynamic field only

Acoustics pressure field

Acoustic source models (Lighthill analogy,…)

Propagation model or solver (integral methods, linear
acoustics solver (FEM/BEM), linearized Euler equations solver

(mean flow effect on propagation)

Computational AeroAcoustics : hybrid and direct approaches
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Unsteady CFD for 
incompressible flows : 
aerodynamic field only

Acoustics pressure field

Acoustic source models (Lighthill analogy,…)

Propagation model or solver (integral methods, linear
acoustics solver (FEM/BEM), linearized Euler equations solver

(mean flow effect on propagation)

How to define the 
source region ?

How to calculate the 
acoustic pressure 
inside the source 

region itself ?

Only 
acoustic/flow 

weak coupling

Computational AeroAcoustics : hybrid and direct approaches
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Direct Noise Computation :
unsteady compressible flow 

with « high-order » schemes : 
aerodynamic + acoustic fields

Acoustics pressure field

Computational AeroAcoustics : hybrid and direct approaches
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! In-house D2Q9 model (BGK)
! Non-reflecting boundary conditions
! Selective viscosity filter for stability control

Example of direct noise calculation with LBM

Ricot D., Maillard V., Bailly C., 
AIAA paper 2002-2532

In agreement with other CAA 
simulations performed with optimized 
finite difference Navier-Stokes codes 
(Gloerfelt, 2001, Rowley, 2002)

(Rossiter mode 2)

89.00 == UfLSt

pressure

vorticity

25.0=Mach
3108Re ⋅=L

Other examples :
" A. Lafitte, F. Perot, Investigation of the Noise Generated by Cylinder Flows Using a Direct Lattice-Boltzmann Approach, 15th AIAA/CEAS 

Aeroacoustics Conference (30th AIAA Aeroacoustics Conference), 11 - 13 May 2009, Miami, Florida,AIAA 2009-3268
" Wilde, A., Application of the Lattice-Boltzmann method in flow acoustics. In 4th SWING Aeroacoustic Workshop, Aachen (2004)
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von Neumann analysis

( )')0(
ααα fff eq +

Linearization of the equilibrium function around a uniform mean flow :

Search for the plane wave solutions of the linearized equation :

Eigenvalue/eigenvector problem :  

( ) ( ) ( ) ( )( )txgtxgtxgtcxg eq

g

,,1,1, αααα τ
−−=++

DVBE – BGK :

LBM – BGK :

LBM – MRT :

Velocity model : D3Q19  
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Discrete Velocity Boltzmann Equation

Dispersion Dissipation

DVBE

Theoretical

Acoustic mode +

Acoustic mode -

Shear (aerodynamic) mode

Ma = 0.2

DVBE Acoustic mode

DVBE shear mode 

Theoretical

DVBE : strictly exact in term of 
dispersion 

DVBE : small error in the dissipation 
due to the M3 error term
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Dispersion Dissipation
MRT

Theoretical

BGK
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LBM-BGK and LBM-MRT

BGK & MRT 
shear modes

MRT acoustic
modes

BGK acoustic
modes

BGK & MRT : same dispersion error Overdamping of acoustic modes compared to the 
«physical» dissipation (bulk dissipation ~ shear dissipation)

Theoretical bulk dissipation 
with MRT « standard »
relaxation times
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Linearized Navier-Stokes equations :

Euler terms viscous terms

Finite difference schemes :

Runge-Kutta time marching schemes: 

Eigenvalue/eigenvector problem:  

Von Neumann analysis applied to Navier-Stokes schemes
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Comparison LBM vs finite difference Navier-Stokes schemes

Dispersion error Dissipation error

! LBM has
! lower numerical dissipation than all aeroacoustic-optimized schemes 
! lower dispersion error than FD of order 2 in space and 3 in time (Runge-Kutta)
! higher dispersion error than FD of order 3 in space and 4 in time (Runge-Kutta) and DRP (Dispersion Relation 

Preserving) optimized 6th order schemes

Number of points per wavelength
248Number of points per wavelength

248
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Dispersion error
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! DRP Navier-Stokes schemes need lower number of 
points per wavelength than LBM to achieve a given 
accuracy… but their computational cost is much 
higher

! Number of floating point operations per time-step of LBM 
is lower than that of 2th order FD schemes…

! For a given problem (target accuracy and given 
simulated physical time), the computational cost of 
Navier-Stokes schemes strongly depends on the CFL 
(time-step)

! For CFL ~ 1 (explicit schemes), the total simulation 
cost of Navier-Stokes schemes is higher than LBM 

" Industrial comparison of PowerFLOW vs Fluent-DES at PSA Peugeot-Citroen (see http://www.gdr2493.cnrs-mrs.fr/IMG/pdf/M-
Pachebat-PSA.pdf)

" Academic comparison of in-house LBM vs CFD++ : Geller, S., Krafczyk, M., Tölke, J., Turek, S., Hron, J. (2006): “Benchmark 
computations based on Lattice-Boltzmann, Finite Element and Finite Volume Methods for laminar Flows”, Computers and 
Fluids, 35

Marié, S., Ricot, D., Sagaut, P. (2009), J. Comput. Phys., 228

Comparison LBM vs finite difference Navier-Stokes schemes

Navier-Stokes schemes : CFL = 1.0

! Same conclusions with industrial Navier-Stokes (Finite volume) code :
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How to use LBM in an industrial framework ?

! In-house / academic LBM codes
! VirtualFluids, TU Braunschweig
! waLBerla, Univ. Erlangen, Nuremberg
! International Lattice Boltzmann Software Development Consortium, Univ. Of 

Amsterdam, NEC, HLRS Stuttgart,…
! HemeLB, Center of Comput. Science, Univ. College London
! …

! Open Sources LBM codes
! OpenLB-Palabos, lead by EPF Lausanne, Switzerland
! El-Beem (used in Blender for free surface flows), ETH Zurich, Switzerland
! …

! Commercial LBM sofware
! PowerFLOW, EXA Corp. 
! MetaCFD, MetaHeuristics, USA (consulting only ?)

! Industrial sofware
! LaBS (Lattice Boltzmann Solver), French industrial and academic Consortium

Flow in human
blood vessels
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Industrial partners Academics and labs

Partners : 

LaBS : Lattice Boltzmann Solver

! Three-year project (2009-2012) funded by the french ministry of industry and the region Iles de France 
with support of competitiveness clusters:

! Lattice Boltzmann Method
! Large Eddy Simulation approach
! Optimization for massively parallel computing
! Simultaneous simulation of aerodynamic noise sources and their acoustic propagation
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! LBM D3Q19 BGK with some adaptations
! Immersed frontiers for complex geometry (volumetric formulation)
! Turbulence model

! Modified (Yakhot & Orszag, not published)             RNG model (Yakhot & Orszag, 1986)
! Modified (adverse pressure gradient effects) log-law wall model

! Stability control with turbulence model + threshold  numerical viscosity
! Parallel computations

! Tens of millions of cells calculated for hundreds of thousands of time-steps on tens of CPU in a few days

PowerFLOW – current version 

ε−k
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Acoustic impedance of outlets, without mean flow   

Acoustic 
reflection 

coefficient 
of a HVAC 
duct outlet

Sysnoise (BEM) 
simulation

PowerFLOW
simulation

! Simulation without mean flow (only “acoustics”)
! Validation of the acoustic behavior of the HVAC outlet

Frequency (Hz)
(J.-L. Adam et al., Acoustics’08, Paris)
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Aerodynamic noise generated by HVAC vents   

Upstream acoustic pressure Downstream acoustic pressure

m/s 180 =U

Measurements

LBM

Vorticity snapshot

(J.-L. Adam et al., 
Acoustics’08, Paris)

Measurements

LBM
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Direct aeroacoustic source identification based on LBM and beamforming
technique

! Measurements in the aeroacoustic wind tunnel S2A
! Source detection with microphone array associated 

with beamforming algorithm

! Maximum mesh resolution around side mirror and 
A-pillar
! Complete fine mesh around the whole car is 

impossible with our CPU capabilities
! Coarser mesh around wheel house, rear of the car,…

" only very low frequency turbulent structures are 
simulated in these regions

! Source detection with “virtual” microphone array 
measurements associated with the same 
beamforming algorithm as that used in wind tunnel

(J.-L. Adam et al., 2009, AIAA paper 2009-3182)
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Direct aeroacoustic source identification based on LBM and beamforming
technique

Simulations

Measurements

1/3 octave band 1000 HZ 1/3 octave band 1600 HZ

Spatial integration of acoustic power 
around the side view mirror

Simulation
Experiments

Frequency (Hz)
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w
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 d

B

10 dB
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Aerodynamic drag simulation

! Objectives
! Drag and lift coefficient calculation " design choice to minimize CO2 emission
! Shape and detail optimizations

“3D” wake (strong longitudinal vortices) 
" High drag

“2D” wake
" Low drag

S. Parpais, Renault R&D mag., 2003
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Validation of aerodynamic drag simulation

! First validations on simplified car (2002)
! No underhood
! Flat underbody

Total pressure loss 10 mm downstream the simplified car

Measurements  PowerFLOW
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Validation of aerodynamic drag simulation

! Validation on Megane CC
! No underhood flow
! Fully detailed underbody

Normalized (Ux / U0) longitudinal mean velocity in the symetry plane

Measurements  PowerFLOW
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Validation of aerodynamic drag simulation

! Validation on Megane CC
! Drag and lift coefficients are well recovered within few percents

Measurements  PowerFLOW

Total pressure loss in the Megane CC wake
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Underhood flow

! Heat exhanger are modeled with equivalent porous media
! Fan model

! Fixed fan
! Rotating fan using Multiple Reference Frame approach

! Experimental validation based on PIV measurements

Measurements  

PowerFLOW

Ux

PIV measurements  PowerFLOW

O. Bailly et al., SIA, Lyon 2005
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Validation of aerodynamic drag simulation with underhood flow

Measurements  PowerFLOW

Total pressure loss in the Scenic wake
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Concluding remarks

! LBM errors only come from space and time discretizations : velocity discretization is (nearly) exact
! In its standard form, MRT models seem to not improve the dispersion accuracy

! Be careful with the bulk viscosity increase that allows better stability but that overdamps acoustic waves

! Even if the convergence rate of LBM is only second order, the absolute error of LBM for a given mesh 
is much lower than that of second order Navier-Stokes schemes

! LBM is competitive with high-order and optimized DPR Navier-Stokes schemes because the same 
accuracy can be obtained with lower computational cost

! Very encouraging results are obtained with LBM/PowerFLOW on real industrial configurations for 
direct simulation of aeroacoustics problems
! Direct Noise Calculation is the ideal strategy to simulate all automotive aeroacoutic problems
! Simulations are still limited in term of frequency range : optimized turbulence / stability control models associated 

with improvement of numerical efficiency are needed in order to achieve higher frequency components

! Thanks to its numerical efficiency and low dissipation, LBM is a “perfect” scheme for LES / DES 
approaches
! Full unsteady simulations performed for aerodynamic drag calculation with PowerFLOW seem to be a key point 

to obtain good results on a wide class of vehicle configurations


