

LBM for coupled transport problems

Manfred Krafczyk, Benjamin Ahrenholz, Sebastian Bindick, Sören Freudiger, Martin Geier, Sebastian Geller, Christian Janßen, Konstantin Kucher, Jannis Linxweiler, Martin Schönherr, Maik Stiebler, Sonja Uphoff

kraft@irmb.tu-bs.de

www.irmb.tu-bs.de

Outline

- The modeling map
- BGK vs. MRT et al.
- Virtual Fluids
- coupled problems: the scale map concept
- FSI
- GPU-acceleration
- turbulent LES flows on non-uniform grids
- Turbulent thermal flow driven by radiation
- flow acoustics
- Free surface flows
- Turbulent multiphase flow
- outlook

Boltzmann, Navier-Stokes + continuity eq.

LB scheme Tutorial, Paris 18.1.2010

Lattice Boltzmann Equation (LBE)

$$f_i(t+\Delta t, \mathbf{x}+\mathbf{e}_i\Delta t) = f_i(t, \mathbf{x})+\Omega_i, \quad i=0,\ldots,b-1$$

- f Mass fractions
- e Microscopic velocity of the particles
- t Time

Lattice Boltzmann Equation (LBE)

$$f_i(t+\Delta t, \mathbf{x}+\mathbf{e}_i\Delta t) = f_i(t, \mathbf{x})+\Omega_i, \quad i=0,\ldots,b-1$$

Collision	$\Omega = M^{-1} k$
operator:	

transformation into moment space:

$$\boldsymbol{m} = \mathsf{M}\boldsymbol{f} := (\rho, \rho u_x, \rho u_y, e, p_{xx}, p_{xy}, h_x, h_y, \epsilon)$$

d2q9-Model

 e_6 e_2 e_5 e_3 e_0 e_1 e_7 e_4 e_8

LB scheme Tutorial, Paris 18.1.2010

Collision operator

Relaxation rates: $s_{\nu}, s_{e}, s_{h}, s_{\epsilon}$

MRT: Humieres 92, Lallemand 00

CLBM:

 $k_0 = k_1 = k_2 = 0$

M. Geier, A. Greiner, and J. G. Korvink, *Physical ReviewE*, vol. 73, no. 6, p. 066705, 2006.

$$k_{0} = k_{1} = k_{2} = 0$$

$$k_{3} = k_{e} = s_{e} \left(e - 3 \rho \left(u_{x}^{2} + u_{y}^{2} \right) \right)$$

$$k_{4} = k_{xx} = s_{\nu} \left(p_{xx} - \rho \left(u_{x}^{2} - u_{y}^{2} \right) \right)$$

$$k_{5} = k_{xy} = s_{\nu} \left(p_{xy} - \rho \, u_{x} \, u_{y} \right)$$

$$k_{6} = k_{hx} = s_{h} \, h_{x}$$

$$k_{7} = k_{hy} = s_{h} \, h_{y}$$

$$k_{8} = k_{\epsilon} = s_{\epsilon} \epsilon,$$

TRT: Ginzburg 03

even moments: $s_{\nu} = s_e = s_{\epsilon}$ odd moments: s_h

LBGK: Quian 92

$$s_{\nu} = s_e = s_h = s_{\epsilon}$$

$$\begin{aligned} k_e &= s_e \left(e - 3\rho \left(u_x^2 + u_y^2 \right) \right) \\ k_{xx} &= s_\nu \left(p_{xy} - \rho \, u_x \, u_y \right) \\ k_{xy} &= s_\nu \left(p_{xx} - \rho \left(u_x^2 - u_y^2 \right) \right) \\ k_{hx} &= s_h \left(h_x - 6u_y k_{xy} \left(\frac{1}{s_\nu} - \frac{1}{s_h} \right) \right) \\ &+ s_h \left(-u_x \left(\frac{1}{2} \left(e - \frac{k_e}{s_h} \right) - \frac{3}{2} \left(p_{xx} - \frac{k_{xx}}{s_h} \right) \right) \right) \right) \\ k_{hy} &= s_h \left(h_y - 6.0u_x k_{xy} \left(\frac{1}{s_\nu} - \frac{1}{s_h} \right) \right) \\ &+ s_h \left(-u_y \left(\frac{1}{2} \left(e - \frac{k_e}{s_h} \right) + \frac{3}{2} \left(p_{xx} - \frac{k_{xx}}{s_h} \right) \right) \right) \\ k_\epsilon &= s_\epsilon \left(\epsilon - 27u_x^2 u_y^2 + k_e \left(\frac{1}{s_e} - \frac{1}{s_\epsilon} \right) + \frac{3}{2} (u_x^2 + u_y^2) \left(e - \frac{k_e}{s_\epsilon} \right) \right) \\ &+ s_\epsilon \left(-\frac{9}{2} (u_x^2 - u_y^2) (p_{xx} - \frac{k_{xx}}{s_\epsilon}) + 36u_x u_y (p_{xy} - \frac{k_{xy}}{s_\epsilon}) \right) \\ &+ s_\epsilon \left(-6u_x (h_x - \frac{k_{h_x}}{s_\epsilon}) - 6u_y (h_y - \frac{k_{h_y}}{s_\epsilon}) \right) \end{aligned}$$

Interpolation based scheme for no-slip BC [Bouzidi, et al., 2001]

$$f_{IA}^{t+1} = (1-2q) \cdot f_{iF}^{t} + 2q \cdot f_{iA}^{t} - 6 \frac{\mathbf{e}_i \mathbf{u}_{ci}}{c^2}, \quad 0.0 < q < 0.5$$

$$f_{IA}^{t+1} = \frac{2q-1}{2q} \cdot f_{IA}^{t} + \frac{1}{2q} \cdot f_{IA}^{t} - 3\frac{\mathbf{e}_{l}\mathbf{u}_{tt}}{qc^{2}}, \quad 0.5 \le q \le 1.0$$

LB scheme Tutorial, Paris 18.1.2010

Virtual Fluids

disadvantages of node grids in respect of distributed (, adaptive) computations:

- segmentation for a huge number of nodes
 - \rightarrow preprocess costs a lot of time and memory
- arbitrary shapes of refined areas

 \rightarrow many possible ghost node configurations

Switch to block grid structure

LB scheme Tutorial, Paris 18.1.2010

VirtualFluids reloaded: block grid

basic strategies of block grid

- zoning of a flow field by blocks of various sizes to adapt the mesh size to local flow characteristic length
- uniform Cartesian mesh in each block for efficient computations
- same grid size in all blocks to simplify connectivity

Coupled problems: the scale separation map

Alfons Hoekstra, Eric Lorenz[,] Jean-Luc Falcone and Bastien Chopard Towards a Complex Automata Framework for Multi-scale Modeling: Formalism and the Scale Separation Map, <u>Lecture Notes in Computer Science</u> Springer Berlin, pp. 922-930, 2007

How far can you get with simple LES-LB turbulence modeling ?

 $v = v_0 + v_T$ M. Krafczyk, J. Tölke, and L.-S. Luo, Int. J. of M. Phys. B 17(1/2):33-39 (2003)

Smagorinsky:

$$\nu_t = (C_S \Delta_x)^2 \overline{S}, \qquad \overline{S} = \sqrt{\sum_{i,j} \mathsf{S}_{ij} \cdot \mathsf{S}_{ij}},$$
$$C_s \in \{0.05, 0.2\}$$

$$\mathsf{P}_{ij} = \sum_{\alpha} e_{\alpha i} e_{\alpha j} f_{\alpha} = c_s^2 \rho \delta_{ij} + \rho u_i u_j - \frac{1}{s_{xx}} 2c_s^2 \rho \mathsf{S}_{ij}$$

strain rate tensor is local quantity !

$$\begin{split} \mathsf{Q}_{mn} &\equiv \frac{1}{3} \delta \rho \, \delta_{mn} + j_m j_n - \mathsf{P}_{mn}, \qquad m, \, n \, \in \{x, \, y, \, z\}, \\ \mathsf{P}_{xx} &= \frac{1}{3} \left[(e + 2\delta \rho) + 3p_{xx} \right], \\ \mathsf{P}_{yy} &= \frac{1}{3} \left[(e + 2\delta \rho) + \frac{1}{2} (3p_{ww} - 3p_{xx}) \right] = \mathsf{P}_{xx} + \frac{1}{2} (p_{ww} - 3p_{xx}) \\ \mathsf{P}_{zz} &= \mathsf{P}_{yy} - p_{ww}, \end{split}$$

$$\begin{split} \mathsf{P}_{xy} &= p_{xy}, \quad \mathsf{P}_{yz} = p_{yz}, \quad \mathsf{P}_{zx} = p_{zx}, \\ \nu_t &= 3(C_S \Delta_x)^2 \overline{S} = \frac{3}{2} s_{xx} (C_S \Delta_x)^2 \overline{Q}, \end{split}$$

$$\begin{aligned} \tau_t &= 3\nu_t = \frac{1}{2} \left(\sqrt{\tau_0^2 + 18C_s^2 \Delta_x^2 \overline{Q}} - \tau_0 \right), \qquad \overline{Q} = \sqrt{\sum_{i,j} \mathsf{Q}_{ij} \cdot \mathsf{Q}_{ij}} \\ \tau_0 &= 3\frac{UL}{\mathrm{Re}} + \frac{1}{2}, \qquad s_{xx} = \frac{1}{\tau_0 + \tau_t}, \end{aligned}$$

LB scheme Tutorial, Paris 18.1.2010

LB scheme Tutorial, Paris 18.1.2010

LB scheme Tutorial, Paris 18.1.2010

Technische Universität Braunschweig

Results II:

(laminar) boundary layer separation: Achenbach: 82.5° Re=10^4, Bakic: 80° – 83° at Re=5*10^4

This simulation: 84°

LB scheme Tutorial, Paris 18.1.2010

Technische Universität Braunschweig

LB scheme Tutorial, Paris 18.1.2010

cd

Ahmed body (http://www.cfd-online.com/Wiki/Ahmed_body):

Technische Universität Braunschweig

Pressure distribution for rear slant angle 25° : left: exp (Lienhart et al.), mid: E. Fares (Powerflow,EXA), right: VirtualFluids

Technische Universität Braunschweig

Technische Universität Braunschweig

Velocity profiles for rear slant angle 25°: dots: exp (Lienhart et al.), grey lines: E. Fares (Powerflow,EXA), black lines: VirtualFluids

nVIDIA - G80/G92/GT200: the parallel stream processor

Hardware:

- GeForce
- Tesla
- Quadro

Software:

 Compute Unified Device Architecture (CUDA 2.0, Compiler+SDK) GTX 280: 1.4 billion transistors Montecito: 1.7 (1.5 are L3

Comparison CPU-GPU

Platform	Memory [MB]	Peak [GFLOPS]	BW [GB/s]	price [Euro]
Intel Core 2 Duo (3.0 GHz)	4 000	48	7.0	1000
NEC SX-8R A (8 CPUs)	128 000	281	563	expensive
nVIDIA GTX280	1 024	624	142	500

Multi-GPU: Supercomputer on the Desktop -Teraflop Computing

Hardware cost:

• **5000** \$

Communication between GPUs:

- 4 PCI Express slots
- Bandwidth Host↔Device 200-3000 MB/sec
- Latency like Front Side Bus (266 MHz)
- PThreads
- CUDA

Mainboard: P6N Diamond MSI

 \rightarrow 512 Cores!

	Bandwidth [MB/s]	Latency [ns]
PCI-E/FSB	300-3000	10
Infiniband	312-7500	5 000
G-Ethernet	125	80 000

LB scheme Tutorial, Paris 18.1.2010

Manfred Krafczyk et al.

slide 24

Example: moving sphere in a pipe

Moving Sphere in a pipe: Results (1 GPU)

(2nx,ny,nz) = 128x128x512

R. Clift, J. R. Grace, M. E. Weber: Bubbles, Drops and Particles, Academic Press, 1978

Re [-]	$ u \left[m^2 s^{-1} \right] $	WCT $[s]$	# iter[-]	$c_{d,W}[-]$	$c_{d,W,Ref.}[-]$	$rac{p.drag}{v.drag}$	Rel. Err. [-]
10	0.121920	106	15000	14.74	15.84	0.93	6.9%
50	0.024384	415	59000	3.697	3.876	1.15	4.6%
100	0.012192	520	74000	2.380	2.312	1.43	2.9%
200	0.006096	774	110000	1.679	1.706	1.90	1.6%
300	0.004064	2100^{1}	300 000	1.440^{2}	1.448	2.35	0.6%
400	0.003048	2800^{1}	400 000	$1.305^{\ 3}$	1.296	2.82	0.7%

¹ nonstationary flow field, time required to reach oscillatory state from initial uniform flow field (no disturbance imposed) ² average value, $t = 280 \dots 2000 T_{ref}$

³ average value, $t = 200 \dots 3000 T_{ref}$

Moving Sphere in a pipe: Performance Single GPU

Tesla test sample (GT200)

- 192 cores (1.1GHz)
- 101 GB/s throughput
- supports double precision

Results for grid 64(128)x128x512 (single prec.)

- 690 MLUPS
- 72 % Throughput (!) (83 % pure MemCpy)
- 43 % peak perf.

Extensions for free surface flows

- fluid •, interface and inactive gas nodes
- pressure boundary condition at the interface O[Körner2005]
- initialization of new interface nodes needed $\bullet \rightarrow \bigcirc$

Extensions for free surface flows

- fluid •, interface and inactive gas nodes
- pressure boundary condition at the interface O[Körner2005]
- initialization of new interface nodes needed $\bullet \rightarrow \bigcirc$
- VOF approach to capture the interface [Thürey2008]

- introduce fill level
$$\varepsilon = \frac{V_{fluid}}{V_{cell}}$$
 gas: 0.0
interface:]0.0 - 1.0 [
fluid: 1.0

flux calculation in terms of LB distribution functions

$$\Delta m_i = \left[f_I(\vec{x} + \vec{e}_i \Delta t, t) - f_i(\vec{x}, t) \right] \cdot A_i$$

- calculate new fill level ε^{t+1}

I: inverse direction to i A: wet area between two cells

[Körner2005]

Basic free surface algorithm

- Compute the flow field
 - Collision (local)
 - Add body force (local)
 - Propagation (non-local)
 - Apply boundary conditions (local)

- Free surface part on interface nodes
 - Apply pressure boundary condition (non-local)

$$f_i(t, \mathbf{x}) = -f_{inv}(t, \mathbf{x}) + f_i^{eq}(\rho, \mathbf{v}) + f_{inv}^{eq}(\rho, \mathbf{v})$$

- Evaluate mass fluxes and new fill levels (non-local)
- Detect cell changes (local)
- Assure closed interface cell layer (non-local)
- Initialize new fluid nodes (non-local)

$$\overline{\rho(\mathbf{x})} = \sum_{i} w_i \rho(\mathbf{x} + \mathbf{e}_i) \quad \overline{\mathbf{v}(\mathbf{x})} = \sum_{i} w_i \mathbf{v}(\mathbf{x} + \mathbf{e}_i)$$

[Körner2005, Thürey2008]

LB scheme Tutorial, Paris 18.1.2010

Performance of D3Q19 model: Poiseuille flow

- Nvidia GTX 275
 - 1024MB device memory, which corresponds to a maximum of 6 million nodes
 - 240 cores with 1.4 GHz each
- Resulting performance in MNUPS

	Threads (nx, flow dir.)				
ny x nz	32	64	128	256	
32x32	318	352	289	287	
64x64	295	357	306	284	
128x128	353	372	295		
256x256	317	357			

NUPS = node updates per second

- Maximum performance:
 - 372 MNUPS, 1 million nodes \rightarrow 372 time steps per second

Technische Universität Braunschweig

Dam break test case [Martin1952]

- Observe collapsing water column
 - position of the surge front
 - height of the water column
- Re 100 000, Fr 2.4
- D3Q19, MRT collision operator

LB scheme Tutorial, Paris 18.1.2010

slide 3333

Dam break test case - Performance

- Average performance of 75 MNUPS
 - 20% of the maximum performance of a singlephase kernel
- Good agreement between experimental and numerical results
- See "Free surface flow simulations on GPUs", C. Janßen, M. Krafczyk, 2010

nx,ny,nz	Nodes	Time steps	Comp. time
128x30x30	115200	4000	6s
256x60x60	921600	8000	102s

Simulation details

Wave impact on lean structures [Wienke2001]

Wave impact on lean structures – Force evaluation

- Grid resolution 256x64x64 (1 million nodes)
- Re 1 000 000, Fr 1.0
- D3Q19, MRT collision operator, Smagorinsky LES
- Momentum exchange method for force evaluation

65 MNUPS (GTX 275) 10 000 time steps 160 seconds computational time (corresponds to 16 seconds real time)

Multiphase LB-simulations on non-uniform grids

Starting from the classical Gunstensen model:

Gunstensen, A. K., Rothman, D. H., Zaleski, S., and G. Zanetti, "Lattice Boltzmann model of immiscible fluids", Phys. Rev. A 43(8) (1991):4320-4327.

•two sets of distributions f_i^{air} and f_i^{water}

•Collision operator for each phase has two contributions

μŋ

implementation of a new extension of the Rothmann-Keller model

C [

1; +1

Pbluo

- one set of distributions
- phase parameter
- surface tension

[Kehrwald, Numerical Analysis if Immiscible Lattice BGK, PhD, Kaiserlautern, 2004] [Tölke et. al., An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations, Computers and Fluids, 35:820-830, 2005]

 $\theta =$

$$\begin{split} m_{i}^{aq,i} &= m_{i}^{aq,i} + m_{i}^{ST,i} \\ m_{1}^{ST,i} &= -2\sigma |C_{i}| (n_{i,x}^{2} + n_{i,y}^{2} + n_{i,z}^{2}) \\ \bullet & \bullet & m_{0}^{ST,i} = -\sigma |C_{i}| (2n_{i,x}^{2} - n_{i,y}^{2} - n_{i,z}^{2}) \\ \bullet & \bullet & m_{11}^{ST,i} = -\sigma |C_{i}| (n_{i,y}^{2} - n_{i,z}^{2}) \\ \bullet & \bullet & m_{11}^{ST,i} = -\sigma |C_{i}| (n_{i,y}, n_{i,y}) \\ \bullet & \bullet & m_{14}^{ST,i} = -\sigma |C_{i}| (n_{i,y}, n_{i,y}) \\ m_{14}^{ST,i} = -\sigma |C_{i}| (n_{i,y}, n_{i,y}) \\ m_{15}^{ST,i} = -\sigma |C_{i}| (n_{i,y}, n_{i,y}) \\ m_{15}^{ST,i} = -\sigma |C_{i}| (n_{i,y}, n_{i,y}) \\ \end{split}$$

phase interface.

-1

Test case car roof L-ledge

LB scheme Tutorial, Paris 18.1.2010

LB scheme Tutorial, Paris 18.1.2010

Manfred Krafczyk et al.

slide 40

Fluid-Structure-Interaction

Ferrybridge, England 1965

Experimental Benchmark

EXPERIMENTAL STUDY ON A FLUID-STRUCTURE INTERACTION REFERENCE TEST CASE Jorge P. Gomes and Hermann Lienhart Fluid-Structure Interaction: Modeling, Simulation, Optimisation Lecture Notes in Computational Science and Engineering, Vol. 53, pages 356 - 370

Re=190

LB scheme Tutorial, Paris 18.1.2010

Manfred Krafczyk et al.

slide 43

3D FSI Re=2500

LB scheme Tutorial, Paris 18.1.2010

Manfred Krafczyk et al.

slide 44

Oscillating Membrane in flow field

- Re=6000
- lattice size: 128x128x512
- 3 GPUs
- > 1E9 LUPS
- 250 time steps in 1 sec
- LES
- Compt. Steering
- 500 000 time steps
- 2000 sec total time
- dt_s=10 dt_f
- Membrane: Eigenmodes

Grid refinement on GPU

I_max := maximum number of grid levels;

I:= grid level

dT_l0 :- coarse grid time step;

dX_I0 := coarse grid node distance;

endtime := maximum number of time steps;

updateGrid(l, endtime)

begin

dT := 2^(-l) * dT_0; dX := 2^(-l) * dX_0; dX_temp := 2^(-(l+1)) * dX_l0; for i=0 to i <= endtime step i+=dT begin if(l+1<-l_max) updateGrid(l+1, 1); collision(l); propagation(l); applyBoundaryConditions(l) if(l != l_max) then interpolateGridInterface(l, l+1); end;

end;

2D-benchmark

	4.2r	U-V-	0	
4.0r	*	40.0r fine grid 256 x 1376 lattic /-0	e nodes	coarse grid
	4.0r	U-V-	0	256 x 1376 lattice nodes
Re =	= 100	present method	Crouse [3]	Schäfer and Turek [12]
C_{D}		3.19	3.2645-3.2650	3.22-3.24
C_L		0.94	0.9492 - 1.0709	0.99-1.01
St		0.322	0.3050-0.3076	0.295-0.305

Computational Efficiency

	Resolution	NUPS	NUPS	processing time for $10^5 \Delta t$
	nodes x nodes	[×10]	170	S
uniform	2048 x 15360	911.62	100.00	3450.73
non-uniform (raw)	2 x 1024 x 15360	903.35	<mark>99.09</mark>	5223.46
non-uniform (effective)	2 x 1024 x 15360	828.07	90.84	5223.46
uniform	$1024 \ge 7680$	920,59	100.00	854.27
non-uniform (raw)	$2 \ge 512 \ge 7680$	911.20	99.02	1294.6
non-uniform (effective)	2 x 512 x 7680	835.27	90.73	1294.62
uniform	512 x 3840	902.55	100.00	217.83
non-uniform (raw)	$2 \ge 256 \ge 3840$	837.50	92.79	352.13
non-uniform (effective)	$2 \ge 256 \ge 3840$	767.71	85.06	352.13

Thermal flows

the temperature equation is discretized by a finite difference (FD) scheme:

$$\frac{T_{i,j,k}(t + \Delta t^{FD}) - T_{i,j,k}(t)}{\Delta t^{FD}} = -\vec{j}_{i,j,k}(t)\nabla^{(h)}_{i,j,k}T_{i,j,k}(t) + \alpha\Delta^{(h)}_{i,j,k}T_{i,j,k}(t)$$

J. Tölke: A thermal model based on the lattice Boltzmann method for low Mach number compressible flows, *Journal of Computational and Theoretical Nanoscience*, 3(4): 579–587 (2006).

Mezrhab A, Bouzidi M, Lallemand P. Hybrid lattice-Boltzmann finitedifference simulation of convective flows. Comput. Fluids, 2004;33:623–41.

van Treeck, C., Rank, E., Krafczyk, M., Tölke, J., and Nachtwey, B. Extension of a hybrid thermal LBE scheme for Large-Eddy simulations of turbulent convective flows. *Computers & Fluids 35, 8–9 (2006), 863– 871.*

Boundary Conditions

Same lattice for MRT and FD scheme
Dirichlet condition: quadratic polynomial extrapolation
Neumann condition: cubic polynomial extrapolation

$$T = T_{bc}\Big|_{r=\frac{1}{2}} \Longrightarrow T(r=0) = \frac{8}{3}T_{bc} - 2T(1) + \frac{1}{3}T(2)$$
$$\frac{\partial T}{\partial r} = 0\Big|_{r=\frac{1}{2}} \Longrightarrow T(r=0) = \frac{21}{23}T(1) + \frac{3}{23}T(2) - \frac{1}{23}T(3)$$

Coupling of LBE and Thermal Model

The coupling of the temperature field to the energy mode of the LB model is done by inserting the temperature into the equilibrium moments:

HTLBE – Hybrid thermal lattice Boltzmann equation

$$m_1^{eq} = ((3T - 1) + (u_x^2 + u_y^2 + u_z^2))\rho_0$$

$$m_2^{eq} = (1 - 18T)\rho_0$$

T = T(t,i,j,k)

P. Lallemand, L. Luo, Phys. Rev. E 68, 036706 (2003)

Characteristic Quantities

Rayleigh, Prandtl and Nusselt Numbers

$$Ra = \frac{Prg_z\beta(T_s - T_{\infty})L^3}{v^2} \quad Pr = v/\alpha \qquad Nu = \frac{hL}{k} = \frac{\partial(T_s - T)/\partial y|_{y=0}}{(T_s - T_{\infty})/L}$$

- *L* = characteristic length
- k_f = thermal conductivity of the fluid
- *h* = convective heat transfer coefficient
- *T_s*= surface temperature
- α = thermal diffusivity
- β = thermal expansion coefficient

Validation study:

Rayleigh-Benard convection in a closed cavity for Rayleigh numbers > 1e9 LES is applied

 $1e5 < Ra < 2e7 \Rightarrow Nu \approx 0.54 Ra^{1/4}$

$$2e7 < Ra < 3e10 \Rightarrow Nu \approx 0.14Ra^{1/3}$$

$$Ra < 1e13 \Rightarrow Nu \approx 0.825 + \left\{ \frac{0.387 Ra^{1/6}}{\left[1 + (0.492/Pr)^{9/16}\right]^{8/27}} \right\}^{2}$$

$$Ra < 1e9 \Rightarrow Nu \approx 0.68 + \frac{0.670Ra^{1/4}}{\left[1 + (0.492/Pr)^{9/16}\right]^{4/9}}$$

Technische Universität Braunschweig

Rayleigh-Benard instability Ra=2x10^10 400x150x150 grid nodes

LB scheme Tutorial, Paris 18.1.2010

Comparison of theoretical prediction, benchmark data and numerical results:

The Radiosity equation for radiative heat transfer (Goral 1984) $B_{i} = E_{i} + \rho_{d} \sum_{j=1}^{n} B_{j} F_{ij} \quad \text{heat flux equilibrium}$ $\begin{pmatrix} B_{1} \\ B_{2} \\ \cdots \\ B_{n} \end{pmatrix} = \begin{pmatrix} E_{1} \\ E_{2} \\ \cdots \\ E_{n} \end{pmatrix} + \begin{pmatrix} \rho_{1} F_{11} & \rho_{1} F_{12} & \cdots & \rho_{1} F_{1n} \\ \rho_{2} F_{21} & \rho_{2} F_{22} & \cdots & \rho_{2} F_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ \rho_{n} F_{n1} & \rho_{n} F_{n2} & \cdots & \rho_{n} F_{nn} \end{pmatrix} \begin{pmatrix} B_{1} \\ B_{2} \\ \cdots \\ B_{n} \end{pmatrix}$ radiation exchange

Technische Universität Braunschweig

Formfactor

$$F_{ij} = \frac{\cos \Theta_i \cos \Theta_j}{\Pi r^2} V(p_i, p_j) A_i$$

Efficient hierarchical visibility test

recursive subdivision into octants

octree

LB scheme Tutorial, Paris 18.1.2010

Technische Universität Braunschweig

Mesh generation

Technische Universität Braunschweig

Examples

Surface temperature induced by solar radiation (Campus TU Braunschweig)

LB scheme Tutorial, Paris 18.1.2010

Coupling radiative heat transfer and heat conduction

heat equation for stationary temperature fields in isotropic bodies

$$q = \frac{\lambda}{dx}(\vartheta_1 - \vartheta_0)$$

heat equation for non-stationary temperature fields with heat sources

$$\frac{\partial \vartheta}{\vartheta t} = \frac{\lambda}{c\varrho} \left(\frac{\partial^2 \vartheta}{\vartheta x^2} + \frac{\partial^2 \vartheta}{\vartheta y^2} \right) + \frac{\dot{W}(x,y,t,\vartheta)}{c\varrho}$$

grid discretization

LB scheme Tutorial, Paris 18.1.2010

Heat flux in double skin facade

LB scheme Tutorial, Paris 18.1.2010

Thermal Fluid Simulation – Boundary Conditions

Technische Universität Braunschweig

Variant d) 0.25 m outlet

	*				
Flux	0.74	[m³/s]			
T _{EG}	42.57	[°C]			
T _{OG1}	45.19	[°C]			
T _{EOG2}	46.63	[°C]			55.00
T _{OG3}	47.36	[°C]			50.00
T _{OG4}	47.61	[°C]			50.00
					45.00
					40.00
					35.00
tonviev	w A				
	···				
С		— D			
outsida		incido			
	В				
<u> Scheme Tutori</u>	al Paris 18 1	2010	Manfred Krafezy Cut & -D	Cut A-B	

LB scheme Tutorial, Paris 18.1.2010

Manfred Krafczyk Htar-D

topview

outside

С

LB scheme Tutorial, Paris 18.1.2010

Institute for Computational Modeling in Civil Engineering

Variant d) 0.5 m outlet

flux	1.05	[m³/s]
T _{EG}	42.18	[°C]
T _{OG1}	44.86	[°C]
T _{EOG2}	46.64	[°C]
T _{OG3}	47.50	[°C]
T _{OG4}	47.76	[°C]

Α

В

D

е

topview

outside

С

LB scheme Tutorial, Paris 18.1.2010

Institute for Computational Modeling in Civil Engineering

Variant d) 0.75 m outlet

Α

В

D

е

flux	1.13	[m³/s]
T _{EG}	41.87	[°C]
T _{OG1}	44.74	[°C]
T _{EOG2}	46.55	[°C]
T _{OG3}	47.43	[°C]
T _{OG4}	47.70	[°C]

Technische Universität Braunschweig

Variant d) 1.0 m outlet

100

LB scheme Tutorial, Paris 18.1.2010

Flow acoustics

LB-solution of the wave equation $\frac{\partial^2 v'}{\partial t^2} - \left(c_0^2 + \left(\frac{4}{3}\nu + \nu'\right)\frac{\partial}{\partial t}\right)\frac{\partial^2 v'}{\partial x^2} = 0$

Flute: Re=6000, air, f0=415 Hz

Simulation: 8x10^6 grid nodes, 10^6 dt, 6 h on single GPU: f0=413 Hz

LODI BCns for LB: Izquierdo & Fueyo, Phys. Rev. E 78, 046707 (2008)

LB scheme Tutorial, Paris 18.1.2010

Conclusions

- Coupled problems: feasible with LBM
- Required: MRT, 2nd order BCns, grid refinement, HPC
- GPU 🙂

Outlook

- Improved turbulence models (WALE), wall functions
- 3D-grid refinement (also for GPU)
- local BCns in 3D
- Multi-level parallelization CPU/GPU, fault tolerance, postprocessing
- Improved multiphase models
- further validation studies for coupled problems

... and the best news is ...

Technische Universität Braunschweig

... some work is still left to do !

LB scheme Tutorial, Paris 18.1.2010

Manfred Krafczyk et al.

slide 69