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Minimal velocity sets: D1Q3, D2Q5 & D3Q7
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Hydrodynamic & anisotropic diffusion equations
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LINK: ~cq̄ = −~cq

All elements are decomposed into their symmetric and
anti-symmetric components for any pair of opposite velocities

u -�

~cq~cq̄

f ±q =
1

2
(fq ± fq̄) , fq = f +

q + f −q

e±q =
1

2
(eq ± eq̄) , eq = e+

q + e−q
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TRT: two-relaxation-times model (2004−)

fq(~r +~cq, t +1) = (fq +g +
q +g−q )(~r , t) , g±q = λ±n±q , n±q = f ±q −e±q

Mass: e0 = ρ−
Q−1∑
q=1

e+
q , ρ =

Q−1∑
q=0

fq =
Q−1∑
q=0

e+
q
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TRT: two-relaxation-times model (2004−)

fq(~r +~cq, t +1) = (fq +g +
q +g−q )(~r , t) , g±q = λ±n±q , n±q = f ±q −e±q

Mass: e0 = ρ−
Q−1∑
q=1

e+
q , ρ =

Q−1∑
q=0

fq =
Q−1∑
q=0

e+
q

Mass source:

e+
q =⇒ e+

q −
Mq

λ+
→

Q−1∑
q=0

g +
q =

Q−1∑
q=0

Mq = M ,

Momentum source:

e−q =⇒ e−q −
Fq

λ−
→

Q−1∑
q=0

g−q ~cq =
Q−1∑
q=1

Fq~cq = ~F
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TRT: two-relaxation-times model (2004−)

fq(~r +~cq, t +1) = (fq +g +
q +g−q )(~r , t) , g±q = λ±n±q , n±q = f ±q −e±q

Stokes Eq. for P(ρ) &~j = ρ~U

e+
q = t

(m)
q P(ρ) , P = ceρ

e−q = t
(a)
q (~j · ~cq) , ~j =

Q−1∑
q=1

fq~cq

AADE: ∂tρ+∇ · ρ~U = ∇ ·D∇P

e+
q = t

(m)
q P(ρ) , ∀ P(ρ)

e−q = t
(a)
q (~U · ~cq)ρ , ∀ ~U(ρ)
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TRT: two-relaxation-times model (2004−)

Isotropic and hydrodynamic weights: t
(a)
q = t

(m)
q = t?q

Q−1∑
q=1

t?qcqαcqβ = δαβ , ∀α, β , 3
Q−1∑
q=1

t?qc2
qαc2

qβ = 1 , ∀α 6= β
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TRT: two-relaxation-times model (2004−)

Isotropic and hydrodynamic weights: t
(a)
q = t

(m)
q = t?q

Q−1∑
q=1

t?qcqαcqβ = δαβ , ∀α, β , 3
Q−1∑
q=1

t?qc2
qαc2

qβ = 1 , ∀α 6= β

e+
q =⇒ e+

q + 3t?qρ
(~U · ~cq)2 − ||~U||2

2

Stokes =⇒ Navier-Stokes D =⇒ D−Dnum
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TRT: two-relaxation-times model (2004−)

Isotropic and hydrodynamic weights: t
(a)
q = t

(m)
q = t?q

Q−1∑
q=1

t?qcqαcqβ = δαβ , ∀α, β , 3
Q−1∑
q=1

t?qc2
qαc2

qβ = 1 , ∀α 6= β

anti-diffusion+numerical diffusion= O

Deff = Λ−
(

Dxx +U2
x−U2

x Dxy + Ux Uy−Ux Uy

Dxy + Ux Uy−Ux Uy Dyy +U2
y−U2

y

)
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TRT: two-relaxation-times model (2004−)

Stokes or Navier-Stokes Eqs.

Λ+ = −( 1
2 + 1

λ+ ) > 0

ν = Λ+

3 , νξ = ( 2
3 − ce)Λ+

Isotropic linear ADE

Λ− = −( 1
2 + 1

λ− ) > 0

Dαα = Λ−ce , P = ceρ

“Magic” (ghost, kinetic) parameter is free:

Λ = Λ−Λ+ > 0

Irina Ginzburg Consistent two-relaxation-times LBE model for porous flow and transport



TRT model for Micro/Macro Flow and Transport
Linearity of linear equations ?

Physical and collision numbers
Notes on the optimal stability

Summary

Two-relaxation-time model
Simple reflections
Flow & transport with the TRT
Anisotropic advection-diffusion equations
Non-linear equations

No-slip (zero velocity) condition with bounce-back:

fq̄(~rb, t + 1) = (fq + g +
q + g−q )(~rb, t)
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Zero concentration condition with anti-bounce-back:

fq̄(~rb, t + 1) = −(fq + g +
q + g−q )(~rb, t)
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Pesticide transport in cultivated soil porosity

Valérie Pot, Nadia Elyeznasni & Hassan Hammou, l’INRA

Optical
microscopy

≈ 1mm Soil porosity
3D CT, ≈ 5 cm
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Pesticide transport in cultivated soil porosity

Valérie Pot, Nadia Elyeznasni & Hassan Hammou, l’INRA

Optical
microscopy

≈ 1mm

Stokes flow

3D CT, ≈ 5 cm
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Pesticide transport in cultivated soil porosity

Valérie Pot, Nadia Elyeznasni & Hassan Hammou, l’INRA

Optical
microscopy

≈ 1mm

Pesticide plume

3D CT, ≈ 5 cm
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Pesticide transport in cultivated soil porosity

Valérie Pot, Nadia Elyeznasni & Hassan Hammou, l’INRA

Uniform sorption +biofilm degradation
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Full anisotropic 2D and 3D diffusion tensors

Anisotropic Collision: L (link) -operator

g +
q (~r , t) = λ+n+

q (~r , t) , g−q (~r , t) = λ−q n−q (~r , t)
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Full anisotropic 2D and 3D diffusion tensors

Anisotropic Equilibrium:

e+
q = t

(m)
q P(ρ)→ E +

q P(ρ)
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Full anisotropic 2D and 3D diffusion tensors

Anisotropic Equilibrium:

e+
q = t

(m)
q P(ρ)→ E +

q P(ρ)
Diagonal links :

d2Q9,d3Q15 : E +
q = t

(m)
q ce +

∑
α 6=β Dαβcqαcqβ∑
α 6=β cqαcqβ

, Dαβ =
Dαβ

Λ−
.
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Full anisotropic 2D and 3D diffusion tensors

Anisotropic Equilibrium:

e+
q = t

(m)
q P(ρ)→ E +

q P(ρ)
Diagonal links :

d2Q9,d3Q15 : E +
q = t

(m)
q ce +

∑
α 6=β Dαβcqαcqβ∑
α 6=β cqαcqβ

, Dαβ =
Dαβ

Λ−
.

Coordinate links :

Minimal models & d2Q9, d3Q15

E +
q = t

(m)
q ce +

1

2

∑
α

(Dαα − ce)c2
qα

Mean : ce =

∑
αDαα
d
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Two-relaxation-time model
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Full anisotropic 2D and 3D diffusion tensors

AADE: ∂tρ+∇ · ρ~U = ∇ ·D∇P{
Dαβ =

∑Q−1
q=1 Λ−q E +

q cqαcqβ

e+
q = E +

q P(ρ)

Local diffusive flux:

~D(ρ) = (Λ−q g−q · ~cq) ≈ Dαβ∇βP(ρ)
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Full anisotropic 2D and 3D diffusion tensors

AADE: ∂tρ+∇ · ρ~U = ∇ ·D∇P{
Dαβ =

∑Q−1
q=1 Λ−q E +

q cqαcqβ

e+
q = E +

q P(ρ)

L-model

Anisotropic {Λ−q }
Isotropic or Anisotropic
{E +

q }

TRT-model

Isotropic {Λ−q = Λ−}
Anisotropic {E +

q }

TRT freedoms : full models: {t(m)
q , t

(a)
q }

all models: ~U , ceΛ− =
|U|

Peclet
, P = ceρ , and Λ
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Full anisotropic 2D and 3D diffusion tensors

L-model
Anisotropic {Λ−q }
Isotropic or Anisotropic
{E +

q }

TRT-model

Isotropic {Λ−q = Λ−}
Anisotropic {E +

q }

*available anisotropy for pure diffusion
{E +

q > 0} ⇔ |Dαβ| ≤ minαDαα, for d2Q9 and d3Q15.
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L-model
Anisotropic {Λ−q }
Isotropic or Anisotropic
{E +

q }

TRT-model

Isotropic {Λ−q = Λ−}
Anisotropic {E +

q }

Heterogeneous Dαβ : discontinuous Λ−q or E +
q ?
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L-model
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Isotropic or Anisotropic
{E +

q }

TRT-model

Isotropic {Λ−q = Λ−}
Anisotropic {E +

q }

Heterogeneous Dαβ : discontinuous Λ−q or E +
q ? Eigenvalues Λ−q !
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Dynamics of underground water tables
under rainfall episodes

Dynas Project: l’ENPC/Cemagref/l’INRIA
2003-2004
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Richard’s equation for variably saturated flow

Unsaturated zone: θr ≤ θ ≤ θs{
∂tθ +∇ · ~u = 0

~u = −K (θ)Ka(∇h(θ) +~1z )

Saturated zone: θ ≡ θs{
∇ · ~u = 0

~u = −KsKa(∇h +~1z )

Variables

θ(~r , t) water content
h(θ) pressure head, [L]
K (θ) = Kr (θ)Ks hydraulic conductivity, [L T−1]
Kr (θ) relative hydraulic conductivity
Ks = kρg

µ saturated hydraulic conductivity, [L T−1]
kKa permeability tensor, Ka = I if isotropic

Irina Ginzburg Consistent two-relaxation-times LBE model for porous flow and transport
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Two-relaxation-time model
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Non-linear equations

Richard’s equation as the AADE

∂tρ+∇ ·~j(ρ) = ∇ · ~D(ρ)

ρ = θ conserved quantity
~j = −K (ρ)[KaL ] ·~1z non-linear convective flux
−~D = −K (ρ)[LKaL] · ∇h(ρ) non-linear diffusive flux
L = diag(lx , ly , lz ) grid transformation

from physical to cuboid (LBE) grid

Irina Ginzburg Consistent two-relaxation-times LBE model for porous flow and transport
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Computations on cuboid grid via anisotropic sub-grid
transformations
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TRT model for Micro/Macro Flow and Transport
Linearity of linear equations ?

Physical and collision numbers
Notes on the optimal stability

Summary

Two-relaxation-time model
Simple reflections
Flow & transport with the TRT
Anisotropic advection-diffusion equations
Non-linear equations

Equilibrium forms of Richard’s equation

Equilibrium: e+
q = t

(m)
q P(θ) , e0 = θ −

∑Q−1
q=1 e+

q

Diffusive flux: ~D = Λ−∇P(θ) should fit ~D = K (θ)∇h(θ)

θ-based

P(θ) = ceθ

ceΛ− = K (θ)∂θh(θ)
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Two-relaxation-time model
Simple reflections
Flow & transport with the TRT
Anisotropic advection-diffusion equations
Non-linear equations

Equilibrium forms of Richard’s equation

Equilibrium: e+
q = t

(m)
q P(θ) , e0 = θ −

∑Q−1
q=1 e+

q

Diffusive flux: ~D = Λ−∇P(θ) should fit ~D = K (θ)∇h(θ)

θ-based

P(θ) = ceθ

ceΛ− = K (θ)∂θh(θ)

Integral transforms

P(θ) = ce

∫ h(θ)
−∞ K (h′)dh′

ceΛ− = 1
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Two-relaxation-time model
Simple reflections
Flow & transport with the TRT
Anisotropic advection-diffusion equations
Non-linear equations

Equilibrium forms of Richard’s equation

Equilibrium: e+
q = t

(m)
q P(θ) , e0 = θ −

∑Q−1
q=1 e+

q

Diffusive flux: ~D = Λ−∇P(θ) should fit ~D = K (θ)∇h(θ)

θ-based

P(θ) = ceθ

ceΛ− = K (θ)∂θh(θ)

θ/h-based

P(θ) = ceh(θ)

ceΛ− = K (θ)

Integral transforms

P(θ) = ce

∫ h(θ)
−∞ K (h′)dh′

ceΛ− = 1
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Summary

Two-relaxation-time model
Simple reflections
Flow & transport with the TRT
Anisotropic advection-diffusion equations
Non-linear equations

Equilibrium forms of Richard’s equation

Equilibrium: e+
q = t

(m)
q P(θ) , e0 = θ −

∑Q−1
q=1 e+

q

Diffusive flux: ~D = Λ−∇P(θ) should fit ~D = K (θ)∇h(θ)

θ-based

P(θ) = ceθ

ceΛ− = K (θ)∂θh(θ)

θ/h-based

P(θ) = ceh(θ)

ceΛ− = K (θ)

Integral transforms

P(θ) = ce

∫ h(θ)
−∞ K (h′)dh′

ceΛ− = 1

Heterogeneous soils/grids: only P(θ) = ceh(θ) is suitable
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Summary

Two-relaxation-time model
Simple reflections
Flow & transport with the TRT
Anisotropic advection-diffusion equations
Non-linear equations

Equilibrium forms of Richard’s equation

Equilibrium: e+
q = t

(m)
q P(θ) , e0 = θ −

∑Q−1
q=1 e+

q

Diffusive flux: ~D = Λ−∇P(θ) should fit ~D = K (θ)∇h(θ)

θ-based

P(θ) = ceθ

ceΛ− = K (θ)∂θh(θ)

θ/h-based

P(θ) = ceh(θ)

ceΛ− = K (θ)

Integral transforms

P(θ) = ce

∫ h(θ)
−∞ K (h′)dh′

ceΛ− = 1

Non-linear equilibrium or non-linear eigenvalues ?

Linear stability

Stiff Λ−(θ)

Non-linear stability

Smoother Λ−(θ)

Improve stability ?

Improve sharpness ?
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Two-relaxation-time model
Simple reflections
Flow & transport with the TRT
Anisotropic advection-diffusion equations
Non-linear equations

Filling of expanded cavity with Bingham (plastic) fluid

predictions: A. N. Alexandrou, E. Duc & V. Entov, 2001

‖D‖ = 0 if ||T|| < T0 & T = (ν +
T0

‖D‖
)D if ||T|| > T0

Reynolds= UL
ν = 12.5 & Bingham= T0L

νU = 9.4
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Summary

Two-relaxation-time model
Simple reflections
Flow & transport with the TRT
Anisotropic advection-diffusion equations
Non-linear equations

Oil distribution in anisotropic fibrous material
relative permeability and capillary pressure versus saturation

ITWM, 1999-2002

Fleece Oil is wetting Oil is non-wetting
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Two-relaxation-time model
Simple reflections
Flow & transport with the TRT
Anisotropic advection-diffusion equations
Non-linear equations

From mixture to steady distribution

Stokes flow with (ρ
R

ρB )lb = 1 &

( ν
R

νB )lb = (µ
R

µB )phys = ( ν
R

νB )phys(ρ
R

ρB )phys
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Two-relaxation-time model
Simple reflections
Flow & transport with the TRT
Anisotropic advection-diffusion equations
Non-linear equations

From mixture to steady distribution

High viscosity values accelerate the convergence to steady state
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Summary

Permeability measurements
Poiseuille flow with bounce-back
Brinkman model

Single-relaxation-time BGK operator*

Most popular and poor, BGK ∈ TRT ∈ MRT:

fq(~r + ~cq, t + 1) = fq(~r , t) + λ(fq − eq) , λ+ = λ− = λ

*Y. Qian, D. d’Humières and P. Lallemand, Europhys. Lett. 1992.
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Permeability measurements
Poiseuille flow with bounce-back
Brinkman model

Single-relaxation-time BGK operator*

Most popular and poor, BGK ∈ TRT ∈ MRT:

fq(~r + ~cq, t + 1) = fq(~r , t) + λ(fq − eq) , λ+ = λ− = λ

BGK = TRT in cost but BGK cannot set Magic parameter Λ

Λ = Λ−
2

= Λ+2
= 9ν2

Λ→∞ when ν →∞
Λ→ 0 when ν → 0

*Y. Qian, D. d’Humières and P. Lallemand, Europhys. Lett. 1992.
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Summary

Permeability measurements
Poiseuille flow with bounce-back
Brinkman model

Permeability measurements

Let us compute Stokes flow using the bounce-back,

then compute mean velocity ~j and derive permeability K of porous
structure from

Darcy′s Law : ν~j = K(~F −∇P)
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Summary

Permeability measurements
Poiseuille flow with bounce-back
Brinkman model

Linear Stokes flow ?

Table shows:
k(Λ+)−k(Λ+= 1

2
)

k(Λ+= 1
2

)
versus Λ+ = 3ν

Λ+ 203, φ ≈ 0.965 903, φ ≈ 0.941

BGK BGK
1/8 −0.077 −0.083

15/2 4.699 2.236

The permeability depends on the viscosity of the modeled flow
when all eigenvalues are equal !
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Summary

Permeability measurements
Poiseuille flow with bounce-back
Brinkman model

Linear Stokes flow ?

Table shows:
k(Λ+)−k(Λ+= 1

2
)

k(Λ+= 1
2

)
versus Λ+ = 3ν

Λ+ 203, φ ≈ 0.965 903, φ ≈ 0.941

TRT BGK TRT BGK
1/8 10−13 −0.077 10−13 −0.083

15/2 −2.8× 10−12 4.699 −10−13 2.236

The permeability depends on the viscosity of the modeled flow
when all eigenvalues are equal !

But it is constant when Λ is fixed (1995) !
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Summary

Permeability measurements
Poiseuille flow with bounce-back
Brinkman model

Effective location of no-slip walls

Exact solution*: H2
eff = H2 + 16

3 Λ− 1
Heff = H if Λ = 3

16
Heff < H if Λ < 3

16
Heff > H if Λ > 3

16

6

?

6

?

rrrrrrrrr

rrrrrrrrr

��	

���

f̃q

fq̄

H Heff−?

*IG & P. Adler, 1994
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Summary

Permeability measurements
Poiseuille flow with bounce-back
Brinkman model

Effective location of no-slip walls

Bounce back permeability error:

BGK :
k − kth

kth
= (48ν2 − 1)

TRT :
k − kth

kth
=

( 16
3 Λ− 1)

H2
.

6

?

6

?

rrrrrrrrr

rrrrrrrrr

��	

���

f̃q

fq̄

H Heff−?

*IG & P. Adler, 1994
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Summary

Permeability measurements
Poiseuille flow with bounce-back
Brinkman model

Effective location of no-slip walls

Second order non-equilibrium expansion:

g +
q = ∂qe−q , n+

q =
g+

q

λ+

g−q = ∂qn+
q + 1

2∂
2
qe−q = −Λ+∂2

qe−q , n−q =
g−q
λ−

Bounce-back closure relation:
fq̄(~rb, t + 1) = f̃q(~rb, t) = fq + g +

q + g−q
[e−q + 1

2 g +
q −Λ−g−q ](~rb) = 0 , e−q = t?q(jq + Λ−q Fq) , −Fq = Λ+

3 ∂
2
q jq

Together:

[jq +
1

2
∂qjq +

2

3
Λ∂2

q jq](~rb) = 0 , jq = ρ~u ·~cq , ρ~u =
Q−1∑
q=1

fq~cq +
~F

2
.

Exact Taylor expansion only if Λ = 3
16 and δq = 1

2
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Summary

Permeability measurements
Poiseuille flow with bounce-back
Brinkman model

Consistency of the LBE Brinkman model

Stokes equation with the resistance force

~F =
νbr

φ
∆~u , where ~F = K−ν~u

φ: porosity, K : prescribed permeability tensor
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Permeability measurements
Poiseuille flow with bounce-back
Brinkman model

Consistency of the LBE Brinkman model

Stokes equation with the resistance force

~F =
νbr

φ
∆~u , where ~F = K−ν~u

X. Nie & N. S. Martys : “Breakdown of Chapman-Enskog
expansion and the anisotropic effect for lattice-Boltzmann models
of porous media” (Phys. Fluids, 2007):
the apparent BGK viscosity differs from the predicted,

νbr 6=
Λ+

3
.
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Steady state recurrence and conservation equations
Parametrization of boundary-schemes
Links with the infinite Chapman-Enskog expansion
Force variation

Consider one pair of evolution equations

q q q
q q q
q q q

�
���

�
��	

�
���

�
��	

~r + ~cq

~r − ~cq

~r

fq̄

f̃q̄

f̃q

fq
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Force variation

and another pair (back)
q q q
q q q
q q q

�
��	

�
���

~r + ~cq

~r − ~cq

~r

fq̄

f̃q̄

f̃q

fq
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Steady state recurrence and conservation equations
Parametrization of boundary-schemes
Links with the infinite Chapman-Enskog expansion
Force variation

The L−operator is equivalent to recurrence equations:

g±q (~r) = [∆̄qe∓q − Λ∓q ∆2
qe±q + (Λq −

1

4
)∆2

qg±q ](~r)

using the link-wise finite-difference operators:

∆̄qφ(~r) =
1

2
(φ(~r + ~cq)− φ(~r − ~cq))

∆2
qφ(~r) = φ(~r + ~cq)− 2φ(~r) + φ(~r − ~cq)

Irina Ginzburg Consistent two-relaxation-times LBE model for porous flow and transport
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Steady state recurrence and conservation equations
Parametrization of boundary-schemes
Links with the infinite Chapman-Enskog expansion
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The L−operator is equivalent to recurrence equations:

g±q (~r) = [∆̄qe∓q − Λ∓q ∆2
qe±q + (Λq −

1

4
)∆2

qg±q ](~r)

Bulk solution is:

g±q (~r) = γq(e∓q )− 2Λ∓q Γq(e±q ) ,

γq(φ) and Γq(φ) obey :

γq : odd-order variation of φ = e∓q

γq(φ) = ∆̄qφ+ (Λq −
1

4
)∆2

qγq(φ) ,

Γq : even-order variation of φ = e±q

2Γq(φ) = ∆2
qφ+ 2(Λq −

1

4
)∆2

qΓq(φ) .
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Steady state recurrence and conservation equations
Parametrization of boundary-schemes
Links with the infinite Chapman-Enskog expansion
Force variation

The L−operator is equivalent to recurrence equations:

g±q (~r) = [∆̄qe∓q − Λ∓q ∆2
qe±q + (Λq −

1

4
)∆2

qg±q ](~r)

Exact macroscopic equations are:

Q−1∑
q=0

g +
q = 0 ,

Q−1∑
q=0

g−q ~cq = ~F
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Steady state recurrence and conservation equations
Parametrization of boundary-schemes
Links with the infinite Chapman-Enskog expansion
Force variation

Steady Stokes equation

Substituting Stokes equilibrium distribution
j?q = t?q(~j · ~cq) , F ?

q = t?q(~F · ~cq) , P?
q = t?qP(ρ)

Mass ×Λ+ :

(∆̄qΛ+j?q · 1q) = Λ(∆2
qP?

q · 1q)

−(Λ− 1

4
) × ([∆2

qγq(Λ+j?q ) + Λ∆2
qγq(F ?

q )− 2Λ∆2
qΓq(P?

q )] · 1q)

Momentum :

(∆̄qP?
q · ~cq) = ~F + (∆2

qΛ+j?q · ~cq) + Λ(∆2
qF ?

q · ~cq)

−(Λ− 1

4
) × ([∆2

qγq(P?
q )− 2∆2

qΓq(Λ+j?q )− 2Λ∆2
qΓq(F ?

q )] · ~cq)

Irina Ginzburg Consistent two-relaxation-times LBE model for porous flow and transport
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Parametrization of boundary-schemes
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Parametrization of the bounce-back

Exact steady state closure relation:

[e−q +
1

2
g +

q − Λ−g−q ](~rb) = 0

Then the closure relation becomes (multiplying by Λ+):

(Λ+j?q ) + ΛF ?
q +

1

2
(γq(Λ+j?q )+Λγq(F ?

q )− 2ΛΓq(P?
q ))

+ 2Λ(Γq(Λ+j?q ) + 2ΛΓq(F ?
q )− Λγq(P?

q )) = 0 .

Then Bounce-back maintains the properties of bulk
solution ! And the TRT/MRT gives viscosity independent
permeability for fixed Λ !

Irina Ginzburg Consistent two-relaxation-times LBE model for porous flow and transport
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Steady state recurrence and conservation equations
Parametrization of boundary-schemes
Links with the infinite Chapman-Enskog expansion
Force variation

From recurrence solution to Chapman-Enskog expansion

Expand the recurrence solution:

γq(φ) = ∆̄qφ+ (Λq −
1

4
)∆2

qγq(φ) ,

2Γq(φ) = ∆2
qφ+ 2(Λq −

1

4
)∆2

qΓq(φ) .

into series around the equilibrium:

γq(φ) =
∑
k≥1

a2k−1∂
2k−1
q φ

(2k − 1)!
, Γq(φ) =

∑
k≥1

a2k∂
2k
q φ

(2k)!
,

also replacing the central-difference operators by the series:

∆̄qψ =
∑
k≥1

∂2k−1
q ψ

(2k − 1)!
, ∆2

qψ = 2
∑
k≥1

∂2k
q ψ

(2k)!
, ∀ψ .
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Steady state recurrence and conservation equations
Parametrization of boundary-schemes
Links with the infinite Chapman-Enskog expansion
Force variation

From recurrence solution to Chapman-Enskog expansion

the solution of recurrence equations is:

γq(φ) =
∑
k≥1

a2k−1∂
2k−1
q φ

(2k − 1)!
, Γq(φ) =

∑
k≥1

a2k∂
2k
q φ

(2k)!
,

where

a1 = 1 , a2 = 1 ,

a2k−1 = 1 + 2(Λq −
1

4
)
∑

1≤n<k

a2n−1
(2k − 1)!

(2n − 1)!(2(k − n))!
,

a2k = 1 + 2(Λq −
1

4
)
∑

1≤n<k

a2n
(2k)!

(2n)!(2(k − n))!
.
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Steady state recurrence and conservation equations
Parametrization of boundary-schemes
Links with the infinite Chapman-Enskog expansion
Force variation

Back to Brinkman problem

The second order correction in the RHS of NSE is:

err(~F ) = ∇ · Λ+

3
∇Λ−~F
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Back to Brinkman problem

The second order correction in the RHS of NSE is:

err(~F ) = ∇ · Λ+

3
∇Λ−~F

The second-order error for the resistance force is:

err(~F = −ν
~u

k
) = − Λ

3k
ν∆~u
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Parametrization of boundary-schemes
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Back to Brinkman problem

The second order correction in the RHS of NSE is:

err(~F ) = ∇ · Λ+

3
∇Λ−~F

The second-order error for the resistance force is:

err(~F = −ν
~u

k
) = − Λ

3k
ν∆~u

The exact effective viscosity coefficient, either from the
recurrence equations or the infinite Chapman-Enskog
expansion, for parallel (Θ2 = 1) and diagonal (Θ2 = 1

2) flows:

ν =⇒ ν(1− Λ

3k
+

Θ2

k
(Λ− 1

4
))

It depends on the orientation (Θ2 !), except for Λ = 1
4 !
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Time Discretization

Recurrence equations for time dependent problems

Exact conservation equation: (g±q · v±q ) = 0 for φ± = (e±q · v±q ),
v +

q = 1q and v−q = ~cq

∆̄tφ
± + Λ∓∆2

tφ
± = −(S±q · v±q )

S±q (~r , t) = ∆̄qe∓q − Λ∓∆2
qe±q + (Λ− 1

4
)∆2

qg±q
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Time Discretization

Recurrence equations for time dependent problems

Exact conservation equation: (g±q · v±q ) = 0 for φ± = (e±q · v±q ),
v +

q = 1q and v−q = ~cq

∆̄tφ
± + Λ∓∆2

tφ
± = −(S±q · v±q )

S±q (~r , t) = ∆̄qe∓q − Λ∓∆2
qe±q + (Λ− 1

4
)∆2

qg±q

with three-level time difference :

∆̄tφ
± + Λ∓∆2

tφ
± = (Λ∓+

1

2
)φ±(t+1)−2Λ∓φ±(t)+(Λ∓−1

2
)φ±(t−1)
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Time Discretization

Recurrence equations for time dependent problems

Equivalent diffusion equation when Λ = 1
4 is:

ρ(t + 1)− ρ(t − 1)

2
= Λ−ce×

Q−1∑
q=1

t
(m)
q (ρ(~r + ~cq, t)− (ρ(~r , t − 1) + ρ(~r , t + 1)) + ρ(~r − ~cq, t))
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Time Discretization

Recurrence equations for time dependent problems

Equivalent diffusion equation when Λ = 1
4 is:

ρ(t + 1)− ρ(t − 1)

2
= Λ−ce×

Q−1∑
q=1

t
(m)
q (ρ(~r + ~cq, t)− (ρ(~r , t − 1) + ρ(~r , t + 1)) + ρ(~r − ~cq, t))

This is idea of Du Fort-Frankel diffusion scheme, M.T.A.C. 1953:
explicit and unconditionally stable !
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Time Discretization

Recurrence equations for time dependent problems

Equivalent diffusion equation when Λ = 1
4 is:

ρ(t + 1)− ρ(t − 1)

2
= Λ−ce×

Q−1∑
q=1

t
(m)
q (ρ(~r + ~cq, t)− (ρ(~r , t − 1) + ρ(~r , t + 1)) + ρ(~r − ~cq, t))

This is idea of Du Fort-Frankel diffusion scheme, M.T.A.C. 1953:
explicit and unconditionally stable !

Optimal stability of
OTRT = TRT(Λ = 1

4 ) = TRT(λ
++λ−

2 = −1):
the same stability for any Λ− and Λ+ provided that Λ−Λ+ = 1

4
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Towards conclusion

The magic parameter Λ controls

1 Stability
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Towards conclusion

The magic parameter Λ controls

1 Stability
2 Consistency and accuracy (beyond the second order) of bulk

solutions at steady state

They are set on a given grid when Reynold/Peclet and Λ are
constant !
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Towards conclusion

The magic parameter Λ controls

1 Stability

2 Consistency and accuracy (beyond the second order) of bulk
solutions at steady state

3 The boundary/interface accomodation layers

q q q
q q q
q q q
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Towards conclusion

The magic parameter Λ controls

1 Stability

2 Consistency and accuracy (beyond the second order) of bulk
solutions at steady state

3 There exist the infinite number of second and third order
accurate consistent boundary schemes.

~rb − ~cq ~rb ~rw = ~rb + ~cq

κ1

~rb + δq ~cq

�

κ̄−1

-

κ0

r r r�
??

b-
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Towards conclusion

The magic parameter Λ controls
1 Stability
2 Consistency and accuracy (beyond the second order) of bulk

solutions at steady state
3 The third-order accurate schemes are exact for inclined

Poiseuille flow at any Λ and they shift the dependency on Λ
beyond the second order.
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Towards conclusion

The magic parameter Λ controls

1 Stability

2 Consistency and accuracy (beyond the second order) of bulk
solutions at steady state

3 The boundary/interface accomodation layers

4 A compromise between the advanced efficiency and precision
is looked for:
Λ = 1

4 ,
3

16 ,
1
6 (O(h4) = 0) , 1

12 (O(h3) = 0), . . . ???
permeability measurements in CT images better agree with
the experiment when Λ→ 0...
courtesy of Valérie Pot (INRA) and Laurent Talon (FAST)
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