Discrete Kinetic Theory of Gases

Renée Gatignol
Institut Jean le Rond d'Alembert
Université Pierre et Marie Curie \& CNRS (UMR 7190)

Discrete Kinetic Theory of Gases: Outline

1. Introduction
2. Discrete kinetic theory
3. Hydrodynamical description for regular discrete models
4. Boundary conditions
5. Applications
6. Conclusion
7. Introduction

Introduction

$$
\begin{array}{ll}
\text { Boltzmann equation } & \longrightarrow \text { Entropy inequality } \\
\mathcal{D f}=\mathcal{J}(\mathrm{f}, \mathrm{f}) &
\end{array}
$$

Balance laws

Dimensionless
$\Longrightarrow \varepsilon \ll 1 \quad$ Euler, Navier-Stokes, Burnett, ... equations
Boltzmann equation
$\Longrightarrow \varepsilon \gg 1 \quad$ Free molecular flows
$\mathcal{D} \mathrm{f}=(1 / \varepsilon) \mathcal{J}(\mathrm{f}, \mathrm{f})$
$\varepsilon=\lambda / L$
Transition flows: Wave shock structure, Knudsen layer, ...
$\square \quad$ Need models

Introduction: The first works

	AuthorsVelocity number		Subject
1957	Carleman	2	H-Theorem
1960	Gross		The velocity discretization is emphasized
1964	Broadwell	6	Shock wave structure
$« «<$	Broadwell	8	Couette and Rayleigh problems
1965	R. G.	6	Shock wave structure
1966	Harris	6	Ternary collisions and H-Theorem
1967	Harris	4	Study of the H-function
1970	R.G.	p	Discrete kinetic theory
1971	 Sultangazin	6	Kinetic and hydrodynamical descriptions
1972	 Pomeau	4	Lattice gases

R. G.

$\begin{aligned} & 1965- \\ & 1972 \end{aligned}$	6 CRAS	Shock structure, H-Theorem, General kinetic equations, Chapman-Enskog expansion,
1970	Zeitschrift für Flugwissenschaften	«Théorie cinétique des gaz à répartition discrète de vitesses »
1975	Lecture Notes in Physics (Vol. 39)	
1975	Physics Fluids	Discrete kinetic theory
1977	Physics of Fluids	Boundary conditions
$1965-$	4 theses, about 20 papers and 20 proceedings	

H. Cabannes

1975	J. de Mécanique	Shock structure (14 velocities)
$1977-$	On the solutions of the discrete kinetic equations (existence theorems, exact solutions)	
1980	Lecture notes, Berkeley University, «The discrete Boltzmann Equation »	

2. Discrete Kinetic Theory of Gases

Discrete Kinetic Theory of Gases

> In discrete kinetic theory, the main idea is that the velocities of the molecules belong to a given set of vectors
> The Boltzmann equation is replaced by a system of partial differential equations
> This system has an interesting mathematical structure (H. Cabannes, Bellomo, Cercignani, Kawashima, ...)
$>$ The discrete models, by their simplicity, help to understand the fundamental problems of rarefied gas dynamics
$>$ The hydrodynamic description of discrete gases is obtained via the Chapman-Enskog expansion

Discrete kinetic theory: Binary collisions

The particles are identical
The particle velocities belong to a given set of vectors:

$$
\overrightarrow{\mathrm{u}}_{\mathrm{k}}, \mathrm{k}=1,2, \ldots, \mathrm{p}
$$

$N_{k}(\vec{x}, t)$ denotes the number of particles with velocity $\overrightarrow{\mathrm{u}}_{\mathrm{k}}$ (i.e. particle «k ») per unit of volume

Macroscopic quantities

$$
\left\{\begin{array}{l}
\mathrm{n}=\sum_{\mathrm{k}} \mathrm{~N}_{\mathrm{k}} \\
\mathrm{n} \overrightarrow{\mathrm{u}}=\sum_{\mathrm{k}} \mathrm{~N}_{\mathrm{k}} \overrightarrow{\mathrm{u}}_{\mathrm{k}} \\
\mathrm{ne}=\frac{\mathrm{m}}{2} \sum_{\mathrm{k}} \mathrm{~N}_{\mathrm{k}}\left(\overrightarrow{\mathrm{u}}_{\mathrm{k}}-\overrightarrow{\mathrm{u}}\right)^{2}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\overrightarrow{\overrightarrow{\mathrm{P}}}=\mathrm{m} \sum_{\mathrm{k}} \mathrm{~N}_{\mathrm{k}}\left(\overrightarrow{\mathrm{u}}_{\mathrm{k}}-\overrightarrow{\mathrm{u}}\right)\left(\overrightarrow{\mathrm{u}}_{\mathrm{k}}-\overrightarrow{\mathrm{u}}\right) \\
\overrightarrow{\mathrm{q}}=\frac{\mathrm{m}}{2} \sum_{\mathrm{k}} \mathrm{~N}_{\mathrm{k}}\left(\overrightarrow{\mathrm{u}}_{\mathrm{k}}-\overrightarrow{\mathrm{u}}\right)^{2}\left(\overrightarrow{\mathrm{u}}_{\mathrm{k}}-\overrightarrow{\mathrm{u}}\right)
\end{array}\right.
$$

Binary collision

$$
\overrightarrow{\mathrm{u}}_{\mathrm{k}}, \quad \overrightarrow{\mathrm{u}}_{\ell}
$$

After the collision

In the collision, the mass, momentum and energy are conserved
$\underline{\text { Transition probability }} \quad A_{i j}^{\mathrm{k} \ell}$
Microreversibility property $\quad A_{i j}^{\mathrm{k} \ell}=\mathrm{A}_{\mathrm{k} \ell}^{\mathrm{ij}}$

Discrete kinetic theory: Examples

Spatial models with 6 velocities or with 8 velocities (Broadwell, 1964)

Coplanar models

Kinetic equations (binary collisions)

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial \mathrm{t}} \mathrm{~N}_{\mathrm{k}}+\overrightarrow{\mathrm{u}}_{\mathrm{k}} \cdot \vec{\nabla} \mathrm{~N}_{\mathrm{k}}=\mathrm{G}_{\mathrm{k}}-\mathrm{L}_{\mathrm{k}}, \quad \mathrm{k}=1,2, \ldots, \mathrm{p} \\
\frac{\partial}{\partial \mathrm{t}} \mathrm{~N}_{\mathrm{k}}+\overrightarrow{\mathrm{u}}_{\mathrm{k}} \cdot \vec{\nabla} \mathrm{~N}_{\mathrm{k}}=\frac{1}{2} \sum_{\mathrm{ij} \ell}\left(\mathrm{~A}_{\mathrm{ij}}^{\mathrm{k} \mathrm{\ell}} \mathrm{~N}_{\mathrm{i}} \mathrm{~N}_{\mathrm{j}}-\mathrm{A}_{\mathrm{k} \ell}^{\mathrm{ij}} \mathrm{~N}_{\mathrm{k}} \mathrm{~N}_{\ell}\right), \quad \mathrm{k}=1,2, \ldots, \mathrm{p}
\end{array}\right.
$$

Notations

$$
\begin{gathered}
\mathbf{N}=\left(\mathrm{N}_{1}, \mathrm{~N}_{2}, \ldots, \mathrm{~N}_{\mathrm{p}}\right) \\
\langle\mathbf{U}, \mathbf{V}\rangle=\sum_{\mathrm{k}} \mathrm{U}_{\mathrm{k}} \mathrm{~V}_{\mathrm{k}}
\end{gathered}
$$

$\mathcal{F}(\mathbf{U}, \mathbf{V}) \quad$ Linear mapping of $\mathrm{R}^{\mathrm{p}} \times \mathrm{R}^{\mathrm{p}}$ into R^{p}

Kinetic equations

$$
\frac{\partial}{\partial \mathrm{t}} \mathbf{N}+\mathcal{A} \mathbf{N}=\mathcal{F}(\mathbf{N}, \mathbf{N})
$$

Symmetry property

$$
\begin{aligned}
& <\phi, F(\mathbf{U}, \mathbf{V})>=-\frac{1}{8} \sum_{\mathrm{ijk} \ell} \mathrm{~A}_{\mathrm{k} \ell}^{\mathrm{ij}}\left(\varphi_{\mathrm{k}}+\varphi_{\ell}-\varphi_{\mathrm{i}}-\varphi_{\mathrm{j}}\right)\left(\mathrm{U}_{\mathrm{i}} \mathrm{~V}_{\mathrm{j}}+\mathrm{U}_{\mathrm{j}} \mathrm{~V}_{\mathrm{i}}\right) \\
& \phi=\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{\mathrm{p}}\right) \in \mathrm{R}^{\mathrm{p}}
\end{aligned}
$$

Summational invariants: $\phi \in \mathrm{R}^{\mathrm{p}}$ such as

$$
\mathrm{A}_{\mathrm{ij}}^{\mathrm{k} \ell}\left(\varphi_{\mathrm{k}}+\varphi_{\ell}-\varphi_{\mathrm{i}}-\varphi_{\mathrm{j}}\right)=0 \quad \forall \mathrm{i}, \mathrm{j}, \mathrm{k}, \ell
$$

\longrightarrow Linear subspace $\mathbf{F} \quad\left(\mathbf{F} \subset \mathrm{R}^{\mathrm{p}}\right.$ dimension of $\left.\mathbf{F}=\mathrm{q}\right)$
Base in $\mathbf{F}: \mathbf{V}^{1}, \mathbf{V}^{2}, \ldots \mathbf{V}^{\mathrm{q}}$
Base in $R^{p}: \mathbf{V}^{1}, \mathbf{V}^{2}, \ldots \mathbf{V}^{q}, \mathbf{W}^{q+1}, \ldots \mathbf{W}^{p}$
Kinetic densities

$$
\mathbf{N}=\sum_{\alpha=1}^{\alpha=q}{ }_{\alpha}^{a} V^{\alpha}+\sum_{\beta=q+1}^{\beta=p} b_{p} W^{\beta}
$$

Macrocospic variable Microscopic variable

$$
\frac{\partial}{\partial \mathrm{t}} \mathbf{N}+\mathcal{A} \mathbf{N}=\mathcal{F}(\mathbf{N}, \mathbf{N})
$$

Equations for the \mathbf{a}_{α} and the \mathbf{b}_{β} variables

$$
\begin{aligned}
& \frac{\partial \mathbf{a}_{\alpha}}{\partial \mathrm{t}}+<\mathcal{A} \mathbf{N}, \mathbf{v}^{\alpha}>=0, \quad \alpha=1,2, \ldots, \mathrm{q} \quad \text { conservation laws } \\
& \frac{\partial \mathbf{b}_{\beta}}{\partial \mathrm{t}}+<\mathcal{A} \mathbf{N}, \mathbf{w}^{\beta}>=<\mathcal{F}(\mathbf{N}, \mathbf{N}), \mathbf{w}^{\beta}>, \quad \beta=\mathrm{q}+1, \mathrm{q}+2, \ldots, \mathrm{p}
\end{aligned}
$$

$\underline{\mathrm{H}-\text { Theorem: }} \mathrm{H}$ is decreasing with $\mathrm{H}=\langle\mathbf{N}, \ln \mathcal{F}(\mathbf{N}, \mathbf{N})>$
Maxwellian state: $\quad \ln \mathbf{N} \in \mathbf{F} \Leftrightarrow \mathcal{F}(\mathbf{N}, \mathbf{N})=0 \Leftrightarrow \ln \mathbf{N}=\sum_{\alpha=1}^{\alpha=q} \mathbf{c}_{\alpha} \mathbf{V}^{\alpha}$
Euler equations associated with the model: Equations for the variables \mathbf{a}_{α} or equivalently for the \mathbf{c}_{α} variables

$$
\sum_{\delta=1}^{\delta=q} \frac{\partial^{2} \mathcal{L}\left(\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{\mathbf{q}}\right)}{\partial \mathbf{c}_{\alpha} \partial \mathbf{c}_{\delta}} \frac{\partial \mathbf{c}_{\delta}}{\partial t}+\sum_{\delta=1}^{\delta=9} \frac{\partial^{2} \mathcal{M}\left(\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{q}\right)}{\partial \mathbf{c}_{\alpha} \partial \mathbf{c}_{\delta}} \frac{\partial \mathbf{c}_{\delta}}{\partial \mathrm{x}}=0, \quad \alpha=1,2, \ldots, \mathrm{q}
$$

Two problems are present in discrete kinetic theory:

1. The existence of macrocospic variables other than mass, momentum and energy
2. The anisotropic character generally related to the discrete models

In order to reduce and possibly to eliminate them, multiple collisions are introduced and some symmetry properties on the models are adopted

The multiple collisions

Ar - collision is a collision between r particles:

$$
\begin{gathered}
\overrightarrow{\mathrm{u}}_{\mathrm{i}_{1}}, \overrightarrow{\mathrm{u}}_{2}, \ldots, \overrightarrow{\mathrm{u}}_{\mathrm{i}_{\mathrm{r}}} \\
\text { Before the collision } \\
\mathrm{I}_{\mathrm{r}}=\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{r}}\right)
\end{gathered}
$$

$$
\overrightarrow{\mathrm{u}}_{\mathrm{j}_{1}}, \overrightarrow{\mathrm{u}}_{\mathrm{j}_{2}}, \ldots, \overrightarrow{\mathrm{u}}_{\mathrm{j}_{\mathrm{r}}}
$$

After the collision

$$
\mathrm{J}_{\mathrm{r}}=\left(\mathrm{j}_{1}, \mathrm{j}_{2}, \ldots, \mathrm{j}_{\mathrm{r}}\right)
$$

Transition probability: $\quad A_{I_{r}}^{J_{r}}$
$\delta\left(k, I_{r}, J_{r}\right)$ is the algebraic number of particles «k$»$ created in the r - collision $I_{r} \rightarrow J_{r}$
$\sum_{\mathrm{I}_{\mathrm{r}} \mathrm{J}_{\mathrm{r}}} \delta\left(\mathrm{k}, \mathrm{I}_{\mathrm{r}}, \mathrm{J}_{\mathrm{r}}\right) \mathrm{A}_{\mathrm{I}_{\mathrm{r}}}^{\mathrm{J}_{\mathrm{r}}} \mathrm{N}_{\mathrm{i}_{1}} \mathrm{~N}_{\mathrm{i}_{2}} \ldots . . \mathrm{N}_{\mathrm{i}_{\mathrm{r}}}$ is the algebraic number of particles «k » created in all the r - collisions (per unit time)

Kinetic equations with \mathbf{r} - collisions ($\mathrm{r}=2,3, \ldots, \mathrm{R}$)

$$
\begin{array}{ll}
\frac{\partial}{\partial \mathrm{t}} \mathrm{~N}_{\mathrm{k}}+\overrightarrow{\mathrm{u}}_{\mathrm{k}} \cdot \vec{\nabla} \mathrm{~N}_{\mathrm{k}}=\frac{1}{2} \sum_{\mathrm{r}=2,3, \ldots, \mathrm{R}} \sum_{\mathrm{I}_{\mathrm{r}} \mathrm{~J}_{\mathrm{r}}} \delta\left(\mathrm{k}, \mathrm{I}_{\mathrm{r}}, \mathrm{~J}_{\mathrm{r}}\right) \mathrm{A}_{\mathrm{I}_{\mathrm{r}}}^{\mathrm{J}_{\mathrm{r}}} \mathrm{~N}_{\mathrm{i}_{1}} \mathrm{~N}_{\mathrm{i}_{2}} \ldots . . \mathrm{N}_{\mathrm{i}_{\mathrm{r}}} \\
\mathrm{k}=1,2, \ldots, \mathrm{p} & \frac{\partial}{\partial \mathrm{t}} \mathbf{N}+\mathcal{A} \mathbf{N}=C(\mathbf{N})
\end{array}
$$

Summational invariants $\phi=\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{p}\right) \in R^{p}$

$$
\mathrm{A}_{\mathrm{I}_{\mathrm{r}}}^{\mathrm{J}_{\mathrm{r}}} \sum_{\mathrm{k}} \delta\left(\mathrm{k}, \mathrm{I}_{\mathrm{r}}, \mathrm{~J}_{\mathrm{r}}\right) \varphi_{\mathrm{k}}=0 \quad \forall \mathrm{I}_{\mathrm{r}}, \mathrm{~J}_{\mathrm{r}}, \mathrm{r}
$$

$\Longrightarrow \quad$ Linear subspace $\quad \mathrm{F} \quad\left(\mathrm{F} \subset \mathrm{R}^{\mathrm{p}}\right)$
Two remarks
$>$ By taking into account multiple collisions, the dimension of \mathbf{F} is decreasing
$>$ By taking into account all the r - collisions, it is possible to find the dimension of \mathbf{F}, without explicitly determining all the collisions between the particles (Ph. Chauvat)

Examples: Dimension of F is $\mathbf{4}$ or 5

Spatial models related to the cube

Velocity number
6 •
8
14 ••
$26 \cdot \cdot$

Coplanar models related to the hexagonal lattice

Generalizations

$$
\begin{aligned}
& \overrightarrow{\mathrm{u}}_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}} \overrightarrow{\mathrm{I}}+\mathrm{b}_{\mathrm{k}} \overrightarrow{\mathrm{~J}}+\mathrm{c}_{\mathrm{k}} \overrightarrow{\mathrm{~K}}, \\
& \left(\mathrm{a}_{\mathrm{k}}, \mathrm{~b}_{\mathrm{k}}, \mathrm{c}_{\mathrm{k}}\right) \in \mathrm{Z}^{3} \\
& \operatorname{dim} \mathbf{F}=5
\end{aligned}
$$

Chapman - Enskog expansion

$$
\frac{\partial}{\partial \mathrm{t}} \mathbf{N}+\mathcal{A} \mathbf{N}=\frac{1}{\varepsilon} C(\mathbf{N}, \mathbf{N}) \quad \varepsilon \ll 1 \quad(\varepsilon \text { Knudsen number })
$$

But: To obtain balance laws for the variables \mathbf{a}_{α}

$$
\left\{\frac{\partial \mathbf{a}_{\alpha}}{\partial \mathrm{t}}+<\mathcal{A} \mathbf{N}, \mathbf{v}^{\alpha}>=0, \quad \alpha=1,2, \ldots, \mathrm{q}\right.
$$

with $\mathbf{N}=\mathbf{N}\left(\mathbf{a}_{\alpha}, \mathbf{b}_{\beta}\right)$, the variables \mathbf{b}_{β} depending on the \mathbf{a}_{α}
Chapman - Enskog expansion
$\mathbf{N}=\mathbf{N}^{(0)}+\varepsilon \mathbf{N}^{(1)}+\varepsilon^{2} \mathbf{N}^{(2)}+\cdots$
$C\left(\mathbf{N}^{(0)}, \mathbf{N}^{(0)}\right)=0$
$\mathbf{N}^{(0)}$ Maxwellian densities
Euler equations for \mathbf{a}_{α}
$\mathcal{H}^{(1)}\left(\mathbf{N}^{(1)}\right)=\frac{\partial}{\partial \mathrm{t}} \mathbf{N}^{(0)}+\mathcal{A} \mathbf{N}^{(0)}$
Linearized collision operator
$\mathbf{N}^{(0)}+\varepsilon \mathbf{N}^{(1)} \quad$ Navier - Stokes equations for \mathbf{a}_{α}

3. Hydrodynamical description for regular discrete models

Regular discrete models

The successful simulations undertaken with the lattice gas method introduced by Frisch, Hasslacher and Pomeau, ... have provided a new light on the discrete models of gas
" Quasi - isotropic " models (Chauvat, Coulouvrat, R.G.)

$$
\begin{aligned}
& \mathcal{V}_{\ell}=\left\{\overrightarrow{\mathrm{u}}_{\mathrm{k}}^{\ell},\left|\overrightarrow{\mathrm{u}}_{\mathrm{k}}^{\ell}\right|=\mathrm{c}_{\ell}, \mathrm{k}=1,2, \ldots, \mathrm{p}_{\ell}\right\} \\
& \mathcal{U}=\left\{\overrightarrow{\mathrm{u}}_{\mathrm{k}}, \mathrm{k}=1,2, \ldots, \mathrm{p}\right\}=\cup_{\ell=1}^{\ell=\mathrm{L}} \mathcal{U}_{\ell}
\end{aligned}
$$

Mean properties
$+G$: Isometry group in R^{D}
$+\quad \mathrm{g}(\mathcal{U})=\mathcal{U} \quad \forall \mathrm{g} \in \mathcal{G}$
$+\operatorname{dim} \mathrm{F}=\mathrm{D}+2 \quad$ (The multiple collisions are introduced)
Examples: Coplanar models related to the hexagonal lattice, Spatial models related to the cubic lattice

Hydrodynamical description of the gas

Maxwellian state $\quad \mathrm{N}_{\mathrm{k}}^{(0)}=\exp \left(\alpha+\vec{\beta} \cdot \overrightarrow{\mathrm{u}}_{\mathrm{k}}+\gamma\left(\overrightarrow{\mathrm{u}}_{\mathrm{k}}^{2}-\mathrm{a}^{2}\right)\right)$

$$
\begin{gathered}
\mathrm{n}=\sum_{\mathrm{k}} \mathrm{~N}_{\mathrm{k}}^{(0)}, \quad \mathrm{n} \overrightarrow{\mathrm{u}}=\sum_{\mathrm{k}} \mathrm{~N}_{\mathrm{k}}^{(0)} \overrightarrow{\mathrm{u}}_{\mathrm{k}}, \quad \mathrm{ne}=\frac{1}{2} \sum_{\mathrm{k}} \mathrm{~N}_{\mathrm{k}}^{(0)} \overrightarrow{\mathrm{u}}_{\mathrm{k}}^{2} \\
\alpha, \vec{\beta}, \gamma \Leftrightarrow \mathrm{n}, \overrightarrow{\mathrm{u}}, \mathrm{e} \quad \text { Bijection }
\end{gathered}
$$

Homogeneous Maxwellian state $\quad N_{k}^{(0)}=\frac{n}{p} \quad\left(\overrightarrow{\mathrm{u}}=0, \mathrm{e}=\frac{1}{2} \mathrm{a}^{2}\right)$
Quasi - homogeneous Maxwellian state $\quad \Delta \mathrm{e} / \mathrm{a}^{2} \ll 1, \quad|\overrightarrow{\mathrm{u}}| / \mathrm{a} \ll 1$

$$
\begin{aligned}
N_{k}^{(0)}= & \frac{n}{p}\left\{1+\frac{D}{a^{2}} \overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{u}}_{\mathrm{k}}+\frac{2\left(\overrightarrow{\mathrm{u}}_{\mathrm{k}}^{2}-\mathrm{a}^{2}\right)}{\mathrm{a}_{2}^{4}-\mathrm{a}^{4}}\left(\mathrm{e}-\frac{\mathrm{a}^{2}}{2}\right)+\frac{D^{2}}{2 \mathrm{a}^{4}}\left(\overrightarrow{\mathrm{u}}_{\mathrm{k}} \overrightarrow{\mathrm{u}}_{\mathrm{k}}-\frac{\overrightarrow{\mathrm{u}}_{\mathrm{k}}^{2}}{\mathrm{D}} \overrightarrow{\overrightarrow{\mathrm{I}}}\right): \overrightarrow{\mathrm{u}} \overrightarrow{\mathrm{u}}\right. \\
& \left.+\frac{2 \mathrm{D}^{2}}{\mathrm{a}^{2}}\left(\frac{\overrightarrow{\mathrm{u}}_{\mathrm{k}}^{2}-\mathrm{a}^{2}}{\mathrm{a}_{2}^{4}-\mathrm{a}^{4}}-\frac{1}{\mathrm{a}^{2}}\right)\left(\mathrm{e}-\frac{\mathrm{a}^{2}}{2}\right)\left(\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{u}}_{\mathrm{k}}\right)\right\}
\end{aligned}
$$

Notations: $\quad a_{r}=\left(\frac{1}{p} \sum_{k}\left|\vec{u}_{k}\right|^{2 r}\right)^{1 / 2 r} \quad a_{1}=\left(\frac{1}{p} \sum_{k}\left|\vec{u}_{k}\right|^{2}\right)^{1 / 2} \equiv a$

Euler equations associated with the model

$$
\begin{aligned}
& \int \frac{\partial \rho}{\partial \mathrm{t}}+\vec{\nabla} \cdot(\rho \overrightarrow{\mathrm{u}})=0
\end{aligned}
$$

$$
\begin{aligned}
& \eta=\frac{a_{2}^{4}}{a^{4}} \frac{D}{D+2} \\
& \varphi=\frac{2 a_{2}^{8}-a^{4} a_{2}^{4}-a^{2} a_{3}^{6}}{a^{4}\left(a_{2}^{4}-a^{4}\right)}
\end{aligned}
$$

η and depend on the discrete models
Continuous fluids $\eta=1 \quad \varphi=0$
Remarks: We can provide equivalent forms of the Euler equations; for example with a pressure tensor not necessarily spherical or a vector heat flux not necessarily zero

Navier -Stokes equations associated with the model

$$
\begin{aligned}
& \frac{\partial \rho}{\partial \mathrm{t}}+\vec{\nabla} \cdot(\rho \overrightarrow{\mathrm{u}})=0 \\
& \frac{\partial(\rho \overrightarrow{\mathrm{u}})}{\partial \mathrm{t}}+\eta_{\theta_{0}}^{\vec{\nabla}} \cdot(\rho \overrightarrow{\mathrm{u}} \overrightarrow{\mathrm{u}})+\vec{\nabla} \bar{\sigma}=\left(\eta_{0}-1\right)^{\circ} \vec{\nabla}\left(\rho \frac{\overrightarrow{\mathrm{u}}^{2}}{\mathrm{D}}\right)+\vec{\nabla} \cdot\left(\rho \overrightarrow{\mathrm{M}}_{\mathrm{an}}\right) \\
& +\vec{\nabla} \cdot\left(2 \mu \overrightarrow{\overrightarrow{\mathrm{D}}}+\lambda \operatorname{Tr}(\overrightarrow{\mathrm{D}}) \overrightarrow{\mathrm{I}}_{\mathrm{D}}\right)+\vec{\nabla} \cdot \overrightarrow{\mathrm{B}}_{\mathrm{an}} \\
& \frac{\partial}{\partial \mathrm{t}}\left(\rho \mathrm{e}+\rho \frac{\overrightarrow{\mathrm{u}}^{2}}{2}\right)+\eta \vec{\nabla} \cdot\left(\left(\rho \mathrm{e}+\rho \frac{\overrightarrow{\mathrm{u}}^{2}}{2}+\Phi\right) \overrightarrow{\mathrm{u}}\right)=\stackrel{\rightharpoonup}{\nabla} \cdot\left(\rho\left(\mathrm{e}-\rho \frac{\mathrm{a}^{2}}{2}\right) \overrightarrow{\mathrm{u}}\right) \\
& +\vec{\nabla} \cdot(\kappa \vec{\nabla} \mathrm{e}) \\
& \mu \cong \frac{\rho}{(\mathrm{D}+2) \mathrm{a}^{2}} \frac{1}{\mathrm{~L}} \sum_{\ell=1,2, \ldots, \mathrm{~L}} \beta_{\ell} \mathrm{a}_{\ell}^{4}, \quad 2 \mu+\mathrm{D} \lambda=0, \quad \kappa \cong \frac{\rho}{\mathrm{D} \mathrm{a}^{2}} \frac{1}{\mathrm{~L}} \sum_{\ell=1,2, \ldots, \mathrm{~L}} \delta_{\ell} \mathrm{a}_{\ell}^{4}
\end{aligned}
$$

Remarks: $\quad \sum_{k} \overrightarrow{\mathrm{u}}_{\mathrm{k}} \overrightarrow{\mathrm{u}}_{\mathrm{k}} \overrightarrow{\mathrm{u}}_{\mathrm{k}} \overrightarrow{\mathrm{u}}_{\mathrm{k}}$ isotropic $\longrightarrow \overrightarrow{\overrightarrow{\mathrm{M}}}_{\mathrm{an}}=0 \quad \overrightarrow{\vec{B}}_{\mathrm{an}}=0$

Numerical results for the transport coefficients

Model	$\bar{\mu}$	$\bar{\kappa}$	Pr	$\kappa=\frac{\mathrm{ma}}{\mathrm{~S} \sqrt{2}} \bar{\kappa}$
I	0.15	0.24	0.62	
II	0.24	0.33	0.73	
III	0.22	0.24	0.92	$\operatorname{Pr}=\frac{\mu}{\kappa}$
IV	0.25	0.41	0.61	
Chauvat (1989)*	0.14	0.50	0.28	* model I ($\eta=0.67, \varphi=0$
Chahine (1967)**	0.14	0.56	0.25	** coplanar continuous model

Models: I (12)

II (12)

III (18)

IV (18)
4. Boundary Conditions

Boundary conditions on an impermeable wall (R.G., 1975)

$$
\left|\left(\overrightarrow{\mathrm{u}}_{\mathrm{r}}-\overrightarrow{\mathrm{u}}_{\mathrm{w}}\right) \cdot \overrightarrow{\mathrm{n}}\right| \mathrm{N}_{\mathrm{r}}=\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{~B}_{\mathrm{ir}}\left|\left(\overrightarrow{\mathrm{u}}_{\mathrm{i}}-\overrightarrow{\mathrm{u}}_{\mathrm{w}}\right) \cdot \overrightarrow{\mathrm{n}}\right| \mathrm{N}_{\mathrm{i}} \quad \forall \mathrm{r} \in \mathrm{R}
$$

$B_{i r}$: probability for a particle of velocity $\overrightarrow{\mathrm{u}}_{\mathrm{i}}$ impinging the wall, to be reflected with the velocity $\overrightarrow{\mathrm{u}}_{\mathrm{r}}$
H-Theorem in a vessel
Particular case of the diffuse reflexion: $\quad N_{r}=\lambda N_{r w}$
The densities $\mathrm{N}_{\text {rw }}$ are Maxwellian densities associated with the macroscopic variables of the wall $\mathrm{n}_{\mathrm{w}}=1, \overrightarrow{\mathrm{u}}_{\mathrm{w}}, \mathrm{T}_{\mathrm{w}}, \ldots$
λ (as n) is unknown; λ is known when the problem is solved

Gas in Maxwellian equilibrium with the condensed phase

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{kw}}=\exp \left(\alpha+\vec{\beta} \cdot \overrightarrow{\mathrm{u}}_{\mathrm{k}}+\gamma\left|\overrightarrow{\mathrm{u}}_{\mathrm{k}}\right|^{2}\right) \\
& \sum_{\mathrm{k}} \mathrm{~N}_{\mathrm{kw}}=1, \quad \sum_{\mathrm{k}} \mathrm{~N}_{\mathrm{kw}} \overrightarrow{\mathrm{u}}_{\mathrm{k}}=0, \quad \frac{1}{2} \sum_{\mathrm{k}} \mathrm{~N}_{\mathrm{k}}\left(\overrightarrow{\mathrm{u}}_{\mathrm{k}}-\overrightarrow{\mathrm{u}}\right)^{2}=\frac{3}{2} \frac{\mathrm{kT}_{\mathrm{w}}}{\mathrm{~m}}
\end{aligned}
$$

Boundary conditions for the vapor

$$
\mathrm{N}_{\mathrm{r}}=\mathrm{n}_{\mathrm{sat}} \mathrm{~N}_{\mathrm{rw}}, \quad \forall \mathrm{r} \in \mathrm{R}
$$

$\mathrm{n}_{\text {sat }}$: saturation density of the vapor at the temperature T_{w}
Remark: This boundary condition is valid only when the models are symmetrical about the normal $\overrightarrow{\mathrm{n}}$. This condition is similar to that of the continuous kinetic theory

5. Applications

Applications

> Shock wave structure
> Unsteady and steady Couette flows (Knudsen layer, initial layer, ...)
> Flow and heat transfer between two parallel plates
$>$ Evaporation / condensation between two interfacex (temperature inversion)
$>$ Evaporation or condensation on a liquid interface
$>$ Flow in a microchannel

Flow and heat transfer between two parallel plates (d'Almeida)

Blue line: Thermophoresis phenomenon

Temperature
$\mathrm{T}_{\mathrm{w}}^{+}=2, \mathrm{u}_{\mathrm{w}}^{+}=0.2$

Evaporation / condensation between two interfaces (d'Almeida)

Evaporation or condensation on a liquid interface (Nicodin)

These problems depend on 3 parameters : $\frac{\theta_{\infty}}{\theta_{0}}, v_{\infty}, M_{\infty}=\frac{\left|\omega_{\infty}\right|}{\sqrt{\theta_{\infty}}}>0$
The results obtained with a very simple model (16 velocities only) are in very good agreement with those of Sone, Aoki and their collaborators with continuous theory

Condensation problem (Nicodin)

There is a Knudsen layer near the condensed phase $(\eta=0)$. A compression wave (shock wave) propagates to infinity

Evaporation problem (Nicodin)

$\frac{\theta_{\infty}}{\theta_{0}}=1, \quad v_{\infty}=0.01, \mathrm{M}_{\infty}=1$

6. Conclusion

Conclusion

Many generalizations

Gas mixtures (Cercignani, Cornille, ...)
Chemical reactions (Pandolfi, ...)
Numerical approaches (Leguillon, Teman, Golstein, ...)
Semi discrete Boltzmann equation (Cabannes, Toscani, ...)

Many mathematical papers
Existence theorems, exact solutions, asymptotic analysis, ...
Cabannes, Bardos, Beale, Bellomo, Bobylev, Bony, Cercignani, Cornille, Godunov, Golse, Hamdache, Illner, Kawashimha, Levermore, Nishida, Platkowski, Sultangazin, Tartar, Vedenyapin, ...

Special thanks to:

Alain Fanget (Thesis, 1980)
Philippe Chauvat (Thesis, 1991)
Amah d'Almeida (Thesis, 1994)
Ioana Nicodin (Thesis, 2001)

François Coulouvrat (DEA, 1987)
Mohammed Kane (DEA, 1977)
Ayaovi Bodjrenou (DEA, 2000)
Yassine Benbouali (DEA, 2003)
..........

Thank you for your attention

